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Abstract

Information fusion, i.e., the combination of expert systems, has a huge potential to improve the accuracy of pattern
recognition systems. During the last decades, various application fields started to use different fusion concepts
extensively. The forensic sciences are still hesitant if it comes to blindly applying information fusion. Here, a
potentially negative impact on the classification accuracy, if wrongly used or parameterized, as well as the increased
complexity (and the inherently higher costs for plausibility validation) of fusion is in conflict with the fundamental
requirements for forensics.
The goals of this paper are to explain the reasons for this reluctance to accept such a potentially very beneficial
technique and to illustrate the practical issues arising when applying fusion. For those practical discussions the
exemplary application scenario of morphing attack detection (MAD) is selected with the goal to facilitate the
understanding between the media forensics community and forensic practitioners.
As general contributions, it is illustrated why the naive assumption that fusion would make the detection more
reliable can fail in practice, i.e., why fusion behaves in a field application sometimes differently than in the lab. As a
result, the constraints and limitations of the application of fusion are discussed and its impact to (media) forensics is
reflected upon.
As technical contributions, the current state of the art of MAD is expanded by:

a) The introduction of the likelihood-based fusion and an fusion ensemble composition experiment to extend
the set of methods (majority voting, sum-rule, and Dempster-Shafer Theory of evidence) used previously

b) The direct comparison of the two evaluation scenarios “MAD in document issuing” and “MAD in identity
verification” using a realistic and some less restrictive evaluation setups

c) A thorough analysis and discussion of the detection performance issues and the reasons why fusion in a
majority of the test cases discussed here leads to worse classification accuracy than the best individual classifier
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1 Introduction
Information fusion has a long research history and its
core concept, the combination of outputs of different ex-
pert systems, has been rigorously studied and applied for
at least two decades in various application domains. The
concept of fusion has been studied under many different
terminologies, e.g., classifier ensembles [1], combining
pattern classifiers [2], or cooperative agents [3]. As a re-
sult of the growing popularity of machine learning at
that point of time and practical problems arising from
ever increasing feature space complexities, in 2002 [4]
stated that “instead of looking for the best set of features
and the best classifier, now we look for the best set of
classifiers and then the best combination method.” This
statement was rephrased by [5] into “the role of informa-
tion fusion […] is to determine the best set of experts in
a given problem domain and devise an appropriate func-
tion that can optimally combine the decisions rendered
by the individual experts [...].” In [2], the following three
different types of reasons why a classifier ensemble
might be better than a single classifier are identified:
Statistical (instead of picking a potentially inadequate
single classifier, it would be a safer option to use a set of
unrelated ones and consider all their outputs), computa-
tional (some training algorithms use hill-climbing or
random methods, which might lead to different local op-
tima when initialized differently) and representational (it
is possible that the classifier space considered for a prob-
lem does not contain an optimal classifier). Whatever
the exact reason for choosing a fusion approach instead
of a single classifier, [2] explicitly warns that “an im-
provement on the single best classifier or on the group’s
average performance, for the general case, is not guaran-
teed. What is exposed here are only ‘clever heuristics’
[...]”. In summary, by combining classifiers (or other ex-
pert systems), the applicants hope for a more accurate
decision at the expense of increased complexity.
The huge potential for accuracy improvement gained

by applying fusion has been well illustrated in many
fields of applied pattern recognition. A good example is
the field of biometric user authentication where, e.g., [5]
shows various benefits that this field can draw from fu-
sion at different steps of the pattern recognition pipeline.
When it comes to blindly applying information fusion,
among the disciplines that are currently still hesitant are
the forensic sciences. Here, the potentially negative im-
pact to classification accuracy as well as the increased
complexity (and the inherently higher cost for plausibil-
ity validation) of fusion are in conflict with fundamental
requirements for (media) forensics (as is discussed in
more detail in section 2.1). The goals of this paper are to
explain the reasons for this reluctance to accept a poten-
tially very beneficial technique such as information fu-
sion and to illustrate the practical problems of applying

fusion. To this end, an exemplary application scenario from
media forensics called face morphing attack detection
(MAD) is selected. This scenario is currently a hot research
topic due to the fact that this kind of attack imposes a re-
cent and currently unsolved threat to face image based au-
thentication scenarios such as border crossing using travel
documents (i.e., passports), see section 2.3.
By facilitating the understanding of the reluctance to

blindly use fusion in (media) forensics as well as the po-
tential pitfalls of practically applied fusion techniques, it
is the hope to facilitate acceptance both in the media fo-
rensics community as well as the community of forensic
practitioners. To achieve this, the paper provides the fol-
lowing contributions:

a) As general contributions, it is illustrated why (even
with a set of classifiers relevant to a specific
problem) the naive assumption that fusion would
make the detection more reliable can fail in
practice, i.e., why fusion behaves in a field
application sometimes differently than in the lab
and often delivers lower detection performances
than single detectors. As a result, the constraints
and limitations of the application of fusion are
discussed and its impact to (media) forensics is
reflected upon. The two main aspects addressed in
this discussion are the generalization power of
classification models and the relationship between
training and test data sets. In the evaluations, it is
shown that both aspects, despite being similar in
nature, have to be considered separately for applied
information fusion.

b) As technical contributions for face morphing attack
detection (MAD), the current state of the art is
expanded by:

� Introduction of likelihood ratio (LR) based fusion for
face morphing attack detection (MAD) to extend
the set of methods (majority voting, sum-rule, and
Dempster-Shafer Theory (DST) of evidence [6])
used in [7].

� Direct comparison of the two evaluation scenarios:
“MAD in document issuing” vs. “MAD in identity
verification.”

� Analysis and discussion of detection performance
issues found with the fusion based detectors (note:
questions of feature or classifier selection are out of
scope for this paper), the results show that:

� Fusion can fail even when a set of accurate
individual classifiers is available. The results
presented for fusion detectors are in the vast
majority of the cases worse than the results of the
best individual classifier used.
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� Trained thresholding and weighting strategies as
well as sophisticated (context adapted) fusion
methods (especially DST and LR based) can under
specific circumstances perform significantly worse
than unweighted, simplistic fusion approaches like
the sum-rule or majority voting.

� Different fusion ensemble composition strategies
(i.e., using all available detectors vs. selecting a
subset of those) have an influence on the decision
error rates.

� For the two evaluation scenarios “MAD in
document issuing” (SC1) vs. “MAD in identity
verification” (SC2) different detection and fusion
trends are observed, resulting from differences in the
inherent characteristics of the application scenario
(esp. the amount and type of data available for
investigations).

The rest of the paper is structured as follows: section 2
performs a discussion of related work on requirements
for media forensic methods, the current state of the art
in face morphing attacks detection (MAD) and informa-
tion fusion approaches in MAD. In section 3, the investi-
gation concept from [7] is summarized and extended
into the concept for fusion-based face morphing attack
detection used in this paper. Section 4 defines the evalu-
ation setup (incl. the two application scenarios “MAD in
document issuing” vs. “MAD in identity verification”).
Section 5 presents the evaluation results and their dis-
cussion, while in section 6 the conclusions are drawn
from the presented results.

2 Related work
Technical capabilities (such as accuracy) are by far not
the most significant characteristics of forensic methods.
In general, those are usually rated by practitioners in
criminal investigations by their maturity, i.e., by their
scientific admissibility. Section 2.1 discusses some issues
of scientific admissibility in European contexts (where,
due to the very nature of the EU and its member states,
it is currently much less well regulated as for example in
the USA) to establish an understanding on the require-
ments and limitations for forensic methods originating
from this field.
Section 2.2 briefly summarizes the media forensics

application domain selected for this paper, the face
morphing attack detection (MAD). More detailed
overviews over the research activities in this field,
which is very active since 2014, can be found in the
two survey papers [8, 9].
Several studies have demonstrated that both manually

and automatically generated high-quality morphs cannot
be recognized as such neither by algorithms nor by hu-
man examiners [10–13], and even low-quality morphs

pose a threat to the identity verification process if it is
completely automated. This explains the urgent need for
automated face morphing detectors. At the time of writ-
ing this paper, none of the existing research initiatives
working on this specific image manipulation detection
problem has been able to present detectors that achieve
sufficient detection accuracy on a wide range of
morphed images (see the ongoing NIST FRVT MORPH
challenge [14]). As a logical consequence fusion ap-
proaches are used to combine the existing detectors and
thereby improve the overall performance. The state of
the art approaches in information fusion for MAD are
briefly discussed in section 2.3.

2.1 Requirements for media forensic methods in terms of
scientific admissibility
When working in media forensics, the question of deter-
mining the maturity of methods arises. In lab tests ana-
lyzing data for which ground truth information exists, an
answer to that question is easy. In that case, the degree
of agreement between ground truth label and detector
response can simply be used to express the accuracy of
the method.
In field applications of forensics, there usually exists

no ground truth information for an object under investi-
gation. In these cases, other means of establishing the
maturity or suitability of a forensic method have to be
used. In forensics, the whole field of work looking into
this aspect is termed “scientific admissibility.” It is a very
complex topic on which Champod and Vuille state in
[15]: “The scientific admissibility of evidence, while sub-
ject to fairly precise rules in United States law, [...], is
seldom addressed in European legal writings, [...]. The
question of scientific reliability is seen as intrinsically
linked with the assessment of the actual evidence, that is
with the determination of its probative value […].” Re-
searchers in the fields of computer science and applied
pattern recognition have to rely on the verdict of legal
experts defining the hurdles media forensics approaches
have to take before achieving the ultimate goal of court
admissibility. Looking at [15], it can be stated that there
is no EU wide regulation on scientific admissibility ques-
tions but that there are common principles that would
have to be considered. In that in-depth analysis of the
current legal situation in [15] a non-exhaustive list of
such principles is presented, containing in its core the
following aspects:

� Methods should be peer reviewed and accepted
within the corresponding scientific community.

� Error rates associated with a method should be
precisely known,

� Existence of standards for the application and
maintenance of methods.
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This list is very similar to the state-of-the-art criteria
used by judges in the USA to address the questions of
court admissibility for forensic (and other) methods, i.e.,
the so called Daubert and FRE702 criteria [15]. While
pointing out the benefits of such selection principles,
Champod and Vuille also provide some form of criticism
into their application: for peer reviewed methods they
point out that “this criterion does not indicate whether a
technique accepted in scientific literature has been used
properly in a given case” and regarding the issue of as-
certaining the error rates of a test, they claim that those
“can prove misleading if not all its complexities are
understood” [15].
In the context of work presented in this paper, those

statements imply two important things: First, that a very
careful investigation of the precise constrains for the ap-
plication of a method such as information fusion is re-
quired for any specific forensic application case. Second,
that the associated complexities in practical application
(such as the attempt to improve MAD detection used
for illustration purposed within this paper) are clearly
and openly discussed.

2.2 Face morphing attacks and their detection
Face images in documents are an established and well
accepted means of identity verification. Current elec-
tronic machine readable travel documents (eMRTD) are
equipped with digital portraits to automate the identity
verification process. The automation saves manpower
and enhances security due to switching from subjective
(officers) to objective (automated face recognition sys-
tems) matching of faces. The benefit of automation is es-
pecially relevant in high-throughput applications like an
airport border control. However, the automation entails
the risk of face morphing attacks [16].
In publications such as [12, 16], it has been shown that

the blending of face images (here called face morphing)
of two or more persons can lead to a face image resem-
bling the faces of all persons involved. Using such an
image as a reference in a document is referred to as face
morphing attack because it enables illicit document
sharing among several users. Such morphing attacks
have been shown to be effective in an automated border
control (ABC) scenario giving a wanted criminal a
chance to cross a border with a chosen (i.e., wrong)
identity [10, 17, 18].
Document issuing procedures are different depending

on the country and its national regulations. In many
countries, the biometric face image can be (and often is)
submitted as a hard copy. Here, the attack aims at fool-
ing an officer at the document issuing office by submit-
ting a morphed face image. As long as persons are
allowed to submit images to the document issuing office
during the document generation, face morphing attacks

will remain a severe threat to photo-ID-based verifica-
tion. Indeed, if an officer accepts a morphed face image,
the issued document would pass all integrity checks, and
if an automated face recognition (AFR) system matches
a live face with a morphed document image, access will
be granted to an impostor.
The risk of the morphing attack can be reduced by

supporting both officers and AFR systems with a dedi-
cated morph detector. The only way to completely re-
move the threat of such attacks would be to take the
picture directly in the controlled environment of the is-
suing office and by ensuring that there is no malware-
enabled morphing attack embedded into the digital part
of the document issuing pipeline, too. The question
whether to take the picture directly in place is a political
issue, which has in the past lead to many controversial
discussions (e.g., in France and Germany) between gov-
ernmental regulation and the photo industry. But even if
this problem would be solved for one country, there
would still be the issues of legacy passports (which might
still be valid for up to 10 years) as well as foreign
documents.
Figure 1 depicts the document life-cycle of a docu-

ment with a face morphing attack present. While publi-
cations such as [19] also discuss the role of forensics
(and anti-forensics) in the quality assessment (QA) of
the attacker during the morph generation process, in the
scope of this paper, only the image forensic analysis of
the images submitted into the document creation and
the corresponding analysis in every document usage
(e.g., in an ABC gate) are relevant. These two investiga-
tion points are representing the evaluation scenarios
“MAD in document issuing” (SC1) and “MAD in identity
verification” (SC2) considered in this paper. They are
discussed in detail in section 4.
The face morphing attack detection (MAD) ap-

proaches are typically categorized into two groups re-
garding whether a trustworthy reference face image is
presented or not. The first group is often referred to as
single-image or no-reference MAD approaches. The sec-
ond group is referred to as two-image differential or
reference-based MAD approaches. Despite the fact that
the reference-based MAD has more potential for robust
operation, the non-reference MAD approaches are better
represented in the literature.
Within the group of reference-based MAD ap-

proaches, as ponted out in [21] there are two subcat-
egories: Reconstruction-based and reference-based
MAD. The most prominent examples from the first sub-
category try to reconstruct a likely original face (from
the assumedly morphed face image provided) by making
use of a trustworthy reference face image taken life from
the person in front of a camera. This process is often re-
ferred to as de-morphing. The detection is done in this
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case by comparing the reconstructed image and the ref-
erence one. The de-morphing is done either by inversion
of the common morphing procedure [22] or by applying
neural networks such as an autoencoder [23] or genera-
tive adversarial networks (GAN) [24]. Alternative ap-
proaches to implement reference-based MAD could also
be relying on reference feature vectors instead of
complete face images.
The approaches from the second subcategory extract

features from both presented images (probe document
image and trustworthy reference image) and either com-
pare them to each other [13] or combine them for the
further classification [25], or even train an additional
classifier based on difference vectors [26]. The common
problem of all single-image MAD approaches based on
“hand-made” or "hand-crafted" features is that they do
not detect morphing but rather traces of image manipu-
lations. Since, there is a set of legitimate image manipu-
lations such as in-plane rotation, cropping, scaling, and
even some kinds of filtering the morphing characteristics
can be easily simulated to prevent detection. The more
sophisticated single-image MAD (like [27]) approaches
make use of deep convolutional neural networks
(DCNN) which are learned to automatically extract fea-
tures characterizing morphing artifacts based on a large
set of samples. If a training set is large and diverse
enough covering all frequently used image manipula-
tions, there is a chance that the network will learn not
the characteristics of a special dataset, but actual charac-
teristics of morphing. Training of different DCNN archi-
tectures for morphing detection was conducted in [17,
26, 28] applying transfer learning with pre-trained net-
works as well as learning from scratch. In [29], a

feature-level fusion of two DCNNs (AlexNet and
VGG19) trained by means of transfer learning is shown
to outperform BSIF features.
The majority of the aforementioned detectors are

learned with morphed face images created by the stand-
ard morphing approach which roughly includes three
steps: alignment of faces, warping of face components
given by polygons (usually triangles), and blending of
color values [12, 17, 30]. However, the recent trend is
the application of GAN to create realistic face images
[31, 32]. The performance of MAD approaches to detect
standard morphs and morphs produced by GAN are
compared in [33, 34]. Several MAD approaches are com-
pared within the framework of the ongoing NIST FRVT
MORPH challenge [14].

2.3 Information fusion approaches in face morphing
attack detection
Decision-making systems can be fused at four different
levels [2]: data level, feature level, classifier level, and
combination (or decision) level. The earlier the fusion is
applied, the higher are implementation costs (esp. the
computation power required), but also the higher accur-
acy is expected.
A huge number of different fusion approaches exist,

ranging from simplistic methods, like the sum-rule (also
known as average rule, meaning the linear combination
of matching scores with equal weights) or majority vot-
ing to complex schemes like Dempster-Shafer Theory
(DST) of evidence [35]. Since DST has a theoretical
foundation for handling contradicting and missing deci-
sions of expert systems, it has been successfully applied
in a wide range of applications [36]. There, exist

Fig. 1 Document life-cycle in case of a face morphing attack including the evaluation scenarios “MAD in document issuing” (SC1) and “MAD in
identity verification” (SC2) (image derived from [19], combined morph generated based on [12] original face images taken from the ECVP
face dataset [20]
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different ways on how to exactly implement fusion based
on DST. For details of our own realization, we refer to
section 4.3 accordingly.
For the question which fusion method should be

chosen, there exists, to the best of the authors’ know-
ledge, no universally agreed upon theory to answer this
question. Some experts put a strong focus on one spe-
cific method, e.g., Kittler et al. in [37], where the authors
claimed that the sum-rule is not only simple, intuitive,
remarkably robust, but also outperforms in their experi-
ments all other aggregation operators tested. Other ex-
perts, like Ho [4] and Kuncheva [38], explicitly refrain to
give any generalized recommendation. Acknowledging
the fact that, even when a critical mass of single classifi-
cation models has been accumulated in a field of appli-
cation, there are still open questions regarding their
combination and the interpretation of the combination
output.
If, within media forensics, the field of image manipula-

tion detection is considered (which also contains MAD
as a research question) the same wide range of methods
are used in research papers, ranging from the simple to
complex. A good example in this domain would be the
work of Fontani et al. in [39, 40]. In those papers, the
authors apply with DST a very sophisticated approach to
image manipulation detection task and additionally use
its benefits to counter anti-forensics.
A face morphing attack detector is in its nature a bin-

ary pattern classifier. The methods for combining such
pattern classifiers have been thoroughly studied for a
long time, e.g., in [38]. The paper [7] summarizes the
state of the art in information fusion for MAD and ex-
tends it by introducing DST to this field. The test results
presented do show that the error rates with the DST-
based fusion are significantly lower compared to those
of individual detectors as well as some simplistic fusion
approaches applied previously (majority voting and aver-
age rule). Here, the work from [7] is used as basis for
this paper, taking its fusion framework and extending it
even further by including likelihood-based fusion. The
reason to do so is the prominent role that the forensic
sciences currently attribute to the usage of likelihood ra-
tios in expert testimony, see, e.g., [41] for the example of
footwear marks (and underlying forensic analyses, see,
e.g., [42]).
While many scientific publications address applying

fusion under lab conditions, only very few publications
address the question of generalization as well as the ap-
plicability for forensic procedures within the context of
criminal investigations. In [43], classical probabilities are
replaced by Shafer belief functions and an analogy of the
Bayes’ rule is introduced that is capable to overcome the
traditional inability to distinguish between lack of belief
and disbelief. Besides mathematical modeling, the

consequences of applying the fusion theory for legal
practice are discussed. They conclude that there is still a
lot of room for explaining the advantages and limitations
of using information fusion to forensic researchers as well
as the actual practitioners in criminal investigations. Here,
the discussion of the advantages and disadvantages of in-
formation fusion is continued and its limitations, if applied
in real-life conditions, are empirically demonstrated.

3 The concept of fusion-based face morphing
attack detection
In theory, a necessary and sufficient condition for a
combination or fusion of classifiers to be more accurate
than any of its members is that the individual classifiers
are accurate and diverse. An accurate classifier has a
classification performance better than random guessing
and two diverse classifiers make errors on different data
points [44]. In practice, experimental evidence has been
provided that, for the case of classifiers with a low level
of dependence, a consensual decision is likely to be more
accurate than any of individual decisions [45]. It has
been also shown that lowering correlation among classi-
fiers increases the accuracy of combination [46].
Application of fusion to MAD approaches and espe-

cially of the Dempster Shafer Theory (DST) is initially
discussed in [7]. In the experiments performed there, the
fusion always outperforms individual classifiers in terms
of lower error rates. The evaluation concept from this
paper is considered here as a reference. It is expanded
and it is demonstrated that under certain conditions the
superiority of fusion is not always the case. In particular,
it is illustrated why the assumption that fusion would
make the detection more reliable can nevertheless fail in
practice. This enables a discussion on the constraints
and limitations of the application of fusion and reflects
upon the impact of generalization power of single classi-
fiers as well as fusion methods and the relationship be-
tween training and test data sets. Figure 2 roughly
depicts the initial evaluation concept.
The concept consists of five major components:

1. The set D of individual morphing attack detectors.
Each individual morphing detector is considered as
a black box (i.e., they are used as pre-trained
methods implying that we have no influence on the
training of the classification model). An input for an
individual detector is a face image and an output is
a score between 0 and 1. High scores indicate
morphs and low scores genuine samples.

2. The set of approaches for establishing weights for
individual decisions in the fused one. In the case of
DST, the mass (belief) functions are required. The
process of deriving such parameters is referred to as
training in Fig. 2.
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3. The set of fusion approaches F. A fusion approach
gets a list of individual decisions and the
“importance” of each decision and returns the
consensual decision.

4. The evaluation data, which includes training data
for establishing fusion parameters (e.g., weights or
mass functions) and test data for estimation of error
rates. The training and test datasets are created by
splitting the AMSL Face Morph Image Data Set
(made available via: https://omen.cs.uni-magdeburg.
de/disclaimer/index.php). This dataset was initially
created to simulate a border control scenario and
includes cropped and JPEG-compressed face images
which do not exceed 15 kByte and, therefore, fit
onto a chip of an eMRTD. In the evaluation, this
application scenario is referred to as “MAD in iden-
tity verification” (SC2). For creating morphed face
images, the combined morphing approach from
[30] is applied.

5. Comparison of individual detectors and fusion
approaches. As a performance metric, we have
chosen the error rates of classification
approaches.

Here, this concept and its components are re-used and
extended by the following: (1) providing a better separ-
ation between the training and test datasets by using
completely different data sources, (2) adding a fusion ap-
proach based on forensic likelihood ratios, (3) adding
two types of morphed face images: complete and splicing
morphs [12], and (4) adding the application scenario
“MAD in document issuing” (SC1).
For scientific rigor, it has been ensured in communica-

tion with the authors of the MAD approaches that the
datasets used for training of the individual detectors do

not overlap with the datasets used for training and test-
ing of the fusion approaches.

4 Evaluation setup
Figure 3 depicts the evaluation concept for this paper.
The components from [7] and the modifications and ex-
tensions summarized in section 3 are apparent in the
comparison to Fig. 2.
The representation of the evaluation scenario is done

by either using images in their native format and reso-
lution (for application scenario “MAD in document issu-
ing” SC1) or in the format specified for ICAO compliant
eMRTD (for application scenario “MAD in identity veri-
fication” SC2). The evaluation scenarios are discussed in
more detail in section 4.1. In section 4.2, the used single
classifiers for MAD are discussed, while section 4.3 sum-
marizes the fusion methods evaluated (including the
strategies for determination of decision thresholds and
score normalization). Section 4.4 introduces the per-
formance metrics and 4.5 the databases that are used to
create the evaluation data sets.

4.1 Detailed specification of two evaluation scenarios
So far, the evaluation of morphing attack detection
(MAD) mechanisms has not been focused on the appli-
cation scenario. The MAD approaches were rather clas-
sified in two groups regarding whether a trustworthy
reference face image is presented or not (reference-based
vs. single-image/no-reference approaches; see section
2.2). Here, two application scenarios “MAD in document
issuing” (SC1) and “MAD in identity verification” (SC2),
representing the two forensic checks required in the
document life-cycle of a face image based identity docu-
ment (see Fig. 1), are considered. Table 1 compares both
application scenarios.

Fig. 2 Evaluation concept for MAD in identity verification from [7]
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The most intuitive mapping would be to link single-
image MAD approaches to SC1 and reference-based
MAD approaches to SC2. In fact, both application sce-
narios can be tuned in the way that the reference image
is presented. For SC2, taking a “live” face image is an in-
herent part of the procedure. Note that this image could
be used solely for face recognition and ignored by the
MAD module. For the document issuing in SC1, a web-
cam could be installed next to the officer at the issuing
authority, providing a possibility for capturing “live” face
images of an applicant.
No-reference MAD approaches are limited to the

search for content-independent statistical anomalies or
content-dependent visual artifacts caused by the morph-
ing process. Such methods often apply techniques devel-
oped within the context of digital image forensics (see
section 2.2). Reference-based MAD algorithms try to re-
construct the morphing process aiming at predicting the
face of an “accomplice” and comparing this face to the
trustworthy “live” image. Hence, the presence of a

reference face image rather gives additional options for
the choice of detection mechanisms, but does not deter-
mine the application scenario.
In contrast, the face image format in SC2 is very closely

defined by national and international regulations, especially
by the International Civil Aviation Organization (ICAO)
standardization of eMRTD. As a result, the limitations to
the digital image that should be stored in an eMRTD are
caused by antiquated physical storage limitations. For in-
stance, the current generation of German (and other coun-
tries) passports limits the free space for a digital face to 15
kB. During the application for a new document, an appli-
cant submits a printed face photograph of the size of 35 ×
45 mm. These images are scanned with the resolution of
300 dpi and undergo lossy compression before they are
stored in the passport. The submission of printed face im-
ages is in fact the main vulnerability spot making the face
morphing attack easy to execute. The reason is that the
printing process destroys almost all traces of image ma-
nipulation so that human examiners are highly prone to

Fig. 3 Our enhanced evaluation concept—switching from “MAD in identity verification” to “MAD in document issuing” is done by deactivating
the dashed boxes

Table 1 Comparison of the document issuing (SC1) and identity verification (SC2) scenarios

Document issuing (SC1) Identity verification (SC2)

Attack’s target Officer at the document issuing authority Identity verification system

Time constraints Up to several minutes Few seconds (< 2 s)

Face image format - Low-size printed document image
- High-resolution digital image from a
certified photo-kiosk

- Low-resolution compressed digital document image
- Low-size re-printed document image partially occluded
by watermarks

Currently used morphing detection
mechanisms

- Naked eye, comparison to the person
in front of the desk

- No explicit mechanisms
- AFR systems may be set to rejecting at low similarity

Proposed morphing detection
mechanisms

- Primarily non-reference (blind) detection
- Could be extended by reference-based
detection

- Reference-based detection
- Demorphing
- Could be extended by non-reference (blind) detection
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errors when categorizing such images [12]. The straightfor-
ward way to reduce the danger of the morphing attack is a
prescription to submit high-resolution digital face photo-
graphs of a decent quality. Having done this, the image
resolution would not be an issue any more for at least a
document issuing scenario. As described in section 2.2, tak-
ing the picture directly in the controlled environment of
the issuing office would limit the threat by morphing at-
tacks. This is not only a political issue but would also re-
quire the elimination of further attack vectors.
The file format used in this paper to implement SC2 is

a face image compliant with ICAO specifications for
eMRTD: 531 × 413 pixels (inter-eye distance of at least
120 pixels), in JPEG2000 format, compressed to fit the
15 kB size constraint. The file format to implement SC1
is not that narrowly defined; here, the original file format
of the reference databases (see section 4.5) is used.

4.2 Morph attack detection approaches
In this paper, five morph attack detection (MAD) ap-
proaches are examined. The first one (Dkeypoints) is based
on localization and counting of keypoints [19]. The
keypoint-based morphing detector indirectly quantifies
the blending effect as an indispensable part of the morph-
ing process. Blending leads to a reduction of face details
and therefore to a reduction of “significant corners” and
edge pixels. The detector counts the relative number of
keypoints in the face region detected by different ap-
proaches as well as the relative number of edge pixels. For
classification within Dkeypoints, a linear support vector ma-
chine (SVM) was trained based on 24-dimensional feature
vectors with a dataset of 2000 genuine and 2000 morphed
high-resolution passport images. These morphs were cre-
ated using the approaches from [12, 30].
The other four MAD approaches are based on Deep Con-

volutional Neural Networks (DCNN). Two of them desig-
nated as DArXivNaive and DArXivMC are described in [26]. The
other two designated as DBIOSIGNaive and DBIOSIGMC are de-
scribed in [17]. All four of these detectors are based on the
VGG19 network. Transfer learning is applied to build a bin-
ary classifier from the classification model originally trained
for the ILSVRC challenge. The training dataset is comprised
of approximately 2000 genuine images and the same num-
ber of morphs. Genuine images were collected from several
public face databases and scraped from the internet. The
major difference between classifiers is in the approach for
generation of morphed face images for training. While the
DArXivNaive is an older detector trained with lower quality
morphs and DArXivMC is the same detector with an updated
data augmentation strategy in the training, the DBIOSIGNaive

and DBIOSIGMC detectors applied for the creation of the
training data sophisticated morphing with artificially added
high-frequencies to compensate the blurring effect of the
blending operation. The differences between the Naive

training and the MC (multiclass/complex morphs) versions
lie in the composition of the training data: For Naive 50%
genuine images and 50% complete morphs are used. For
MC 50% genuine images and a mix of complete and partial
morphs are used, with the aim of forcing the network to
take all available information for its decision-making into ac-
count (i.e., prevent it from focus on selected face regions like
the eyes to detect morphing attacks). The details on the
training concept for Naive and MC versions of the detectors
used here can be found in [17].

4.3 Fusion approaches
Here, each MAD approach operates as a “black box”
returning a matching score for an input sample. As a
consequence of the evaluation concept, fusion on signal
level is out of scope for this paper and fusion on feature
level (see section 2.3) is not feasible. Hence, the detec-
tion accuracy gain from one fusion approach at the deci-
sion level (majority voting) and three fusion approaches
at the matching score level (weighted linear combin-
ation, Dempster-Shafer Theory (DST) of evidence, and
forensic likelihood ratios (LR)) is explored. Below, the
fusion operators F are described in detail:

4.3.1 Majority voting (FM)
The naive consensus pattern of simple majority [38] is used
for opinion combination. If the number of votes for every
alternative is equal, the majority rule returns “no decision.”

4.3.2 Weighted linear combination (FWLC)
The sum-rule (or weighted linear combination) extends
the average rule by assigning different weights to the
output of the individual classifiers to be combined. For
the case of the same weights, the fusion strategy is often
referred to as average rule. Here, two different strategies
are used: average rule as well as weighted linear combin-
ation with pre-determined weights (see section 5.1 for
details on these two strategies).

4.3.3 Fusion based on Depster-Shafer Theory (FDST)
The Depster-Shafer Theory (DST) is based on two con-
cepts: belief functions representing degrees of belief for one
question from subjective probabilities for a related question
and Dempster’s rule for combining such degrees of belief
when they are based on independent items of evidence.
In our case, the frame of discernment is defined as Θ

= {mor, gen}, with m(mor)/m(gen) representing the basic
beliefs that the face is morphed/genuine respectively,
and m(Θ) is a mass of uncertainty. A degree of belief
(mass) is assigned to each subset. As proposed in [7], we
construct mass functions as cumulative distribution
functions of matching scores obtained from an experi-
ment. Let pmor(s) and pgen(s) be the approximations of
probability density functions of scores for verification

Kraetzer et al. EURASIP Journal on Information Security          (2021) 2021:9 Page 9 of 25



attempts with morphed and genuine images respectively.
For a detector outcome s* ranging from 0 to 1, we define
the mass m(mor) as an area under pmor(s) between 0
and s* and m(gen) as an area under pgen(s) between s*
and 1, and the mass of uncertainty as a complement to
the sum of both masses:

m morð Þ ¼
Zs�

s¼0

pmor sð Þds;m genð Þ ¼
Z1

s¼s�

pgen sð Þds ð1Þ

m Θð Þ ¼ 1− m morð Þ þm genð Þð Þ ð2Þ
Note that we interpret the detector outcome s* (also

called matching score) as a decision confidence with 1
for 100% confidence that the image is morphed and 0
for 100% confidence that the image is genuine.
Technically, the three masses are calculated for each

morphing detector based on the matching scores of
training samples and stored as a parameter of our fusion
engine. At the time of decision-making, for each out-
come si* of the ith detector, we obtain the values
mi(mor), mi(gen), and mi(Θ) as the nearest points on the
corresponding discrete mass curves.
Dempster’s rule of combination for two beliefs from

independent sources is given by:

m A≠Oð Þ ¼ 1
K

X
A¼A1∩A2

m1 A1ð Þ �m2 A2ð Þð Þ ð3Þ

K ¼ 1−
X

A1∩A2¼0

m1 A1ð Þ �m2 A2ð Þð Þ ð4Þ

where m(A) represents the combined mass on A (a
given member of the power set), m1 and m2 represent
the masses of first and second items of evidence re-
spectively, and K represents the normalization con-
stant. The second term in K describes the conflict
between two items of evidence. If it is equal to 1
then K is equal to 0 implying that these two items
contradict each other and cannot be combined by ap-
plying Dempster’s rule.
The efficient application of the Dempster’s rule for

computation of combined belief can be found in [6]:

m morð Þ ¼ 1−
1
K

Yn
i¼1

1−mi morð Þð Þ ð5Þ

m genð Þ ¼ 1−
1
K

Yn
i¼1

1−mi genð Þð Þ ð6Þ

m Θð Þ ¼ 1
K

Yn
i¼1

mi Θð Þ ð7Þ

K ¼
Yn
i¼1

1−mi morð Þð Þ

þ
Yn
i¼1

1−mi genð Þð Þ−
Yn
i¼1

mi Θð Þ ð8Þ

4.3.4 Fusion using likelihood ratios (FLR)
Likelihood ratios (LR) are used in forensics in order to
express uncertainty [47]. The basic concept relies on the
quotient of the probabilities of the correctness of two
hypotheses with respect to an observation within binary
decisions which are common in forensics. Semantically,
the LR describe how much more probable one of the hy-
potheses is in comparison to a complementary one when
specific observations can be made.
Within the scope of a forensic comparison of face im-

ages, LR are discussed, e.g., in [42] and is already used in
some countries in the forensic practice as well, as shown,
e.g., in [41] for a case involving footwear marks in the
UK. Sometimes the observed LR are mapped to particu-
lar levels regarding the confidence in the hypothesis in
order to make the result more accessible to forensic lay-
men as the requirements for particular LR differ be-
tween forensic domains, see, e.g., [48]. Generally, a
likelihood ratio close to 1 indicates a weak decision as
the probabilities for the two hypotheses are almost
identical.
With the availability of multiple detection algorithms,

a fusion using LR is also possible as suggested, e.g., in
[49] for multiple biometric matchers. For each detection
algorithm, a quality value needs to be determined as a
weight in the fusion algorithm.
In our experiments, the LR for a single detector D pro-

viding confidence levels c in a two-class problem is de-
termined by the quotient of the detectors confidence for
a sample s toward a genuine sample—cD(gen)—divided
by the confidence toward a morphed sample—cD(mor):

LR s;Dð Þ ¼ cD genð Þ
cD morð Þ ð9Þ

Note that the inverse of the LRs is used in the experi-
ments performed here, in order to achieve a defined
value of zero for a confident decision. Usually the tested
hypothesis—in this case whether an image is a morph—
would be used as the numerator. As a result, the FLR
shows the same behavior. In addition to that, it is pos-
sible to normalize FLR using the number of detectors (in
this paper 5). Otherwise, this number would have to be
taken into account during the interpretation of fusion
operator.
The LR-based fusion score FLR of a sample image in

question for the k = 5 detectors D = {Dkeypoints,
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DArXivNaive, DarXivMC, DBIOSIGNaive, DBIOSIGMC} is deter-
mined as the quotient of weighted sum of LRs toward a
genuine sample (LRg) divided by the LRs toward a

morph (LRm) with LRgðs;DÞ ¼ 1
LRmðs;DÞ ¼

cDðmorÞ
cDðgenÞ :

FLR sð Þ ¼
Pk

i¼1LRg s;Dið Þ�wiPk
j¼1LRm s;Dj

� ��wj

ð10Þ

The factor wi/wj represents here the weighting factor
for the LR fusion as described in section 5.1. A quotient
FLR(s) closer to zero indicates a larger confidence of the
decision toward a morph.

4.3.5 Normalization
In order to perform a reasonable fusion, the matching
scores of the individual classifiers should be brought into
the same range. The detectors DArXivNaive, DarXivMC,
DBIOSIGNaive, and DBIOSIGMC return negative values for
genuine faces and positive values for the morphed faces.
The default decision threshold is 0. In contrast, the de-
tector Dkeypoints returns values between 0 and 1. Lower
values are for genuine faces and higher values for
morphed faces. The default decision threshold is 0.5.
Within the training phase performed in this paper using
the DEFACTO dataset (see section 4.5), we perform
min-max normalization of the matching scores and
adapt the default decision thresholds. As a result, the
normalized matching scores of all detectors range then
from 0 to 1 and the new default decision threshold can
be found in Table 3 (column τfixed). For each classifier,
the MIN and MAX values of matching scores are stored
to perform the min-max score normalization at the
evaluation phase. The aforementioned decision thresh-
olds are also stored as parameters of the fusion and are
used in the evaluations in SC1 and SC2.

4.4 Performance metrics
Morphing detection is a standard two class problem
with two possible outcomes: “passport image is
morphed” or “passport image is not morphed” and two
types of errors: morphed image is recognized as non-
morphed and vice versa. Driven by the idea that the
morphing attack can be seen as a special case of the
presentation attack, the detection performance metrics
from the presentation attack detection testing standard
[50] are adopted. Attack Presentation Classification
Error Rate (APCER) describes the proportion of
morphed face images incorrectly classified as genuine
(bona fide) and Bona Fide Classification Error Rate
(BPCER) describes the proportion of genuine (bona fide)
face images incorrectly classified as morphed. MAD ap-
proaches are typically designed to report two values: a

binary decision on whether the image is morphed or
not and a confidence score for this decision from the
interval [0; 1]. Higher values indicate higher confi-
dence that the image is morphed. In fact, the binary
decision is derived from the confidence score by com-
paring it to an algorithm-dependent predefined deci-
sion threshold. Hence, APCER and BPCER are the
reciprocal functions of decision threshold. Formally,
the BPCER is computed as the proportion of bona
fide images over the threshold and the APCER as the
proportion of morphed images below the threshold.
At the stage of development, when an algorithm can
be evaluated with different decision thresholds, the
more informative way to compare algorithms is draw-
ing the detection error trade-off (DET) curves (re-
spectively the area under curve (AUC)) on the same
plot. Traditionally, BPCER is seen as a convenience
measure while APCER as a security measure. The
DET curve represents BPCER as a function of APCE
R. Here, also the half total error rate (HTER) is used
as an average of BPCER and APCER with the fixed
decision threshold to compare performances in an
easier way.

4.5 Evaluation datasets
There are four databases used in the experiments in this
paper: The DEFACTO database [51] containing morphs
and genuine face images is used for the training of the
fusion methods (see Fig. 2). This database is chosen as a
neutral dataset for training because it ensured by the au-
thors that it was not used in the creation (i.e., training)
of any of the five used “black box” individual detectors
and its used morphing method being unknown. By this
choice, a realistic evaluation setup can be ensured, with
training data (DEFACTO material) having an unknown
similarity to test data (for SC1 and SC2; see Fig. 1),
reflecting the constraints that will be encountered in
field application. The following datasets (and subsets)
are used:

� The DEFACTO dataset contains 200 genuine face
images and 39980 morphs. Since using the whole
dataset would represent an extremely strong bias
toward morphs, only a subset of 2309 randomly
selected morphed images is used.

� Three other databases are used to simulate the
evaluations conducted within the comparison
between single classifiers and fusion methods
performances:
� For two of them (the ECVP (aka Utrecht)

[20] and London Set [52] databases) morphed
images are generated using the approaches from
[12, 30]. The subsets of morphed images are
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denoted as complete, splicing, and combined
according to the generation method used.

� Additionally, as a source for further genuine face
images, mugshots from the Alabama News
Network [53] are taken.

Using the original sized images (and morphs based on
those), the experiments simulate the passport issuing
scenario (SC1). In order to simulate the verification sce-
nario (SC2), the images are down-scaled (to 413 × 531
pixels) and compressed using the JPEG2000 format in a
way that the image size does not exceed 15 kilobyte (kB)
as described in section 4.1. Figure 3 shows the exact
evaluation concept and Table 2 summarizes the infor-
mation about the image (sub-)sets used in our
experiments.

5 Evaluation results and discussion
This chapter contains a large number of results from dif-
ferent empirical evaluations as well as their interpret-
ation. It is structured as follows:

� Section 5.1 summarizes the DEFACTO experiments,
which serve as a baseline as well as an estimator for
fusion weights (or mass functions).

� Section 5.2 evaluates the individual detectors and
fusion methods (using the full ensemble of
detectors) for the two simulated application
scenarios SC1 and SC2.

� Section 5.3 discusses the impact of the performed
fusion to the field of MAD.

� Section 5.4 determines the impact of using smaller
ensembles (i.e., subsets of the available detectors) for
fusion.

� Section 5.5 determines the impact of less restrictive
assumptions in the evaluation setup composition on
the error rates achieved in fusion.

� Section 5.6 provides a final summary and
generalization on the obtained results.

5.1 DEFACTO training and baseline experiments
The experiments with the DEFACTO dataset have two
objectives:

1. Fair comparison of the MAD approaches to each
other regarding their error rates with a disjunctive
dataset. In fact, face images in the DEFACTO
dataset do not overlap with those used for the
training of MAD approaches. Moreover, the
morphing procedure with the DEFACTO
significantly differs from those with the individual
MAD approaches.

2. Training of the fusion parameters including fusion
weights and decision thresholds of the individual
MAD approaches as well as mass curves for the
DST-based fusion. An importance (or in other
words a credibility) of one or another detector in
the fusion is given by the fusion weight. Here, we
consider two thresholding strategies “fixed” and
“adaptive” to define at the same time the decision
thresholds and weights (the latter only for FWLC

and FLR):

For the “fixed” strategy, we rely on the default decision
thresholds suggested by the developers of the MAD ap-
proaches and assign equal weights for fusion approaches
that accept weights. This trivial strategy (which con-
siders all available detectors as being equally important)
is typically the only choice if no additional evaluation of
classifiers can be performed, or if there is a suspicion
that the evaluation dataset does not fit to the in-field
data.
For the “adaptive” strategy, we set a new decision

threshold at the point at which the EER of a MAD ap-
proach is reached. Additionally, we calculate the fusion
weights for FWLC and FLR based on the EER values.
To be more precise, the inverse of the EER values are
used as weights of the individual MAD approaches in
the fusion. Since the possible EER values for a binary

Table 2 Evaluation data sets

Database Number of images SC1 (document issuing) SC2 (identity verification)

DEFACTO morphs 2309 tiff, 500 × 652 15kB, jpeg2000, 413 × 531

DEFACTO genuine 200 jpg, 500 × 652 15kB, jpeg2000, 413 × 531

ECVP complete 1326 png, 900 × 1200 15kB, jpeg2000, 413 × 531

London complete 5050 png, 1350 × 1350 15kB, jpeg2000, 413 × 531

ECVP splicing 2614 png, 900 × 1200 15kB, jpeg2000, 413 × 531

London splicing 9352 png, 1350 × 1350 15kB, jpeg2000, 413 × 531

EVCP combined 2652 png, 900 × 1200 15kB, jpeg2000, 413 × 531

Alabama genuine 1343 jpg, image resolution varies 15kB, jpeg2000, 413 × 531
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classifier range from 0 (for a perfect classifier) to 0.5
(for a random guess) and the weight should spread
over the interval [0, 1], an EER value is multiplied by
2, see Equation (11).

wi ¼ max 0; 1−2 � EERið Þ ð11Þ

with i representing one of the five MAD approaches.
Figure 4 shows the DET curves of the five addressed

MAD approaches on the original-sized DEFACTO im-
ages. Crossings with the dashed black line represent the
EER of the detectors. Regarding the EER, three detectors
DArXivNaive, DBIOSIGMC, and DBIOSIGNaive demonstrate
comparable performances, with DBIOSIGMC achieving the
best performance by a small fraction. The DArXivMC

demonstrates slightly worse performance and the Dkey-

points is by far the worst detector.
Table 3 demonstrates the EER values of the individual

MAD approaches, the decision thresholds τ at which the
EER are reached, and the weights assigned to the ap-
proaches for fusion for both strategies “fixed” and “adap-
tive.” If the fusion is done at the decision level, the
decision thresholds are used to derive decisions from
matching scores.
The mass functions for the DST fusion are demon-

strated in Fig. 5. The mass curves for the “genuine” and

“morphed” matching scores reproduce the classic error
curves so that the crossing point indicates the EER.
What can be observed from the results in Table 3 is

that DBIOSIGMC outperforms the other four detectors by
presenting the smallest EER (resp. the highest AUC). As
a result, it is assigned the highest weight for the fusion
operations. The results for Dkeypoints confirm what was
already indicated in Fig. 4: Despite its good performance
on other image sets, this detector is here performing sig-
nificantly worse than the other four. As a result, it gets
with 0.42 the lowest weight assigned for the fusion.
If the EER locations (the projection of the EER onto

the x-axis) and the uncertainty curves shown in Fig. 5
are analyzed, it can be seen that four of the five curves
(resp. EER locations) are shifted from the center to the
left (indicating a bias toward morphed images) and only
Dkeypoints is shifted to the right with a strong bias toward
genuine images. The amount of the shift correlates with
the ranking of the detectors: DBIOSIGMC shows the smal-
lest shift (a nearly centered uncertainty curve with a very
small skew) while the other four show an increase in the
shift (and skew) with their higher EER.

5.2 Experiments with individual detectors and fusion
methods
The sections 5.2.1 and 5.2.2 summarize the results on
the performance of the individual detectors and fusion
methods evaluated with the two simulated application

Fig. 4 DET curves of the individual detectors with the DEFACTO dataset (original-sized images)

Kraetzer et al. EURASIP Journal on Information Security          (2021) 2021:9 Page 13 of 25



scenarios SC1 and SC2. All these tests use as data the
combined images from the ECVP, London and Alabama
datasets (see section 4.5). For SC1 the original-sized im-
ages are used and for SC2 the 15 kB versions.

5.2.1 Scenario SC1 (“MAD in document issuing”)
Figure 6 shows the DET curves for the tests on
complete, splicing, and combined morphs in SC1. The
individual classifier performance is displayed by solid
lines (with the same color coding as in Fig. 4), and the
performance of the fusion methods is given as dashed
lines (where a continuous space of operation points is
possible) or symbols (in case only one operation point,
either the “fixed” setting or the “adaptive,” is possible).
For all three morphing types, the individual classifier

DarXivNaive achieves the best performance for SC1,
followed by the weighted linear combination (FWLC).
The three single classifiers DBIOSIGNaive, DBIOSIGMC, and
Dkeypoints show the lowest performance. FM with “fixed”
and “adaptive” thresholding strategy achieve the lowest
performance of the fusion methods. The more

sophisticated fusion operators (FDST and FLR) perform
better than FM, in some cases FDST even outperforms
FWLC, but both show a significant bias toward morphed
images. Especially for FDST, this is apparent with an
APCER close to 0 at a BPCER of roughly 0.2.

5.2.2 Scenario SC2 (“MAD in identity verification”)
Figure 7 shows the DET curves for the tests on
complete, splicing, and combined morphs in SC2. The
same color coding and symbols are used as in Figs. 4
and 6.
The general performances of the individual and fusion

based detectors in SC2 are very similar to the SC1 re-
sults shown in Fig. 6. A slight decrease in the detection
performances can be observed for all tested methods.
This decrease can be attributed to the fact that the 15
kB image format that is used in SC2 leaves generally less
room for media forensic investigations on image ma-
nipulation. What is remarkable in the results is that the
results of the more sophisticated fusion operators (FDST
and FLR), while also showing some performance de-
crease, loose some of their bias toward morphed images.
Especially for the splicing morphs, it can be observed in
Fig. 7 that FDST shows an APCER larger than 0, even
slightly outperforming at the corresponding APCER
values all other detectors.

5.3 Discussion of the impact of fusion to face morphing
attack detection
Tables 4, 5, and 6 summarize the results. Table 4 dem-
onstrates a baseline using only the individual classifiers,

Fig. 5 Mass functions for the DST fusion resulting from the evaluation with the DEFACTO dataset (original-sized images)

Table 3 Evaluation of detectors with the DEFACTO dataset and
associated weights

Detector AUC EER τadaptive wadaptive τfixed wfixed

DArXivMC 0.94 0.14 0.35 0.72 0.47 1.00

DArXivNaive 0.97 0.10 0.40 0.80 0.59 1.00

DBIOSIGMC 0.98 0.09 0.48 0.82 0.53 1.00

DBIOSIGNaive 0.97 0.10 0.36 0.81 0.52 1.00

Dkeypoints 0.77 0.29 0.87 0.42 0.50 1.00
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showing that DArXivNaive performs best in testing in both
application scenarios SC1 and SC2 on all three morph
types.
Tables 5 and 6 present the single classifier and fusion

results in the “fixed” (Table 5) and “adaptive” (Table 6)
thresholding strategies. The difference lies in the basic
assumption for the similarity of training data (here
DEFACTO) and the material encountered in field appli-
cation (here, the mix of ECVP, London, and Alabama
material, either in original (for SC1) or the 15 kB version
(SC2)). While the “adaptive” setting is the setting en-
countered in most lab experiments, the “fixed” one
(which assumes a much lower similarity between train-
ing and test data) is a more realistic assumption, leading
to more trustworthy error estimates in this media foren-
sic analysis.
When focussing on the single classifier results ob-

tained for both thresholding strategies (“fixed” decision
threshold and fusion weights vs. “adaptive” decision

threshold and fusion weights), it can be seen that DBIO-

SIGMC, which performed best on the DEFACTO dataset
(see Fig. 4 in section 5.1) demonstrates in the evalua-
tions significantly worse performance in both application
scenarios SC1 and SC2. In Fig. 4, in two of the six tests
(the two evaluations run on splicing morphs), it actually
shows the lowest performance (i.e., highest HTER).
When looking at Tables 5 and 6, these results are con-
firmed. For both thresholding strategies and all three dif-
ferent morphing types, DBIOSIGMC achieves the second
lowest detection performances, followed only by Dkey-

points. The best performance for a single classifier is in all
cases achieved by DarXivNaive with the “fixed” decision
threshold.
When comparing the single classifier and fusion re-

sults in Tables 5 and 6, the general picture established in
section 5.2 is confirmed: In nearly all cases for SC1 as
well as SC2, the fusion approaches fail to outperform the
best individual detector. Neither for selected morphing

Fig. 6 DET curves for the tests on complete, splicing, and combined morphs in SC1
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approaches nor for one of the two thresholding strat-
egies, the fusion generally outperforms the best single
classifier, even though in one case for SC2 and splicing
morphs it is close (best single is DarXivNaive with “fixed”
at an HTER of 8.5% and the best fusion is FLR with
“adaptive” and an HTER of 8.92%). Most interestingly,
the DST-based fusion, which is the most sophisticated
fusion strategy and which is highly regarded in many
other application fields, leads here in all cases to low
performances.
For the thresholding strategies, it can be summarized

that for the four classifiers DBIOSIGNaive, DBIOSIGMC , Dar-

XivNaive, and DarXivMC, there is a tendency that the best
results are obtained with the “fixed” decision threshold
while for Dkeypoints in the majority of the cases better re-
sults are obtained with the adaptive decision threshold.
For the fusion, no clear tendency which thresholding
strategy leads to better results can be observed.

When considering the differences in the detection per-
formance for the three tested morph types (combined,
complete, and splicing), it can be summarized that all de-
tection approached discussed here yield very similar de-
tection performances (both in SC1 as well as SC2).

5.4 Variation of the fusion ensemble
During the review phase for this journal paper, the re-
viewers raised the question why it is assumed that a fu-
sion using all five single classifiers is the optimal choice
at hand. Alternative fusion ensembles using three or four
classifiers might be capable to outperform the whole set
of five, especially when removing the weakest candidate
(Dkeypoints). To address this issue, Table 7 compares the
results of three different sets of fusion ensembles for the
“fixed” decision thresholds. The results shown are for
the complete set of 5 detectors as baseline, the best per-
forming ensemble of 4 (here DBIOSIGNaive, DBIOSIGMC,

Fig. 7 DET curves for the tests on complete, splicing, and combined morphs in SC2
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DarXivNaive, and DarXivMC; the evaluations performed in
this case were a complete leave one out sequence but
only the most relevant result is presented here) and the
ensemble of three with the most disparate characteristics
(DarXivNaive, DBIOSIGMC, Dkeypoints; i.e., selection by limit-
ing redundancy). The results show an apparent decrease
of the HTER for SC1 and SC2 if switching from an en-
semble of 5 (denoted as “5 det” in Table 7) to an ensem-
ble of (the most suitable) 4 detectors (denoted as “4 det”
in Table 7). When compared to the single detector per-
formance reported in Table 5 above, it can be seen that
the best ensemble of 4 also seems to outperform the in-
dividual detectors. Some of the figures presented have to
be considered very carefully since they are hiding a
problem in the scheme: This is absolutely no problem
for cases where the individual weighting makes dead-
locks neigh to impossible (e.g., in case of the FWLC) but
is especially relevant for the majority vote where signifi-
cant numbers of “undecided” events occurred (e.g., cases
where 2 detectors predicted one class and the other 2
the other) that are not reported in the table. These “un-
decided” events amount over the various tested ensem-
bles to up to 10% of all majority vote cases.
In case of the chosen ensemble of 3 detectors (denoted

as “3 det” in Table 7) all HTER values increased signifi-
cantly, showing that this ensemble (which more strongly
relies on the opinion of the rather weak Dkeypoints) is out-
performed by the bigger ensembles.
Similar to Table 7, Table 8 performs the same ensem-

ble tests for the “adaptive” thresholding strategy. Here,

the results also show better results for the best ensemble
of 4 detectors when compared to the complete ensemble
of 5. In contrast to the “fixed” thresholding strategy dis-
cussed above, the performance increase obtained by
leaving Dkeypoints out seems smaller but also the number
of “undecided” events is way smaller (less than 3%) so
that here the gain has to be considered higher. This per-
formance gain is also evident in the comparison to the
single detector results discussed in Table 6.
Like in the case of the “fixed” thresholding strategy,

the tested cases of 3 detector ensembles showed signifi-
cantly worse results, increasing the HTER to 18% or
even higher.
Summarizing the results on these detector ensemble

selection experiments, it has to be said that the best per-
forming set of 4 detectors outperformed for both thresh-
olding strategies (“fixed” and “adaptive”) and SC1 as well
as SC2 the complete ensemble of 5. For fusion methods
that are prone to deadlock or “undecided” situations
(esp. the majority vote), the even number of detectors in
this cased caused a small issue, generating in the worst
case up to 10% deadlock results that would have to be
handled in application. All results for the chosen ensem-
ble of the 3 most dissimilar detectors proved near fatal
for the system performance since the HTER was signifi-
cantly increased in all these cases.

5.5 Discussion on alternative evaluation setups
Another issue, raised during the review phase for this
journal, is the choice of a realistic but rather challenging
experimental scenario where the dataset used for train-
ing is disjoint from the ones used for testing. The ques-
tion was how an overlap between training and testing
set (i.e., more favorable conditions for the individual de-
tectors) would influence the outcome of the experi-
ments. To address this question, two different sets of
less realistic experimental setups are discussed below:
first, a tenfold stratified cross-validation with disjoint
sets of genuine samples and morphs, and second an even
less realistic (i.e., more lab-condition) test with a static
percentage split on one a set containing genuine and
morphs that are derived directly from these genuine
images.
For the first of these alternative setups, additional tests

are performed here to show how a deviation from rigor-
ous evaluation routines reflects in the error rates ob-
tained. Table 9 summarizes the results for the “fixed” as
well as the “adaptive” thresholding strategy. If comparing
the results in Table 9 to the results in Tables 4 and 5,
then the single detector performances in the “fixed”
thresholding remain nearly unchanged while the HTER
values in case of the fusions decrease (e.g., from 11.85%
to 2.6% in case of FLR in SC1 for combined morphs of
from 13.70% to 5.9% in case of FLR in SC2 for combined

Table 4 Theoretical performance of the individual detectors
with the combined LondonDB/UtrechtDB/Alabama datasets
(best result per morph type marked in bold)

SC1 SC2

Detector Morph type EER τadaptive EER τadaptive
DArXivMC Combined 3.95% 0.528241 8.27% 0.417467

DArXivNaive 1.94% 0.594687 4.96% 0.499938

DBIOSIGMC 9.75% 0.617098 16.31% 0.561516

DBIOSIGNaive 7.74% 0.558175 13.56% 0.478364

Dkeypoints 12.65% 0.971509 19.08% 0.990942

DArXivMC Complete 4.00% 0.526729 7.75% 0.424468

DArXivNaive 1.82% 0.600357 4.06% 0.507648

DBIOSIGMC 9.75% 0.616997 14.98% 0.565297

DBIOSIGNaive 7.45% 0.563476 12.07% 0.496052

keypoints 12.43% 0.972011 19.53% 0.990758

DArXivMC Splicing 4.99% 0.501098 9.37% 0.406828

DArXivNaive 2.76% 0.566983 5.37% 0.492199

DBIOSIGMC 12.67% 0.594189 20.64% 0.541497

DBIOSIGNaive 9.08% 0.54235 14.84% 0.470685

Dkeypoints 11.09% 0.976876 19.08% 0.990933
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morphs). For the “adaptive” thresholding, the single de-
tector HTER values reported significantly improve (e.g.,
from 9.62 to 2.2% for DArXivNaive in SC1 for combined
morphs). In some cases, they are getting really close to
the EER values for the corresponding experiment, which
represents the best value that could be achieved in this
test. The fusion results for this thresholding strategy see
an even more significant drop in the HTER values pre-
sented (e.g., 13.41% to 2.8% for FM in SC1 for combined
morphs).
For the second, an even less realistic (i.e., more lab-

condition) test no additional test has to be performed
here. Instead results from an earlier publication on fu-
sion in face morph attack detection are re-used here. As
authors of [7], we used a static percentage split (50%:
50%) on one a set containing genuine (originating from
exactly one public database) and morphs that are derived

directly from these genuine images to perform initial
tests with DST in this field. The results presented were
astonishing HTER values of less that 1%. While the re-
sults did indicate the potential benefit of using fusion in
MAD, the observed lack of realism in the setup made us
question the actual extend of the performance increase
we could realistically hope for. This realization moti-
vated the research work on the empirical limitations of
using information fusion and the constraints for its ap-
plication that lead to this journal paper.
Summarizing the results obtained on alternative (i.e.,

less realistic) evaluation setups, it has to be said that the
error rates obtained achieved when drawing training and
test data from the same parent population are obviously
lower than in a setup with disjoint populations used. In
the experiments discussed above, the fusion approaches
benefit more from the unrealistic lab-condition like

Table 5 Realistic performance of the individual detectors and fusion approaches with the fixed decision thresholds and equal fusion
weights with the combined LondonDB/UtrechtDB/Alabama datasets (best result per morph type marked in bold)

SC1 SC2

Detector Morph type BPCER APCER HTER BPCER APCER HTER

DArXivMC Combined 7.45% 1.00% 4.22% 3.87% 18.56% 11.22%

DArXivNaive 2.01% 1.82% 1.91% 0.97% 13.32% 7.14%

DBIOSIGMC 25.76% 1.35% 13.56% 23.10% 10.12% 16.61%

DBIOSIGNaive 11.47% 5.25% 8.36% 9.54% 18.05% 13.80%

Dkeypoints 87.86% 0.00% 43.93% 96.94% 0.00% 48.47%

FM 11.39% 0.56% 5.97% 7.15% 9.30% 8.23%

FWLC 18.09% 0.02% 9.05% 19.90% 0.84% 10.37%

FDST 25.47% 0.02% 12.74% 35.02% 0.01% 17.52%

FLR 23.68% 0.02% 11.85% 27.05% 0.35% 13.70%

DArXivMC Complete 7.45% 1.00% 4.22% 3.87% 15.73% 9.80%

DArXivNaive 2.01% 1.60% 1.81% 0.97% 10.57% 5.77%

DBIOSIGMC 25.76% 1.38% 13.57% 23.10% 8.38% 15.74%

DBIOSIGNaive 11.47% 4.47% 7.97% 9.54% 14.31% 11.92%

Dkeypoints 87.86% 0.00% 43.93% 96.94% 0.00% 48.47%

FM 11.39% 0.31% 5.85% 7.15% 3.76% 5.46%

FWLC 18.09% 0.02% 9.05% 19.90% 0.60% 10.25%

FDST 25.47% 0.02% 12.74% 35.02% 0.02% 17.52%

FLR 23.68% 0.02% 11.85% 27.05% 0.27% 13.66%

DArXivMC Splicing 7.45% 2.57% 5.01% 3.87% 24.81% 14.34%

DArXivNaive 2.01% 3.54% 2.77% 0.97% 16.04% 8.50%

DBIOSIGMC 25.76% 3.54% 14.65% 23.10% 17.39% 20.25%

DBIOSIGNaive 11.47% 7.39% 9.43% 9.54% 21.22% 15.38%

Dkeypoints 87.86% 0.02% 43.94% 96.94% 0.00% 48.47%

FM 11.39% 1.45% 6.42% 7.15% 12.35% 9.75%

FWLC 18.09% 0.07% 9.08% 19.90% 1.42% 10.66%

FDST 25.47% 0.03% 12.75% 35.02% 0.03% 17.52%

FLR 23.68% 0.03% 11.85% 27.05% 0.55% 13.80%
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evaluation setups than the single detectors and the
“adaptive” thresholding strategy benefits more than the
“fixed” one.

5.6 Summary on the fusion experiments results
There are three main reasons why fusion fails to out-
perform the best individual classifier in the results
discussed in section 5.3:

1. Lack of diversity of the individual detectors. The
detectors DArXivNaive, DarXivMC, DBIOSIGMC, and
DBIOSIGNaive are developed by the same research
group and rely on training of DCNN with similar
data sets but strong variances in data
augmentation. Hence, it is very likely that these

detectors make in field application mistakes on
the same samples. Only the Dkeypoints detector
relies on entirely different morphing detection
clues and is developed by another research group
using a different data set for training. In theory,
an assumed clustering of four apparently very
similar detectors might prove a strong prejudice
in fusion that should be avoided at any cost. In
practice, our experiment on different ensembles
of classifiers showed a better performance if only
those four detectors are used instead of all five.

2. Lack of performance in individual detectors. It can
be seen from the evaluation with the DEFACTO
dataset, that Dkeypoints lacks generalization power.

Table 6 Realistic performance of the individual detectors and fusion approaches with the adaptive decision thresholds and fusion
weights based on the estimated EER with the combined LondonDB/UtrechtDB/Alabama datasets (best result per morph type
marked in bold)

SC1 SC2

Detector Morph type BPCER APCER HTER BPCER APCER HTER

DArXivMC Combined 30.08% 0.01% 15.04% 20.79% 0.89% 10.84%

DArXivNaive 19.21% 0.03% 9.62% 20.34% 0.50% 10.42%

DBIOSIGMC 39.76% 0.35% 20.05% 37.03% 4.51% 20.77%

DBIOSIGNaive 34.18% 0.65% 17.41% 33.76% 3.29% 18.52%

Dkeypoints 47.95% 1.15% 24.55% 73.17% 0.26% 36.72%

FM 26.81% 0.01% 13.41% 29.14% 0.42% 14.78%

FWLC 0.60% 10.87% 5.73% 0.30% 46.48% 23.39%

FDST 25.17% 0.02% 12.59% 33.53% 0.01% 16.77%

FLR 14.00% 0.09% 7.04% 14.31% 1.90% 8.10%

DArXivMC Complete 30.08% 0.00% 15.04% 20.79% 0.63% 10.71%

DArXivNaive 19.21% 0.02% 9.61% 20.34% 0.35% 10.34%

DBIOSIGMC 39.76% 0.38% 20.07% 37.03% 3.45% 20.24%

DBIOSIGNaive 34.18% 0.44% 17.31% 33.76% 2.46% 18.11%

Dkeypoints 47.95% 1.13% 24.54% 73.17% 0.09% 36.63%

FM 26.81% 0.01% 13.41% 29.14% 0.23% 14.68%

FWLC 0.60% 10.30% 5.45% 0.30% 41.15% 20.72%

FDST 25.17% 0.02% 12.59% 33.53% 0.02% 16.77%

FLR 14.00% 0.05% 7.02% 14.31% 1.30% 7.80%

DArXivMC Splicing 30.08% 0.03% 15.05% 20.79% 1.38% 11.08%

DArXivNaive 19.21% 0.05% 9.63% 20.34% 0.64% 10.49%

DBIOSIGMC 39.76% 1.11% 20.44% 37.03% 8.60% 22.82%

DBIOSIGNaive 34.18% 1.07% 17.62% 33.76% 4.35% 19.05%

Dkeypoints 47.95% 0.78% 24.36% 73.17% 0.25% 36.71%

FM 26.81% 0.01% 13.41% 29.14% 0.65% 14.89%

FWLC 0.60% 17.18% 8.89% 0.30% 56.84% 28.57%

FDST 25.17% 0.01% 12.59% 33.53% 0.03% 16.78%

FLR 14.00% 0.26% 7.13% 14.31% 3.53% 8.92%
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The default decision threshold of 0.5 is far away
from the sub-optimal (i.e., containing an offset due
to training data vs. test data mismatch) threshold of
0.87252 obtained from its evaluation. Even higher
are the sub-optimal decision thresholds with the
mixed test data set (London, ECVP , and Alabama

images). The values of approximately 0.97 for the
SC1 and 0.99 for the SC2 indicate a large discrep-
ancy between the data used for the training of the
classifier and for evaluation/testing. As a conse-
quence, the APCER and BPCER values are imbal-
anced, both are on the margins of the [0, 1] interval

Table 7 Comparing fusion ensembles consisting of all five, one set of four (DBIOSIGNaive, DBIOSIGMC, DarXivNaive, and DarXivMC), and one
set of three (DarXivNaive, DBIOSIGMC, Dkeypoints) detectors with the fixed decision thresholds and equal fusion weights with the combined
LondonDB/UtrechtDB/Alabama datasets (best result per morph type and ensemble size marked in bold)

SC1 SC2

Fusion Morph type BPCER APCER HTER BPCER APCER HTER

FM (5 det) Combined 11.39% 0.56% 5.97% 7.15% 9.30% 8.23%

FWLC (5 det) 18.09% 0.02% 9.05% 19.90% 0.84% 10.37%

FDST (5 det) 25.47% 0.02% 12.74% 35.02% 0.01% 17.51%

FLR (5 det) 23.68% 0.02% 11.85% 27.05% 0.35% 13.70%

FM (4 det) 2.98% 0.56% 1.77% 1.56% 9.30% 5.43%

FWLC (4 det) 5.29% 1.07% 3.18% 2.31% 12.17% 7.24%

FDST (4 det) 22.34% 0.02% 11.18% 19.75% 0.49% 10.12%

FLR (4 det) 7.67% 0.61% 4.14% 4.47% 8.53% 6.50%

FM (3 det) 26.14% 0.19% 13.16% 23.25% 3.85% 13.55%

FWLC (3 det) 88.38% 0.00% 44.19% 98.06% 0.00% 49.03%

FDST (3 det) 25.91% 0.01% 12.96% 44.86% 0.01% 22.43%

FLR (3 det) 60.46% 0.01% 30.23% 77.35% 0.01% 38.68%

FM (5 det) Complete 11.39% 0.31% 5.85% 7.15% 3.76% 5.46%

FWLC (5 det) 18.09% 0.02% 9.05% 19.90% 0.60% 10.25%

FDST (5 det) 25.47% 0.02% 12.74% 35.02% 0.02% 17.52%

FLR (5 det) 23.68% 0.02% 11.85% 27.05% 0.27% 13.66%

FM (4 det) 2.98% 0.30% 1.64% 1.56% 3.76% 2.66%

FWLC (4 det) 5.29% 0.97% 3.13% 2.31% 9.57% 5.94%

FDST (4 det) 22.34% 0.02% 11.18% 19.75% 0.64% 10.19%

FLR (4 det) 7.67% 0.58% 4.12% 4.47% 6.51% 5.49%

FM (3 det) 26.14% 0.09% 13.11% 23.25% 1.36% 12.30%

FWLC (3 det) 88.38% 0.00% 44.19% 98.06% 0.00% 49.03%

FDST (3 det) 25.91% 0.02% 12.96% 44.86% 0.00% 22.43%

FLR (3 det) 60.46% 0.00% 30.23% 77.35% 0.00% 38.67%

FM (5 det) Splicing 11.39% 1.45% 6.42% 7.15% 12.35% 9.75%

FWLC (5 det) 18.09% 0.07% 9.08% 19.90% 1.42% 10.66%

FDST (5 det) 25.47% 0.03% 12.74% 35.02% 0.03% 17.52%

FLR (5 det) 23.68% 0.03% 11.85% 27.05% 0.55% 13.80%

FM (4 det) 2.98% 1.45% 2.21% 1.56% 12.35% 6.96%

FWLC (4 det) 5.29% 2.33% 3.81% 2.31% 16.71% 9.51%

FDST (4 det) 22.34% 0.05% 11.19% 19.75% 0.84% 10.29%

FLR (4 det) 7.67% 1.42% 4.55% 4.47% 11.66% 8.06%

FM (3 det) 26.14% 0.48% 13.31% 23.25% 6.01% 14.63%

FWLC (3 det) 88.38% 0.00% 44.19% 98.06% 0.00% 49.03%

FDST (3 det) 25.91% 0.03% 12.97% 44.86% 0.03% 22.44%

FLR (3 det) 60.46% 0.01% 30.24% 77.35% 0.00% 38.67%
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and the HTER values are close to 43% in SC1 and
48% in SC2 for the “fixed” thresholding strategy. If
the decision threshold for Dkeypoints is readjusted,
based on the training set (DEFACTO), the HTER
values in testing become significantly lower, ap-
proximately 24% in SC1 and 36% in SC2. However,

the APCER and BPCER values are still imbalanced.
The impact of one bad detector on the overall fu-
sion is shown very well in the experiment on differ-
ent ensembles of classifiers showed where a better
performance was achieved when only an ensemble
of four (all except Dkeypoints) is used.

Table 8 Comparing fusion ensembles consisting of all 5, 4 (DBIOSIGNaive, DBIOSIGMC, DarXivNaive, and DarXivMC), and 3 (DarXivNaive, DBIOSIGMC,
Dkeypoints) detectors with the adaptive decision thresholds and fusion weights based on the estimated EER with the combined
LondonDB/UtrechtDB/Alabama datasets (best result per morph type and ensemble size marked in bold)

SC1 SC2

Detector Morph type BPCER APCER HTER BPCER APCER HTER

FM (5 det) Combined 26.81% 0.01% 13.41% 29.14% 0.42% 14.78%

FWLC (5 det) 0.60% 10.87% 5.73% 0.30% 46.48% 23.39%

FDST (5 det) 25.17% 0.02% 12.59% 33.53% 0.00% 16.77%

FLR (5 det) 14.00% 0.09% 7.04% 14.31% 1.90% 8.10%

FM (4 det) 17.20% 0.00% 8.60% 16.10% 0.42% 8.26%

FWLC (4 det) 6.40% 0.86% 3.63% 3.06% 10.31% 6.68%

FDST (4 det) 23.90% 0.01% 11.95% 21.68% 0.68% 11.18%

FLR (4 det) 7.89% 0.62% 4.26% 4.77% 8.36% 6.56%

FM (3 det) 29.41% 0.01% 14.71% 36.36% 0.19% 18.28%

FWLC (3 det) 0.00% 64.59% 32.29% 0.00% 93.25% 46.62%

FDST (3 det) 25.69% 0.01% 12.85% 43.59% 0.00% 21.80%

FLR (3 det) 33.88% 0.00% 16.94% 42.18% 0.03% 21.10%

FM (5 det) Complete 26.81% 0.01% 13.41% 29.14% 0.23% 14.68%

FWLC (5 det) 0.60% 10.30% 5.45% 0.30% 41.15% 20.72%

FDST (5 det) 25.17% 0.02% 12.59% 33.53% 0.02% 16.77%

FLR (5 det) 14.00% 0.05% 7.02% 14.31% 1.30% 7.80%

FM (4 det) 17.20% 0.00% 8.60% 16.10% 0.23% 8.16%

FWLC (4 det) 6.40% 0.78% 3.59% 3.06% 8.03% 5.54%

FDST (4 det) 23.90% 0.02% 11.96% 21.68% 0.77% 11.23%

FLR (4 det) 7.89% 0.61% 4.25% 4.77% 6.29% 5.53%

FM (3 det) 29.41% 0.01% 14.71% 36.36% 0.04% 18.20%

FWLC (3 det) 0.00% 64.16% 32.08% 0.00% 91.78% 45.89%

FDST (3 det) 25.69% 0.02% 12.85% 43.59% 0.00% 21.80%

FLR (3 det) 33.88% 0.00% 16.94% 42.18% 0.02% 21.10%

FM (5 det) Splicing 26.81% 0.00% 13.40% 29.14% 0.65% 14.89%

FWLC (5 det) 0.60% 17.18% 8.89% 0.30% 56.84% 28.57%

FDST (5 det) 25.17% 0.01% 12.59% 33.53% 0.03% 16.78%

FLR (5 det) 14.00% 0.26% 7.13% 14.31% 3.53% 8.92%

FM (4 det) 17.20% 0.00% 8.60% 16.10% 0.65% 8.37%

FWLC (4 det) 6.40% 2.01% 4.21% 3.06% 14.28% 8.67%

FDST (4 det) 23.90% 0.05% 11.98% 21.68% 1.17% 11.43%

FLR (4 det) 7.89% 1.45% 4.67% 4.77% 11.32% 8.05%

FM (3 det) 29.41% 0.00% 14.71% 36.36% 0.24% 18.30%

FWLC (3 det) 0.00% 75.02% 37.51% 0.00% 97.08% 48.54%

FDST (3 det) 25.69% 0.01% 12.85% 43.59% 0.02% 21.80%

FLR (3 det) 33.88% 0.00% 16.94% 42.18% 0.07% 21.12%
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3. Lack of similarity between the training and test
data. Different proprietary data sets are used for
training individual classifiers, which is a very
common case, but the datasets for adjusting fusion
parameters (evaluation data set) and for actual
testing are also very different from each other and
the training data set. One can say that it makes
absolutely no sense to use different data sources for
adjusting fusion parameters and for testing, but this
is the real-life situation. In practice, it is very diffi-
cult to precisely foresee and provide significant in-
field data at the stage of system development or
parameter adjustment. Moreover, there is no guar-
antee that the in-field data that will be obtained in
the future is even similar to the presented training
data.

The case study performed in this paper clearly demon-
strates that if the training, evaluation, and test datasets
lack similarity, the adaptation of the classifier parameters
such as a decision threshold may lead to performance
degradation. This can be well explained on the example
of the classifier DArXivNaive which in the tests performed

shows the best generalization power. The classifier is
well trained with the default decision threshold of
0.59072. An attempt to adapt the decision threshold
based on the DEFACTO data set actually fails with shift-
ing it to 0.39958, resulting in an EER of 10%. As a conse-
quence, the APCER and BPCER values are imbalanced
in the test leading to the HTER values of approximately
9.5% in SC1 and 10.5% in SC2 (see Table 6). However, if
there is no adaptation of the decision threshold, the sub-
optimal (i.e., offset) thresholds of 0.594687, 0.600357,
and 0.566983 are close to the default one and the APCE
R and BPCER values are well balanced in SC1 leading to
HTER values of 1.91%, 1.81%, and 2.77% for combined,
complete, and splicing morphs respectively (see Table
5). In contrary, the sub-optimal thresholds in the SC2
would be 0.499938, 0.507648, and 0.492199 for com-
bined, complete, and splicing morphs respectively which
are far away from the default value of 0.59072. Hence, in
the test within SC2 the APCER and BPCER values are
imbalanced leading to the HTER values of 7.14%, 5.77%,
and 8.50% for combined, complete, and splicing morphs
respectively. The same situation can be observed with
the detectors DarXivMC, DBIOSIGMC, and DBIOSIGNaive.

Table 9 Fusion under laboratory conditions: tenfold stratified cross-validation with 90% training/10% test split; genuine samples
from the Alabama dataset [53]; morphs from LondonDB and UtrechtDB (best result per morph type and application scenario
marked in bold)

Combined Complete Splicing

SC1 SC2 SC1 SC2 SC1 SC2

EER HTER EER HTER EER HTER EER HTER EER HTER EER HTER

Fixed

DArXivMC 3.8% 4.3% 8.2% 11.2% 3.9% 4.2% 7.2% 9.8% 4.8% 5.0% 9.2% 14.3%

DArXivNaive 1.5% 1.9% 3.9% 7.1% 1.3% 1.8% 3.4% 5.8% 1.8% 2.7% 4.4% 8.5%

DBIOSIGMC 9.3% 13.6% 15.7% 16.6% 9.3% 13.6% 14.7% 15.7% 12.8% 14.7% 20.2% 20.2%

DBIOSIGNaive 7.1% 8.4% 13.4% 13.7% 7.0% 7.9% 11.8% 11.9% 8.4% 9.4% 14.2% 15.4%

Dkeypoints 12.3% 43.9% 18.6% 48.8% 12.2% 43.9% 19.3% 48.8% 8.9% 43.9% 18.3% 48.8%

FM 6.0% 8.2% 6.2% 5.9% 6.4% 9.7%

FWLC 9.6% 10.9% 9.2% 10.6% 9.2% 10.6%

FDST 2.6% 5.9% 3.0% 6.7% 2.9% 7.3%

FLR 2.6% 5.9% 3.0% 6.7% 2.9% 7.3%

Adaptive

DArXivMC 3.8% 3.9% 8.2% 8.3% 3.9% 4.0% 7.2% 7.9% 4.8% 4.9% 9.2% 9.4%

DArXivNaive 1.5% 2.2% 3.9% 5.0% 1.3% 2.1% 3.4% 4.4% 1.8% 3.0% 4.4% 5.6%

DBIOSIGMC 9.3% 9.8% 15.7% 16.4% 9.3% 9.8% 14.7% 15.0% 12.8% 12.7% 20.2% 20.7%

DBIOSIGNaive 7.1% 7.9% 13.4% 13.6% 7.0% 7.6% 11.8% 12.1% 8.4% 9.1% 14.2% 15.0%

Dkeypoints 12.3% 12.7% 18.6% 19.0% 12.2% 12.5% 19.3% 19.3% 8.9% 11.4% 18.3% 19.2%

FM 2.8% 6.0% 2.2% 4.5% 3.3% 6.8%

FWLC 15.2% 39.2% 14.3% 35.5% 17.7% 45.8%

FDST 2.8% 5.8% 3.3% 6.6% 3.1% 7.3%

FLR 2.8% 5.8% 3.3% 6.6% 3.1% 7.3%
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Considering the results of different fusion strategies,
it can be said that in almost all cases, the APCER
and BPCER values are imbalanced in the case when
training, evaluation, and test datasets lack similarity.
This results in the conclusion that pre-determining
the proper decision thresholds (as well as the fusion
weights) in real-life conditions (where the training,
evaluation, and in-field data might be dramatically
different) is hardly possible.
When considering alternative (less strict) evaluation

setups, where training and test data show and artificial
similarity due to the fact that they have been drawn
from the same parent distribution, we see in section 5.5
significantly lower HTER values not only for fusion re-
sults but in some cases also for the individual detectors.
The results presented more clear indicators that the

similarity between the training and test data is the dom-
inating factor for the error rates achieved. If this similar-
ity is an artificial one (e.g., in an unrealistic setup where
training, parameterization, and test data are drawn from
the same parent population) instead of a natural one
(i.e., the fusion as well as the individual detectors are
suitably well trained) the low error rates obtained are
meaningless.
The practical consequence of these three issues is that

one of the individual detectors (obviously accurate but
far from perfect in its performance) in all evaluations
outperforms four different fusion approaches, ranging
from simplistic to very sophisticated, in different param-
eterizations in the tests performed in 5.3 but becomes
marginalized by fusion approaches as soon as either the
ensemble of detectors used in the fusion is optimized (as
done by removing one disturbing detector in section 5.4)
or the similarity between training and test data is in-
creased (as in section 5.5).

6 Conclusions
The results presented in the empirical evaluations in this
paper demonstrate that fusion can fail even with a set of
relevant individual classifiers. This can be seen in both
application scenarios (“MAD in document issuing” and
“MAD in identity verification”) evaluated in this paper.
Here, the three reasons for this phenomenon discussed
above are (a) low diversity of the detectors, (b) lack of
performance in individual detectors, and (c) lack of simi-
larity between the training and test data.
Summarizing the lessons learned from the approach of

using fusion for MAD detection as done in this paper
and drawing some generalization toward other media fo-
rensics classification or decision problems, the following
has to be said: The requirements for (media) forensic
methods in terms of scientific admissibility (or Daubert
compliance) are obviously important! Methods should
indeed be published upon and peer reviewed, their error

rates should be precisely known and standards for the
application of methods should be known. But the threat
that Champod and Vuille identify as a problem of ascer-
taining the error rates of a test “can prove misleading if
not all its complexities are understood” [15] plays a very
significant role as demonstrated in the evaluations per-
formed here.
Besides the requirements for individual expert systems

to be used in forensic investigations (including its ac-
curateness), if it comes to information fusion, add-
itional constraints have to be observed. These are, at
least:

� The diversity of the detectors, which has to be
ascertained either by knowledge about the precise
means of decision generation and the diversity of
those means or empirically.

� An independent and thorough benchmarking of
detectors to establish also an idea on the
generalization power of performance claims made by
their creators.

� Considerations on the similarity/correlation between
training data available (during training of the
individual classifiers and the training of the fusion
methods) and the data to be expected in field
application are very important. If very precise
assumptions are possible on the application data,
weighting might be applicable in fusion. Else-wise,
only unweighted fusion strategies like majority
voting or the sum-rule should be employed, if
any fusion is used in those cases at all.

The diversity issue becomes very problematic if fea-
tures (as the means to represent a decision problem in a
feature space) are not hand crafted by experts but
learned, e.g., by DCNN. In this paper, the diversity prob-
lem of the detectors used here as “black boxes” has been
established in direct contact with the developers of those
methods, which is hardly an option in most field
applications.
Also, the recent trend to generate synthetic data sets

for the training of pattern recognition methods (either
traditional or neural network based) introduces another
degree of freedom into the characteristics of datasets. In
publications such as [54], this approach is used to avoid
tedious data collection tasks while creating sufficiently
sized data sets for modern day data-greedy classifiers.
The problem here is the influence of the synthesis
process on its output (i.e., the synthesis-specific artifacts)
that will become part of the model trained by each clas-
sifier. It is related to the questions of source characteris-
tics imposing themselves into trained models but carries
a different degree of relevance for forensic application
scenarios.
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The general problem with training- and test data being
mismatched in practice is hardly new. It hardly ever occurs
in scientific papers on applied pattern recognition, because
it can easily be prevented in lab tests. Nevertheless, it is a
very good argument why media forensic methods should
undergo rigorous testing and benchmarking by third par-
ties, like it is done in the field of MAD in the NIST FRVT
MORPH challenge. Only such joint efforts can lead to
methods that might become mature enough to aim at court
admissibility.
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