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Abstract

Estimating the primary quantization matrix of double JPEG compressed images is a problem of relevant importance in
image forensics since it allows to infer important information about the past history of an image. In addition, the
inconsistencies of the primary quantization matrices across different image regions can be used to localize splicing in
double JPEG tampered images. Traditional model-based approaches work under specific assumptions on the
relationship between the first and second compression qualities and on the alignment of the JPEG grid. Recently, a
deep learning-based estimator capable to work under a wide variety of conditions has been proposed that
outperforms tailored existing methods in most of the cases. The method is based on a convolutional neural network
(CNN) that is trained to solve the estimation as a standard regression problem. By exploiting the integer nature of the
quantization coefficients, in this paper, we propose a deep learning technique that performs the estimation by
resorting to a simil-classification architecture. The CNN is trained with a loss function that takes into account both the
accuracy and the mean square error (MSE) of the estimation. Results confirm the superior performance of the
proposed technique, compared to the state-of-the art methods based on statistical analysis and, in particular, deep
learning regression. Moreover, the capability of the method to work under general operative conditions, regarding
the alignment of the second compression grid with the one of first compression and the combinations of the JPEG
qualities of former and second compression, is very relevant in practical applications, where these information are
unknown a priori.

Keywords: Image forensics, Double JPEG compression, Quantization matrix estimation, Deep learning for forensics,
Convolutional neural networks

1 Introduction
Detection of double JPEG (DJPEG) compression is one
of the most widely studied problems in image forensics,
see for instance [1–3]. The interest of researcher in this
topic is motivated by the fact that double compression
can reveal important information about the past history
of an image. Important information can be obtained by
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estimating the quality of the first JPEG compression, and,
moreover, by estimating the primary quantization matrix
used for the first JPEG compression. Given an image with
several copy-pasted regions, it is possible to identify the
different origin of the tampering by recognizing that they
have been compressed first with different JPEG quali-
ties, and more in general that they are characterized by
different primary quantization matrices of the compres-
sion (while there is not a standard definition of the JPEG
quality, the concept of quantization matrix is a standard
one [4]).
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Several methods have been proposed in the literature
for the estimation of the primary quantization matrix.
Many of them exploit statistical modeling of DCT coeffi-
cients [5–8]. A common feature of all these approaches is
that they work under particular operative conditions and
settings about the relationship of the JPEG qualities of for-
mer and second compression, and the alignment of the
8×8 grid of the first compression with the second one. For
instance, the method in [7] works only when the two com-
pressions are aligned and the second quantization step is
lower than the first one, that is when the quality of the sec-
ond JPEG is higher than the quality of the first one (hence,
QF1 < QF2 for the standard quantization matrix case).
Similarly, the method in [6] is designed for the aligned
JPEG case and cannot estimate the first quantization step
when this is a divisor of the second one. A more gen-
eral approach for the estimation in the aligned scenario
has been recently proposed in [9]. The algorithm pro-
posed in [5] can work both in the aligned and non-aligned
cases; however, the performance drops when QF1 > QF2.
Eventually, the method in [8] works in the non-aligned
case only. Another drawback of such model-based tech-
niques and approaches that rely on hand-crafted features
is that their performance tend to decrease significantly
when they are applied to small patches, that prevents the
application of these methods for the local estimation of
the quantization matrix of first compression, useful for
tampering localization.
Amodernmethod for primary quantization matrix esti-

mation based on convolutional neural networks (CNN)
has been recently proposed in [10]. Suchmethod can work
under very general operative conditions and on small
(64 × 64) patches. This approach has been shown to out-
perform previous approaches, both in terms of accuracy
and mean square error (MSE) of the estimation. In partic-
ular, in [10], the CNN is trained to minimize the squared
difference between the predicted values of the quantiza-
tion coefficients and the true values, hence theMSE of the
estimation is minimized. Some works in the deep learning
literature, however, shows that CNNs are better to solve
classification than regression problems. CNNs can in fact
achieve remarkably accurate results when trained to pre-
dict categorical variables, drawn from discrete probability
distributions of data [11, 12]. Whenever possible, switch-
ing to a classification problem or consider hybrid meth-
ods that combine classification with regression has been
shown to yield better results [13]. In [13], for instance,
soft values are estimated by using a quantized regression
architecture that first obtains a quantized estimate (using
the softmax followed by the cross-entropy loss), and then
refines it through regression of the residual.
Given the above, in this paper, we focus on improving

the performance of CNN-based estimation of the pri-
mary quantization matrix by turning the regression into

a classification-like problem, with the design of a suit-
able CNN architecture. Our approach starts from the
observation that the quantization coefficients can only
take integer values. Therefore, we design a structure such
that the estimation of a vector of integer values, namely
all the coefficients of the quantization matrix, can be
performed in a classification-like fashion. For the imple-
mentation of the network (internal layers) we consider
the same CNN architecture already considered in [10],
yielding good results, namely DenseNet [14]. Similarly to
[10], the CNN-based estimator is designed to work under
very general operative conditions, i.e., when the second
compression grid is either aligned or not with the one of
first compression, and for every combinations of quali-
ties of former and second compression. The capability of
the method to work under both aligned and non-aligned
DJPEG, and for all possible combinations of JPEG quali-
ties, is very relevant in practical applications, where those
information are not known a priori, thusmaking the adop-
tion of dedicatedmethod very impractical. Like in [10], we
focus on the case where the estimation is carried out on
small patches, that represents the most challenging sce-
nario. As commonly done by the approaches from the
literature of primary quantization matrix estimation, we
assume that the test image is double compressed and do
not consider the single JPEG scenario (in this case, quite
reasonably, our method returns a quantizationmatrix that
corresponds to a very high compression quality, the esti-
mated coefficients being close to those of the quantization
matrix for the case QF = 100. Said differently, the net-
work regards the single compression with QF as a double
compression with QF1 = 100 and QF2 = QF).
The rest of this paper is organized as follows:

Section 2 recaps the main concepts of double compres-
sion and introduces the notation. The proposedmethod is
described in Section 3. Then, Section 4 details the exper-
imental methodology and the results are reported and
discussed in Section 5. We conclude the paper with some
final remarks in Section 6.

2 Basic concepts and notation
We denote by Q the quantization matrix, that is, the 8× 8
matrix with the quantization steps of the DCT coefficients
considered for the compression. A double compression
occurs when an image compressed with a given Q1 is
decompressed (decompression involves de-quantization
and inverse DCT) and compressed again with a second
quantization matrixQ2. The elements ofQ1 can be conve-
niently arranged in a vector of dimensionality 64, zig-zag
ordered [4]. We denote by q1 such 64-dim vector built
from Q1. As commonly done in the literature [5–7, 10],
we focus on the first elements of q1 and restrict the esti-
mation to those coefficients. We denote with (q1)Nc =
[ q1,1, q1,2, ..., q1,Nc ] the vector of the first Nc coefficients of
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q1. The coefficients at the medium-high DCT frequencies
are in fact more difficult to estimate accurately, due to the
stronger quantization usually applied to them; however,
since these coefficients are not very discriminative (as they
tend to be similar for most quantization matrices), their
estimation is less important.
When a JPEG image is compressed a second time,

the second compression grid can be either aligned or
non-aligned to the first compression grid. The case of a
non-aligned DJPEG corresponds to themost frequent sce-
nario in practice. A gridmisalignment occurs locally when
image splicing is performed, that is, when a region of a sin-
gle JPEG image is copy-pasted into another image, since in
this case the alignment between the compression grids is
rarely preserved. On a global level, we have a non-aligned
DJPEG when the image is cropped in between the for-
mer and second compression stage, or some processing is
applied causing a de-synchronization.
The quality of the JPEG compression is often summa-

rized by many compression softwares by means of the
JPEG Quality Factor (QF), whose values range from 0 to
100 (QF values lower than 50 however are seldom used
in practice nowadays since they corresponds to extremely
low qualities). A QF value specifies a quantization matrix
Q (standard quantization matrix). For convenience, in the
rest of the paper, we refer to the JPEG Quality Factor
(QF). Note that, in principle, the proposed estimator can
be applied to estimate any quantization matrix of former
compression, be it standard and non-standard. In the rest
of the paper, we denote with QF2 the second compression
QF and with QF1 the former.
Like in [10], in this paper, we consider color DJPEG

images (with 3 channels) and focus on the estimation
of the primary quantization matrix Q1 of the lumi-
nance channel, that is, the Y channel of the YCbCr color
space [4].

3 Proposed classification-like CNN estimator
The proposedmethod starts from the observation that the
q1,i’s values are discrete values. In [10], where a regres-
sion problem is addressed to estimate (q1)Nc , the values
obtained at the output of the CNN are finally quantized
to get the estimated vector (q̂1)Nc (specifically, rounding
is performed on each element of the output vector inde-
pendently, yielding q̂1,i, i = 1, ...,Nc). However, it has
been shown that for the estimation of discrete quanti-
ties (following then a categorical distribution), it is often
preferable to resort to softmax followed by the cross-
entropy loss, which is good for backpropagation (see
[13]). Therefore, we propose to switch the regression to a
classification-like problem. To do so, we consider a cus-
tom output layers structure with a basic loss function,
and also with a refined loss function, described in the
following.

3.1 General structure
The architecture that we considered for the internal lay-
ers of the CNN, and in particular, the feature extraction
part, is a dense structure, namely the DenseNet back-
bone architecture [14], and is described in Section 4.1.
In the following, we describe the specific structure of the
proposed output layer.
In the proposed structure, each to-be-estimated coeffi-

cient q1,i (i = 1, 2, ..,Nc) of discrete value is encoded as
a one-hot vector. The dimensionality of the encoded vec-
tor is determined by all the possible values that q1,i may
take. Assuming that the quality of the image cannot be too
low, in fact, for every i, the estimated coefficient q̂1,i may
take a limited number of values, that is, 1 ≤ q̂1,i ≤ qM1,i.
For simplicity, we set qM1,i equal to the corresponding value
of the i-th coefficient when QF1 = 50 (minimum quality
of the JPEG considered)1. To get the desired output, we
set the logit level output to a size

[
qM1,1 + qM1,2 · · · + qM1,Nc

]
;

then, the softmax is applied block-based on eachNc block,
where each block has qM1,i inputs, i = 1, 2, ..,Nc.
For training the network, we consider the following

basic custom loss:

L(x) = 1
Nc

Nc∑
i=1

⎛
⎜⎝

∑

j∈[1:qM1,i]
yij log(fij(x))

⎞
⎟⎠ , (1)

where yi,j denotes the ground-truth label corresponding to
q1,i. According to Eq. (1), a cross-entropy loss is first com-
puted on each block separately, then the loss is defined as
the sum of all the cross-entropy loss terms.
Figure 1 illustrates the scheme of the CNN considered

for the estimation with specific focus on the output layer.
In the figure, y denotes the ground-truth vector of the
Nc one-hot encoded vectors, having the dimensionality[
qM1,1 + qM1,2 + · · · + qM1,Nc

]
, and f (x) the output soft vector

of the CNN, having the same dimensionality of y. For-
mally, y = y1 ⊕ y2 ⊕ · · · ⊕ yNc , where ⊕ denotes the
horizontal concatenation, that is,

y =
[
y11, y12, ..., y1qM1,1 , y21, · · · yNc1, ..., yNcqM1,Nc

]
, (2)

and, similarly, f (x) =[ f1(x) ⊕ · · · fNc(x)] where fi(x) =
(fij(x))

qM1i
j=1.

As we said, qM1,i, for every i, is determined considering
the value assumed by the i-th coefficient in the quantiza-
tion matrix corresponding to the lowest QF1 considered
(that we set to 50 in our experiments). Then, the final
estimated vector (q̂1)Nc is given by

1This corresponds to assume that the former JPEG quality is always higher
than or equal to QF1 = 50, which is often the case in practice, thus not
representing a big restriction (as a consequence, Q1 matrices corresponding to
lower qualities are not correctly estimated).
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Fig. 1 Scheme of the CNN classification-like structure considered in this paper

q̂1,i = argmax
j

fij(x), i = 1, ...,Nc. (3)

3.2 Refined loss function
For a given image x, and final predicted vector
(q̂1)Nc , the accuracy of the estimation is averaged
over all the Nc coefficients, that is, Accuracy(x) =
(1/Nc)

∑Nc
i=1 δ(q1,i(x), q̂1,i(x)), where δ is the Kronecker

delta (δ(a, b) = 1 if a = b, 0 otherwise). The mean
square error (MSE) of the estimation is given byMSE(x) =
(1/Nc)

∑Nc
i=1 |q1,i(x) − q̂1,i(x)|2.

The new classification-like structure trained with the
loss function L attempts to maximize the accuracy of the
estimation, without caring about the MSE of the estima-
tion. From Eq. (1), it is easy to argue that solutions yielding
large MSE values are not penalized compared to those
yielding lower values, for the same soft values associated
to the “1” positions in vector y (L(x) takes the same value).
Said differently, an incorrect decision on the value of a
q1,i for some i, that results in a different wrong one-hot
encoded vector, may lead to a same value of the loss func-
tion in Eq. (1), regardless of the estimated value, or better
yet, regardless of the difference between the true and esti-
mated value, i.e., |q1,i − q̂1,i|. Since both the accuracy and
the MSE of the estimation are important in practice, we
would like to get high accuracy for the estimation, with-
out paying (much) in terms of MSE. In order to solve this
issue, we investigated two possible solutions, that corre-
spond to two possible refinements of the loss function.
The first solution was to use a “smooth” categorical cross-
entropy loss that keeps all the advantages of the standard
cross-entropy loss, but at the same time assigns different
weights to the errors depending on the position of the “1”
inside each one-hot encoded vector, that is, depending on
|q1,i − q̂1,i| for each i.
The second solution, that gave us to get better results,

was to perform jointly classification and regression by

considering a combined loss (as done by some approaches
in the literature of deep learning and standard machine
learning [15–17]). Given the simil-classification architec-
ture considered, defining a suitable loss function that takes
into account the distance between the estimate and the
true value, and then penalizes large values of such dis-
tance, is not obvious. To do so, we define a vector dy that
reports in each position the distance from the “1” in the
corresponding one-hot encoded vector yi (see Fig. 2). For-
mally, let dy = dy,1⊕dy,2⊕· · ·⊕dy,Nc . The j-th component
of dy,i, i = 1, · · ·Nc, is given by

(dy,i)j =⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|j − q1,1| 1 ≤ j ≤ qM1,1
|j − qM1,1 − q1,2| qM1,1 + 1 ≤ j ≤ qM1,1 + qM1,2
· · · · · ·∣∣∣∣∣j −

(
Nc−1∑
i=1

qM1,i

)
− q1,Nc

∣∣∣∣∣
Nc−1∑
i=1

qM1,i + 1 ≤ j ≤
Nc∑
i=1

qM1,i,

(4)

where q1 is the true vector of coefficients.
Then, we define the combined loss function as follows:

Lr(x) = c · 1
Nc

Nc∑
i=1

⎛
⎜⎝

∑

j∈[1:qM1,i]
yij log(fij(x))

⎞
⎟⎠+

+ (1 − c) ·
(
f T (x) · dy

)
, (5)

where c is a constant, 0 < c < 1, determining the trade-off
between the two terms.
We observe that, for each i, the contribution to the sec-

ond term is large when the argmaxj fij(x), that is q̂1,i, is
far from q1j, small otherwise (the second term is 0 when
argmaxj fij(x) = q1i for every i, that is, in the case of ideal
estimation). Then, the refined loss indirectly takes into
account the MSE of the estimation via the second term.
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Fig. 2 Vector dy of the relative distances obtained from y

Moreover, the second term is continuously differentiable
and then is good for backpropagation.
Some preliminary experiments we carried out con-

firmed that, as expected, adopting the loss function Lr ,
instead of L, a significantly lower MSE can be reached,
at the price of a possible slight decrease in the accuracy.
Based on our experiments, by training our CNNmodel on
a mixture ofQF1 (QF1 = {60, 65, 70, 75, 80, 85, 90, 95, 98})
with QF2 = 90 for the same number of epochs (100) with
the L and Lr loss, we got an average accuracy and average
MSE of 0.8511 and 1.990 in the first case and 0.8516 and
0.9221 in the second case.

4 Experimental methodology
In this section, we describe in detail the backbone archi-
tecture of the network, the procedure of dataset construc-
tion and the training setting considered in our experi-
ments.
The proposed solution is compared with the state-of-

the-art approach in [10] based on deep learning and, for
the aligned case, also with those in [5, 7] based on sta-
tistical analysis. While in fact the method in [10] always
outperforms all the other previous methods for the non-
aligned scenario (e.g., [5, 8]), for the aligned case, there are
some cases where the accuracies achieved by the methods
in [5, 7], tailored for the aligned scenario, are superior to
those of [10].

4.1 Backbone architecture
For the design of the internal layers of the CNN, we con-
sidered the DenseNet architecture [14], which was also
considered in [10]. Such backbone architecture has been

recently adopted for several image forensic tasks, see for
instance [18–20], yielding improved performance com-
pared to those achievedwith traditional CNN architecture
(e.g., residual-based networks).
The main feature of the dense structure is that it con-

nects each layer to every other layer in a dense block in
a feed-forward fashion. in this way, the features extracted
by the various layers are used by the subsequent layers
throughout the same dense block (hierarchical structure).
The dense connectivity has been shown in [14] to mit-
igate the gradient vanishing problem. The number of
links in the network increases compared to traditional
CNN architectures, passing from l to l(l − 1)/2 for each
dense block, where l is the number of layers in the block.
However, as an advantage, the number of (to-be-trained)
parameters is significantly reduced. Following the original
dense structure (see [14]), we considered a network depth
of 40, with 3 dense blocks and growth rate k = 12. Each
dense layer consists of 12 convolutional layers and a tran-
sition layer, where 2 × 2 average pooling is performed to
decrease the input size. All the convolutions have kernel
size 3 × 3 × 12. The default dropout of 0.2 is considered.
An initial convolution with 24 (2k) filters of size 3 × 3 is
performed before the first dense block. For more details
on the dense structure, we refer to [14]. After the last
dense blocks, global average pooling is performed and the
feature vector is fed to the fully connected layer.
The number of output nodes of the fully connected layer

is set to
(
qM1,1 · qM1,2 · · · · · qM1,Nc

)
. A softmax is applied to

each block of qM1,i nodes independently, for a total of Nc
softmaxes, as illustrated in Fig. 1.



Tondi et al. EURASIP Journal on Information Security          (2021) 2021:5 Page 6 of 14

4.2 Datasets
As in [10], a model for Q1 estimation is trained for a fixed
value of QF2. This does not represent a limitation in prac-
tice since the information on the second compression is
always available. The knowledge of the final quantization
matrix, in fact, can be recovered from the JPEG file, and is
necessary to decompress the image, getting the image in
the pixel domain. Moreover, when the image is re-saved in
an uncompressed format, the quantization matrix of last
compression can be accurately estimated [21]. As a draw-
back, a model has to be trained for every matrix of second
quantization, which may be time-consuming (the same
happens with the method in [10]). However, since training
has to be performed only once, this does not represent a
big issue. Moreover, our experiments show that a network
trained for a given QF2 generalizes pretty well to a dif-
ferent QF2’s or, more in general, to a different Q2 matrix,
when the difference is not too much (a ±2 mismatch in
the QF resulting in a very small decrease of performance),
hence a limited number of models can be trained. The
training and testing datasets are built as described in the
following.
We considered the RAISE dataset [22] with 8156 native

(tiff ) images, that is split into a training and a test set.
Specifically, 7000 images were considered for training,
while the remaining 1156 were reserved for testing. The
images were then compressed first with several QF1’s
and then with the prescribed QF2, thus obtaining several
double compressed versions (both QF1 values larger and
smaller than QF2 were considered). JPEG compression
was performed with OpenCV. To simulate the misalign-
ment, we applied a random grid shift (r, c) with 0 ≤
r, c ≤ 7 between the two compressions, with r, c randomly
selected in the [0:7] range. Therefore, the JPEG is non-
aligned with probability 63/64, while the aligned scenario
(which corresponds to the case r = c = 0) occurs with
probability 1/64.
To build the dataset of patches used for training, we pro-

ceeded as follows: for every QF1, we cropped the DJPEG
images in the training set into patches of size 64 × 64 ×
3; then, from each image, we took 100 patches in ran-
dom positions; we stopped collecting patches when a total
number of 105 patches was reached (coming then from
1000 images) for each given QF12. For our experiments,
we set QF2 = 90 and 80. Specifically, for QF2 = 90, we
built the training dataset D90 by considering QF1 ∈[ 60 :
98], for a total of 3.9×106 patches. ForQF2 = 80, we built
set D80 by considering QF1 ∈[ 55 : 98], then for a total of
4.4 × 106 patches. The test patch set was obtained in the
same way. In this case, for every QF1, all the 1156 images
in the test set were considered, each one contributing to
2For every QF1 , a random shuffle was applied to the 7000 DJPEG images
compressed with (QF1,QF2), so the subset of images considered for every QF1
was never the same.

100 random patches (for a total of 115600 patches). By fol-
lowing [10], we directly feed the 3 (R, G and B) channels
to the CNN. Another possibility would be to first perform
color space conversion from RGB to YCbCr and then feed
the transformed image to the CNN (since passing from
RGB to YCbCr corresponds to the application linear map-
ping, the network should in principle be able to learn the
mapping itself, if it benefits the learning process).
The Dresden dataset [23] was also considered to test

the performance under dataset mismatch, consisting of
1491 raw images (hence, for each QF1, the performance
were tested on a total of 149,100 patches). The size of the
images is around 3600 × 2700, which is a bit smaller than
the size of RAISE images (4928 × 3264). To further inves-
tigate the behavior of our method in presence of a reso-
lution mismatch, we also consider subsampled versions of
the raw images from the Dresden database, corresponding
to a resolution less than half of the resolution considered
for training.
Finally, we also run some tests in the case where the first

compression is carried out by using Photoshop (PS), that
does not use standard quantization matrices, thus repre-
senting a case of strong mismatch between training and
testing.

4.3 Setting
In all the experiments, we set Nc = 15, which is the
value considered in most prior works [5–8, 10]. Hence, we
estimate the first 15 DCT coefficients, zig-zag scanned.
For the implementation of the proposedmethod and the

custom loss, we used TensorFlow version 2.2.Model train-
ing and testing were carried out in Python via TensorFlow,
using Keras API.
We ran our experiments using a 2x Nvidia GeForce RTX

2080 Ti 11 GB GDDR6 GPU. For the optimization, the
Adam solver was used with learning rate 10−5. The batch
size for training and testing was set to 32 images. We
got our models using the Lr loss by training the network
for 100 epochs. After this number of epochs, we verified
that the loss decreases very slightly (less than 0.01% at
every iterations) and the accuracy of the estimation can-
not be improved further by letting the training go on (only
incurring the risk of overfitting). The weight in the com-
bined loss Lr in Eq. (5) was set to c = 0.8.
The code is publicly available and can be found at the

github link https://tinyurl.com/yxhl32w5.

5 Results
5.1 Test performance and comparison
The average performance results achieved by the CNN
model for the new architecture, trained with the Lr loss
on D90, are reported in Table 1, where they are compared
to those achieved by the CNN model in [10], trained for
the same value of QF2 = 90. The performance results are

https://tinyurl.com/yxhl32w5


Tondi et al. EURASIP Journal on Information Security          (2021) 2021:5 Page 7 of 14

Table 1 Average performance of the proposed CNN estimator
and [10] for QF2 = 90

Prop CNN CNN in [10]

AvgAcc 0.689 0.547

AvgMSE 0.731 0.882

The DJPEG is non-aligned with probability 63/64, aligned with probability 1/64
(same setting considered for the training of the models)

averaged under the same setting considered for the train-
ing regarding the alignment of the DJPEG, i.e., the test
patches are DJPEG, aligned with probability 1/64, non-
aligned with 63/64. The performance results of the new
model are superior to those achieved by the method in
[10] both in terms of accuracy and of MSE.
The performance results achieved by the methods in the

aligned DJPEG scenario are reported in Table 2. The per-
formance results in aligned scenario are slightly inferior to
those reported in the Table 1 for the mixed case. From the
results of Table 2, we see that the proposed method can
also outperform [7], which is specifically designed for the
aligned case, both in terms of MSE and accuracy.
The estimation accuracy and MSE for each DCT coef-

ficient are reported for the non-aligned and aligned case
in Figs. 3 and 4, where the results are averaged on all the
QF1s. Comparison with the methods [5, 7] is also reported
for the aligned case. It can be observed that the proposed
method greatly outperforms these methods, for all the 15
DCT coefficients.
Figure 5 shows the averaged results when QF1 < QF2

and QF1 ≥ QF2 respectively, in the case QF2=90 for the
aligned scenario. It can be noticed that when QF1 ≥ QF2
the proposed method clearly outperforms the methods [5,
7], both in terms of accuracy andMSE.WhenQF1 < QF2,
the proposed method still outperforms the state-of-the-
art methods.
The average performance obtained for the case QF2 =

80 (model trained on D80) are reported in Table 3 for the
non-aligned scenario and Table 4 for the aligned scenario.
A performance loss is experienced by all the methods.
This was expected since with a smaller QF2, the second
quantization tends to erase more the traces of the first
compression, thus making the estimation harder. Never-
theless, the proposed method has an advantage over the
state-of-the-art. We see that the CNN model in [10] does
better than our method in terms of MSE for the aligned

Table 2 Average performance of the proposed CNN estimator in
the aligned case for QF2 = 90, and comparison with the
state-of-the-art

Prop CNN CNN in [10] [5] [7]

AvgAcc 0.627 0.463 0.366 0.518

AvgMSE 1.120 1.326 28.016 9.091

case; however, our method outperforms [10] in terms of
accuracy in the aligned case and both in terms of accuracy
andMSE in the non-aligned case, which is our main focus.
Figures 6 and 7 report the results on 15 DCT coefficients
in the case QF2 = 80, averaged on all the QF1s, for the
non-aligned and aligned case respectively. We see that the
gain of the proposed method is confirmed.

5.2 Generalization capability
The generalization capability of the model are tested by
considering several sources of mismatch, i.e., the second
compression quality QF2, and the image database.
The results in presence ofQF2 mismatch are reported in

Fig. 8, where the model trained onD90 is tested on images
compressed with QF2 = 92, in the same general setting
regarding the alignment considered for training (that is,
the DJPEG is aligned with probability 1/64). We see that
the drop of performance is limited, proving a certain gen-
eralization capability, and is similar for the two methods.
The performance of the proposed CNN remains superior
to [10]: the total AvgAcc and AvgMSE are respectively
0.591 and 0.859 for our method, and 0.500 and 0.944 for
the method in [10]. Notably, in the aligned scenario, the
performance remains superior to those of the state-of-the
art methods in [5, 7] designed for this case. Specifically,
the AvgAcc and AvgMSE are 0.579 and 1.029 for our
method, 0.331 and 15.8 for [7], and 0.397 and 35.5 for [5].
To assess the impact that dataset mismatch has on the

performance of our CNN-based estimator, we also eval-
uate the performance of the estimator on DJPEG images
coming from the Dresden dataset. Figure 9 reports the
results of our tests for QF2 = 90. The total AvgAcc and
AvgMSE are respectively 0.644 and 0.538 for our method,
and 0.523 and 0.694 for the method in [10]. The results
with the half-resolution images from Dresden dataset
(strong resolution mismatch) are reported in Fig. 10. As
expected, the performance decreases, but not seriously so,
and the superior performance of our method over [10] are
confirmed also in this case.
Finally, the results of our tests in the case where the first

compression is performed with non-standard quantiza-
tion matrices are provided in Fig. 11, where we report the
accuracy and MSE achieved for some common medium-
high Photoshop qualities (compression levels from 7 to
12), respectively, for the aligned and non-aligned case.

Table 3 Average performance of the proposed CNN estimator
and [10] for QF2 = 80

Prop CNN CNN in [10]

AvgAcc 0.440 0.375

AvgMSE 1.866 1.946

The DJPEG is non-aligned with probability 63/64, aligned with probability 1/64
(same setting considered for the training of the models)
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Fig. 3 Average accuracy (top) and average MSE (bottom) of the estimation for each of the 15 DCT coefficients, for QF2 = 90, in the non-aligned
DJPEG scenario

Fig. 4 Average accuracy (top) and average MSE (bottom) of the estimation for each of the 15 DCT coefficients, for QF2 = 90, in aligned DJPEG
scenario
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Fig. 5 Average accuracy when QF1 < QF2 (top left) and when QF1 ≥ QF2 (top right), average MSE when QF1 < QF2 (bottom left) and when
QF1 ≥ QF2 (bottom right) of the estimation for each of the 15 DCT coefficients, for QF2 = 90, in aligned DJPEG scenario

The performance are compared with [10] and with the
baseline model-based methods for this case. The perfor-
mance of [10] and the proposed methods are very similar,
our method being superior only slightly on the average
and in terms ofMSE. For the non-aligned case, bothmeth-
ods significantly outperform the method in [5] and the
one in [8] for PS qualities above 8. In the aligned case,
instead, the tailored method in [7] works better for low
PS qualities, while for higher qualities, the CNN-based
estimators gets much better performance (the case where
the first quantization step is smaller than the second one
is a scenario that model-based techniques cannot handle
properly). Clearly, the performance of our CNN estima-
tor for low PS qualities can be improved if the model is
trained, or even just fine-tuned, considering examples of
JPEG images compressed with non-standard quantization
matrices.

Table 4 Average performance of the proposed CNN estimator in
the aligned case for QF2 = 80, and comparison with the
state-of-the-art

Prop CNN CNN in [10] [5] [7]

AvgAcc 0.360 0.254 0.202 0.282

AvgMSE 5.594 4.970 35.453 15.061

5.3 Application to tampering localization
Given the capability of our CNN estimator to work on
small image patches, quite straightforwardly, the method
can be exploited to localize possible tampering regions
in a DJPEG image. Specifically, given a DJPEG tampered
image, the estimator can applied on sliding windows to
get a map with the estimated primary quantization coeffi-
cients (q̂1)Nc for each 64×64 block. Notably, by looking at
those maps, the tampering can be exposed in the general
scenario where both the background and the foreground
(tampered areas) are DJPEG, that is, both the background
and the copy-pasted region were originally JPEG (com-
pressed with a different qualities) and undergo a second
JPEG compression after forging. This corresponds to a
very common scenario in practice. In this scenario, meth-
ods that try to detect and localize tampering by looking
at the presence or absence of typical double compression
artifacts do not work, see for instance [3, 24–26], just to
mention a few of them. These methods in fact implicitly
assume that the background is single compressed, while
the foreground is double compressed, or vice versa3.
3As we mentioned in the introduction, for a single compressed region, our
estimator returns a quantization matrix of a very high compression quality ( to
give an insight, the coefficients of the quantization matrix for QF = 100 are
estimated with an accuracy larger than 0.8). Therefore, when the method is
applied for tampering localization in this scenario, the manipulation can still
be exposed based on the inconsistencies between the estimated coefficients of
background and foreground.
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Fig. 6 Average accuracy (top) and MSE (bottom) of the estimation for each of the 15 DCT coefficients, for QF2 = 80, in the non-aligned DJPEG
scenario

Fig. 7 Average accuracy (top) and MSE (bottom) of the estimation for each of the 15 DCT coefficients, for QF2 = 80, in the aligned DJPEG scenario
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Fig. 8 Performance of the CNN estimator under mismatched QF2 (QF2 = 92). Average accuracy (top) and MSE (bottom) of the estimation for each
of the 15 DCT coefficients

In order to get a localization map, we first divide the
input image x of size V × L × 3 into overlapping blocks
of size 64 ×64 with stride s = 1; then, each block is fed to
the CNN that returns a vector with the first Nc estimated
quantization coefficients. Let QM(i, j, :) = f ([ xij] ) be the
network output when the input is the (i, j)-th image block
of size 64 ×64 ×3; then, QM(i, j, :) = (q̂1([ xij] ))Nc . In
this way, for each k = 1, ...,Nc we obtain a map QM(:, :, k)
with the estimated values of the k-th coefficient for each
block.
We performed a qualitative analysis. Figure 12 shows

two examples. For both tampered images, we have two
distinct tampered areas, where the copy-pasted regions
have different first JPEG qualities, that is, QF1,1 = 95 and
QF1,2 = 85 for the first example and QF1,1 = 65 and QF1,2
= 95 for the second one. The first JPEG quality for the
background of the two examples is 75. The last quality fac-
tor for both examples is QF2 = 90. All the JPEG grids
are not aligned. For sake of visualization, a color map is
reported. The color map shows that the two tampering
regions have a different q1,k from the background; inter-
estingly, the color map also reveals that the q1,k value
is also different between them, hence, that they corre-
spond to two distinct tampering (the copy-pasted regions
come from different donor images, having different JPEG
compression qualities).
In general, if the qualities of the former JPEG are close,

it is harder to visualize and expose the tampering by sim-

ple inspection of the Nc maps of the q1,k coefficients of
each block, that is QM(:, :, k), all the more that some of
the coefficients might have the same value. In this cases,
we could resort to clustering to get a tampering localiza-
tion map from the vectors of the estimated q1,k values
for each position. This interesting analysis is left as a
future work.

6 Conclusions
In this paper, we proposed a method for primary quan-
tization matrix estimation via CNNs, that resorts to a
classification-like architecture to perform the estimation
of the quantization coefficients. Thanks to the adoption
of a simil-classification structure, the new CNN estima-
tor achieves improved performance with respect to the
CNN regression-based method in [10], both in terms of
accuracy and MSE.
Notably, the proposed method is a general one, which

can work under a wide variety of operative conditions,
i.e., when the second compression grid is either aligned or
not with the one of first compression, and for every com-
binations of qualities of former and second compression.
Regarding the JPEG alignment, the method is designed to
work in particular for the case of non-aligned double JPEG
compression (the aligned case is assumed to occur with
probability 1/64). A method capable to deal with primary
quantization estimation in the non-aligned scenario, in
fact, is very relevant when the proposed estimator is used
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Fig. 9 Performance of the estimator on DJPEG images from a different database (Dresden), for QF2 = 90. Average accuracy (top) and MSE (bottom)
of the estimation for each of the 15 DCT coefficients

for image tampering localization (when a region of a JPEG
image is copy-pasted into another JPEG image, in fact,
very likely, the alignment between the compression grids
is not preserved and the final JPEG is non-aligned with
the grid of the spliced area). Despite its generality, the

proposed method also outperforms the existing — dedi-
cated — state-of-the-art solution for the aligned scenario
in most of the cases. The method provide very good
performance also in the challenging case of
QF1 > QF2, where state-of-the-art methods based on

Fig. 10 Performance of the estimator on DJPEG low resolution images from Dresden dataset (QF2 = 90). Average accuracy (top) and MSE (bottom)
of the estimation for each of the 15 DCT coefficients
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Fig. 11 Performance of the estimator when the first compression is performed with Photoshop for several PS qualities (QF2 = 90), in the aligned
(first column) and non-aligned (second column) scenario

statistical analysis often fail. More importantly, the esti-
mator works on small image patches that opens the way to
the application of the method for tampering localization
(see Section 5.3).
As future research, the application of the method

for tampering localization in DJPEG images, possibly
including the identification of the different tampering

sources (donors) is an interesting direction. In addition,
the robustness of the estimator in presence of adversarial
attacks could also be investigated. From a more general
perspective, we believe that a similar architecture to the
one proposed in this paper could also be exploited to
address other estimation problems which are relevant in
image forensics.

Fig. 12 Examples of tampered (double JPEG) images and map of the estimated k-th Q1 coefficient, for some values of k. For each example, we
report, from left to right: the tampered image, the ground-truth tampering map, the estimated map for the DCT coefficient no 1, 6, and 14, that is
QM(:, :, 1), QM(:, :, 6) and QM(:, :, 14)
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