Lin et al. EURASIP Journal on Information Security (2022) 2022:1

https://doi.org/10.1186/513635-021-00125-2

EURASIP Journal on
Information Security

RESEARCH Open Access

Secure machine learning against
adversarial samples at test time

Jing Lin', Laurent L. Njilla? and Kaigi Xiong'"

Check for
updates

Abstract

scalable for large datasets and complex models.

Deep neural networks (DNNs) are widely used to handle many difficult tasks, such as image classification and malware
detection, and achieve outstanding performance. However, recent studies on adversarial examples, which have
maliciously undetectable perturbations added to their original samples that are indistinguishable by human eyes but
mislead the machine learning approaches, show that machine learning models are vulnerable to security attacks.
Though various adversarial retraining techniques have been developed in the past few years, none of them is scalable.
In this paper, we propose a new iterative adversarial retraining approach to robustify the model and to reduce the
effectiveness of adversarial inputs on DNN models. The proposed method retrains the model with both Gaussian
noise augmentation and adversarial generation techniques for better generalization. Furthermore, the ensemble
model is utilized during the testing phase in order to increase the robust test accuracy. The results from our extensive
experiments demonstrate that the proposed approach increases the robustness of the DNN model against various
adversarial attacks, specifically, fast gradient sign attack, Carlini and Wagner (C&W) attack, Projected Gradient Descent
(PGD) attack, and DeepFool attack. To be precise, the robust classifier obtained by our proposed approach can
maintain a performance accuracy of 99% on average on the standard test set. Moreover, we empirically evaluate the
runtime of two of the most effective adversarial attacks, i.e.,, C&W attack and BIM attack, to find that the C&W attack
can utilize GPU for faster adversarial example generation than the BIM attack can. For this reason, we further develop a
parallel implementation of the proposed approach. This parallel implementation makes the proposed approach

Keywords: Machine learning, Adversarial examples, Deep learning (DL)

1 Introduction

Deep learning has been widely deployed in image classifi-
cation [1-3], natural language processing [4—6], malware
detection [7-9], self-driving cars [10, 11], robots [12], etc.
For instance, the state-of-the-art performance of image
classification on the ImageNet dataset increases from
73.8% (in 2011) to 98.7% (Top 5 Accuracy in 2020) utiliz-
ing deep learning models. This outstanding performance
surpassed human annotators. However, in 2013, Szegedy

*Correspondence: xiongk@usf.edu

The paper is an extension of our original work presented in J. Lin, L. L. Njilla and
K. Xiong, "Robust Machine Learning against Adversarial Samples at Test Time,"
ICC 2020 - 2020 IEEE International Conference on Communications (ICC),
Dublin, Ireland, 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9149002.

TICNS Lab and Cyber Florida, University of South Florida, Tampa, FL, USA

Full list of author information is available at the end of the article

@ Springer Open

et al. [13] showed the limitation of deep learning models,
i.e., its inability to correctly classify the maliciously per-
turbed test instance that is apparently indistinguishable
from its original test instance. Many other attacks, such as
Fast Gradient Sign Method (FGSM) [14], DeepFool [15],
and One-Pixel Attack [16], are introduced after Szegedy et
al. [13] presented the Limited-memory Broyden Fletcher
Goldfarb Shanno (L-BFGS) attack in 2013.

Adversarial examples are obtained by adding a small
undetectable perturbation to original samples in order to
mislead a DNN model to make a wrong classification. As
shown in Fig. 1, Carlini and Wagner (C&W) attack [17]
is applied to an image of number “5” from the MNIST
dataset [18] to generate an image shown on the right in
this figure. This generated image appears the same as the

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-021-00125-2&domain=pdf
mailto: xiongk@usf.edu
http://creativecommons.org/licenses/by/4.0/

Lin et al. EURASIP Journal on Information Security (2022) 2022:1

Page 2 of 15

5

architectures) labels the left image as “5” and the right image as “3"

3

Fig. 1 Two images, an arbitrary image of “5” from the cite reference [56] (left) and the corresponding adversarial example generated by the C&W's
attack (right), are indistinguishable to a human. However, the machine learning-based image recognition model (see Section 6.1 for neural network

image on the left hand side. While the left image is classi-
fied as “5,” however, the right image is classified as “3” by
a state-of-the-art digital recognition classifier whose per-
formance accuracy is 99% on the MNIST test set. This
result demonstrates the vulnerability of machine learning
models.

Various proactive and reactive defense methods against
adversarial examples have been proposed over the years
[19]. Examples of proactive defenses include adversarial
retraining [14, 20], defensive distillation [21], and classifier
robustifying [22, 23]. Examples of reactive defenses are
adversarial detection [24—29], input reconstruction [30],
and network verification [31, 32]. However, all defenses
are later shown to be either ineffective for stronger adver-
sarial attacks such as the C& W attack or cannot be applied
to large networks. For instance, Reluplex [31] is only fea-
sible for a network with only a few hundred neurons. In
this work, we proposed a distributive retraining approach
against adversarial examples that can preserve the per-
formance accuracy even under strong attacks such as the
C&W attack.

Contrary to some existing studies that attempt to detect
the adversarial examples at the cost of reducing the
classifier’s accuracy, we aim to maintain the classifier’s
predicting accuracy by increasing model capacity and
generating additional training data. Moreover, this pro-
posed approach can be applied to any classifiers since
it is classifier-independent. Particularly, the proposed
approach is useful for safety- and security-critical systems,
such as machine learning classifiers for malware detection
[9] and autonomous vehicles [11].

Our proposed iterative approach can be considered as
an adversarial (re)training technique. First, we train the
model with normal images and normal images with ran-
dom Gaussian noises added (the later ones are simply
called noise images in this paper). Next, we generate
adversarial images using attack techniques, such as PGD,

DeepFool, and C&W attacks. Then, we retrain the model
based on the adversarial images generated in the previ-
ous step, normal images, and noise images. This step can
be considered as a combination of adversarial (re)training
[13] and Gaussian data augmentation (GDA) [33]. How-
ever, we use soft labels instead of hard labels. Repeat this
retraining process until the acceptable robustness or max-
imum iteration number is reached. The resulting classifier
has #n classes. The first # — 1 classes are normal image
classes, and the last one is the adversary class.

After the model is fully trained, we can test it. At the
testing time, a small random Gaussian noise is added to
a given test image before it is inputted into the model.
Since our model is trained with Gaussian noise, it does
not affect the classification of the normal images. How-
ever, if the test image is adversarial, it is likely to be
generated from optimization algorithms that introduce
well-designed minimal perturbation to a normal image.
We can improve the likelihood of distinguishing the nor-
mal image from the adversarial image by disturbing this
well-calculated perturbation with noises. Additionally, we
propose an ensemble model in which a given test image
without random noise is also input to the model, and its
output is compared with the output of the test image with
random noise added. If two outputs are the same, that is
the final output of the model. If two outputs are differ-
ent, a given test image is marked as adversarial to alert the
system for further examination.

The key contributions of this paper are in the following:

1 We propose an iterative approach to training a
model to either label the adversarial sample with the
label of the original/natural sample or at least label it
as the adversarial sample and alert the system for
further examination. Compared to other studies, we
treat the perturbation differently depending on its
size. Our goal is to train a robust model that can

Lin et al. EURASIP Journal on Information Security (2022) 2022:1

classify the instance correctly when the perturbation
n < no and label it either correctly or as adversarial
example when perturbation 1 > no; that is, n is larger
than some application specific perturbation limit 7.
This makes a better generalization as DNN models
learn to focus on important features and ignore the
unimportant ones.

2 The iterative process is highly parallelizable. Since the
iterative model at time t is not much different from
the iterative model at time ¢ — 1, the older model for
generating adversarial examples should work as well
as the current model due to the transferability of the
adversarial examples. Some GPU nodes can be used
to generate adversarial examples based on the
previous iterative model instead of waiting for a new
iterative model. Therefore, the adversarial example
for the next iteration t can be generated before the
new iterative model is produced.

3 The trained model based on our proposed
methodology will not only be robust against
adversarial examples but also maintains the accuracy
of the original classifier. Some existing methods
strengthen the model with respect to some attacks
but reduce the accuracy of the classifier at the same
time. Our model, through multiple data generating
methods and larger network capacity, refines the
data representation at each iteration; therefore, we
can maintain our robustness and accuracy at the
same time.

4 We proposed an ensemble model that outputs the
final label based on the labels provided by two tests,
one with added small random noise and one without.
Small random noise is aimed to distort the optimal
perturbation injected by the adversary. We have
trained our model against random noise at training
time; hence, the small random noise does not affect
the classification accuracy of normal images.
However, it may disturb the optimal adversarial
example generated by an adversary. If the original
image and image with added test noise produce
different outputs from the model, the input image is
likely to be adversarial.

The remainder of this paper is organized as follows.
We introduce the threat model in Section 2. In Section 3,
we present related work, and in Section 4, we provide
the necessary background information. In Section 5, we
present the proposed approach, followed by an evaluation
in Section 6. In Section 8, we give conclusions and future
work.

2 Threat model
Before discussing the related work, we define the threat
model formally. In this work, we consider evasion attacks

Page 3 of 15

in both white-box settings (assume an adversary has full
knowledge of the trained model F) and gray-box settings
(assume an adversary has no knowledge of the trained
model F but has knowledge of the training set used).
The ultimate goal of an adversary is to generate adver-
sarial examples X’ that misled the trained model. That is,
for each input (x,y), the adversary’s goal is to solve the
following optimization problem:

min lIx — /|13
s.t. X €[0,1]",Fx) =9, (1)

where y # 3’ are class labels and € is a maximum allowable
perturbation that is undetectable by human eyes.

3 Related work

Over the past few years, various adversarial (re)training
methods have been developed to mitigate adversarial
attacks [14, 20]. Nevertheless, Trameér et al. [34] showed
that a two-step attack can easily bypass the classifier
trained using adversarial examples by first adding a small
noise to the system and then performing any classical
attack technique such as FGSM and DeepFool. Instead of
injecting adversarial examples to the training set, Zant-
edeschi et al. [35] suggested to add small noises to the
normal images to generate additional training examples.
They compared their methods with other defense meth-
ods, such as adversarial training and label smoothing, and
showed that their approach is robust and does not com-
promise the performance of the original classifier. The
last type of proactive countermeasures is to robustify a
classifier. That is, its goal is to build more robust neu-
ral networks [22, 23]. For instance, in [22], Bradshaw
combined DNN with Gaussian processes (GP) to make
scalable GPDNN and showed that it is less susceptible to
the FGSM attack.

Furthermore, Yuan et al. [19] introduced three reac-
tive countermeasures for adversarial examples: adversarial
detection [24—29], input reconstruction [30, 36], and net-
work verification [31, 32]. Adversarial detection consists
of many techniques for adversarial detecting. For instance,
Feinman et al. [24] assumed that the distribution of adver-
sarial sample is different from the distribution of natural
sample and proposed a detection method based on the
kernel density estimates in the subspace of the last hidden
layer and the Bayesian neural network uncertainty esti-
mates with dropout randomization. However, Carlini and
Wagner [37] showed that the kernel density estimation,
which is the most effective defense technique among ten
defenses considered by Carlini and Wagner on MNIST,
is completely ineffective on CIFAR-10. Grosse et al. [25]
used Fisher’s permutation test with Maximum Mean Dis-
crepancy (MMD) to check where a sample is adversarial
or natural. Though MMD is a powerful statistical test, it

Lin et al. EURASIP Journal on Information Security (2022) 2022:1

fails to detect the C&W attack [37]. This indicates there
may not be a significant difference between the distribu-
tion of an adversarial sample and the distribution of a
natural sample when the adversarial perturbation is sub-
tle. Xu et al. [29] used feature squeezing techniques to
detect adversarial examples, and the proposed technique
can be combined with other defenses such as the defensive
distillation for defense against adversarial examples.

Input reconstruction is another category of reactive
defense, where a model is used to find the distribution of a
natural sample and an input is projected onto data mani-
fold. In [30], a denoising contractive autodecoder network
(CAE) is trained to transform an adversarial example to
the corresponding natural one by removing the added per-
turbation. Song et al. [36] used PixelCNN, which provides
the discrete probability of raw pixel values in the image,
to calculate the probabilities of all training images. At the
test time, a test instance is inputted and its probability is
computed and ranked. Then, a permutation test is used to
detect an adversarial perturbation. In addition, they pro-
posed PixelDefend to purify an adversarial example by
solving the following optimization problem:

max, P(x') subject to||x’ — X||s < €. (2)

Last but not the least, network verification formally proves
whether a given property of a DNN model is violated. For
instance, Reluplex [31] used a satisfiability modulo theory
solver to verify whether there exists an adversarial exam-
ple within a specified distance of some input for the DNN
model with ReLU activation function. Later, Carlini et al.
[38] showed that Reluplex can also support max-pooling
by encoding max operators as follows:

max(x,y) = ReLU(x — y) + y. (3)

Initially, Reluplex could only handle the L;,4, norm as a
distance metric. Using Eq. (3), Carlini et al. [38] encoded
the absolute value of sample x as

|x] = max(x, —x) = ReLU(x — (—x)) + (—x) (4)
= ReLU(2x) — x. (5)

In this way, Reluplex can handle the L; norm as a dis-
tance metric as well. However, Reluplex is computation-
ally infeasible for large networks. More specifically, it
can only handle networks with a few hundred neurons
[38]. Using Reluplex and k-means clustering, Gopinath et
al. [32] proposed DeepSafe to provide safe regions of a
DNN. On the other hand, Reluplex can be used by an
attacker as well. For instance, Carlini et al. [38] proposed
a Ground-Truth Attack that uses C&W attack as an ini-
tial step for a binary search to find an adversarial example
with the smallest perturbation by invoking Reluplex iter-
atively. In addition, Carlini et al. [38] also proposed a
defense evaluation using Reluplex to find a provably min-
imally distorted example. Since it is based on Reluplex, it

Page 4 of 15

is computationally expensive and only works on small net-
works. However, Yuan et al. [19] concluded that almost all
defenses have limited effectiveness and are vulnerable to
unseen attacks. For instance, C&W attack is effective for
most of existing adversarial detection methods though it
is computationally expensive [37]. In [37], authors showed
that ten proposed detection methods cannot withstand
white-box attack and/or black-box attack constructed by
minimizing defense-specific loss functions.

4 Background
This section provides a brief introduction to neural net-
works and adversarial machine learning.

4.1 Neural networks

Machine learning automates the tasks of writing rules for
a computer to follow. That is, giving an input and a desired
outcome, machine learning can find a set of rules needed
automatically. Deep learning is a branch of machine learn-
ing that automates a feature selection process. That is,
you do not even need to specify the features, and a neu-
ral network can extract them from raw input data. For
instance, in image classification, an image is inputted into
the neural network and the convolutional layers of the
neural network will extract the important features from
the image directly. This makes deep learning desirable for
many complex tasks such as natural language processing
and image classification, where software engineers have
difficulty writing rules for a computer to learn such tasks.

The performance of a neural network is remarkable in
domains such as image classification [1-3], natural lan-
guage processing [4—6], and machine translation [39]. By
using the Universal Approximation Theorem [40], any
continuous function in a compact space can be approxi-
mated by a feed-forward neural network with at least one
hidden layer and suitable activation function to any desir-
able accuracy [41]. This theorem explains the wide appli-
cation of deep neural networks. However, it does not give
any constructive guideline on how to find such universal
approximator. In 2017, Lu et al. [42] established the Uni-
versal Approximation Theorem for width-bounded ReLU
networks, which showed that a fully connected width-(n+
4) ReLU networks, where 7 is the input dimension, is an
universal approximator. These two Universal Approxima-
tion Theorems explain the ability of deep neural network
to learn.

A feed-forward neural network can be written as a
function F : X — Y, where X is its input space or
sample space and Y is its output space. If the task is clas-
sification, Y is the set of discrete classes. If the task is
regression, Y is a subset of R”. For each sample, x € X,
Fx) = fi(fi-1(..(Ax))), where fi(x) = A(w; *x + b),
A(.) is an activation function, such as the non-linear Rec-
tified Linear Unit (ReLU), sigmoid, softmax, identity, and

Lin et al. EURASIP Journal on Information Security (2022) 2022:1

hyperbolic tangent (tanh); w; is a matrix of weight param-
eters; b is the bias unit; i = 1,2,...,L; and L is the total
number of the layer in a neural network. For classifica-
tion, the activation function for the last layers is usually a
softmax function. The key to state-of-the-art performance
of the neural network is the optimized weight parameters
that minimize a loss function J, a measure of the differ-
ence between the predicted output and its true label. A
common method used to find the optimized weights is
the back-propagation algorithm. For example, see [43] and
[44] for an overview of the back-propagation algorithm.

In this paper, we consider the DNN models for image
classification. A gray scaled image x has # x w pixels, i.e.,
x € R" where each component x; is normalized so that
x; €[0,1]. Similarly, for a colored image x with a RGB
channel, x € R3", In the following subsection, we will
consider the attack approaches for generating adversarial
image x’ from the natural or original image x, where x can
be either gray scaled or colored.

4.2 Attack approaches

Adversarial example/sample X’ is a generated sample that
is close to natural sample x to human eyes but misclas-
sified by a DNN model [13]. That is, the modification is
so subtle that a human observer does not even notice it,
but a DNN model misclassifies it. Formally, an adversarial
sample &’ satisfies the conditions that

°* ||x— x’||§ < €, where € is the maximum allowable
perturbation that is not noticeable by human eyes.

e x €[0,1].

e F(x')=y,F(x) =y, andy # y', where y and ' are
class labels.

In general, there are two types of adversarial attacks for
DNN models: untargeted and targeted. In an untargeted
attack, an attacker does not have a specific target label in
mind when trying to fool a DNN model. In contrast, an
attacker tries to mislead a DNN model to classify an adver-
sarial sample X’ as a specific target label ¢ in a targeted
attack. In 2013, Szegedy et al. [13] first generated such an
adversarial example using the Limited-memory Broyden
Fletcher Goldfarb Shanno (L-BFGS) attack. Given a nat-
ural sample x and a target label ¢ # F(x), they used the
L-BFGS method to find an adversarial sample x’ that satis-
fies the following box-constrained optimization problem:

min c|[x — x'|[3 + /(' 1), ()
subject to x’ €[0,1]” and F(x) = ¢,

where c is a constant that can be found by linear searching,
and m = hw if the image is gray scaled and m = 3hw if
the image is colored. Because of this computational inten-
sive linear searching method for optimal ¢, the L-BFGS
attack is time consuming and impractical. Over the course

Page 5 of 15

of the next few years, many other gradient-based attacks
are proposed, for example,

e Fast Gradient Sign Method (FGSM)
FGSM is a one-step algorithm that generates
perturbations in the direction of the loss gradient, i.e.,
the amount of perturbation is

n = esgn(Vy/(x, 1)) (7)
and
X' = x+ esgn(V,J (x, 1)), (8)

where € is an application-specific imperceptible
perturbation adversary intent to inject, and
sgn(V,/ (%, 1)) is the sign of the loss function [14]. The
Basic Iterative Method (BIM) is an iterative
application of FGSM in which a finer perturbation is
obtained at each iteration. This method is introduced
by Kurakin et al. [45] for generating an adversarial
example in the physical world. The Projected
Gradient Descent (PGD) is a popular variate of BIM
that initializes through uniform random noise [46].
Iterative Least-likely Class Method (ILLC) [45] is
similar to BIM but uses the least likely class as the
targeted class to maximize the cross-entropy loss;
hence, this is a targeted attack algorithm.

e Jacobian-based Saliency Map Attack (JSMA)
JSMA uses the Jacobian matrix of a given image to
find the input features of the image that made most
significant changes to output [47]. Then, the value of
this pixel is modified so that the likelihood of the
target classification is higher. The process is repeated
until the limited number of modifiable pixels is
reached or the algorithm has succeeded in generating
the adversarial example that is misclassified as a
target class. Therefore, this is another targeted attack
but has a high computation cost.

e DeepFool
DeepFool searches for the shortest distance to cross
the decision boundary using an iterative linear
approximation of the classifier and orthogonal
projection of the sample point onto it [15], as shown
in Fig. 2. This untargeted attack generates adversarial
examples with a smaller perturbation compared with
L-BFGS, FGSM, and JSMA [17, 48]. For detalil, see
[15]. Universal Adversarial Perturbation is an
updated version of DeepFool that is transferable [49].
It uses the DeepFool method to generate the minimal
perturbation for each image and find the universal
perturbation that satisfies the following two
constraints:

Inllp < e, 9)
P(F(x) #F(x+n)) >1—3, (10)

Lin et al. EURASIP Journal on Information Security (2022) 2022:1

Fig. 2 DeepFool. The DeepFool attack approximates the decision
boundary close to a targeted instance (triangle) by a linear line and
searches for the shortest distance to cross the boundary and achieve
targeted misclassification

where || * ||, is the p-norm, € specifies the upper limit
for perturbation, and § €[0, 1] is a small constant that
specifies the fooling rate of all the adversarial images.
e Carlini and Wagner (C&W) attack
C&W attack [17] is introduced as a targeted attack
against defensive distillation, a defense method
against an adversarial example proposed by Papernot
et al. [21]. Opposed to Eq. 6, Carlini and Wagner
defined an objective function f such that f(x’) < 0 if
and only if F(x') = ¢, and the following optimization
problem is solved to find the minimal perturbation #:

(11)
(12)

min [[7][3 + ¢f (),
subject to x’ €[0,1]™.

Instead of looking for optimal ¢ using the linear
searching method as in the L-BFGS attack, Carlini
and Wagner observed that the best way to choose c is
to use the smallest value of ¢ for which f(x’) < 0. To
ensure that the box-constraint X’ €[0, 1] is satisfied,
they proposed three methods, projected gradient
descent, clipped gradient descent, and change of
variable, to avoid box-constraint. These methods also
allow us to use other optimization algorithms that do
not naturally support box constraints. In their paper,
the Adam optimizer is used since it converges faster
than the standard gradient descent and the gradient
descent with momentum. For detail, see [17]. C&W
attack is not only effective for defensive distillation
but also effective for most of existing adversarial
detecting defenses. In [37], Carlini and Wagner used
C&W’s attack against ten detection methods and
showed the current limitations of detection methods.
Though the C&W attack is very effective, it is
computationally expensive compare to other
techniques.

Page 6 of 15

There are other attack techniques that assume a less
powerful attacker who has no access to the model.
These are called black-box attacks. Following are some
of the black-box attack techniques proposed in past few
years.

e Zeroth-order Optimization (ZOO)-based Attack
estimates the gradient and Hessian using the quotient
difference [50]. Though this eliminates the need for
direct access to gradient, it requires a high
computation cost.

¢ One-Pixel Attack uses differential evolution to find a
pixel to modify. The success rate is 68.36% for CIFAR-
10 test dataset and 16.04% for ImageNet dataset on
average [16]. This shows the vulnerability of DNNs.

e Transfer attack generates adversarial samples for a
substitution model and uses these generated
adversarial samples to attack the targeted model [51].
This is often possible due to the transferability of
DNN models.

e Natural GAN uses Wasserstein Generative
Adversarial Networks (WGAN) to generate
adversarial examples that look natural for tasks such
as image classification, textual entailment, and
machine translation [52]. Similarly, the Domain name
GAN (DnGAN) [53] uses GAN to generate
adversarial DGA examples and tests its performance
on Bayes, J48, decision tree, and random forest
classifier. Moreover, the authors [53] also used these
generated adversarial examples along with normal
training data to train a long short-term memory
(LSTM) model and show a 2.4% increase in accuracy
compared to the LSTM model trained with a normal
training set alone. As another application, Chen et al.
[54] use WGAN to denoise cell images.

5 Methodology

In this section, we present our iterative approach for gen-
erating more data from the original dataset to train our
proposed model. The training process can be summarized
in the following steps:

1 Generate adversarial examples using existing
adversarial example crafting techniques. In the
evaluation section, we only use the PGD and C&W
attacks to generate adversarial examples since they
are the two strongest attacks in existence and we
have limited computation resource.

2 Generate more noisy images by adding the small
random noises to the regular images. This is needed
to make sure that the final model is not skewed
toward the current methods for generating
adversarial examples, and we want our final model to
be robust against random noise.

Lin et al. EURASIP Journal on Information Security (2022) 2022:1

3 Combine the regular training set with the adversarial

images and noisy images generated in 1 and 2,
respectively, to train the model. Instead of hard labels
for these images, soft labels are used instead. For
instance, hand-written “7” and “1” are similar in that
both have a long vertical line. Hence, rather than label
a hand-written digit as 100% “7” or 100% “1”. We may
say it is 80% “7” and 20% “1”. This shows the structure
similarity between “7” and “1”. More precisely, the
soft labels for an adversarial image, a random image,
and a clean image are defined as follows, respectively.
Let T be a hyperparameter that measures the
acceptable size of perturbation. Let us first define the
soft label, p;(x;), for an adversarial image based on
the value of 7 in the following two cases.

(a) If n < 1, then we define the soft label
pilx) =a + 1_7”‘ for the adversarial image x;
generated using the real image x; that belongs
to class i, and 1_7“ otherwise, where0 < o < 1
is close to 1 and n is the number of classes.

(b) If n > 7, we define the soft label p;(x)) =
for the adversarial image xl’ generated using
the real image x; that belongs to class i, the
soft label p,,(xj) = y for the adversarial image
xl’ generated using the real image x; that
belongs to the adversarial class, and the soft
label py (%) = ljﬁ ;y for adversarial image x'
generated using the real image «; that belongs
to class k, where k # i,n,0 < B8,y < 1, and
0<B+y <1

The soft label for a random-noise image is defined
similarly. The « and t values used for soft label
calculation of adversarial images and random noise
images are shown in Table 1. For simplicity, the
correct class is assigned a soft label of 0.95, whereas
other classes are assigned a soft label of 0.05/9 for the
clean images.

Check robustness of the model if it is used as a
stopping criterion. In [35], the robustness of a model
is defined in terms of the expected amount of L,
perturbation that is required to fool the classifier:

P = Ey) (13)

_n

llxll2 + 8

where 7 is the amount of Ly perturbation that an
adversary added a perturbation to a normal image x,
and § is an extremely small constant allowing for the
division to be defined, say § = 10710, We use this
definition of robustness in this paper since this
definition captures the intuition that larger
perturbation is required to fool the classifier
indicates a more robust classifier.

Page 7 of 15
Table 1 Training parameters
Parameter MNIST
®NormalNoise 044
agm 044
acy 0.54
apF 0.54
TNormalNoise 0.1
TBIM 0.1
Tw 0.0265
ToF 0.0265
B §+ 5
Y B
00 0.1
Batch size 60
Kinax 3000
Steps 100

5 While k < kmax and/or the robustness of the model
p < po, where py is an acceptable level of robustness
selected by an user and kpmax is the maximum
number of iterations allowed, this step repeatedly
generates and accumulates a large amount of data for
training a robust model.

(a) Sample a mini-batch of N stratified random
images from a real image set and generate
additional images using adversarial example
generating techniques (shown in step 1) and
random perturbation (shown in step 2). This
combined sample is then used in the next step
to retrain the model.

(b) Retrain the model. Update the model weights
by minimizing the following cross-entropy

loss:
1 L2
j=1 i=1

where n is the number of classes. The n"
class is the adversarial class, whereas classes 1
to n — 1 are regular image classes.

The implications of the above proposed approach are
discussed in Section 7, where we have showed that our
proposed approach is robust when a small noise is injected
to the test instance before the classification is performed,
and it is also robust against both white-box attacks and
black-box attacks. However, we have not studied whether
or not our proposed approach is robust against adaptive
attacks. A further study is needed in the future.

Lin et al. EURASIP Journal on Information Security (2022) 2022:1

6 Evaluation

In this section, we empirically evaluate our proposed
approach on MNIST [18] dataset and CIFAR-10 [55],
canonical datasets used by most papers for attack and
defense evaluation [21, 29]. The performance metric con-
sidered is the accuracy of the classifier.

6.1 Datasets

The MNIST handwritten digit recognition dataset [56]
is a subset of a larger set available from NIST. It is nor-
malized, where each pixel is ranged between 0 and 1 and
each image has 28 x 28 pixels. There are 10 classes: the
digits 0 through 9. All the images are black and white.
The samples are split between a training set of 60,000
and a test set of 10,000. Out of 60,000 training instances,
10,000 are reserved for validation, and 50,000 are used
for actual training. To evaluate the scalability of the pro-
posed robust classifier, we consider CIFAR-10, which is a
32 x 32 x 3 colored image dataset consisting of 10 classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. The samples are split between a training set of
50,000 and a test set of 10,000. See Table 2 for a summary
of the dataset parameters.

6.2 Network architectures

The network architecture for the MNIST dataset consists
of two ReLU convolutional layers, one with 32 filters of
size 3 by 3 and follows by another with 64 filters of size 3
by 3. Then, a 2 by 2 max-pooling layer and a dropout with
arate of 0.25 is applied before a ReLU fully connected layer
with 1024 units. The last layer is another fully connected
layer with 11 units and a softmax activation function for
classification in 10 regular classes plus an adversarial class.
The total number of the parameters is 6,616,970 for the
original model with 10 regular classes only. The proposed
model with 11 classes has 6,617,995 parameters. The
accuracy of the model is 99%, which is comparable to the
accuracy of the state-of-the-art DNN. The network archi-
tecture for the CIFAR-10 model is a ResNet-based model
provided by the IBM [57]. The hyperparameters used for
the training and the corresponding values are shown in the
following table. For instance, we set the acceptable level of
robustness pg to 0.1.

Table 2 Dataset summary

Dataset MNIST CIFAR-10

Training example 60,000 50,000

Test example 10,000 10,000

Classes 10 10

Image size 28 x 28 x 1 32x32x%x3
Original accuracy 99% 92%

Page 8 of 15

6.3 Adversarial crafting

We use Adversarial Robustness Toolbox (ART v0.10.0)
[57] to generate adversarial examples for training and test.
The training set is used to generate the adversarial exam-
ples for training, and the test set is used to generate the
adversarial examples for test. Due to the limited com-
puting resource, we only use BIM and C&W attacks and
Gaussian noise to generate additional images for train-
ing. The BIM and C&W attacks are selected over oth-
ers because they generate the strongest attacks [46], and
Gaussian noise is added to the images to take care of other
potential attacks and for better data representation. The
soft labels for those images are based on the perturbation
introduced. For instance, under the C&W attack, we use a
soft label of 0.44 if the perturbation limit is less than 0.026.
0.026 is selected based on the observation that the per-
turbation within this limit is hardly noticeable to human
eyes. For a similar reason, the perturbation limit of BIM
and Gaussian noise is set to 0.15 and 0.25 with a soft label
value of 0.44.

At the test time, we consider the strong white-box attack
against our proposed model. The adversarial images are
generated using FGSM, DeepFool, and C&W attack with
the assumption that an adversary has feature knowledge,
algorithm knowledge, and the ability to inject adversarial
images. FGSM attack is selected because it is a popu-
lar attack technique using by many papers for evaluation.
BIM, DeepFool, and C&W attacks are selected because
they are the three currently strongest existing attacks.
For the FGSM attack, the perturbation of ¢ = 0.1 is
considered. This is a reasonable limit because a larger
perturbation can be detected by human and/or anomaly
detection systems. Similarly, the maximum perturbation
for the BIM attack is also set to 0.1 and the attack step size
is set to %. The maximum number of iterations for BIM
is 40. The settings of the C&W and DeepFool attacks are
left as default in ART [57]. Random noise added to train
images follows a Gaussian distribution with mean 0 and
variance nmax for each batch.

6.4 Results

We consider the accuracies of the classifiers on the nor-
mal MNIST and CIFAR-10 test images and the accuracies
of the classifier under FGSM, C&W, BIM, and DeepFool
attacks, respectively. The prediction accuracy of the orig-
inal classifier on the normal MNIST test images is 99%.
The prediction accuracy of the robust classifier on the
normal MNIST test images is also 99% after retraining.
Furthermore, the accuracies of the robust classifier under
FGSM, C&W, BIM, and DeepFool attacks are shown in
Table 3. These results have shown that after retrain-
ing, the model performance dramatically improved under
these attacks. As shown, the original model’s classifica-
tion accuracy drops significantly under the attacks. On

Lin et al. EURASIP Journal on Information Security (2022) 2022:1

Table 3 Classification accuracy on the MNIST test dataset under
the white-box attack

Page 9 of 15

Table 5 Classification accuracy on the CIFAR-10 test dataset
under white-box attacks

Attack FGSM c&w BIM DeepFool Attack FGSM c&w BIM DeepFool
Original 29% 7% 7% 29% Original 16% 46% 8% 13%
Adversarial training (ART) 98% 49% 98% 42% Robust classifier 47% 78% 80% 36%

Robust classifier 100% 98% 99% 99%

the contrary, our robust classifier maintains the classi-
fication accuracy even under the attacks. Compared to
the adversarial retraining method implemented by IBM’s
adversarial robustness toolbox, our robust classifier per-
forms better under DeepFool and C&W attacks.

To evaluate the performance of the classifiers under
gray-box attacks, we assume that an attacker has no
knowledge of a neural architecture. In this case, an
attacker builds his/her own approximated CNN model
and conducts the transfer attacks. We assume that an
attacker develops a simple CNN model consisting a CNN
layer with 4 filters of size 5 by 5, followed by a 2 by 2 max-
pooling layer and a fully connected layer with 10 units
and a softmax activation function for classification. The
accuracy of the model is 99%, which is comparable to the
accuracy of the state-of-the-art [48]. Table 4 shows that
the original model performs poorly under grey-box attack.
In fact, it is worsen than what is under the white-box
attack. However, the black-box attacks have little affected
under the adversarially retrained models.

Moreover, a similar experiment has been performed on
the CIFAR-10 dataset for the evaluation of the scalabil-
ity of the proposed robust classifier. The experimental
results are shown in Table 5. Note that we do not conduct
any hyperparameter tuning due to the constraints of HPC
cluster resource and time. That is, we have used the same
hyperparameter settings, as shown in Table 1. The robust
classifier performs better than the original model, though
the improvement is not as good as for the MNIST dataset.
As shown in this table, the accuracy has been improved
by 31%, 32%, 72%, and 23% under FGSM, CW, BIM, and
Deep Fool attack, respectively.

7 Discussion
In this section, the implications of the mechanism are
discussed.

Table 4 Classification accuracy on the MNIST test dataset under
the gray-box attack

Attack FGSM c&w BIM DeepFool
Original 11% 9% 4% 44%
Adversarial training (ART) 98% 99% 98% 99%
Robust classifier 99% 99% 99% 99%

7.1 Trade-off between the accuracy and resilience
against adversarial examples

One common problem of adversarial training and other
defense methods is the trade-off between the accuracy
and resilience against adversarial examples. This trade-
off exists because the network architectures of an original
system and its proposed one are similar and/or the dataset
size is fixed. However, our proposed approach has a larger
network capacity with a larger dataset generated by mul-
tiple techniques. Hence, our proposed approach does not
have this trade-off as shown in Section 6. This solves
the problem of trade-off between the accuracy and the
robustness against an adversarial example and makes the
model not only robust against a strong adversarial attack
but also maintains the performance for classification. See
Section 6 for detail.

7.2 Training time

Another consideration is the training time. To check the
number of epochs needed for the training, the model is
trained for ten epochs, as shown in Fig. 3. The total train-
ing time for ten epochs is about 90 s on Google Colab
(with 12GB NVIDIA Tesla K80 GPU). To prevent over-
fitting, three epochs are selected for training the original
model. A similar procedure is used to determine that
ten epochs are needed for the proposed model. How-
ever, the proposed approach is highly parallelizable. Due
to the transferability of adversarial examples, the adver-
sarial examples do not have to be generated using the
current model. Hence, adversarial crafting and adversar-
ial training can be performed simultaneously. That is,
at iteration ¢, an adversarial example can be generated
based on the model generated at iteration ¢ < ¢, and
adversarial training can be performed using the adversar-
ial example generated previously as well. Depending on
the memory and computation resource, we can store the
generated adversarial example at each iteration and sam-
ple from it when performing the adversarial training. The
sampling probability can be based on the performance of
the model at previous iterations. For instance, initially, we
assign a probability of % to each adversarial example and
increases its probability for the next iteration if the model
misclassifies it or it is not selected for the current itera-
tion of training and decreases its probability if the model
correctly classifies it. Furthermore, we can parallelize the
adversarial crafting step (or the fake image generation

Lin et al. EURASIP Journal on Information Security (2022) 2022:1

Page 10 of 15

Training and Validation Loss
01751 e ® Taining Loss
- Validation Loss
0.150 -
0.125 1
“ 0.100 -
Q
-
0.075 -1
0.050 -
L]
0.025 > ° -
® ° o o
0.000 - T v T T T
2 - 6 8 10
Epochs
Fig. 3 Training and validation loss. The training loss decreases with every epoch, whereas the validation loss does not decrease much after the third
epoch. Hence, the training process can be stopped after three epochs to prevent overfitting

step) by assigning a CPU (or GPU) for each adversarial
crafting technique. Similarly, data parallelization can be
performed during training.

The framework for parallelization is shown in Fig. 4. Ini-
tially, the original model and a random sample of the orig-
inal images are used to generate fake images. The original
model is needed because we want to generate adversar-
ial images by just adding an application-specific imper-
ceptible perturbation to the original image and make it
misclassified by the original model. There are various
ways to obtain such an application-specific impercepti-
ble perturbation. For instance, the FGSM attack generates
such a perturbation by using the model’s loss gradient as
described in Section 4. After the fake images are gener-
ated, it is saved to the fake image storage folder. During
the retraining step, a random sample of fake images and
original images as well as the copies of the original model
are sent to the multiple-GPUs for retraining. After the
retraining, the updated model is checked to see if it is
robust against adversarial attacks. If so, the updated model
is saved, and the process ends. Otherwise, the updated
model is saved as the new model for the next stage of fake
image generation and retraining.

To demonstrate the importance of selecting right the
resource for different adversarial example crafting tech-
niques, we conduct an experiment on a standard alone
personal computer (12 thread CPUs). First, we indepen-
dently run each attack on the same computer and mea-
sure the run time for generating a batch of 64, 128, 256,
and 512 adversarial examples without GPU resource. To
reduce the variation, we repeat the same experiment for

30 times for each attack. Then, we install K40C, TitanV,
and both K40C and TitanV, respectively, and repeat the
experiments. The result is shown in Figs. 5 and 6. The
BIM attack run faster on CPU than on GPUs. In fact,
when an attacker tries to utilize the GPUs, the adversar-
ial image generation speed goes down. As shown in Fig. 5,
though we utilize different types of GPU, the adversar-
ial image generation speed does not change among the
GPU types. On the contrary, C&W attack takes advantage
of the GPU and runs faster on GPU than on CPU. Fur-
thermore, we see that C&W attack runs faster on Titan
V than on K40c. Table 6 is obtained by averaging over
batch sizes. As shown, the BIM attack runs twice as fast
on CPU than GPU whereas C&W attack runs faster on
GPU. The variation among the runs is smaller under BIM
attacks on average, as shown with smaller standard devi-
ations. Moreover, we create a row called Titan V + K40c
(average), which takes the average speed of Titan V and
K40c. Comparing the values on this row with the value in
the last row, we see that actual speed with two GPUs is not
equal to the average speeds if GPU is utilized (as in C&W
attack).

7.3 Ensembling

At the test time, a small random noise is injected to
the test instance before performing the classification.
This small noise is aimed to distort the intentional per-
turbation injected by the adversarial. An experiment is
performed to illustrate it as follows. First, 100 adversar-
ial images are generated using two popular adversarial
attack algorithms, BIM and FGSM. Then, using NumPy’s

Lin et al. EURASIP Journal on Information Security (2022) 2022:1

Page 11 of 15

Y

ll Processor }

")

ll Processor }

Fake image

Model

Fake Image Generation

.............

1

1

1

]

1

1

1

:

: e ——
- Processor
1

1

)

1

"

"

1

ceccchecccccjleccccjlcccea

Fake Image
Storage

Updated
Model

Stop? | Ypdated
"~ Model

:
L ll Processor Il

ll Processor }

ll Processor }

Original

- Image
L Storage

Updated

Retraining

Model

Fig. 4 Parallelization framework. We decouple the fake image generation step from the retraining step by only updating the model used for the fake
image generation as a new model is obtained. This way, the fake image generation step can continuously generate adversarial images while the
retraining continues. Furthermore, the fake image generation step is parallelized by using multi-processing. Note that the processors can be GPUs
or CPUs. GPUs are better in term of computation efficiency, and CPUs can store more images

[58] normal number generator with a mean of 0.01 and
variance of 0.01, a small random normal noise is generated
for each adversarial image. This small random normal
noise is injected into an adversarial image. Next, the orig-
inal classifier classifies these noisy adversarial images. If
the predicted label is different from the ground truth,
then the attack is successful (we considered an untar-
geted attack). Otherwise, it is unsuccessful. This process
is repeated 30 times. The average result is shown in Fig. 7.
Even without robust adversarial training, the classifier
(original) can reduce the attack success rate by 14% for the
FGSM attack and 20% for the BIM attack when the per-
turbation injected by an attacker is 0.01. Even when the
perturbation increases to 0.05, the injected random noise
can reduce the attack success rate of FGSM and BIM by
6% and 14%, respectively.

Since our proposed model is trained with random noise,
it is robust against it. The small noise added to the natural

image is not likely to change the label of the image since
we have trained our model with small Gaussian noise.
However, if the test instance is adversarial, then it is likely
produced by an optimization algorithm that searches for
a minimal perturbation to a clean image. However, the
injected random noise to such a clean image will mess
up such well-calculated minimal perturbation. Therefore,
if the label of a given test image without added ran-
dom noise is different from that of with added random
noise, this is likely an adversarial image and the system is
alerted.

7.4 Limitations

Section 6 considered both white-box attacks (the attacker
knows model architecture) and black-box attacks (the
attacker does not know the model architecture). The
proposed model is robust against both types of attacks,
as shown in Section 5. However, those evaluations

Lin et al. EURASIP Journal on Information Security (2022) 2022:1 Page 12 of 15

64 128 256 512

Batch Size

1.6

14

8 47

[y

0.8

0.6

04

0.2

Image Generation Speed (sec/image)

BTitanV+K40c mTitanV HMK40c HECPU

Fig. 5 Adversarial image generation speed under the BIM attack. Image generation speeds under the BIM attack. Note that CPU has a much faster
adversarial image generation speed than K40C, TitanV, and both K40C and TitanV

0 J J J J
64 128 256 512

Batch Size

) o
w =)]

o
>

o
N

Image Generation Speed (sec/image)
o o
- w

ETitanV + K40c mTitanV EK40c HECPU

Fig. 6 Adversarial image generation speed under the C&W attack. Note that CPU has a much slower adversarial image generation speed than K40C,
TitanV, and both K40C and TitanV in the attack. That is, the C&W attack has an opposite result than the BIM attack

Lin et al. EURASIP Journal on Information Security (2022) 2022:1

Table 6 GPUs vs. CPU

Average Standard deviation
Node BIM C&W BIM c&aw
CPU 0.752 0477 0.0088 0.01485
K40c 1431 0.172 0.02139 0.01193
Titan V 1453 0.098 0.00129 0.02398
Titan V + K40c (average) 1.442 0.135 0.01134 0.01795
Titan V + K40c (actual) 1.447 0.097 0.00151 0.01995

are based on the MNIST dataset. More experimenta-
tion on larger datasets are encouraged if the computa-
tional resource is available. Furthermore, it is unclear
whether or not our proposed approach is still robust
when crafting adversarial samples are done by some-
one who has no idea what toolboxes like ART are
used. We will answer this question in our further stud-
ies.

In Section 6.2, we discussed the training time and
proposed a parallelization framework for adversarial
training. Then, to show the importance of selecting
the right resource, we experimented on different types
of GPUs. In Section 6.3, we discussed the idea of
ensembling and performed an experiment to show the
effectiveness of random noise in reducing the attack
success rate on the original model (without adver-
sarial training) under FGSM and BIM attacks. Note
that all attacks are generated based on the Adversar-
ial Robustness Toolbox. However, similar results can be
obtained using other toolboxes such as Foolbox [59]
or advertorch [60]. Furthermore, it is encouraged to
test the proposed defense method on a tailored adap-
tive attack that might generate successful perturba-
tions on randomly perturbed images instead of clean
images.

Page 13 of 15

8 Conclusions and future work

Many recent researchers have utilized various machine
learning techniques, such as DNN, for security-critical
applications. For instance, Morgulis et al. [61] have
demonstrated that traffic sign recognition systems of a
car can be easily fooled by adversarial traffic signs and
cause the car to take unwanted actions. This result has
shown the vulnerability of machine learning techniques.
In this work, we have presented a distributed adversar-
ial retraining approach against adversarial examples. The
proposed methodology is based on the idea that with
enough datasets, sufficient complex neural network, and
computational resource, we can obtain a DNN model
that is robust against these adversarial attacks. The pro-
posed approach is different from the existing adversarial
retraining approach in several aspects. First, we have used
soft label instead of hard label to prevent overfitting.
Second, we have proposed to increase model complex-
ity to overcome the trade-off between the model accuracy
and the resilience against adversarial examples. Further-
more, we have utilized the transferability property of
adversarial instance to develop a distributive adversarial
retraining framework that can save runtime when mul-
tiple GPUs are available. In addition, we have robustly
trained the DNN model against random noise. Therefore,
the obtained final classifier can provide the correct label-
ing to a normal instance, even though that the instance has
random Gaussian noise added. By utilizing this robustness
against random noise, we have added random noise to
all test instances before performing classification in order
to break the careful calculated adversarial perturbation.
Moreover, we have compared our proposed approach
against the current start-of-the-art approach and demon-
strated that our proposed approach can effectively defend
against stronger adversarial attacks, i.e., C&W attack and
Deepfool. Future work will explore black-box attacks and
formal guarantee for performance.

FGSM

25

20

15

10

Reduction in Attack Success Rate (%)

0.01 0.02

Perturbation

Fig. 7 Reduction in the attack success rate (%) as a function of perturbation injected by the FGSM and BIM attacks, respectively

0.03 0.04 0.05

BIM

Lin et al. EURASIP Journal on Information Security (2022) 2022:1

Abbreviations

DL: Deep learning; DNN: Deep neural network; FGSM: Fast Gradient Sign
Method; L-BFGS attack: Limited-memory Broyden Fletcher Goldfarb Shanno
attack; C&W attack: Carlini and Wagner's attack; PGD attack: Projected Gradient
Descent attack; JSMA: Jacobian-based Saliency Map Attack; ZOO: Zeroth-order
Optimization; GAN: Generative Adversarial Network; GDA: Gaussian data
augmentation; CPU: Central processing unit; GPU: Graphics processing unit

Acknowledgements

We are very thankful to the editor and the anonymous reviewers for their
suggestions and comments, which greatly help improve this paper.
Furthermore, we are very grateful to Long Dang for his help in implementing
the CIFAR-10 experiment.

Authors’ contributions

JL and LN developed the retraining approach. JL performed the experiments
and drafted the manuscript. KX revised the manuscript. All authors reviewed
the draft. All authors read and approved the final manuscript.

Funding

We acknowledge the AFRL Internship Program to support Jing Lin’s work and
the National Science Foundation (NSF) to partially sponsor Dr. Kaigi Xiong's
work under grants CNS 1620862 and CNS 1620871, and BBN/GPO project
1936 through an NSF/CNS grant. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied of NSF.

Availability of data and materials
The datasets used during the current study are available in the MNIST
database [18], http://yann.lecun.com/exdb/mnist/.

Declarations

Ethics approval and consent to participate
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
TICNS Lab and Cyber Florida, University of South Florida, Tampa, FL, USA.
2Cyber Assurance Branch, U.S. Air Force Research Laboratory, Rome NY, USA.

Received: 25 November 2020 Accepted: 29 August 2021
Published online: 12 January 2022

References

1. E.Real, A. Aggarwal, Y. Huang, Q. V. Le, Regularized Evolution for Image
Classifier Architecture Search. Proc. AAAI Conf. Artif. Intell. 33(01),
4780-4789 (2019). https://doi.org/10.1609/aaai.v33i01.33014780

2. B.Zoph, V.Vasudevan, J. Shlens, Q. V. Le, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. Learning
transferable architectures for scalable image recognition, (2018),
pp. 8697-8710

3. J.Huy, L Shen, G. Sun, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. Squeeze-and-excitation networks, (2018),
pp. 7132-7141

4. C-C.Chiu, T.N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen, A.
Kannan, R. J. Weiss, K. Rao, E. Gonina, et al, in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
State-of-the-art speech recognition with sequence-to-sequence models
(IEEE, Calgary, 2018), pp. 4774-4778

5. J.Devlin, M-W. Chang, K. Lee, K. Toutanova, in Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), ed. by J. Burstein, C. Doran, and T. Solorio. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding
(Association for Computational Linguistics, 2019), pp. 4171-4186. https://
doi.org/10.18653/v1/n19-1423

20.

21.

22.

23.

24.

25.

26.

Page 14 of 15

G. Hinton, L. Deng, D. Yu, G. Dahl, A-R. Mohamed, N. Jaitly, A. Senior, V.
Vanhoucke, P. Nguyen, B. Kingsbury, et al, Deep neural networks for
acoustic modeling in speech recognition. IEEE Signal Process. Mag. 29,
82-97 (2012)

W. Xu, Y. Qi, D. Evans, in 23rd Annual Network and Distributed System
Security Symposium, NDSS 2016, San Diego, California, USA, February 21-24,
2016. Automatically Evading Classifiers: A Case Study on PDF Malware
Classifiers (The Internet Society, 2016). http://wp.internetsociety.org/
ndss/wp-content/uploads/sites/25/2017/09/automatically-evading-
classifiers.pdf

C. Nachenberg, J. Wilhelm, A. Wright, C. Faloutsos, in ACM KDD. Polonium:
Tera-scale graph mining for malware detection, (Washington, DC, 2010)
M. A. Rajab, L. Ballard, N. Lutz, P. Mavrommatis, N. Provos, in Network and
Distributed Systems Security Symposium (NDSS). CAMP: Content-Agnostic
Malware Protection, (USA, 2013). http://csjhu.edu/~moheeb/aburajab-
ndss-13.pdf

J.H. Metzen, M. C. Kumar, T. Brox, V. Fischer, in 2017 IEEE International
Conference on Computer Vision (ICCV). Universal adversarial perturbations
against semantic image segmentation, (2017), pp. 2774-2783. https://doi.
org/10.1109/ICCV.2017.300

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L.D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, K. Zieba, End to
End Learning for Self-Driving Cars. CoRR. abs/1604.07316 (2016). http:/
arxiv.org/abs/1604.07316

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al, Human-level
control through deep reinforcement learning. Nature. 518(7540), 529
(2015)

C. Szegedy, W. Zaremba, . Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, R.
Fergus, in International Conference on Learning Representations (ICLR).
Intriguing properties of neural networks, (2014)

. J. Goodfellow, J. Shlens, C. Szegedy, in International Conference on
Learning Representations. Explaining and harnessing adversarial examples,
(2015)

S.-M. Moosavi-Dezfooli, A. Fawzi, P. Frossard, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. Deepfool: a simple
and accurate method to fool deep neural networks, (2016), pp. 2574-2582
J.Su, D. V. Vargas, K. Sakurai, One pixel attack for fooling deep neural
networks. IEEE Trans. Evol. Comput. 23, 828-841 (2019)

N. Carlini, D. Wagner, in 2017 IEEE Symposium on Security and Privacy (SP).
Towards evaluating the robustness of neural networks (IEEE, San Jose,
2017), pp. 39-57

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al, Gradient-based learning
applied to document recognition. Proc. IEEE. 86(11), 2278-2324 (1998)
X.Yuan, P.He, Q. Zhu, X. Li, Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30, 2805-2824 (2019).
https://doi.org/10.1109/TNNLS.2018.2886017

R.Huang, B. Xu, D. Schuurmans, C. Szepesvari, Learning with a Strong
Adversary. CoRR. abs/1511.03034 (2015). http://arxiv.org/abs/1511.
03034

N. Papernot, P. McDaniel, X. Wu, S. Jha, A. Swami, in 2016 IEEE Symposium
on Security and Privacy (SP). Distillation as a defense to adversarial
perturbations against deep neural networks (IEEE, San Jose, 2016),

pp. 582-597

J. Bradshaw, A. G. G. Matthews, Z. Ghahramani, Adversarial examples,
uncertainty, and transfer testing robustness in Gaussian process hybrid
deep networks. arXiv preprint arXiv:1707.02476. 108 (2017)

M. Abbasi, C. Gagné, Robustness to Adversarial Examples through an
Ensemble of Specialists. CoRR. abs/1702.06856 (2017). http://arxiv.org/
abs/1702.06856

R. Feinman, RR. Curtin, S. Shintre, A.B. Gardner, Detecting Adversarial
Samples from Artifacts. CoRR. abs/1703.00410 (2017). http://arxiv.org/
abs/1703.00410

K. Grosse, P. Manoharan, N. Papernot, M. Backes, P.D. McDaniel, On the
(Statistical) Detection of Adversarial Examples. CoRR. abs/1702.06280
(2017). http://arxiv.org/abs/1702.06280

D. Hendrycks, K. Gimpel, in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track
Proceedings. Early Methods for Detecting Adversarial Images
(OpenReview.net, 2017). https://openreview.net/forum?id=B1dexpDug

http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/automatically-evading-classifiers.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/automatically-evading-classifiers.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/automatically-evading-classifiers.pdf
http://cs.jhu.edu/~moheeb/aburajab-ndss-13.pdf
http://cs.jhu.edu/~moheeb/aburajab-ndss-13.pdf
https://doi.org/10.1109/ICCV.2017.300
https://doi.org/10.1109/ICCV.2017.300
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://doi.org/10.1109/TNNLS.2018.2886017
http://arxiv.org/abs/1511.03034
http://arxiv.org/abs/1511.03034
http://arxiv.org/abs/1702.06856
http://arxiv.org/abs/1702.06856
http://arxiv.org/abs/1703.00410
http://arxiv.org/abs/1703.00410
http://arxiv.org/abs/1702.06280
https://openreview.net/forum?id=B1dexpDug

Lin et al. EURASIP Journal on Information Security

27.

28.

29.

30.

31.

32.

33

34.

35.

36.

37.

38.
39.
40.
41.

42.

43.

44,

45.

46.

(2022) 2022:1

A.N. Bhagoji, D. Cullina, P. Mittal, Dimensionality Reduction as a Defense
against Evasion Attacks on Machine Learning Classifiers. CORR.
abs/1704.02654 (2017). http://arxiv.org/abs/1704.02654

X. Li, F. Li, in Proceedings of the IEEE International Conference on Computer
Vision. Adversarial examples detection in deep networks with
convolutional filter statistics, (2017), pp. 5764-5772

W. Xu, D. Evans, Y. Qi, in 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21,
2018. Feature Squeezing: Detecting Adversarial Examples in Deep Neural
Networks (The Internet Society, 2018). http://wp.internetsociety.org/ndss/
wp-content/uploads/sites/25/2018/02/ndss2018_03A-4_Xu_paper.pdf
S.Gu, L. Rigazio, in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings,
ed. by Y. Bengio, Y. LeCun. Towards Deep Neural Network Architectures
Robust to Adversarial Examples, (2015). http://arxiv.org/abs/1412.5068

G. Katz, C. Barrett, D. L. Dill, K. Julian, M. J. Kochenderfer, in International
Conference on Computer Aided Verification, ed. by R. Majumdar, V. Kuncak.
Reluplex: an efficient SMT solver for verifying deep neural networks
(Springer, 2017), pp. 97-117

D. Gopinath, G. Katz, C. S. Pasareanu, C. Barrett, in Proceedings of the 16"
International Symposium on Automated Technology for Verification and
Analysis (ATVA 18). Lecture Notes in Computer Science, vol. 11138, ed. by S.
Lahiri, C. Wang. DeepSafe: A Data-driven Approach for Assessing
Robustness of Neural Networks (Springer, Los Angeles, 2018), pp. 3-19.
https://doi.org/10.1007/978-3-030-01090-4_1

V. Zantedeschi, M-I. Nicolae, A. Rawat, in Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security. Efficient defenses against
adversarial attacks (ACM, 2017), pp. 39-49

F. Trameér, A. Kurakin, N. Papernot, |. Goodfellow, D. Boneh, P. McDaniel, in
6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
Ensemble Adversarial Training: Attacks and Defenses (OpenReview.net,
2018). https://openreview.net/forum?id=rkZvSe-RZ

V. Zantedeschi, M-I. Nicolae, A. Rawat, in Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, AlSec@CCS 2017, Dallas, TX,
USA, November 3, 2017, ed. by B. M. Thuraisingham, B. Biggio, D. M.
Freeman, B. Miller, and A. Sinha. Efficient defenses against adversarial
attacks (ACM, 2017), pp. 39-49. https://doi.org/10.1145/3128572.3140449
Y. Song, T.Kim, S. Nowozin, S. Ermon, N. Kushman, in 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30- May 3, 2018, Conference Track Proceedings. PixelDefend:
Leveraging Generative Models to Understand and Defend against
Adversarial Examples (OpenReview.net, 2018). https://openreview.net/
forum?id=rJUYGxbCW

N. Carlini, D. Wagner, in Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security. Adversarial examples are not easily detected:
bypassing ten detection methods (ACM, Dallas, 2017), pp. 3-14

N. Carlini, G. Katz, C. W. Barrett, D. L. Dill, Ground-Truth Adversarial
Examples. CoRR. abs/1709.10207 (2017). http://arxiv.org/abs/1709.10207
P. L. Garvin, On Machine Translation: Selected Papers, vol. 128. (Walter de
Gruyter GmbH & Co KG, Netherlands, 2019)

K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are
universal approximators. Neural Netw. 2(5), 359-366 (1989)

A. R. Barron, Approximation and estimation bounds for artificial neural
networks. Mach. Learn. 14(1), 115-133 (1994)

Z.Lu, H. Py, F.Wang, Z. Hu, L. Wang, in Advances in Neural Information
Processing Systems. The expressive power of neural networks: a view from
the width, (2017), pp. 6231-6239

I. Goodfellow, Y. Bengio, A. Courville, Deep Learning. (MIT press,
Cambridge, MA, 2016). http://www.deeplearningbook.org

J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G.
Desjardins, D. Warde-Farley, |. Goodfellow, A. Bergeron, et al, in NIPS 2011,
BigLearning Workshop, Granada, Spain. Theano: deep learning on gpus
with python, vol. 3 (Citeseer, Granada, 2011), pp. 1-48

A. Kurakin, I. Goodfellow, S. Bengio, in 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Workshop Track Proceedings. Adversarial examples in the physical world
(OpenReview.net, 2017). https://openreview.net/forum?id=HJGU3RodI
A.Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, in 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. Towards Deep

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Page 15 of 15

Learning Models Resistant to Adversarial Attacks (OpenReview.net, 2018).
https://openreview.net/forum?id=rJzIBfZAb

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, A. Swami, in
2016 IEEE European Symposium on Security and Privacy (EuroS&P). The
limitations of deep learning in adversarial settings (IEEE, Saarbricken,
2016), pp. 372-387

X.Yuan, P.He, Q. Zhu, X. Li, Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30, 2805-2824 (2019)
S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. Universal
adversarial perturbations, (2017), pp. 1765-1773

P-Y.Chen, H. Zhang, Y. Sharma, J. Yi, C-J. Hsieh, in Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security. Zoo: zeroth order
optimization based black-box attacks to deep neural networks without
training substitute models (ACM, Dallas, 2017), pp. 15-26

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, A. Swami, in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. Practical black-box attacks against machine
learning, (2017), pp. 506-519

Z.Zhao, D. Dua, S. Singh, in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. Generating Natural Adversarial Examples
(OpenReview.net, 2018). https://openreview.net/forum?id=H1BLjgZCb
H. Cao, C. Wang, L. Huang, X. Cheng, H. Fu, in 2020 International
Conference on Control, Robotics and Intelligent System. Adversarial DGA
domain examples generation and detection, (2020), pp. 202-206

S. Chen, D. Shi, M. Sadig, X. Cheng, Image denoising with generative
adversarial networks and its application to cell image enhancement. IEEE
Access. 8,82819-82831 (2020). https://doi.org/10.1109/ACCESS.2020.
2988284

A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images,
32-33(2009). https://www.cs.toronto.edu/~kriz/learning-features- 2009-
TR.pdf. Accessed 21 Jan 2021

Y. LeCun, C. Cortes, MNIST handwritten digit database (2010). http://yann.
lecun.com/exdb/mnist/. Accessed 14 Jan 2016

M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba, V.
Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig, |. Molloy, B. Edwards,
Adversarial Robustness Toolbox v0.10.0. CoRR. abs/1807.01069 (2018).
http://arxiv.org/abs/1807.01069

C.R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S.
Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Rio, M. Wiebe, P.
Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H.
Abbasi, C. Gohlke, T. E. Oliphant, Array programming with NumPy. Nature.
585(7825), 357-362 (2020). https://doi.org/10.1038/541586-020-2649-2
J. Rauber, W. Brendel, M. Bethge, Foolbox v0.8.0: A Python toolbox to
benchmark the robustness of machine learning models. CoRR.
abs/1707.04131 (2017). http://arxiv.org/abs/1707.04131

G.W.Ding, L. Wang, X. Jin, advertorch v0.1: An Adversarial Robustness
Toolbox based on PyTorch. CoRR. abs/1902.07623 (2019). http://arxiv.
org/abs/1902.07623

N. Morgulis, A. Kreines, S. Mendelowitz, Y. Weisglass, Fooling a Real Car
with Adversarial Traffic Signs. CoRR. abs/1907.00374 (2019). http://arxiv.
org/abs/1907.00374

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://arxiv.org/abs/1704.02654
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-4_Xu_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-4_Xu_paper.pdf
http://arxiv.org/abs/1412.5068
https://doi.org/10.1007/978-3-030-01090-4_1
https://openreview.net/forum?id=rkZvSe-RZ
https://doi.org/10.1145/3128572.3140449
https://openreview.net/forum?id=rJUYGxbCW
https://openreview.net/forum?id=rJUYGxbCW
http://arxiv.org/abs/1709.10207
http://www.deeplearningbook.org
https://openreview.net/forum?id=HJGU3Rodl
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=H1BLjgZCb
https://doi.org/10.1109/ACCESS.2020.2988284
https://doi.org/10.1109/ACCESS.2020.2988284
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1807.01069
https://doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1902.07623
http://arxiv.org/abs/1902.07623
http://arxiv.org/abs/1907.00374
http://arxiv.org/abs/1907.00374

	Abstract
	Keywords

	Introduction
	Threat model
	Related work
	Background
	Neural networks
	Attack approaches

	Methodology
	Evaluation
	Datasets
	Network architectures
	Adversarial crafting
	Results

	Discussion
	Trade-off between the accuracy and resilience against adversarial examples
	Training time
	Ensembling
	Limitations

	Conclusions and future work
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Publisher's Note

