Open Access

Digital Video Encryption Algorithms Based on Correlation-Preserving Permutations

  • Daniel Socek1Email author,
  • Spyros Magliveras2,
  • Dubravko Ćulibrk1,
  • Oge Marques1,
  • Hari Kalva1 and
  • Borko Furht1
EURASIP Journal on Information Security20072007:052965

https://doi.org/10.1155/2007/52965

Received: 28 February 2007

Accepted: 19 June 2007

Published: 30 July 2007

Abstract

A novel encryption model for digital videos is presented. The model relies on the encryption-compression duality of certain types of permutations acting on video frames. In essence, the proposed encryption process preserves the spatial correlation and, as such, can be applied prior to the compression stage of a spatial-only video encoder. Several algorithmic modes of the proposed model targeted for different application requirements are presented and analyzed in terms of security and performance. Experimental results are generated for a number of standard benchmark sequences showing that the proposed method, in addition to providing confidentiality, preserves or improves the compression ratio.

[123456789101112131415161718192021222324252627282930313233]

Authors’ Affiliations

(1)
Department of Computer Science and Engineering, Florida Atlantic University
(2)
Department of Mathematical Sciences, Florida Atlantic University

References

  1. Meyer J, Gadegast F: Security mechanisms for multimedia data with the example MPEG-1 video. Project Description of SECMPEG, Technical University of Berlin, 1995Google Scholar
  2. Spanos G, Maples T: Performance study of a selective encryption scheme for the security of networked, real-time video. In Proceedings of the 4th International Conference on Computer Communications and Networks (ICCCN '95), September 1995, Las Vegas, Nev, USA. IEEE Press; 2-10.Google Scholar
  3. Bhargava B, Shi C, Wang S-Y: MPEG video encryption algorithms. Multimedia Tools and Applications 2004, 24(1):57-79.View ArticleGoogle Scholar
  4. Li S, Chen G, Cheung A, Bhargava B, Lo K-T: On the design of perceptual MPEG-Video encryption algorithms. IEEE Transactions on Circuits and Systems for Video Technology 2005, 17(2):214-223.View ArticleGoogle Scholar
  5. Agi I, Gong L: An empirical study of secure MPEG video transmissions. In Proceedings of the Symposium on Network and Distributed System Security (SNDSS '96), February 1996, San Diego, Calif, USA. IEEE Computer Society; 137-144.View ArticleGoogle Scholar
  6. Wu C-P, Kuo C-CJ: Fast encryption methods for audiovisual data confidentiality. Multimedia Systems and Applications III, November 2000, Boston, Mass, USA, Proceedings of SPIE 4209: 284-295.View ArticleGoogle Scholar
  7. Wen J, Severa M, Zeng W, Luttrell M, Jin W: A format-compliant configurable encryption framework for access control of multimedia. Proceedings of the 4th IEEE Workshop on Multimedia Signal Processing (MMSP '01), October 2001, Cannes, France 435-440.Google Scholar
  8. Lookabaugh T, Sicker DC, Keaton DM, Guo WY, Vedula I: Security analysis of selectively encrypted MPEG-2 streams. Multimedia Systems and Applications VI, September 2003, Orlando, Fla, USA, Proceedings of SPIE 5241: 10-21.View ArticleGoogle Scholar
  9. Li S, Zheng X, Mou X, Cai Y: Chaotic encryption scheme for real-time digital video. Real-Time Imaging VI, January 2002, San Jose, Calif, USA, Proceedings of SPIE 4666: 149-160.View ArticleGoogle Scholar
  10. Li S, Chen G, Zheng X: Chaos-based encryption for digital images and videos. In Multimedia Security Handbook, Internet and Communications Series. Volume 4. CRC Press, Boca Raton, Fla, USA; 2004:133-167.Google Scholar
  11. Furht B, Muharemagic E, Socek D: Multimedia Encryption and Watermarking, Multimedia Systems and Applications. Volume 28. Springer, Berlin, Germany; 2005.Google Scholar
  12. Guo D, Cheng LM, Cheng LL: A new symmetric probabilistic encryption scheme based on chaotic attractors of neural networks. Applied Intelligence 1999, 10(1):71-84. 10.1023/A:1008337631906View ArticleGoogle Scholar
  13. Socek D, Ćulibrk D: On the security of a clipped hopfield neural network-based cryptosystem. Proceedings of the 7th ACM Workshop on Multimedia and Security (MM-Sec '05), August 2005, New York, NY, USA 71-76.Google Scholar
  14. Yi X, Tan CH, Siew CK, Syed MR: Fast encryption for multimedia. IEEE Transactions on Consumer Electronics 2001, 47(1):101-107. 10.1109/30.920426View ArticleGoogle Scholar
  15. Youssef AM, Tavares SE: Comments on the security of fast encryption algorithm for multimedia (FEA-M). IEEE Transactions on Consumer Electronics 2003, 49(1):168-170. 10.1109/TCE.2003.1205471View ArticleGoogle Scholar
  16. Mihaljević MJ: On vulnerabilities and improvements of fast encryption algorithm for multimedia FEA-M. IEEE Transactions on Consumer Electronics 2003, 49(4):1199-1207. 10.1109/TCE.2003.1261217View ArticleGoogle Scholar
  17. Pazarci M, Dipçin V: A MPEG2-transparent scrambling technique. IEEE Transactions on Consumer Electronics 2002, 48(2):345-355. 10.1109/TCE.2002.1010141View ArticleGoogle Scholar
  18. Socek D, Kalva H, Magliveras S, Marques O, Ćulibrk D, Furht B: A permutation-based correlation-preserving encryption method for digital videos. In Proceedings of the 3rd International Conference on Image Analysis and Recognition (ICIAR '06), September 2006, Póvoa de Varzim, Portugal, Lecture Notes in Computer Science. Volume 4141. Springer; 547-558.Google Scholar
  19. Burrows M, Wheeler DJ: A block-sorting lossless data compression algorithm. In Research Report 124. Digital Systems Research Center, Palo Alto, Calif, USA; 1994.Google Scholar
  20. Deorowicz S: Improvements to Burrows-Wheeler compression algorithm. Software-Practice and Experience 2000, 30(13):1465-1483. 10.1002/1097-024X(20001110)30:13<1465::AID-SPE345>3.0.CO;2-DMATHView ArticleGoogle Scholar
  21. Arnavut Z, Otu H: Lossless compression of color-mapped images with Burrows-Wheeler transformation. In Proceedings of the IASTED Signal Processing Conference, July 2001, Rhodes, Greece. Acta-Press; 185-189.Google Scholar
  22. Arnavut Z, Magliveras S: Lexical permutation sorting algorithm. The Computer Journal 1997, 40(5):292-295. 10.1093/comjnl/40.5.292MATHView ArticleGoogle Scholar
  23. Menezes AJ, van Oorschot PC, Vanstone SA: Handbook of Applied Cryptography. CRC Press, Boca Raton, Fla, USA; 1996.View ArticleGoogle Scholar
  24. Magliveras S: A cryptosystem from logarithmic signatures of finite groups. In Proceedings of the 29th Midwest Symposium on Circuits and Systems, August 1986, Lincoln, Neb, USA. Elsevier; 972-975.Google Scholar
  25. Brown L: Technical options for implementing pay-TV in Australia. Australian Telecommunication Research Journal 1990, 24(2):1-8.Google Scholar
  26. Wyner AD: An analog scrambling scheme which does not expand bandwidth—part I: discrete time. IEEE Transactions on Information Theory 1979, 25(3):261-274. 10.1109/TIT.1979.1056050MATHMathSciNetView ArticleGoogle Scholar
  27. Wyner AD: An analog scrambling scheme which does not expand bandwidth—part II: continuous time. IEEE Transactions on Information Theory 1979, 25(4):415-425. 10.1109/TIT.1979.1056071MATHMathSciNetView ArticleGoogle Scholar
  28. Matias Y, Shamir A: A video scrambling technique based on space filling curves. In Proceedings of the Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology (CRYPTO '87), August 1987, Santa Barbara, Calif, USA, Lecture Notes in Computer Science. Volume 293. Springer; 398-417.Google Scholar
  29. Yen J-C, Guo J-I: Efficient hierarchical chaotic image encryption algorithm and its VLSI realisation. IEE Proceedings: Vision, Image and Signal Processing 2000, 147(2):167-175. 10.1049/ip-vis:20000208Google Scholar
  30. Tang L: Methods for encrypting and decrypting MPEG video data efficiently. In Proceedings of the 4th ACM International Multimedia Conference, November 1996, Boston, Mass, USA. ACM Press; 219-229.Google Scholar
  31. Uhl A, Pommer A: Image and Video Encryption: From Digital Rights Management to Secured Personal Communication, Advances in Information Security. Volume 15. Springer, Berlin, Germany; 2005.Google Scholar
  32. Li S, Li C, Chen G, Bourbakis NG, Lo K-T: A general cryptanalysis of permutation-only multimedia encryption algorithms. IACR's Cryptology ePrint Archive: Report 2004/374 2004.Google Scholar
  33. Horne M: Future video accident recorder. In Proceedings of the International Symposium on Transportation Recorders, May 1999, Arlington, Va, USA. The National Transportation Safety Board and International Transportation Safety Association;Google Scholar

Copyright

© Daniel Socek et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.