Skip to main content

Advertisement

A Survey of Homomorphic Encryption for Nonspecialists

Article metrics

Abstract

Processing encrypted signals requires special properties of the underlying encryption scheme. A possible choice is the use of homomorphic encryption. In this paper, we propose a selection of the most important available solutions, discussing their properties and limitations.

[12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970]

References

  1. 1.

    Rivest R, Adleman L, Dertouzos M: On data banks and privacy homomorphisms. In Foundations of Secure Computation. Academic Press; 1978:169-177.

  2. 2.

    Brickell E, Yacobi Y: On privacy homomorphisms. In Advances in Cryptology (EUROCRYPT '87), Lecture Notes in Computer Science. Volume 304. Springer, New York, NY, USA; 1987:117-126.

  3. 3.

    Rappe D: Homomorphic cryptosystems and their applications, Ph.D. thesis. University of Dortmund, Dortmund, Germany; 2004.http://www.rappe.de/doerte/Diss.pdf

  4. 4.

    Cramer R, Damgård I: Zero-knowledge for finite field arthmetic, or: can zeroknowledge be for free? In Advances in Cryptology (CRYPTO '98), Lecture Notes in Computer Science. Volume 1462. Springer, New York, NY, USA; 1998:424-441. 10.1007/BFb0055745

  5. 5.

    Lipmaa H: Verifiable homomorphic oblivious transfer and private equality test. In Advances in Cryptology (ASIACRYPT '03), Lecture Notes in Computer Science. Volume 2894. Springer, New York, NY, USA; 2003:416-433. 10.1007/978-3-540-40061-5_27

  6. 6.

    Fouque P-A, Poupard G, Stern J: Sharing decryption in the context of voting or lotteries. Proceedings of the 4th International Conference on Financial Cryptography, 2000, Anguilla, British West Indies, Lecture Notes in Computer Science 1962: 90-104.

  7. 7.

    Sander T, Tschudin C: Protecting mobile agents against malicious hosts. In Mobile Agents and Security, Lecture Notes in Computer Science. Volume 1419. Springer, New York, NY, USA; 1998:44-60.

  8. 8.

    Golle P, Jakobsson M, Juels A, Syverson P: Universal re-encryption for mixnets. Proceedings of the RSA Conference Cryptographer's (Track '04), 2004, San Francisco, Calif, USA, Lecture Notes in Computer Science 2964: 163-178.

  9. 9.

    Damgård I, Jurik M: A length-flexible threshold cryptosystem with applications. Proceedings of the 8th Australian Conference on Information Security and Privacy (ACISP '03), 2003, Wollongong, Australia, Lecture Notes in Computer Science 2727:

  10. 10.

    Adelsbach A, Katzenbeisser S, Sadeghi A: Cryptology meets watermarking: detecting watermarks with minimal or zero-knowledge disclosures. Proceedings of the European Signal Processing Conference (EUSIPCO '02), September 2002, Toulouse, France

  11. 11.

    Pfitzmann B, Waidner W: Anonymous fingerprinting. In Advances in Cryptology (EUROCRYPT '97), Lecture Notes in Computer Science. Volume 1233. Springer, New York, NY, USA; 1997:88-102. 10.1007/3-540-69053-0_8

  12. 12.

    Memon N, Wong P: A buyer-seller watermarking protocol. IEEE Transactions on Image Processing 2001, 10(4):643-649. 10.1109/83.913598

  13. 13.

    Lei C-L, Yu P-L, Tsai P-L, Chan M-H: An efficient and anonymous buyer-seller watermarking protocol. IEEE Transactions on Image Processing 2004, 13(12):1618-1626. 10.1109/TIP.2004.837553

  14. 14.

    Kuribayashi M, Tanaka H: Fingerprinting protocol for images based on aditive homomorphic property. IEEE Transactions on Image Processing 2005, 14(12):2129-2139.

  15. 15.

    Shoup V: A Computational Introduction to Number Theory and Algebra. Cambridge University Press; 2005.http://www.shoup.net/ntb/

  16. 16.

    Menezes A, Van Orschot P, Vanstone S: Handbook of applied cryptography. CRC Press; 1997.http://www.cacr.math.uwaterloo.ca/hac/

  17. 17.

    Van Tilborg H (Ed): Encyclopedia of Cryptography and Security. Springer, New York, NY, USA; 2005.

  18. 18.

    Kerckhoffs A: La cryptographie militaire (part i). Journal des Sciences Militaires 1883, 9(1):5-38.

  19. 19.

    Kerckhoffs A: La cryptographie militaire (part ii). Journal des Sciences Militaires 1883, 9(2):161-191.

  20. 20.

    Daemen J, Rijmen V: The block cipher RIJNDAEL. In (CARDIS '98), Lecture Notes in Computer Science. Volume 1820. Springer, New York, NY, USA; 2000:247-256.

  21. 21.

    Daemen J, Rijmen V: The design of Rijndael. In AES—the Advanced Encryption Standard, Informtion Security and Cryptography. Springer, New York, NY, USA; 2002.

  22. 22.

    Vernam G: Cipher printing telegraph systems for secret wire and radio telegraphic communications. Journal of the American Institute of Electrical Engineers 1926, 45: 109-115.

  23. 23.

    Ekdahl P, Johansson T: A new version of the stream cipher SNOW. In Selected Areas in Cryptography (SAC '02), Lecture Notes in Computer Science. Volume 2595. Springer, New York, NY, USA; 2002:47-61.

  24. 24.

    Rivest R, Shamir A, Adleman L: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 1978, 21(2):120-126. 10.1145/359340.359342

  25. 25.

    ElGamal T: A prublic key cryptosystem and a signature scheme based on discrete logarithms. In Advances in Cryptology (CRYPTO '84), Lecture Notes in Computer Science. Volume 196. Springer, New York, NY, USA; 1985:10-18. 10.1007/3-540-39568-7_2

  26. 26.

    Shannon C: Communication theory of secrecy systems. Bell System Technical Journal 1949, 28: 656-715.

  27. 27.

    Ajtai M, Dwork C: A public key cryptosystem with worst-case/average-case equivalence. Proceedings of the 29th ACM Symposium on Theory of Computing (STOC '97), 1997 284-293.

  28. 28.

    Nguyen P, Stern J: Cryptanalysis of the Ajtai-Dwork cryptosystem. In Advances in Cryptology (CRYPTO '98), Lecture Notes in Computer Science. Volume 1462. Springer, New York, NY, USA; 1999:223-242.

  29. 29.

    Canetti R, Goldreich O, Halevi S: The random oracle model, revisited. Proceedings of the 30th ACM Symposium on Theory of Computing (STOC '98), 1998, Berkeley, Calif, USA 209-218.

  30. 30.

    Paillier P: Impossibility proofs for RSA signatures in the standard model. Proceedings of the RSA Conference 2007, Cryptographers' (Track), 2007, San Fancisco, Calif, USA, Lecture Notes in Computer Science 4377: 31-48.

  31. 31.

    Diffie W, Hellman M: New directions in cryptography. IEEE Transactions on Information Theory 1976, 22(6):644-654. 10.1109/TIT.1976.1055638

  32. 32.

    Kahn D: The Codebreakers: The Story of Secret Writing. Macmillan, New York, NY, USA; 1967.

  33. 33.

    Bellare M, Rogaway P: Optimal asymmetric encryption—how to encrypt with RSA. In Advances in Cryptology (EUROCRYPT '94), Lecture Notes in Computer Science. Volume 950. Springer, New York, NY, USA; 1995:92-111. 10.1007/BFb0053428

  34. 34.

    Goldwasser S, Micali S: Probabilistic encryption & how to play mental poker keeping secret all partial information. Proceedings of the 14th ACM Symposium on the Theory of Computing (STOC '82), 1982, New York, NY, USA 365-377.

  35. 35.

    Blum M, Goldwasser S: An efficient probabilistic public-key encryption scheme which hides all partial information. In Advances in Cryptology (EUROCRYPT '84), Lecture Notes in Computer Science. Volume 196. Springer, New York, NY, USA; 1985:289-299.

  36. 36.

    Goldreich O: A uniform complexity treatment of encryption and zero-knowledge. Journal of Cryptology 1993, 6(1):21-53. 10.1007/BF02620230

  37. 37.

    Naor M, Yung M: Public-key cryptosystems provably secure against chosen ciphertext attacks. Proceedings of the 22nd ACM Annual Symposium on the Theory of Computing (STOC '90), 1990, Baltimore, Md, USA 427-437.

  38. 38.

    Rackoff C, Simon D: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In Advances in Cryptology (CRYPTO '91), Lecture Notes in Computer Science. Volume 576. Springer, New York, NY, USA; 1991:433-444.

  39. 39.

    Dolev D, Dwork C, Naor M: Non-malleable cryptography. Proceedings of the 23rd ACM Annual Symposium on the Theory of Computing —(STOC '91), 1991 542-552.

  40. 40.

    Dolev D, Dwork C, Naor M: Non-malleable cryptography. SIAM Journal of Computing 2000, 30(2):391-437. 10.1137/S0097539795291562

  41. 41.

    Bellare M, Desai A, Pointcheval D, Rogaway P: Relations among notions of security for public-key encryption schemes. In Advances in Cryptology (CRYPTO '98), Lecture Notes in Computer Science. Volume 1462. Springer, New York, NY, USA; 1998:26-45. 10.1007/BFb0055718

  42. 42.

    Bellare M, Sahai A: Non-malleable encryption: equivalence between two notions, and an indistinguishability-based characterization. In Advances in Cryptology (CRYPTO '99), Lecture Notes in Computer Science. Volume 1666. Springer, New York, NY, USA; 1999:519-536. 10.1007/3-540-48405-1_33

  43. 43.

    Watanabe Y, Shikata J, Imai H: Equivalence between semantic security and indistinguishability against chosen ciphertext attacks. In Public Key Cryptography (PKC '03), Lecture Notes in Computer Science. Volume 2567. Springer, New York, NY, USA; 2003:71-84.

  44. 44.

    Ahituv N, Lapid Y, Neumann S: Processing encrypted data. Communications of the ACM 1987, 30(9):777-780. 10.1145/30401.30404

  45. 45.

    Boneh D, Lipton R: Algorithms for black box fields and their application to cryptography. In Advances in Cryptology (CRYPTO '96), Lecture Notes in Computer Science. Volume 1109. Springer, New York, NY, USA; 1996:283-297. 10.1007/3-540-68697-5_22

  46. 46.

    Goldwasser S, Micali S: Probabilistic encryption. Journal of Computer and System Sciences 1984, 28(2):270-299. 10.1016/0022-0000(84)90070-9

  47. 47.

    Paillier P: Public-key cryptosystems based on composite degree residuosity classes. In Advances in Cryptology (EUROCRYPT '99), Lecture Notes in Computer Science. Volume 1592. Springer, New York, NY, USA; 1999:223-238. 10.1007/3-540-48910-X_16

  48. 48.

    Cramer R, Gennaro R, Schoenmakers B: A secure and optimally efficient multiauthority election scheme. In Advances in Cryptology (EUROCRYPT '97), Lecture Notes in Computer Science. Volume 1233. Springer, New York, NY, USA; 1997:103-118. 10.1007/3-540-69053-0_9

  49. 49.

    McEliece R: A public-key cryptosystem based on algebraic coding theory. Dsn progress report 1978.

  50. 50.

    Benaloh J: Verifiable secret-ballot elections, Ph.D. thesis. Yale University, Department of Computer Science, New Haven, Conn, USA; 1988.

  51. 51.

    Naccache D, Stern J: A new public-key cryptosystem based on higher residues. Proceedings of the 5th ACM Conference on Computer and Communications Security, November 1998, San Francisco, Calif, USA 59-66.

  52. 52.

    Okamoto T, Uchiyama S: A new public-key cryptosystem as secure as factoring. In Advances in Cryptology (EUROCRYPT '98), Lecture Notes in Computer Science. Volume 1403. Springer, New York, NY, USA; 1998:308-318. 10.1007/BFb0054135

  53. 53.

    Okamoto T, Uchiyama S, Fujisaki E: Epoc: efficient probabilistic publickey encryption. 2000.Proposal to IEEE P1363a, http://grouper.ieee.org/groups/1363/P1363a/draft.htmlhttp://grouper.ieee.org/groups/1363/P1363a/draft.html

  54. 54.

    Joye M, Quisquater J-J, Yung M: On the power of misbehaving adversaries and security analysis of the original EPOC. In Topics in Cryptology CT-RSA 2001, Lecture Notes in Computer Science. Volume 2020. Springer, New York, NY, USA; 2001.

  55. 55.

    Cramer R, Shoup V: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In Advances in Cryptology (EUROCRYPT '02), Lecture Notes in Computer Science. Volume 2332. Springer, New York, NY, USA; 2002:45-64. 10.1007/3-540-46035-7_4

  56. 56.

    Bresson E, Catalano D, Pointcheval D: A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications. In Advances in Cryptology (ASIACRYPT '03), Lecture Notes in Computer Science. Volume 2894. Springer, New York, NY, USA; 2003:37-54. 10.1007/978-3-540-40061-5_3

  57. 57.

    Damgård I, Jurik M: A generalisation, a simplification and some applications of Paillier's probabilistic public-key system. In 4th International Workshop on Practice and Theory in Public-Key Cryptography, Lecture Notes in Computer Science. Volume 1992. Springer, New York, NY, USA; 2001:119-136.

  58. 58.

    Galbraith S: Elliptic curve paillier schemes. Journal of Cryptology 2002, 15(2):129-138.

  59. 59.

    Castagnos G: An efficient probabilistic public-key cryptosystem over quadratic fields quotients. 2007.Finite Fields and Their Applications, paper version in press, http://users.info.unicaen.fr/~gcastagn/http://users.info.unicaen.fr/~gcastagn/

  60. 60.

    Castagnos G: Quelques schémas de cryptographie asymétrique probabiliste, Ph.D. thesis. , Bochum, Germany; 2006.http://users.info.unicaen.fr/~gcastagn/

  61. 61.

    Boneh D, Franklin M: Identity-based encryption from the Weil pairing. In Advances in Cryptology (CRYPTO '01), Lecture Notes in Computer Science. Volume 2139. Springer, New York, NY, USA; 2001:213-229. 10.1007/3-540-44647-8_13

  62. 62.

    Boneh D, Boyen X, Goh E-J: Hierarchical identity based encryption with constant size ciphertext. In Advances in Cryptology (EUROCRYPT '05), Lecture Notes in Computer Science. Volume 3494. Springer, New York, NY, USA; 2005:440-456. 10.1007/11426639_26

  63. 63.

    Domingo-Ferrer J: A provably secure additive and multiplicative privacy homomorphism. Proceedings of the 5th International Conference on Information Security (ISC '02), 2002, Sao Paulo, Brazil, Lecture Notes in Computer Science 2433: 471-483.

  64. 64.

    Wagner D: Cryptanalysis of an algebraic privacy homomorphism. Proceedings of the 6th International Conference on Information Security (ISC '03), 2003, Bristol, UK, Lecture Notes in Computer Science 2851:

  65. 65.

    Bao F: Cryptanalysis of a provable secure additive and multiplicative privacy homomorphism. International Workshop on Coding and Cryptograhy (WCC '03), 2003, Versailles, France 43-49.

  66. 66.

    Domingo-Ferrer J: A new privacy homomorphism and applications. Information Processing Letters 1996, 60(5):277-282. 10.1016/S0020-0190(96)00170-6

  67. 67.

    Cheon J, Kim W-H, Nam H: Known-plaintext cryptanalysis of the domingo-ferrer algebraic privacy homomorphism scheme. Information Processing Letters 2006, 97(3):118-123.

  68. 68.

    Castelluccia C, Mykletun E, Tsudik G: Efficient aggregation of encrypted data in wireless sensor networks. ACM/IEEE Mobile and Ubiquitous Systems: Networking and Services (Mobiquitous '05) 2005, 109-117.

  69. 69.

    Fellows M, Koblitz N: Combinatorial cryptosystems galore! Contemporary Mathematics, Finite Fields: Theory, Applications, and Algorithms, FQ2 1993, 168: 51-61.

  70. 70.

    Ly L: A public-key cryptosystem based on Polly Cracker, Ph.D. thesis. 2002.

Download references

Author information

Correspondence to Caroline Fontaine.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Fontaine, C., Galand, F. A Survey of Homomorphic Encryption for Nonspecialists. EURASIP J. on Info. Security 2007, 013801 (2007) doi:10.1155/2007/13801

Download citation

Keywords

  • Special Property
  • Encryption Scheme
  • Data Security
  • Homomorphic Encryption
  • Encrypt Signal