
EURASIP Journal on
Information Security

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12
https://doi.org/10.1186/s13635-021-00127-0

RESEARCH Open Access

Feature partitioning for robust tree
ensembles and their certification in
adversarial scenarios
Stefano Calzavara, Claudio Lucchese, Federico Marcuzzi* and Salvatore Orlando

Abstract

Machine learning algorithms, however effective, are known to be vulnerable in adversarial scenarios where a
malicious user may inject manipulated instances. In this work, we focus on evasion attacks, where a model is trained in
a safe environment and exposed to attacks at inference time. The attacker aims at finding a perturbation of an
instance that changes the model outcome.
We propose a model-agnostic strategy that builds a robust ensemble by training its basic models on feature-based
partitions of the given dataset. Our algorithm guarantees that the majority of the models in the ensemble cannot be
affected by the attacker. We apply the proposed strategy to decision tree ensembles, and we also propose an
approximate certification method for tree ensembles that efficiently provides a lower bound of the accuracy of a
forest in the presence of attacks on a given dataset avoiding the costly computation of evasion attacks.
Experimental evaluation on publicly available datasets shows that the proposed feature partitioning strategy provides
a significant accuracy improvement with respect to competitor algorithms and that the proposed certification method
allows ones to accurately estimate the effectiveness of a classifier where the brute-force approach would be unfeasible.

Keywords: Adversarial machine learning, Evasion attack, Forests of decision trees

1 Introduction
Machine learning (ML) algorithms are currently used to
train models that are then deployed to ensure system
security and to control critical processes [1, 2]. Unfortu-
nately, traditional ML algorithms proved vulnerable to a
wide range of attacks, and in particular to evasion attacks,
where an attacker carefully crafts perturbations of an
input to force prediction errors [3–6].
While there is a large body of research on evasion

attacks in linear classifiers [7, 8] and, more recently,
on deep neural networks [9, 10], there are just a few
works dealing with tree-based models. Decision trees are
interpretable models [11], yielding predictions which are
human-understandable in terms of syntactic checks over
domain features, which is particularly appealing in the

*Correspondence: federico.marcuzzi@unive.it
Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari
University of Venice, Venice, Italy

security setting. Moreover, decision trees ensembles are
nowadays one of the best methods for dealing with non-
perceptual problems and are one of the most commonly
used techniques in Kaggle competitions [12].
In this paper, we present a meta-learning algorithm,

called Feature Partitioned Forest (FPF), that builds an
ensemble of decision trees aimed to be robust against eva-
sion attacks. By focusing on binary classifiers, we show
that the proposed algorithm is able to build models that
are robust by construction. In fact, the algorithm bene-
fits of the theoretical property that the majority of the
learners in the ensemble is not fooled by an injected per-
turbation over a given instance, i.e., they still provide the
same prediction as for the original instance. This means
that the proposed algorithm limits by design the drop in
accuracy an attacker may generate. Our method is based
on a sampling of the features at training time. Specifically,
we randomly equi-partition the set of features and train

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-021-00127-0&domain=pdf
http://orcid.org/0000-0002-8141-8294
mailto: federico.marcuzzi@unive.it
http://creativecommons.org/licenses/by/4.0/

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 2 of 17

each tree of the ensemble on a distinct feature partition.
Such sampling limits the number of features considered
by a single tree, and therefore, it limits the number of trees
affected by corrupting a given feature. Even if we focus
our analysis on ensembles of decision trees, the proposed
learning strategy generalizes to any ensemble method.
We also propose a certification method for tree ensem-

bles that efficiently computes a lower bound of accuracy
under attack on a given dataset. Finding a successful attack
requires to find a set of features of a given instance that,
if corrupted, affects the prediction of the model. In gen-
eral, this requires an exhaustive search of all the possible
feature subsets and their possible modifications, which
becomes quickly unfeasible for powerful attacks or for
large feature sets. We show that this problem can be
reduced to a partial set cover problem, and we use efficient
set cover algorithms to assess the non-existence of harm-
ful attacks. By certifying the non-existence of attacks for
some instances of a given dataset, we can provide an accu-
racy lower bound on the full dataset. Indeed, we show that
the proposed lower bounds are efficient to be computed
and quite accurate. Furthermore, we devise a cascading
strategy where only those instances that are not certified
as non-attackable by the proposed lower bounds are even-
tually evaluated with a slow exact method. The cascading
strategy can reduce the total running time by one or two
orders of magnitude.
In summary, the contributions of this work are as fol-

lows:

• We propose a novel meta tree ensemble learning
algorithm named Feature Partitioned Forest that is
robust against adversarial attacks by construction

• We experimentally validate FPF on three public
datasets and we show that FPF can provide an
improvement up to 16 points in terms of accuracy in
presence of attacks compared to competitor
algorithms

• We provide a novel certification method that allows
ones to quickly compute a lower bound of the
accuracy of a forest on a given dataset

• We devise an exact cascading strategy for exactly
computing the accuracy in presence of an attacker by
exploiting the proposed lower bounds as a fast
preprocessing filter

2 Background and related work
Most of the work in adversarial learning regards clas-
sifiers, in particular binary ones. The attacker starts
from a positive instance that is classified correctly by
the deployed ML model and is interested in introduc-
ing minimal perturbations on the instance to modify
the prediction from positive to negative, thus “evading”
the classifier [3, 10, 13–18]. To prevent these attacks,

different techniques have been proposed for different
models, including support vector machines [8, 19], deep
neural networks [10, 20, 21], and decision tree ensembles
[16, 22–24].

2.1 Background and notation
Let X ⊆ R

d be a d-dimensional vector space of real-
valued features. An instance x ∈ X is a d-dimensional
feature vector (x1, x2, . . . , xd), where we denote withF the
set of features. Each instance x ∈ X is assigned a label y ∈
Y by some unknown target function g : X �→ Y . The goal
of a supervised learning algorithm that induces a forest of
decision trees is to find the forest T that best approximates
the target g. At training time, learning algorithms exploit
a training set Dtrain = {

(x1, y1), . . . , (xn, yn)
}
, then model

accuracy is evaluated on a test set Dtest where instance
labels are unknown to the trained model.
In this paper, we discuss binary classification, where

Y = {−1,+1}, and focus on binary decision trees. Each
tree t ∈ T can be inductively defined as follows: t is either
a leaf λ(ŷ) for some label ŷ ∈ Y , or an internal node
σ(f , v, tl, tr) (a.k.a, split), where f ∈[1, d] identifies a fea-
ture, v ∈ R is the threshold for the feature f, and tl, tr are
left/right decision trees. At test time, an instance x tra-
verses each tree t ∈ T until it reaches a leaf λ(ŷ), which
returns the prediction ŷ, denoted by t(x) = ŷ. Specifically,
for each internal node σ(f , v, tl, tr), x falls into the left tree
tl if xf ≤ v, and into the right tree tr otherwise. Given a
forest T , the global prediction is defined as T (x) = +1 if∑

t∈T t(x) > 0, and T (x) = −1 otherwise.
Finally, given a test setDtest , we denote byDtest ,Dtest ⊆

Dtest , the set of test instances that are erroneously classi-
fied by T , i.e., Dtest = {(x, y) ∈ Dtest | y · T (x) < 0}. We
define accuracy as:

ACC(T ,Dtest) = 1 − |Dtest|
|Dtest| .

2.2 Threat model
We focus on the evasion attack scenario, where an
attacker aims at fooling an already trained classifier by
maliciously modifying a given instance before submitting
it to the classification model. As in Kantchelian et al.
[25], we assume an attacker Ab that is capable of modify-
ing a given instance x into a perturbed instance x′ such
that the L0-norm of the perturbation is smaller than the
attacker’s budget b, i.e., ‖x− x′‖0 ≤ b. Therefore, attacker
Ab can perturb the instance x by modifying at most b
features, without any constraint on howmuch a given fea-
ture can be altered. Additional threat models have been
investigated. Threatmodels based on Lp-norm constraints
are common [9], and recently, models based on rewriting
rules have been proposed [23].We restrict attention to L0-
norm attacks because of their simplicity and effectiveness.

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 3 of 17

Indeed, a very small b is sufficient to achieve successful
attacks. Su et al. [26] show that with a one-pixel attack,
i.e., with b = 1, it is possible to fool a complex deep neu-
ral network as VGG16 [27] and decrease its accuracy to a
poor 16%.
Given an instance x ∈ X , we denote by Ab(x) the set of

all the perturbed instances the attacker may generate:

Ab(x) = {
x′ | x′ ∈ X ∧ ‖x − x′‖0 ≤ b

}
.

Finally, we can formalize the accuracy under attack that
an attacker Ab aims to minimize. Given the test set Dtest ,
let D̂test be the set of the test instances that can be suc-
cessfully attacked by Ab, i.e., D̂test = {(x, y) ∈ Dtest \
Dtest | ∃x′ ∈ Ab(x), y · T (x′) < 0}. We thus define the
accuracy under attack as:

ACCAb(T ,Dtest) = 1 − |Dtest| + |D̂test|
|Dtest| . (1)

While Dtest includes the instances that are misclassi-
fied due to classifier errors, the set D̂test include those
instances that happen to be misclassified because of the
attacker perturbations. The goal of a robust training strat-
egy is to generate models that minimize |D̂test| without
hindering the accuracy on unattacked instances, i.e., with-
out increasing |Dtest|. In the following, we use D, thus
omitting the subscripts from Dtrain and Dtest , when it is
clear from the context the dataset we are referring to.
Note that the attack and the evaluation processes need

to solve the same problem: to find a successful attack in
Ab(x). This is a difficult and computationally expensive
task due to the possibly large size ofAb(x) and to the num-
ber of interactions among trees in a forest. Kantchelian
et al. [25] prove that the problem of finding a successful
attack is NP-complete, regardless of the Lp-norm adopted.
Authors provide an exact but expensive solution based
on Mixed Integer Linear Programming, and an approx-
imate solution which may fail in discovering successful
attacks. Chen et al. [28] show that verifying the robust-
ness of a forest T with at most l leaves per tree has cost
min{O(l|T |),O((2|T |l)|F |)} assuming d = L∞. Also, in
this case, authors propose an approximate strategy to deal
with such exponential cost. Unfortunately, verifying the
accuracy under attack is feasible only for weaker forests
of decision stumps, i.e., trees with two leaves only [24],
although recent work shows that the verification prob-
lem for L∞-attackers can be solved both effectively and
efficiently using abstract interpretation [29].
The aforementioned approaches fall into the white-box

scenario, where the attacker has complete knowledge of
the attacked model. Conversely, in the black-box sce-
nario, we assume the attacker can only issue classifica-
tion queries to the model. But even in this case, only
approximate strategies can be devised to discover possible
attacks [30].

We are particularly interested in the evaluation process
with the goal of determining the size of D̂. To this end,
in Section 4, we introduce some efficient lower bounds of
ACCAb , by upper bounding the size of D̂, and a cascading
certification algorithm that resorts to a brute-force eval-
uation only when the lower bounds cannot guarantee the
absence of successful attacks.

2.3 Robust training
In order to build robust models, two main research
directions have been investigated: enriching the training
dataset and modifying the optimized loss function.
Adversarial boosting by Kantchelian et al. [16] is the first

adversarial learning technique for decision tree ensem-
bles. It is an empirical data augmentation technique, bor-
rowing from the adversarial training approach [9]. At
each boosting round, a greedy algorithm is exploited to
craft an adversarial counter-part of every instance in the
training set. The next tree in the ensemble is trained
on both original and perturbed instances. The need to
craft new adversarial instances at each round makes this
algorithm infeasible for large datasets. In addition, as for
any adversarial training approach, adversarial instances
produced at training time may not be representative of
the adversarial instances occurring at test time, possibly
leading to a poor accuracy.
Another adversarial learning technique for decision tree

ensembles was proposed by Chen et al., who introduced
the first tree learning algorithm embedding the attacker
directly in the optimization problem solved upon tree
construction [22]. The key idea of their approach, called
robust trees, is to redefine the splitting strategy of the
training examples at a tree node, so as to include the
attacker impact. Also, in this case, the attacker behavior
is only approximated. A similar solution is proposed in
TREANT [23]. While building a single tree, the best split is
chosen by minimizing the loss under attack without intro-
ducing any heuristic approximation. TREANT ensures that
every node added to the tree does not increase the loss
under attack of such tree and, eventually, multiple trees
are grouped in a forest. Another step forward wasmade by
Andriushchenko et al. [24], where they proposed an exact
solution to optimize loss under attack for an ensemble
of decision stumps, i.e., trees having only a root and two
leaves. While the proposed approach is the first able to
take into consideration the full ensemble, the use of deci-
sion stumps may limit the overall accuracy of the forest.
Calzavara et al. [31] showed how it is possible to gener-
alize the adversarial training to gradient-boosted decision
trees by exploiting the knowledge of tree thresholds, thus
reducing the set of possible perturbations without loss
of generality. Thanks to this, they take advantage of dif-
ferentiable approximations and make their optimization
problem tractable for their experimental setting. More

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 4 of 17

recently, Vos et al. [32] presented GROOT, an efficient
algorithm for training robust decision trees. GROOT ana-
lytically calculates the adversarial impurity significantly
reducing the training time, resulting in a training algo-
rithm faster than the state of the art and with better
performance in terms of adversarial accuracy on struc-
tured data. Finally, Ranzato et al. [33] proposed a genetic
adversarial training algorithm called Meta-Silvae to train
decision trees in order to maximize both accuracy and
robustness to adversarial perturbation. The algorithm
relies on a complete formal verification based on abstract
interpretation.
The algorithm that is most similar to our proposal is

the Random Subspacemethod (RSM) [34], which was suc-
cessfully exploited by Biggio et al. [35] to build robust
ensembles. The approach relies on the training of each
single learner on a projection of the original dataset hold-
ing a random subset of its features. The rationale is
given by the reduced variance of such randomized model.
The algorithm FPF proposed in this work improves over
RSM by exploiting projections of the dataset that provide
robustness by construction for the majority of the trees in
the ensemble, rather than random projections. In short,
our approach divides the feature space in such a way as
to ensure by construction that the majority of the ensem-
ble is never involved in an attack. For example, if the
attacker can modify at most any 3 features, and a model
has been trained with FPF to resist this type of attacks,
each combination of 3 features appears in less than half
of the ensemble, thus leaving the majority of weak learn-
ers unaltered in their predictions. This is not guaranteed
with RSMwhere each weak learner is trained on a random
sub-sample of the feature space, with possible repetition
among weak learners and so in the worst case, an attack
on a feature can involve the entire ensemble. We high-
light that FPF, similarly to RSM, is complementary to any
other algorithm that can be used to train a weak learner
of the final ensemble. Not only FPF can potentially be
used to ensemble together decision trees, SVMs, or other
models, but FPF can be exploited to create ensembles of
robust learners trained with the approaches mentioned
above such as adversarial boosting or robust trees. In this
work, we focus on ensembles of decision trees, and we
leave the investigation of other types of weak learners to
future work.

3 Robust forest training
We aim to design a machine learning algorithm able to
train ensembles, namely forests of binary decision trees,
which are resilient to evasion attacks, which occur when
an adversary manipulates test data to force prediction
errors. Specifically, the robust forest is resilient by design
in strong adversarial environments, where attackers can
perturb at most b features of a test instance to deceive the

learnt model and force a prediction error. In the follow-
ing, we propose a novel training strategy that produces a
forest T where the majority of its trees are not affected by
the attacker Ab.

3.1 Feature partitioning
Given a partition P of the feature set F and an attacker
Ab, we call P robust if the majority of its sets cannot be
impacted by the attacker Ab, i.e., if the following property
holds1:

∀B ⊆ F , |B| ≤ b
∑

P∈P
1[B ∩ P �= ∅] <

|P|
2

.

In words, themajority of the sets inP do not contain any
feature in B, i.e., the features perturbed byAb, for whatever
choice of B.
When |B| ≤ b, it is straightforward to show that this

property is surely satisfied if |P| ≥ 2b + 1. Consider the
worst case: at most b distinct subsets of P can have an
overlap with B, leaving the remaining b + 1 subset of P
unaffected. Hereinafter, we consider only robust feature
partitions P where |P| = 2b + 1.

3.2 Robust forest
Let us consider a forest T that, given an attacker Ab, is
built by exploiting a robust feature partition P as follows.
Let D be a training set and let P be a robust partition

of its feature space. Given P ∈ P , we call πP(D) the pro-
jection of D on the feature set P, i.e., the dataset obtained
from D by discarding those features not included in P.
Given a robust feature partitioning P , it is thus possible
to build a forest by training 2b+ 1 trees independently on
the 2b + 1 projections πP(D) for all P ∈ P . We denote by
TP such forest, having a number of trees equal to |TP | =
|P| = 2b + 1.
The algorithm sketched above is able to build an ensem-

ble of trees that we formally define as Robust Forest.

Definition 1 (Robust Forest) Given an attacker Ab, we
say that a forest T is robust if the majority of its trees is not
affected by Ab for any of its attacks:

∀x ∈ X ,∀x′ ∈ Ab(x)
∑

t∈T

(
1[t(x) = t(x′)]

)
>

|T |
2

.

We highlight that the above definition is very general
as it is dataset independent. We define robustness for any
given instance x in the feature space, and not for a specific
train or test set. It is straightforward to show that in a for-
est TP at most b of its 2b + 1 trees can be affected by the
attacker, and thus, the robustness property is guaranteed
by design.

11[e] equals 1 if expression e is true and 0 otherwise.

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 5 of 17

In the best-case scenario where each t ∈ TP is per-
fectly accurate, the above robustness property ensures
that, in the presence of attacks, only a minority of trees
provides an incorrect prediction, and therefore, the forest
is perfectly accurate even under attack. Clearly, this sce-
nario is unlikely, and therefore, we discuss below how to
strengthen the accuracy of TP .
Note that the above definition and training strategy

trivially generalize to any ensemble learning algorithm
besides tree-based classifiers.

3.3 Increasing the accuracy of a robust forest
The above definition guarantees that the majority of trees
in a robust forest is not affected by the attacker but it
does not provide an estimate of the accuracy under attack
(see Eq. 1) of a robust forest TP , which clearly depends
on the accuracy of its single trees. Yet, the more accurate
the trees t ∈ TP , the more likely the forest TP is accurate
under attack.
The accuracy of single trees in a forest TP depends

on the feature partition P . The larger |P|, the smaller
is the number of features each tree can be trained on.
To increase the accuracy of a robust forest TP , we equi-
partition F across P so as to have |P| ≥ �|F |/(2b + 1)�
for all P ∈ P . Clearly, as the attacker’s budget b increases,
we need to partition F into a larger number of subsets,
and for these to be effective, we need the dataset to have
a larger number of high quality features. Note that this is
true for every learning algorithm: if the attacker can per-
turb at will up to b features, it is necessary to have more
than b high-quality features to train an accurate model.
In addition, a specific partition P may only be sub-

optimal as there may bemultiple ways of partitioningF so
as to achieve feature subsets with high predictive power.
Along the lines of ensemble training, we use multiple fea-
ture partitions to train a distinct TP for each partition
P , and join together the resulting robust forests TP in a
single decision tree ensemble. We can finally discuss our
algorithm to train a Feature Partitioned Forest T aimed at
being robust against an attacker Ab. The algorithm FPF,
shown in Algorithm 1, iterates a number r of user-defined
rounds. During each round i, the algorithm generates a
random partition Pi of features F present in the given
training dataset D. At each round, F is randomly and
evenly split into k = 2b+1 disjoint subsets (|Pi| = 2b+1),
and a new decision tree is trained on each of the dataset
projections πPj(D) for every feature subset Pj ∈ Pi. The
resulting 2b + 1 trees form a robust forest TPi .
We use an accept condition to filter out those TPi that

would not strengthen the final ensemble. For instance, it
might be the case that some partitions in Pi do not con-
tain sufficiently predictive features to train accurate trees.
In this work, we use a simple acceptance criterion accord-
ing to which a TPi is accepted if and only if its training

Algorithm 1 FPF Training
Input: datasetD, attacker Ab, training rounds r
T ← ∅
k ← 2b + 1
for i = 1 to r do

repeat
Pi ← RandomPartition(F , k)
TPi ← ∅
for all Pj ∈ Pi, j = 1, . . . , k do

tij ← DecisionTree(πPj(D))

TPi ← TPi ∪ {tij}
end for

until AcceptCondition(TPi)

T ← T ∪ {TPi}
end for
return T .

accuracy is larger than naively predicting the dataset’s
majority class. In this case, TPi is added to T . Eventually,
an ensemble T of r robust forests is returned, including a
total of r(2b + 1) trees.
We propose two methods for exploiting the so built

Feature Partitioned Forest T at prediction time. The hier-
archical method h-FPF (see Algorithm 2) exploits the
hierarchical nature of T in the way that a given instance
x is independently classified by each sub-forest TPi ∈ T ,
and then the resulting r predictions are merged through
a majority voting scheme. The flat method f-FPF (see
Algorithm 3) considers T as an ensemble of r(2b+1) inde-
pendent trees, and the predictions of all single trees are
eventually aggregated via majority voting.

Algorithm 2 h-FPF Prediction
Input: instance x ∈ X , FPF forest T
for TPi ∈ T ,with i = 1 . . . r do

yi = TPi(x)
end for
if

∑r
i=1 yi > 0 then

return +1
else

return −1
end if

Proposition 1 (Robustness of FPF) The forest T built
by the algorithm FPF is robust against an attacker Ab, as
the majority of its trees is not affected by Ab for any of its
attacks.

The above proposition is trivially true when considering
the h-FPFmethod, as each sub-forest TPi is robust by con-
struction. When considering the f-FPF method, we recall

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 6 of 17

Algorithm 3 f-FPF Prediction
Input: instance x ∈ X , FPF forest T
for TPi ∈ T ,with i = 1 . . . r do

for tij ∈ TPi ,with j = 1 . . . 2b + 1 do
yij = tij(x)

end for
end for
if

∑r
i=1

∑2b+1
j=1 yij > 0 then

return +1
else

return −1
end if

that during each round FPF trains a set of 2b + 1 trees,
where at most b trees can be affected byAb. After the same
reasoning applied to r rounds, FPF builds a forest T of
r(2b + 1) trees of which at most rb can be affected by Ab,
leaving a majority of r(b + 1) trees unaffected.

4 Evaluation and certification of tree-based
models

Evaluating the accuracy of a model in the presence of an
attacker is a difficult and computationally expensive task.
This is due to the possibly large size of Ab(x) and to the
number of interactions among trees in a forest. Below, we
first discuss an expensive brute-force strategy for certify-
ing the accuracy under L0-norm attacks of a tree ensemble
FPF on a given test dataset. Then, we show that the exis-
tence of an attack over a given dataset instance can be
reduced to the existence of a solution for the partial set
coverage problem [36]. We use this result to devise a strat-
egy aimed at reducing the cost of the brute-force strategy
and providing an efficient lower bound certification of the
accuracy under attack.

4.1 Brute-force evaluation
Given an instance x ∈ X , the brute-force evaluation of
a forest T consists in generating all the possible pertur-
bations an attacker Ab can operate to find whether there
exists x′ ∈ Ab(x) such that T (x) �= T (x′). Specifically, for
a given test dataset D and a given tree ensemble T , the
brute-force evaluation can exactly compute the accuracy
under attack according to Eq. 1.
The size of Ab(x) is infinite, but we can limit its enumer-

ation to the set of attacks that are relevant for the given
forest T , i.e., those attacks that can invert the outcome of
a test in some internal nodes of trees in T . This set of rel-
evant attacks, denoted with Âb(x|T), can be computed as
follows.
Recall that nodes in a tree are in the form xf ≤ v for

some threshold v. Indeed, the thresholds used in the tree
nodes induce a discretization of the input spaceX that we
exploit as follows. For any given feature f ∈ F , we define

with Vf the set of relevant thresholds as follows:

Vf = {v | ∃σ(f , v, tl, tr) ∈ t, t ∈ T } ∪ {∞}
The set Vf includes all the thresholds that are associated
with f in any node σ(f , v, tl, tr) of any tree in T , plus the
infinity value that allows the algorithm to also include the
attack that traverses the right branch of the node with the
largest threshold.
An attackerAb can perturb any subset of features F ⊆ F

such that |F| ≤ b, and therefore, the set of relevant per-
turbations the attacker may operate is described by the
Cartesian product Vf1 × . . . × Vfb , with fi ∈ F . We denote
by Âb(x|T , F) the set of relevant attacks on the given set
of features F, i.e., each perturbed vector x′ ∈ Âb(x|T , F)

satisfies the following:

x′
f =

{
xf if f �∈ F ,
v ∈ Vf if f ∈ F .

In conclusion, the set of relevant attacks is:

Âb(x|T) =
⋃

∀F⊆F
|F|=b

Âb(x|T , F)

An attacker Ab can successfully perturb an instance
(x, y) ∈ D against a forest T if there exists at least one x′ ∈
Âb(x|T) that induces T tomisclassify.We can thus exactly
identify the portion of the test dataset thatAb can success-
fully perturb by using the discretized attacks in Âb(x|T),
i.e., D̂ =

{
(x, y) ∈ D \ D | ∃x′ ∈ Âb(x|T), y · T (x′) < 0

}
,

where D includes the test instances misclassified by T
in the absence of attack. Finally, we can exactly compute
the accuracy under attack according to Eq. 1. This brute-
force approach is very expensive, due to three factors: (i)
as b increases, the number of possible feature combina-
tions F ⊂ F with |F| = b increases; (ii) as the number
of trees and nodes grows, the number of threshold val-
ues associated with each feature increases; and (iii) for
each perturbed instance x′, the prediction T (x′) must be
computed by traversing the given forest.

4.2 Attacking forest T as a partial set coverage problem
We now introduce some simplifying worst-case assump-
tions and then show that an effective attack exists if it can
be reduced to a solution for the partial set coverage prob-
lem. First, we assume that if a tree in T provides a wrong
prediction before the attack, then its prediction will be
incorrect also after the attack. Second, we assume that if a
tree uses a feature f for its prediction over x, then attack-
ing f causes the tree to generate a wrong prediction. Note
that these assumptions are pessimistic from the point of
view of a defender. Indeed, modifying a feature f does not
necessarily flip the test performed on every node using

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 7 of 17

that feature and, even if it was the case, tests over other
features may suffice to avoid a wrong prediction.
Given an instance (x, y) ∈ D and a forest T , let C be

the set of all correct trees t ∈ T over x, i.e., C = {t ∈
T | t(x) · y > 0}. Let C = T \ C be the set of all trees pro-
viding a wrong prediction over x. The goal of the attacker
is to force a sufficient number of trees to misclassify x
such that the majority of trees are incorrect. The mini-
mum number of trees the attacker must fool is δ such that
|C| + δ = �|T |/2�. It turns out that in a robust forest of
r(2b + 1) trees, trained with FPF, where the attacker can
affect at most rb trees, it is impossible for the attacker to
fool the forest if |C| < �r/2�. This means that a forest can
be robust even if some of its trees are not correct in the
absence of an attacker.
Let Sf ⊆ C be the set of all the correct trees that use

feature f and let � = {Sf }f∈F be the collection of all Sf .
In order for Ab to successfully attack T over x, there must
exist a subset S∗ ⊆ �, with |S∗| ≤ b since Ab can perturb
a maximum of b features, such that |C| + | ⋃Sf ∈S∗ Sf | ≥
�|T |/2�, or, equivalently, such that | ⋃Sf ∈S∗ Sf | ≥ δ with
δ = �|T |/2�−|C|. The thoughtful reader has surely recog-
nized that this formulation of our problem is nothing else
that an instance of the partial set coverage problem, where
given the set of treesC and the collection� ⊆ 2C , we have
to select up to b sets in � that cover at least δ trees.
Before attacking the partial set coverage problem, we

make a few improvements to provide a stricter definition
of sets Sf in relation to our scenario. First, we note that
a tree may include a feature f in some of its nodes, but
these nodes may never be traversed during the evaluation
of an instance x. Therefore, we say that a correct tree t
belongs to Sf for an instance x only if the traversal path of
x in t includes a node with a test on feature f. This already
reduces the size of each Sf .
Then, among the nodes along the traversal path of

instance x before the attack, we can further distinguish
between nodes where the test xf ≤ v is true, and nodes
where the test is false. In the former case, the attacker
must increase the value of xf to affect the traversal path,
while in the latter case the attacker must decrease xf .
Clearly, these two attacks cannot coexist.
Therefore, we define sets S+

f and S−
f as follows. Given

a correct tree t ∈ C, we include t in S+
f if the traversal

path of x in t includes a node with a test xf ≤ v on fea-
ture f and this test gives a true outcome. Otherwise, if
the outcome of this test turns out to be false, we include
t in S−

f . This method allows us to achieve a more accu-
rate modeling of when an attack can actually affect the
final prediction. This also reduces the size of sets in � and
decreases the risk of overestimating the effect of an attack.
We can finally conclude the relation with the partial set
cover problem as follows.

Proposition 2 (Partial set coverage as a necessary
condition for successful attacks.) Given (x, y) ∈ D, where
T (x) · y > 0, a necessary condition for the existence of a
successful attack x′ ∈ Ab(x) such that T (x′) · y < 0, is that
there exists a solution for the partial set coverage problem,
stated as follows:

Given the set system (C,�), where C is the finite set of
correct trees for x, where � ⊆ 2C with
� = {S+

f }f∈F ∪ {S−
f }f∈F , and given integer b and a

constant δ = �|T |/2� − |C|, the goal is to find a
sub-collection S∗ ⊆ �, where | ⋃S∈S∗ S| ≥ δ, with the
constraints that |S∗| ≤ b and, ∀f ∈ F , if S+

f ∈ S∗

(S−
f ∈ S∗) then S−

f �∈ S∗ (S+
f �∈ S∗).

Proof We show that if there exists x′ ∈ Ab(x) such that
T (x′) ·y < 0, then there exists S∗ ⊆ �, where | ⋃S∈S∗ S| ≥
δ, |S∗| ≤ b, and S+

f and S−
f are mutually exclusive in S∗.

Given x′ ∈ Ab(x), we say that for any attacked feature f
either the corresponding set S+

f belongs to S∗ if x′
f −xf > 0

(corrupted by increment) or S−
f belongs to S∗ if x′

f − xf <

0 (corrupted by decrement). Clearly, it holds that |S∗| ≤
b, and the sets S+

f and S−
f are mutually exclusive in S∗.

Let C′ be the set of (formerly correct) trees corrupted by
the successful attack x′, then it holds that |C′| ≥ δ. By
construction, any tree t ∈ C′ belongs to either S+

f or S−
f

included in S∗. Therefore, it holds that |C′| ≤ | ⋃S∈S∗ S|,
which implies | ⋃S∈S∗ S| ≥ δ.

Note that Proposition 2 states that the existence of a
solution S∗ for our partial set cover problem is only a nec-
essary (not sufficient) condition for the attack. Thus, if
S∗ exists, we cannot say that T can be fooled for sure, as
the attacker might modify all the features identified by the
cover without being able to affect the final forest predic-
tion. However, we know that if a solution S∗ does not exist,
then T is robust on the given instance x.
In the following, we use this result to compute an upper

bound of the size of D̂, the set of all instances in the test
dataset that can be attacked. On the one hand, this allows
us to lower bound the accuracy under attack ACCAb (see
Eq. 1); on the other hand, this result makes it possible
to speed up the exact computation of ACCAb by employ-
ing the brute-force approach only for those instances for
which a sufficiently large set cover does not exist.

4.3 Fast accuracy lower bound
The method discussed in this section computes an over-
estimate of the size of the partial set cover S∗ ⊆ �, for the
problem stated in Proposition 2.
If we consider the b largest sets in �, it is clear that the

cardinality of the union of the sets within S∗ is smaller
or equal to the sum of the cardinalities of such b largest

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 8 of 17

sets (inclusion-exclusion principle). We improve this triv-
ial upper bound by considering that the two sets S+

f and
S−
f cannot be included together in a potential cover.
We thus define the fast lower bound set SFLB to be the

set of the b largest sets in � after enforcing the constraint
that for a given feature f only the largest between S+

f and
S−
f is considered.
We can conclude that if

∑
S∈SFLB |S| < δ, then a suit-

able partial cover cannot exist and therefore the forest T
cannot be attacked on x.
Therefore, we define the set D̂FLB of attackable instances

according to the fast lower bound method as follows. For
each correctly classified instance (x, y) ∈ D, we build the
partial coverage problem according to Proposition 2, and
iff

∑
S∈SFLB |S| ≥ δ, then we include the instance (x, y) in

D̂FLB. Since it holds that |D̂FLB| ≥ |D̂|, we define the fast
lower bound accuracy as:

ACCFLB
Ab

= 1 − |D| + |D̂FLB|
|D| ≤ ACCAb .

4.4 Exhaustive accuracy lower bound
In order to improve over the fast lower bound, we also
consider a more expensive option, where all the possible
covers are considered, still respecting the constraint that
any S+

f and S−
f are mutually exclusive. We evaluate all the

possible covers S† ⊂ 2� , |S†| ≤ b, and we call exhaus-
tive lower bound cover, denoted with SELB, the first cover
found such that | ⋃A∈SELB A| ≥ δ.
By applying the same procedure to every correctly clas-

sified instance (x, y) in the dataset, we identify the set of
instances D̂ELB for which there exists an exhaustive lower
bound cover SELB that solves the problem in Proposition 2.
Note that |D̂| ≤ |D̂ELB| ≤ |D̂FLB|, and thus, we use this

method to compute another lower bound for the accuracy
of T on the test datasetD:

ACCELB
Ab

= 1 − |D| + |D̂ELB|
|D| ≤ ACCAb ,

where the following relationship trivially holds:

ACCFLB
Ab

≤ ACCELB
Ab

≤ ACCAb .

This exhaustive lower bound search incurs into the
exponential cost of enumerating the possible covers in
2� , but it improves over the brute-force attack, thanks
to the cover-based formulation, by ignoring the relevant
threshold values Vf each feature can be attacked to.
We recall that while it is true that |D̂| ≤ |D̂ELB| ≤

|D̂FLB|, we cannot claim that D̂ ⊆ D̂ELB ⊆ D̂FLB. The
above bounds can prove the non-existence of an actual
cover, but they may not be used to find a successful attack
strategy.

4.5 Cascading evaluation
Above, we presented two algorithms, FLB and ELB,
that efficiently find an overapproximation of a cover of
attacked trees which allows us to estimate the upper
bound of the most harmful attack. Strategies have differ-
ent costs: FLB requires to sort the candidate sets of the
cover, while ELB performs an exhaustive search of all the
possible subsets of �. Both methods are however much
cheaper than brute-force evaluation.
When the lower bound information is not considered

sufficient, in order to compute the actual accuracy under
attack ACCAb , we propose to exploit the following CAS-
CADING strategy.
Given an instance x and an attacker Ab, we build the

collection of sets of trees � = {S+
f }f∈F ∪ {S−

f }f∈F and
proceed as follows:

1 Compute SFLB ⊆ �: if
∑

S∈SFLB |S| < δ, then no
sufficiently large set cover exists, and therefore, the
instance x cannot be attacked; otherwise

2 Search for a suitable cover SELB ⊆ �: if there is no
SELB such that | ⋃S∈SELB S| ≥ δ, then the instance x
cannot be attacked; otherwise

3 Use the brute-force method to check the existence of
a successful attack on x.

Experimental results show that the above cascading strat-
egy is able to strongly reduce the number of instances in
a given dataset D for which the brute-force approach is
required.

4.6 Non-binary classification
While we leave to future work the design and evaluation

of an algorithm for non-binary classification, we highlight
that the proposed methodology can be easily generalized
to a multi-class scenario, and we sketch below a basic cer-
tification methodology. The algorithms proposed so far
aim at certifying the impossibility of the attacker of modi-
fying a number of correct trees δ such that δ ≥ �|T |/2� −
|C|, where C is the set of trees wrongly classifying the
given instance. In regard to a multi-class classification
problem, given classes Y with |Y| > 2, it is possible to
verify robustness by running |Y| − 1 certifications anal-
ogous to the binary case. Let us denote with Cc the set
of trees classifying, before the attack, the given instance
(x, y) as class c, c ∈ Y , thus being Cy the trees predicting
the correct label y. For a given class c ∈ Y , the attacker
aims at attacking the trees in

⋃
i�=c Ci so as to make c the

new majority class. The best-case scenario from the point
of the attacker is given by modifying the predictions of
the trees in Cy, as in this case it is sufficient to attack
δ = �(|Cy| − |Cc|)/2� trees. If the attacker is not able to
alter at least δ trees of the forest, then no successful attack
is possible. To this end, we can exploit any of the set-cover
base techniques proposed so far to verify the absence of

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 9 of 17

Table 1 Dataset description

Dataset |F | #topF maj. class |D|
WINE 13 7 73.0% 178

BREAST_CANCER 30 15 62.7% 569

SPAM_BASE 57 26 60.6% 4600

MNIST 0/1 784 54 53.3% 14780

MNIST 5/6 784 173 52.1% 13189

MNIST 1/7 784 79 51.9% 15170

any cover of size at least δ among the trees
⋃

i�=c Ci. Such
verification is to be repeated for each c ∈ Y .
5 Experiments
5.1 Experimental settings
In Table 1, we report the main characteristics of the
datasets used in the experimental evaluation, including
the number of features, the number of top relevant fea-
tures measured as those contributing to 90% of the feature
importance in a RandomForest, and the relative size of the
majority class. Datasets, ranging from small to mid-sized,
are associated to a binary classification task, and they are
commonly used in adversarial learning literature2.
We compare our proposed algorithm FPF against the

following tree-ensemble competitors:

• Random Forest (RF) [37], which, although
attacker-unaware, is known to have some good level
of robustness thanks to the ensembling of several
decision trees. As in the original algorithm, each tree
is trained on a bootstrap sample of the dataset, with
no constraints on the number of leaves, and with
feature sampling of size

√|F | at each node.
• Random Subspace method (RSM) [34], which was

successfully exploited in the adversarial setting by
Biggio et al. [35]. In this case, each tree is trained on a
projection of the original dataset on a subset of its
features. Validation experiments showed best results
with 20% feature sampling.

• Robust Trees (RT) [22] is an adversarial learning
algorithm that targets robustness through
optimization of the model performance under attack.
We created an ensemble by training each individual
tree with the algorithm proposed in the original paper.

Hereinafter, we use b to represent the expected attacker’s
budget exploited as training parameter of FPF and RT,
and we use k to stand for the attacker’s budget used at
test time to generate attacks. We conducted a fair com-
parison by allowing each method to grow 300 trees, which
was observed experimentally to be an optimal configu-
ration. By leveraging the usual 60-20-20 train, validation
and test set split, for all the considered algorithms, we
fine-tuned their hyper-parameters on the validation set by

2All datasets are available at the UCI Machine Learning Repository.

optimizing the accuracy under attack ACCAk . The num-
ber of leaves was fine-tuned in the set {4, 8, 16}. The RSM
algorithm requires a sampling parameter p chosen in the
set {0.1, 0.2, 0.4, 0.6}. Finally, regarding FPF, we fine-tuned
its b parameter in the range [1, 5] while the number of
rounds r was set on the basis of b so as to have no more
than 300 trees (r = � 300

2b+1�). All reported results were
computed on the test set of each dataset.
The following experimental evaluation aims at answer-

ing the following research questions:

• Is FPF able to train robust models in terms of
accuracy under attack?

• How is FPF affected by the number of rounds r and
the expected attacker’s budget b used at training
time?

• How accurate are the proposed lower bounds FLB
and ELB?

• How efficient is the computation of the proposed
lower bounds FLB and ELB, and can we exploit them
to analyze models on larger attacker’s budgets k?

5.2 Robustness analysis
In Tables 2, 3, and 4, we report the accuracy of FPF, RF,
RSM, and RT against an attacker that can modify up to 3
features. To generate all the attacks, we used the exhaus-
tive brute-force algorithm defined in Section 4.1, through
which we can calculate the exact robustness of themodels.
For the SPAM_BASE dataset, we limit the analysis to two
attacked features, due to the cost of computing ACCA3 .
We also report the value of ACCA0 , which captures the

Table 2 Accuracy on the WINE dataset (in boldface best results
for each k)

Model Parameters Accuracy

b r p ml |T | ACCA0 k ACCAk � f-FPF

f-FPF 2 60 8 300 0.972 1 0.861 0.000

5 27 8 297 0.889 2 0.750 0.000

5 27 8 297 0.889 3 0.611 0.000

h-FPF 2 60 8 300 0.972 1 0.861 0.000

5 27 8 297 0.917 2 0.722 −0.028

5 27 8 297 0.917 3 0.611 0.000

RSM 0.2 8 300 0.944 1 0.833 −0.028

0.2 4 300 0.972 2 0.722 −0.028

0.2 8 300 0.944 3 0.444 −0.167

RF 8 300 0.944 1 0.833 −0.028

4 300 1.0 2 0.389 −0.361

4 300 1.0 3 0.000 −0.611

RT 1 8 300 0.738 1 0.738 −0.123

2 8 300 0.738 2 0.738 −0.012

3 8 300 0.738 3 0.738 +0.127

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 10 of 17

Table 3 Accuracy on the BREAST_CANCER dataset (in boldface
best results for each k)

Model Parameters Accuracy

b r p ml |T | ACCA0 k ACCAk � f-FPF

f-FPF 3 42 8 300 0.939 1 0.912 0.000

4 33 4 297 0.930 2 0.851 0.000

5 27 8 300 0.930 3 0.816 0.000

h-FPF 3 42 8 300 0.939 1 0.912 0.000

4 33 4 297 0.930 2 0.842 −0.009

5 27 8 300 0.930 3 0.816 0.000

RSM 0.2 16 300 0.956 1 0.912 0.000

0.2 16 300 0.956 2 0.833 −0.018

0.2 16 300 0.956 3 0.658 −0.158

RF 4 300 0.930 1 0.877 −0.035

8 300 0.947 2 0.842 −0.009

4 300 0.930 3 0.614 −0.202

RT 1 4 300 0.923 1 0.562 −0.350

1 4 300 0.923 2 0.505 −0.346

1 4 300 0.923 3 0.454 −0.362

model accuracy in the absence of attacks. For FPF, we
evaluate its robustness on varying the number of rounds r
and the defense parameter b, still keeping the total num-
ber of trees about constant and comparable with the size
of the forests generated by competitor algorithms. The
rightmost column in these tables reports the difference
w.r.t. the f-FPF algorithm for the same value of k.
In all datasets, RF performs best or second best in the

absence of attacks, but its accuracy significantly drops
under attack. The perturbation of one single feature is suf-
ficient to harm the model, with a loss of 5 to 15 points in
accuracy, and when attacking two features, the accuracy
drops well under 50% for WINE and SPAM_BASE datasets.
As previously discussed, the L0-norm attack we are tack-

Table 4 Accuracy on the SPAM_BASE dataset (in boldface best
results for each k)

Model Parameters Accuracy

b r p ml |T | ACCA0 k ACCAk � f-FPF

f-FPF 2 60 16 300 0.918 1 0.837 0.000

4 33 16 297 0.866 2 0.782 0.000

h-FPF 2 60 16 300 0.913 1 0.834 −0.003

4 33 8 297 0.865 2 0.775 −0.007

RSM 0.2 16 300 0.909 1 0.837 0.000

0.2 16 300 0.909 2 0.736 −0.046

RF 8 300 0.923 1 0.766 −0.071

4 300 0.902 2 0.449 −0.333

RT 3 8 300 0.715 1 0.433 −0.422

3 8 300 0.715 2 0.201 −0.655

ling in this work is indeed very powerful and sufficient
to fool a very accurate and effective random forest model
which is not adversarially trained.
The RSM model provides good performance in the

absence of attacks, meaning that the dataset projection is
not disadvantageous, and it is much more robust than RF
in the presence of attacks. However, when attacking two
features, RSM exhibits a drop of about 10 to 20 points in
accuracy on all datasets. When attacking three features,
the accuracy of the model is very small: below 45% on
WINE and below 66% on BREAST_CANCER.
The results obtained with RT show how this strat-

egy for training robust models against adversarial attacks
does not perform well in case of L0-norm attacks. This
can be explained by observing how the learning algo-
rithm trains a robust model. During the training phase,
the model has to choose the feature and threshold pair
which maximizes the minimum accuracy under attack.
However, an L0-norm attacker can always modify a fea-
ture as much as he wants and therefore can always cross
the threshold. Consequently, it is difficult for the training
algorithm to choose which pair is the best, because each
pair generates the same information gain under attack. As
a consequence, the algorithm cannot guarantee robust-
ness for this type of attack. Furthermore, it can be seen
that for the WINE dataset, the algorithm always returns
the same accuracy and robustness and that these exactly
coincide with the majority class percentage of the dataset.
This happens because in the training phase the algorithm
realizes that always returning the majority class is the best
solution for maximizing robustness.
The proposed FPF algorithm can provide the best

robustness in virtually all attack scenarios. We highlight
that the best defensive b found is always larger than the
attacker’s budget k, meaning that increasing the num-
ber of feature partitions provides even better robustness.
The scenario where the attacker may attack k = 3 fea-
tures is especially relevant: the proposed FPF algorithm
achieves a 15–20% better accuracy than the competi-
tor RSM. Furthermore, the results of the experiments on
WINE reported in Table 2 also highlight the ability of FPF
to guarantee greater robustness even with few features in
the dataset. As reported in Table 1, WINE has 13 features
of which only 7 are relevant. Attacks executed with bud-
get 1, 2, and 3 compromise the 7.7%, 15.4%, and 23.1% of
the features respectively or 14.3%, 28.6%, and 42.8% if we
consider only the relevant features. For each budget value,
FPF showed a greater (or equal) robustness than the other
models.
Experiments do not show any significant difference

between f-FPF and h-FPF. They both provide the same
accuracy with k = 1 and k = 3, with f-FPF exhibit-
ing slightly better figures on k = 2. While h-FPF has
better theoretical guarantees in a black-box scenario (see

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 11 of 17

Table 5 Sensitivity analysis with respect to the number of
rounds r on the BREAST_CANCER dataset

b Ak Number of rounds r

1 15 30

f-FPF algorithm

1 0 0.956 0.939 0.939

1 0.842 0.921 0.921

2 0.000 0.675 0.719

3 0.000 0.114 0.158

2 0 0.93 0.939 0.939

1 0.904 0.930 0.930

2 0.754 0.842 0.842

3 0.123 0.404 0.474

3 0 0.947 0.939 0.939

1 0.912 0.921 0.921

2 0.833 0.86 0.86

3 0.675 0.772 0.763

4 0 0.956 0.939 0.939

1 0.895 0.904 0.904

2 0.825 0.868 0.868

3 0.728 0.807 0.807

5 0 0.930 0.939 0.930

1 0.912 0.895 0.895

2 0.842 0.860 0.868

3 0.746 0.816 0.816

h-FPF Algorithm

1 0 0.956 0.956 0.947

1 0.842 0.912 0.921

2 0.000 0.658 0.421

3 0.000 0.07 0.079

2 0 0.93 0.939 0.939

1 0.904 0.930 0.930

2 0.754 0.833 0.851

3 0.123 0.351 0.377

3 0 0.947 0.939 0.939

1 0.912 0.921 0.930

2 0.833 0.860 0.877

3 0.675 0.772 0.772

4 0 0.956 0.930 0.930

1 0.895 0.904 0.904

2 0.825 0.860 0.868

3 0.728 0.798 0.816

5 0 0.930 0.939 0.921

1 0.912 0.895 0.895

2 0.842 0.868 0.877

3 0.746 0.816 0.825

Section 6), the two variants f-FPF and h-FPF do not differ
much in practice.
We conclude that FPF is able to outperform state-of-

the-art competitors, especially when considering stronger
attackers.

5.3 Sensitivity analysis
In Table 5, we evaluate the sensitivity of FPF w.r.t. the
number of rounds r on the BREAST_CANCER dataset for
different values of b. Similar results were observed for
the other datasets. With a few exceptions, the ensembling
strategy improves the accuracy of the resulting model, and
accuracy increases when increasing the number of rounds
until a plateau is reached. We can conclude that using a
large number of rounds r improves the robustness of the
trained model.
The impact of b is evaluated in Table 6. Note that in the

BREAST_CANCER dataset, we identified only 15 informa-

Table 6 Sensitivity analysis with respect to the training
parameter b on the BREAST_CANCER dataset

|T | Ak Parameter b

1 2 3 4 5

f-FPF algorithm

50 0 0.939 0.939 0.947 0.939 0.956

1 0.904 0.921 0.912 0.930 0.921

2 0.737 0.851 0.868 0.868 0.860

3 0.105 0.404 0.728 0.825 0.825

75 0 0.939 0.939 0.939 0.939 0.939

1 0.912 0.930 0.912 0.904 0.904

2 0.719 0.842 0.868 0.860 0.868

3 0.167 0.404 0.754 0.816 0.816

100 0 0.939 0.939 0.939 0.939 0.939

1 0.93 0.921 0.921 0.904 0.904

2 0.465 0.842 0.860 0.886 0.868

3 0.158 0.482 0.763 0.798 0.816

h-FPF Algorithm

50 0 0.947 0.939 0.947 0.947 0.947

1 0.904 0.93 0.921 0.921 0.921

2 0.711 0.842 0.868 0.86 0.877

3 0.026 0.351 0.737 0.807 0.789

75 0 0.947 0.939 0.939 0.939 0.939

1 0.912 0.93 0.921 0.904 0.904

2 0.404 0.833 0.86 0.86 0.868

3 0.096 0.351 0.746 0.798 0.789

100 0 0.947 0.939 0.939 0.947 0.930

1 0.921 0.921 0.921 0.904 0.904

2 0.412 0.842 0.868 0.877 0.868

3 0.096 0.439 0.754 0.798 0.798

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 12 of 17

Table 7 Accuracy lower bound analysis on BREAST_CANCER. f-FPF with |T | ≈ 300 and 8 leaves

k = 1 k = 2 k = 3

b ACCA1 ACCELB
A1

ACCFLB
A1

ACCA2 ACCELB
A2

ACCFLB
A2

ACCA3 ACCELB
A3

ACCFLB
A3

1 0.912 0.886 0.886 0.763 0 0 0.184 0 0

2 0.912 0.904 0.904 0.842 0.833 0.825 0.649 0 0

3 0.912 0.912 0.912 0.860 0.851 0.842 0.781 0.763 0.737

4 0.904 0.904 0.904 0.868 0.868 0.868 0.798 0.798 0.798

5 0.895 0.895 0.895 0.868 0.868 0.868 0.816 0.816 0.807

tive features which are difficult to partition in 2b + 1 sets
for large values of b. In this case, the results are mixed and
we can identify two different trends. For attacks A2 and
A3, increasing b brings some interesting benefits, and it
is always worthwhile to use b ≥ 4. When the attacker’s
budget is limited to A1, then the best configuration also
depends on the number of trees. When using a limited
number of trees, accuracy under attack increases with b.
But when the forest is sufficiently large, then the benefit of
increasing the number of trees is larger than the benefit of
increasing b.
We conclude that, while it is beneficial to increase the

number of rounds r, it is not always a good strategy to
increase b when the total number of trees is small and the
number of informative features is limited.

5.4 Lower bound analysis
In Tables 7 and 8, we compare the accuracy under attack
ACCAk with the lower bounds ACCELB

Ak
and ACCFLB

Ak
on

both f-FPF and h-FPF forests, built with different val-
ues of b on the BREAST_CANCER dataset and attacked by
different attackers Ak .
We first highlight that with k = 1, the estimate provided

by the lower bounds is exact in the large majority of set-
tings. With k = 2, we observe a small difference between
the two estimates ACCELB

Ak
and ACCFLB

Ak
. Still, with b ≥ 4,

both bounds provide an exact estimate, while with b = 1
and b = 2, the exhaustive lower bound introduces an error
always smaller than 0.019 points and the fast lower bound
smaller than 0.026 points. Finally, with k = 3, the gap
between the two lower bounds increases. The error exhib-
ited by the exhaustive technique is within 0 and 0.052
points, while the fast lower bound shows an error between

0 and 0.088. Clearly, when k > b, the lower bound esti-
mate is useless, as there always exists a sufficiently large
partial cover.
We conclude by observing that both lower bounds

are very close to the actual accuracy under attack. For
instance, the exhaustive lower bound always provides the
correct accuracy of the f-FPF model with b ≥ 4 and for
every value of k. This makes the provided lower bounds
an efficient and accurate tool. In Figs. 1 and 2, we show
the accuracy lower bound computed with FLB on differ-
ent datasets, while varying b and the attacker power k.
In this set of experiments, we also consider three binary
classification datasets generated from MNIST by isolat-
ing instances of two digits. These datasets encompass a
much larger number of features that makes brute-force
approaches to security certification infeasible. Indeed, the
computational efficiency of the proposed bound allows us
to compute the minimum accuracy for large values of b
and large attacker’s budgets k. Figures show how larger
values of b allow ones to sustain a larger attacker strength.
Of course, when the attacker becomes too strong com-
pared with the number of relevant features in the dataset,
then the accuracy of FPF drops. Regarding the MNIST
datasets, the lower bounds allow us to state that a reason-
able accuracy can be achieved also when attacking more
than 20 features. The weakest dataset is that of digits 5 vs.
6, where the attacker is clearly required to change fewer
pixels to induce a misclassification.

5.5 Efficiency analysis
In Table 9, we report the per-instance average time
required to run the brute-force certification method BF
and the proposed CASCADING strategy. We observe how

Table 8 Accuracy lower bound analysis on BREAST_CANCER. h-FPF with |T | ≈ 300 and 8 leaves

k = 1 k = 2 k = 3

b ACCA1 ACCELB
A1

ACCFLB
A1

ACCA2 ACCELB
A2

ACCFLB
A2

ACCA3 ACCELB
A3

ACCFLB
A3

1 0.912 0.895 0.868 0.746 0 0 0.175 0 0

2 0.904 0.904 0.904 0.842 0.833 0.816 0.632 0 0

3 0.912 0.912 0.904 0.868 0.851 0.842 0.789 0.737 0.701

4 0.904 0.904 0.895 0.860 0.860 0.860 0.807 0.798 0.781

5 0.895 0.895 0.895 0.868 0.868 0.860 0.816 0.807 0.798

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 13 of 17

Fig. 1 Accuracy lower bounds for large b with f-FPF

the computational cost required by BF exponentially
increases when increasing k. As expected, the BF approach
quickly becomes infeasible.
The proposed CASCADING strategy provides a 10×

speed-up that increases to 100× when k = 3. This huge

gap is due to the efficiency and accuracy of the proposed
lower bounds. On varying k, the fraction of instances for
which FLB cannot certify the non-attackability is respec-
tively 2%, 8%, and 20%. These instances are processed
during the ELB step, which leaves to the last BF step 2%,

Fig. 2 Accuracy lower bounds for large b with h-FPF

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 14 of 17

Table 9 Certification per-instance average execution time on
BREAST_CANCER

Method k = 1 k = 2 k = 3

BF 263.6 ms 1053.4 ms 3635 s

CASCADING 27.1 ms 166.0 ms 36 s

breakdown:

–FLB 2.7 ms (100%) 3.2 ms (100%) 3.3 ms (100%)

–ELB 0.8 ms (2%) 2.0 ms (8%) 29.7 ms (20%)

–BF 23.6 ms (2%) 160.8 ms (7%) 36 s (18%)

Between parentheses, the fraction of instances passing through the CASCADING
stages. f-FPF with |T | ≈ 300 and 8 leaves

7%, and 18%, respectively, of the dataset to be analyzed.
The BF certification of these last instances largely covers
from 85% to about 100% of the total running time, while
the FLB and ELB steps are two or more orders of mag-
nitudes faster. We thus conclude that the proposed FLB
and ELB are both sufficiently accurate, as discussed in the
previous subsections, and they can be used in a CASCAD-
ING-like strategy to provide significant speed-ups to any
other exact certification method.

6 Conclusion
This paper proposes FPF, a new algorithm to gener-
ate forests of decision trees, based on random equi-
partitioning of the feature set, along with a projection of
the dataset on these partitions before training each single
decision tree. The method is proven to be resilient against
evasion attacks, and, more importantly, we are able to cer-
tify in a very efficient way that, given a test dataset, some
of the instances cannot be attacked at all, thus avoiding the
costly computation of all the possible evasion attacks.
The experimental evaluation, carried out on publicly

available datasets, is promising and outperforms the main
direct competitor, based on ensembles built on random
sampling of the features. Moreover, we show that the pro-
posed certification methods provide a very close approx-
imation of the actual accuracy and they can be used
through a cascading approach to speed-up an exact accu-
racy under attack computation.
We finally highlight that the proposed feature partition-

ing methodology easily generalizes to ensembles of other
machine learning algorithms, whose investigation is left as
future work.

Appendix
Theoretical analysis
In this section, we study analytically the behavior of FPF
on varying the number of rounds r, the number of fea-
tures d, and the attacker’s budget b, and we also take into
consideration the probability of incorrect prediction by
trees of the forest. The aim of this analysis is to investigate

the impact of the above hyper-parameters to the robust-
ness of a forest built by FPF. To do so, we resort to the
common black-box attack scenario where the attacker has
no access to the internal structure of the forest to choose
which features to attack. We thus compute the accuracy
of the forest under attack by estimating the probabil-
ity that the attacker Ab may successfully fool the given
forest by picking b features at random. Indeed, this proba-
bilistic analysis is aimed at understanding the asymptotic
behavior of the proposed algorithm.
We highlight that in the experimental section, we rather

adopt a more severe white-box attack scenario where
we consider an instance attacked if there is at least one
successful attack.
Let d be the number of features in the input dataset, b

the attacker’s budget,P a robust equi-partition of features
F , and s=d/(2b + 1) the number of features in each of
the 2b + 1 sets. For the sake of simplicity, to guarantee
equi-partitioning, we assume that d is a multiple of 2b +
13. Moreover, we let e be the probability of a tree t ∈ T
of being erroneous, i.e., we do not assume that all trees
are perfectly accurate. We further adopt the conservative
and pessimistic assumption that if the attacker modifies a
feature, then a tree using that feature will provide a wrong
prediction.
We first compute the probability Pr(h) that b features,

selected at random byAb, overlap with exactly h partitions
in P . To do so, we first restrict our attention to attacks
that are entirely included into a given subset H ⊂ P ,
with |H|=h, and then we generalize to the full partition
P . When |H|=h, the set H includes sh features, and we
denote byUH the set of possible attacks over any b features
in H, where |UH | = (sh

b
)
is the number of such attacks.

Indeed, we are interested in computing ÛH ⊆ UH , i.e, the
set of attacks to the features in H that exactly overlap all
the h partitions in H (and not less).

Proposition 3 (Computing the number of attacks ÛH)
Let Ki be set of all attacks in UH that do not overlap with
Pi ∈ H, and let K̄i be the complement of Ki in UH. The
following equation holds:

ÛH =
h⋂

i=1
K̄i.

Proof Let C be a possible attack, i.e., a tuple of b fea-
tures chosen from the sh features of the h partitions in
H. For every C ∈ ÛH , by definition, C contains h fea-
tures from h different partitions in H, and therefore, C
has non-empty intersection with every K̄i. This proves

3Otherwise, to guarantee semi-equi-partitioning, some partitions will have
size s=�d/(2b + 1)� and others s + 1.

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 15 of 17

ÛH ⊆ ∩h
i=1K̄i. To also prove that ∩h

i=1K̄i ⊆ ÛH , let us sup-
pose that C ∈ ∩h

i=1K̄i, and that, by contradiction, C does
not overlap with h partitions as C does not contain any
feature in partition Pj ∈ H . This implies that C ∈ Kj, since
Kj contains by construction all the tuples of b features that
do not overlap with Pj ∈ H . Since C ∈ Kj ⇒ C /∈ K̄j,
which in turn implies that C /∈ ∩h

i=1K̄i. This contradicts
our hypothesis and concludes the proof.

We can finally write the probability Pr(h) as follows:

Pr(h) =
∑

H⊂P,|H|=h
∣∣ÛH

∣∣
(d
b
) =

(2b+1
h

) | ⋂h
i=1 K̄i|

(d
b
) ,

(2)

where the factor
(2b+1

h
)
counts the number of ways of

selectingH ⊂ P , with |H| = h, while the denominator
(d
b
)

is the number of all the possible attacks on the full feature
space.
To compute the cardinality of ÛH , we resort to the

complementary formulation of the inclusion-exclusion
principle:

∣∣ÛH
∣∣ =

∣∣∣∣∣∣

h⋂

i=1
K̄i

∣∣∣∣∣∣
=

∣∣∣∣∣∣
UH −

h⋃

i=1
Ki

∣∣∣∣∣∣
=

= |UH | −
h∑

i=1
|Ki| +

∑

1≤i<j≤h
|Ki ∩ Kj| + . . . + (−1)h|K1 ∩ . . . ∩ Kh|.

We can rewrite the above formula as follows:
∣∣ÛH

∣∣=
∣∣∣∣∣∣

h⋂

i=1
K̄i

∣∣∣∣∣∣
=

(
sh
b

)
−

h∑

i=1

(
s(h − 1)

b

)
+

∑

1≤i<j≤h

(
s(h − 2)

b

)
+ . . . +

=
h∑

k=0
(−1)k

(
h
k

)(
s(h − k)

b

)

where the cardinality of the intersection of k distinct Ki
sets is computed as

(s(h−k)
b

)
, resulting by the attacks to b

features limited to the remaining of h−k partitions inH ⊂
P , each of size s.
We can finally conclude by rewriting the formula in

Eq. 2:

Pr(h) =
(2b+1

h
) ∑h

k=0(−1)k
(h
k
)(s(h−k)

b
)

(d
b
) (3)

We can now compute the probability Pr(TP) that TP is
accurate. The forest TP of 2b + 1 trees is accurate if the
number ε of erroneous trees is at most b. There are sev-
eral cases that lead to this outcome: we may have h trees
affected by the attacker and the remaining ε−h trees being
wrong independently of the attacker, each with probability
e. Moreover, those ε −h can be selected at random among
the |P| − h ones. We define as Pr(ε|h) the probability that
a total of ε trees in TP provide a wrong prediction, given
that h were already harmed by the attacker:

Pr(ε|h) =
(|P|−h

ε−h

)
eε−h(1−e)|P|−ε . (4)

Given that the attacker may negatively affect at least one
and at most b trees, we have that the probability of TP
being correct is:

Pr(TP) =
b∑

ε=1

ε∑

h=1
Pr(h)︸ ︷︷ ︸
attacked

Pr(ε|h)︸ ︷︷ ︸
inaccurate

. (5)

Figure 3a shows the probability Pr(h) for different val-
ues of b. The number of features in the dataset was chosen
so as to have the multiple of 2b + 1 closest to 100. We
highlight that the probability of “hitting” only a few parti-
tions is usually small: when b = 5, there are 11 partitions

Fig. 3 Expected accuracy

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 16 of 17

Fig. 4 Flat vs. hierarchical ensembling

and there is less than 15% probability of hitting 3 parti-
tions and about 85% of hitting at least 4 partitions; when
b = 10, there is nearly 0 probability of hitting less than 6
partitions out of 21, and there is about 80% probability of
hitting at least 8 partitions. Interestingly, hitting b = 10
partitions is not the most probable event.
Clearly, we are hypothesizing that our attacker is very

powerful, as it can likely impact on features used by a sig-
nificant portion of trees in a forest TP by breaking these
trees. This is partially confirmed in Fig. 3b where the error
rate probability e of trees is also considered. The expected
accuracy Pr(TP) is not large, but, interestingly, increasing
the attacker’s budget does not have a significant impact. It
is true that the attacker can harm a good number of par-
titions, yet the majority of them are expected to provide
a correct results, even considering e, eventually providing
sufficient accuracy figures.
Finally, we report in Fig. 4 the expected accuracy com-

paring the flat f-FPF versus the hierarchical h-FPF ensem-
ble prediction methods. Results were computed by sim-
ulation and, when not specified, considering a number
of features d = 99, an attacker’s budget b = 3, num-
ber of rounds r = 101, and a large tree error rate
e = 0.18. Figure 4a shows how using multiple rounds
quickly improves the ensemble accuracy. In the long run,
hierarchical and flat solutions may converge, but the hier-
archical approach provides better results earlier (up to
10% improvement). Increasing the attacker’s budget has
a significant impact on the accuracy, yet the hierarchi-
cal approach is more robust as shown in Fig. 4b. Clearly,
the harm of the attack depends on the number of features
available. In datasets with insufficient features to properly
populate the partitions, the accuracymight decrease. Oth-
erwise, the number of features is not very relevant, and
the accuracy is stable once a good number of features is
available as reported in Fig. 4c.

Abbreviations
ML: Machine learning; FPF: Feature Partitioned Forest; RSM: Random Subspace
method; RT: Robust trees; h-FPF: Hierarchical-Feature Partitioned Forest; f-FPF:
Flat-Feature Partitioned Forest; SVM: Support-vector machines; FLB: Fast
accuracy lower bound; ELB: Exhaustive accuracy lower bound; ACC: Accuracy;
RF: Random forest; BF: Brute force

Acknowledgements
Not applicable.

Authors’ contributions
All authors have contributed equally. All authors read and approved the final
manuscript.

Funding
Not applicable.

Availability of data andmaterials
The datasets generated and/or analyzed during the current study are available
in the UCI Machine Learning Repository,
https://archive.ics.uci.edu/ml/datasets/spambase,
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
and https://archive.ics.uci.edu/ml/datasets/wine. The datasets generated
and/or analyzed during the current study are available in the The MNIST
Database repository, http://yann.lecun.com/exdb/mnist/.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 5 June 2021 Accepted: 13 November 2021

References
1. L. Huang, A. D. Joseph, B. Nelson, B. I. P. Rubinstein, J. D. Tygar, in

Proceedings of the 4th ACMWorkshop on Security and Artificial Intelligence.
Adversarial machine learning, (2011), pp. 43–58

2. B. Biggio, F. Roli, Wild patterns: ten years after the rise of adversarial
machine learning. Pattern Recognit. 84, 317–331 (2018)

3. B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov, G. Giacinto,
F. Roli, in Joint European Conference onMachine Learning and Knowledge
Discovery in Databases. Evasion attacks against machine learning at test
time, (2013), pp. 387–402

4. A. M. Nguyen, J. Yosinski, J. Clune, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Deep neural networks are easily

https://archive.ics.uci.edu/ml/datasets/spambase
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/wine
http://yann.lecun.com/exdb/mnist/

Calzavara et al. EURASIP Journal on Information Security (2021) 2021:12 Page 17 of 17

fooled: high confidence predictions for unrecognizable images, (2015),
pp. 427–436

5. N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, A. Swami, in
2016 IEEE European Symposium on Security and Privacy (EuroS&P). The
limitations of deep learning in adversarial settings, (2016), pp. 372–387

6. S. Moosavi-Dezfooli, A. Fawzi, P. Frossard, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. Deepfool: a simple
and accurate method to fool deep neural networks, (2016), pp. 2574–2582

7. D. Lowd, C. Meek, in Proceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery in DataMining. Adversarial learning,
(2005), pp. 641–647

8. B. Biggio, B. Nelson, P. Laskov, in Asian Conference onMachine Learning.
Support vector machines under adversarial label noise, (2011), pp. 97–112

9. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, R.
Fergus, in ICLR. Intriguing properties of neural networks, (2014)

10. I. J. Goodfellow, J. Shlens, C. Szegedy, in ICLR. Explaining and harnessing
adversarial examples, (2015)

11. G. Tolomei, F. Silvestri, A. Haines, M. Lalmas, in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and DataMining.
Interpretable predictions of tree-based ensembles via actionable feature
tweaking, (2017), pp. 465–474

12. F. Chollet, Deep learning with Python, 1st edn. (Manning Publications Co.,
USA, 2017)

13. B. Nelson, B. I. P. Rubinstein, L. Huang, A. D. Joseph, S. Lau, S. J. Lee, S. Rao,
A. Tran, J. D. Tygar, in Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics. Near-optimal evasion of
convex-inducing classifiers, (2010), pp. 549–556

14. B. Biggio, G. Fumera, F. Roli, Security evaluation of pattern classifiers under
attack. IEEE Trans. Knowl. Data Eng. 26(4), 984–996 (2014)

15. N. Srndic, P. Laskov, in 2014 IEEE Symposium on Security and Privacy.
Practical evasion of a learning-based classifier: a case study, (2014),
pp. 197–211

16. A. Kantchelian, J. D. Tygar, A. D. Joseph, in International Conference on
Machine Learning. Evasion and hardening of tree ensemble classifiers,
(2016), pp. 2387–2396

17. N. Carlini, D. A. Wagner, in 2017 IEEE Symposium on Security and Privacy (SP).
Towards evaluating the robustness of neural networks, (2017), pp. 39–57

18. H. Dang, Y. Huang, E. Chang, in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. Evading classifiers
by morphing in the dark, (2017), pp. 119–133

19. H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, F. Roli, Support vector
machines under adversarial label contamination. Neurocomputing. 160,
53–62 (2015)

20. S. Gu, L. Rigazio, in ICLR, Workshop Track Proceedings. Towards deep neural
network architectures robust to adversarial examples, (2015)

21. N. Papernot, P. D. McDaniel, X. Wu, S. Jha, A. Swami, in 2016 IEEE Symposium
on Security and Privacy (SP). Distillation as a defense to adversarial
perturbations against deep neural networks, (2016), pp. 582–597

22. H. Chen, H. Zhang, D. S. Boning, C. Hsieh, in International Conference on
Machine Learning. Robust decision trees against adversarial examples,
(2019), pp. 1122–1131

23. S. Calzavara, C. Lucchese, G. Tolomei, S. A. Abebe, S. Orlando, Treant:
training evasion-aware decision trees. Data Min. Knowl. Discov. 34(5),
1390–1420 (2020)

24. M. Andriushchenko, M. Hein, in NeurIPS. Provably robust boosted decision
stumps and trees against adversarial attacks, (2019), pp. 12997–13008

25. A. Kantchelian, J. D. Tygar, A. Joseph, in International Conference on
Machine Learning. Evasion and hardening of tree ensemble classifiers,
(2016), pp. 2387–2396

26. J. Su, D. V. Vargas, K. Sakurai, One pixel attack for fooling deep neural
networks. IEEE Trans. Evol. Comput. 23(5), 828–841 (2019)

27. K. Simonyan, A. Zisserman, in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, ed. by Y. Bengio, Y. LeCun. Very Deep Convolutional
Networks for Large-Scale Image Recognition, (2015). http://arxiv.org/abs/
1409.1556

28. H. Chen, H. Zhang, S. Si, Y. Li, D. Boning, C.-J. Hsieh, in Advances in Neural
Information Processing Systems. Robustness verification of tree-based
models, (2019), pp. 12317–12328

29. F. Ranzato, M. Zanella, in The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial

Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020. Abstract Interpretation of Decision Tree Ensemble
Classifiers (AAAI Press, 2020), pp. 5478–5486. https://aaai.org/ojs/index.
php/AAAI/article/view/5998

30. M. Cheng, T. Le, P.-Y. Chen, H. Zhang, J. Yi, C.-J. Hsieh, in International
Conference on Learning Representation (ICLR). Query-efficient hard-label
black-box attack: an optimization-based approach, (2019)

31. S. Calzavara, C. Lucchese, G. Tolomei, S. A. Abebe, S. Orlando. Treant:
training evasion-aware decision trees, vol. 34, (2020), pp. 1390–1420.
https://doi.org/10.1007/s10618-020-00694-9

32. D. Vos, S. Verwer, in Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Proceedings of
Machine Learning Research), vol. 139, ed. by M. Meila, T. Zhang. Efficient
Training of Robust Decision Trees Against Adversarial Examples (PMLR,
2021), pp. 10586–10595

33. F. Ranzato, M. Zanella, in GECCO ’21: Genetic and Evolutionary Computation
Conference, Lille, France, July 10-14, 2021, ed. by F. Chicano, K. Krawiec.
Genetic adversarial training of decision trees (ACM, 2021), pp. 358–367.
https://doi.org/10.1145/3449639.3459286

34. T. K. Ho, The random subspace method for constructing decision forests.
IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

35. B. Biggio, G. Fumera, F. Roli, Multiple classifier systems for robust classifier
design in adversarial environments. Int. J. Mach. Learn. Cybern. 1(1-4),
27–41 (2010)

36. R. Gandhi, S. Khuller, A. Srinivasan, Approximation algorithms for partial
covering problems. J. Algorithms. 53(1), 55–84 (2004). https://doi.org/10.
1016/j.jalgor.2004.04.002

37. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://aaai.org/ojs/index.php/AAAI/article/view/5998
https://aaai.org/ojs/index.php/AAAI/article/view/5998
https://doi.org/10.1007/s10618-020-00694-9
https://doi.org/10.1145/3449639.3459286
https://doi.org/10.1016/j.jalgor.2004.04.002
https://doi.org/10.1016/j.jalgor.2004.04.002

	Abstract
	Keywords

	Introduction
	Background and related work
	Background and notation
	Threat model
	Robust training

	Robust forest training
	Feature partitioning
	Robust forest
	Increasing the accuracy of a robust forest

	Evaluation and certification of tree-based models
	Brute-force evaluation
	Attacking forest T as a partial set coverage problem
	Fast accuracy lower bound
	Exhaustive accuracy lower bound
	Cascading evaluation
	Non-binary classification

	Experiments
	Experimental settings
	Robustness analysis
	Sensitivity analysis
	Lower bound analysis
	Efficiency analysis

	Conclusion
	Appendix
	Theoretical analysis

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

