
EURASIP Journal on
Information Security

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2
https://doi.org/10.1186/s13635-020-0100-8

RESEARCH Open Access

Keystroke biometrics in the encrypted
domain: a first study on search suggestion
functions of web search engines
Nicholas Whiskerd1*, Nicklas Körtge1, Kris Jürgens1, Kevin Lamshöft1, Salatiel Ezennaya-Gomez1,
Claus Vielhauer1,2, Jana Dittmann1 and Mario Hildebrandt1

Abstract

A feature of search engines is prediction and suggestion to complete or extend input query phrases, i.e. search
suggestion functions (SSF). Given the immediate temporal nature of this functionality, alongside the character
submitted to trigger each suggestion, adequate data is provided to derive keystroke features. The potential of such
biometric features to be used in identification and tracking poses risks to user privacy.
For our initial experiment, we evaluate SSF traffic with different browsers and search engines on a Linux PC and an
Android mobile phone. The keystroke network traffic is captured and decrypted using mitmproxy to verify if expected
keystroke information is contained, which we call quality assurance (QA). In our second experiment, we present first
results for identification of five subjects searching for up to three different phrases on both PC and phone using naive
Bayesian and nearest neighbour classifiers. The third experiment investigates potential for identification and
verification by an external observer based purely on the encrypted traffic, thus without QA, using the Euclidean
distance. Here, ten subjects search for two phrases across several sessions on a Linux virtual machine, and statistical
features are derived for classification. All three test cases show positive tendencies towards the feasibility of
distinguishing users within a small group. The results yield lowest equal error rates of 5.11% for the single PC and
11.37% for the mobile device with QA and 23.61% for various PCs without QA. These first tendencies motivate further
research in feature analysis of encrypted network traffic and prevention approaches to ensure protection and privacy.

Keywords: Keystroke dynamics, Biometrics, Search engines, Encrypted domain

1 Motivation
So-called search suggestion functions (SSF) are popular
means to support users in typing search terms in text
fields of search engines. These SSF are technically imple-
mented by incremental, character-by-character server-
side queries, where key-by-key information of the typing
process is transferred to the servers, which then return
proposed search term lists to the web browsers for display
and potential selection by the users. Search engines use
the Transport Layer Security (TLS) protocol for protec-
tion of the communication (authentication and encryp-
tion) between client and server. As keystrokes are input,

*Correspondence: nicholas.whiskerd@ovgu.de
1Multimedia and Security Lab (AMSL), Otto-von-Guericke-University,
Magdeburg, Germany
Full list of author information is available at the end of the article

the search engine creates encrypted data packets and
forwards them to the search provider via the TCP/IP net-
work. Typically, search suggestions are provided as the
queries are typed, i.e. immediately after each keystroke.
Exactly what data is shared with the search provider and
how frequently packets are exchanged is not transparent.
Therefore, the level of data disclosure involved in interact-
ing with search engines is likely not something a typical
user is aware of and consent is unclear.
Keystroke patterns, or more precisely, temporal fea-

tures of key presses during the user’s typing of text
sequences, are commonly known to be potentially ade-
quate for biometric user recognition. In this domain,
biometric keystroke analysis, the dynamics of the typ-
ing are utilised to construct typical user patterns and to
use those for biometric identification or verification. This
can be achieved by means which is either text-dependent

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-020-0100-8&domain=pdf
mailto: nicholas.whiskerd@ovgu.de
http://creativecommons.org/licenses/by/4.0/

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 2 of 16

or text-independent. If an instance of biometric recogni-
tion is possible, this would allow passive registration of a
user during normal search behaviour by the search engine
provider. Moreover, potentially a third party with access
to the network data stream could classify similarly, even
if only considering the subset of biometric information in
the encrypted domain.
However, there are limiting factors on derivable

keystroke information in the specific context of SSF. In the
context of established keystroke dynamics, only a subset
of conventionally usable keystroke events are available in
the data captured from the network stream. When typ-
ing on a traditional hardware keyboard, key down events
trigger input, and therefore, these are the only events
which can be inferred from the respective captured net-
work data. In this case, the distance measure from which
biometric features can be derived is a “down-down” (DD)
distance. On the other hand, conventional software key-
boards such as those commonly used on modern mobile
devices will only input characters on key up events. Thus,
the distance measure for software keyboards is an “up-
up” (UU) distance. Further to these limitations, dynamic
network conditions of realistic environments will influ-
ence the time of capture for each the keystroke and risk
damaging biometric usefulness or reliability. These factors
are presented in Fig. 1 which breaks down the keystrokes
and respective packets for the incrementally typed word
“weather” on a hardware keyboard. The figure contrasts
the conventional biometric perspective (i.e. involving
dwell and flight times) with the limited derivable features
from encrypted captured packets, which nonetheless may
divulge significant biometric information.

Once a biometric keystroke pattern is built, the user
could be later re-identified in further typing in the same
applications (search engines) or within other applica-
tions and platforms. Even if the visit is anonymous, the
keystroke pattern allows potential correlations to be made
between visits and also across other applications, with
further potential to divulge true identity. While discrim-
ination in large populations may be difficult, the appli-
cation within smaller domains is enough of a risk for
identification, e.g. shared devices within families or school
computer labs. Whether this data is processed (and, if
it is, how) may not be determinable from the applica-
tion perspective, but from the network perspective, a
data collection is very possible. There are considerable
legal requirements, e.g. GDPR [1], to abide by given the
tracking and misuse potential.
The observation of the key-by-key transmission of user

data to servers, in combination with the known poten-
tials for keystroke dynamics, poses risks of unwanted
user identification/tracking. As a prospective violation
of user privacy, this motivates the work presented
in this article. Thus, the following main contribu-
tions are made, which appear to be closely within the
scope of this special issue “Biometric Authentication on
Mobile Devices”:

• Thorough theoretical and experimental analysis of
potential flows of biometrically relevant keystroke
data by SSF for different browsers, computing
platforms, keyboard concepts and operating systems.

• Constitution of the relevance of leakage of biometric
keystroke data in SSF both on desktop computers, as

Fig. 1 Keystroke network transmission breakdown for word “weather” on hardware keyboard

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 3 of 16

well as ubiquitous mobile computing platforms such
as smartphones and tablet devices.

• Identification and formulation of a novel research
challenge involving biometrics on mobile devices, in
regard to data security and user privacy.

• Proof of concept of the feasibility of biometric user
identification based on timing features of metadata in
encrypted network data packets, resulting from
keystroke input to SSF.

With all these observations and privacy implications
as incentive, the investigation in this article is focused
towards two research questions as goals:

• Q1: General analysis of the relation between
encrypted network packets generated by SSF and the
temporal keystroke sequences: how frequently are
TLS protocol packets sent during typing of a search
query and can these packets be assigned to the
temporal relations between single, individual
keystrokes?

• Q2: Analysis of the potential of biometric user
identification by metadata in encrypted network data
packets generated by SSF: are there biometric
features which can be derived from the
TLS-encrypted packets based on the typing
(keystroke dynamics) and, if so, how effective is this
limited feature space for biometric recognition within
the encrypted domain?

In approaching these research questions, three test goals
are established which are formally defined in Section 3.2.
The first phase of investigation (T1) involves an over-
all assessment of behavioural tendency (outlined in Q1)
across four search engines S (Google S1 and three oth-
ers with a focus on privacy: Qwant S2, DuckDuckGo S3
and Ecosia S4), two browsers B (Chrome B1 and Firefox
B2), and two operating systems (Linux L and Android A).
This assessment is done with two different input meth-
ods K : a hardware keyboard on Linux KHW and a software
keyboard on Android KSW . A second phase of experi-
mentation (T2) involves a small data collection from five
subjects N1 – N5 on both KHW and KSW with a focus
on narrower selected test cases for one selected search
engine and browser, which is chosen based upon the first
phase findings. The decrypted network traffic captured
with these criteria is used to create a proof of concept
and to assess the impact of differing lengths of the search
query phrase. The third and final experiment (T3) involves
ten anonymous subjects in more realistic and varied net-
work conditions. For T3, an open call for contributions
was created in our laboratory with the option to upload
the captured samples anonymously. The PCs used by par-
ticipants differed in hardware and respective keyboards
KHW , but the experiment ensured the use of a common

Linux virtual machine. From this setup, the encrypted
data capture is focused upon in analysis for identification
and verification potential.
The further article is structured as follows: Section 2

covers related work and presents conventional features
we base our analysis upon; Section 3 details the techni-
cal specifications of our experimental setup, goals, and
assumptions and limitations; Section 4 explains the meth-
ods we use in pre-processing and evaluating our captured
data; Section 5 presents the full data collection specifics
along with our results presentation and discussion; and
Section 6 presents our conclusions.

2 Related work
History of keystroke dynamics dates back to early days of
wireless radio, in which people transmitting Morse code
messages could learn to identify each other by the way
a person manually input the code, i.e. their unique “fist”
[2], notably useful in verifying the integrity of military
intelligence communications.
In recognition from typing, preliminary efforts estab-

lished potential of keystroke dynamics to authenticate a
user’s access to a computer. Works [3] considered the
moment each key is struck (key down) and the resultant
distances between. Through the application of statistical
models, the authors were able to present clearly dis-
tinct differences of different typists on a small population.
These early principles were built upon in the work [4]
where the authors consider lengths of time keys remain
depressed as further features, along with research into
“Free-Style” text (free-text) rather than only structured
input (fixed-text).
Presently, the standard data that can be captured from

hardware keyboards on modern computers are the times
when each specific keys are pressed and released, i.e. the
key down and key up events. These can easily be captured
by specialised software designed to record keystrokes.
Exactly how these key events are used to build features
in keystroke analysis varies but are in principle built from
temporal distances between these events. A subset of the
following features is typically used [5], denoted as combi-
nations of down (D) and up (U) events to represent the
time differences between when:

• DU1: a key is pressed and the same one is released
(dwell time)

• DU2: a key is pressed and the next key is released
• UD: a key is released and the next is pressed (flight

time)
• DD: a key is pressed and the next key is pressed
• UU: a key is released and the next key is released

Based upon the choice of features, various machine
learning techniques are often applied to classify the data
[5] such as Bayesian classifiers.

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 4 of 16

Much of the study historically has been on hardware
keyboards. Today, software keyboards are vastly popular
on mobile devices, and this has opened up possibilities
for further features to be derived from input and inter-
action, that is, beyond only when the keys are pressed
and released [6]. More broadly, further information can be
included for classification on both software and hardware
keyboards, as there exists potential for combination with
other biometric features or behaviours, e.g. patterns and
habits in performing searches.
With regard to biometric recognition in the encrypted

domain, a great variety of methods have been proposed
already to protect biometric data during processing and
communication to ensure privacy and confidentiality for
the users [7]. These concepts typically involve some kind
of cryptography and related key assignment to the entities
involved in protocols, limiting access to biometric data to
only those legitimate entities.
Works on biometric recognition based on entirely

encrypted data, without any access to keys or plain unen-
crypted data, seem to be limited to date. However, some
examples [8] demonstrate classification capability even
with only limited features derived from network packets
identified to contain keystrokes.

3 Experimental setup
To the best of the authors efforts, no earlier comparable
publications on keystroke analysis based on network pack-
ets could be identified, and consequently, no previous test
goals, protocols, or data can be referred to. Therefore, in
this work, we propose a novel scenario of experimental
analysis in applying keystroke biometrics to SSF and also
present our own test data.
Our tests must therefore achieve an assessment of gen-

eral tendencies in different test environments: how we
observe differences in the keystroke-capturing behaviour
exhibited by these different environments, based on the
network packets we can capture and their contents. After
successfully capturing data within the established condi-
tions, we evaluate the biometric usefulness of the data.
We first present in Section 3.1 “Test setup” an ini-

tial overview of all components in our test environments
and further specify in detail. The following Section 3.2
“Test goals” describes our intentions for use of the over-
all setup. Under Section 3.3 “Assumptions and limita-
tions”, we then present the constraints we place on our
setup, in consideration of how this will affect result
interpretation.

3.1 Test setup
The experiments T1 and T2 are performed on decrypted
network traffic captured with a man-in-the-middle proxy
(mitmproxy [9]). The experiment T3 is performed on
the foundation of the encrypted network traffic. The

two different test setups are described in the following
subsections.

3.1.1 Decrypted network capture involving
man-in-the-middle (T1 and T2)

The overall setup for our investigation includes the
known web-based client-server architecture enhanced
with mitmproxy to capture network data.
This mitmproxy is the intermediary to the network con-

nection of each of our test devices as shown in Fig. 2. By
emulating the role of the search engine provider, mitm-
proxy receives the same data from the clients as the gen-
uine provider would. Moreover, using mitmproxy enables
the possibility to decrypt the network flow between the
client and the proxy, which is useful for assuring that
extracted timestamps from packets correlate to actual key
events. We refer to this process of verifying expected
packet contents by decryption as quality assurance (QA).
To collect the data, we use a setup consisting of a

MacBook Pro 2017 running MacOS Mojave in our tests.
This laptop uses a USB wireless dongle (Anadol AWL150
Micro with chipset Reling RT5370) routed to the virtual
machine (Virtual Box 6.0.6 r130049) running on the lap-
top to host a WiFi network for our clients to connect
to. The virtual machine itself makes use of Privacy Inter-
national’s data interception environment (February 2019)
which is a Debian-based distribution. To inspect the traf-
fic, mitmproxy runs (in “Regular” mode) on the virtual
machine. Table 1 details the information of the client
devices we use to connect to our proxy.
For cross-referencing, the behaviour of sending packets

for each keystroke is tested in both browsers Chrome B1
and Firefox B2 on four different search engines: Google
S1, Qwant S2, DuckDuckGo S3 and Ecosia S4. The test
subjects input the data into search fields on each search
engine website.
The network traffic from the client is proxied by mitm-

proxy to the search engine website. The communication
between the client and mitmproxy is TLS-encrypted with
a self-signed certificate and, therefore, can be decrypted
for QA during the assessment of our research ques-
tions. As the timestamps of the client requests are non-
encrypted metadata, decryption for the biometric feature
extraction is not necessarily required. However, by doing
so in this whitebox scenario, we are able to ensure that
the extracted timestamps correlate correctly to the cor-
responding key-press event and opens up the possibility
to detect packet loss or incomplete network captures.
This possibility is especially useful for answering research
question Q1. In order to perform decryption, the cer-
tificate has to be installed on both client devices. The
network packets are then TLS-encrypted (with the search
engine certificates) and forwarded to the search engine
by mitmproxy. Filtering the network flow for outgoing

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 5 of 16

Fig. 2 T1 and T2 test setup

traffic and limiting to specific IP addresses of the search
engines would narrow it down to only relevant packets,
e.g. when working only on the encrypted stream with-
out the decryption done by mitmproxy (such filtering is
applied in the T3 experiment).
In addition to our data collection from the network

packets, logging keys locally with comparable timestamps
allows examination of the delay. On the Linux hardware
keyboard KHW , we face technical limitations with no
available functional keylogger which could record times-
tamps in milliseconds or better. However, for the software
keyboard KSW , we are able to make additions to the
free software keyboard used (Simple Keyboard 3.71) to
allow local keylogging of inputs to the nearest millisecond,
comparable with the times extracted from the respective
network packets. These alterations had no effect on the
keyboard interface and user functionality.

3.1.2 Encrypted network capture (T3)
Without access to the session keys an external observer
will be limited to the analysis of encrypted TLS traffic
directed to and coming from the search engine. Such an
observer could gain access to the network communication
at any node within the routing path between the user and
the search engine provider.
The overall setup for our investigation in T3 consists of

a virtual appliance for Virtual Box running Ubuntu 18.04
with Firefox 70.0.1 (B2) as shown in Table 1. The network

traffic to and from this virtual machine V is automati-
cally captured using Wireshark. Our overall intention in
using a virtual appliance is keeping the software com-
ponent constant during the experiment. Moreover, the
captured network traffic will be limited to the virtual
machine. However, in contrast to the experiments T1 and
T2, this virtual machine is deployed on different comput-
ers, equipped with various hardware keyboards KHW . The
experiment is limited to Google S1 as the search engine.
In order to gather the keystroke data for T3, we devel-

oped a test protocol consisting of four total sessions.
In each session, two search strings are typed five times
alternating between the two to minimise learning effects
during the session. In addition to that, there is a required
break of at least 2 h between sessions of the same subject.

3.2 Test goals
Based on our motivation and research questions, we
establish the following specific test goals T (specific fixed
search queries are described in Section 4):

T1 – To find tendencies in data disclosed to search
engines under various conditions. The effects of the fol-
lowing factors are evaluated:

T1.1 – Four different search engines, Google S1 and
three with a focus on privacy: Qwant S2,
DuckDuckGo S3 and Ecosia S4.

Table 1 Client devices used for data collection: physical devices for both T1 and T2, whereas virtual setup for T3

Client devices Android (A) Linux PC (L) Linux VM (V)

Model Samsung Galaxy S4 GT-19505 Clevo M570TU Various

Operating system LineageOS 14.1 Ubuntu 18.04 Ubuntu 18.04

Chrome version (B1) 75.0.3770.67 74.0.3729 -

Firefox version (B2) 67.0 67.0.04 70.0.1

Keyboard Simple Keyboard 3.71 (KSW) Standard inbuilt keyboard (KHW) Various hardware keyboards (KHW)

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 6 of 16

T1.2 – Two different browsers: Chrome B1 and
Firefox B2.
T1.3 – Hardware keyboard KHW on Linux OS and
software keyboard KSW on Android.
T1.4 – Phrase input behaviour while SSF are or are
not correct, no predictions can be made or
suggestions are presented, and when the same phrase
is deleted and re-entered.

T2 – To determine if a subject can be identified
in a small population based upon data received by a
search engine provider. Due to the findings from the T1
investigation—presented in Section 5—T2 uses the condi-
tions of search engine S1 and browser B1 for both KHW
and KSW .

T2.1 – Identification performance differences
between keyboards on KHW and KSW .
T2.2 – Identification performance differences of three
search query phrases differing in length and
commonality.

T3 – To determine if a subject can be identified in
a small population based upon encrypted data directed
to a search engine provider but received by an external
observer. T3 uses the conditions of the same search engine
S1 but a different browser B2 in comparison with T2 for
KHW in V.

T3.1 – Evaluation of the performance in a verification
mode for V with KHW using two different search
strings.
T3.2 – Identification performance differences
between different search string lengths.

3.3 Assumptions and limitations
Our assumptions mostly relate to our test setup, espe-
cially to the network infrastructure. A relevant overview
for the T1 and T2 setup is shown in Fig. 3. Our setup limits
us to inspect on the (TLS-encrypted) network layer. Fur-
thermore, we consider an optimal setting and perform no
error handling, with regard to the following aspects:

1. We consider only a simple network without influence
from high or low levels of network traffic, switched
networks, or variable travel distances. Therefore, we
do not experience fluctuating travel times for packets
between client devices and the proxy.

2. We make the assumption that every packet is
delivered on the first attempt. When collecting data
for T2, we only include phrases with both the first
and last characters submitted successfully, such that
we have our defined start and end points, and the full
phrase for analysis. In some cases, no new GET
requests are captured by the proxy. This could either
be due to packet loss, the behaviour of the search

engine provider, or other reasons unknown. We refer
to this occurrence as packet omission. If this occurs
for the first or last character in a test phrase, all
corresponding packets to this particular phrase
instance are removed from the data collection. For
the T3 experiment, where we do not have the
possibility to decrypt the captured keystrokes and,
therefore, cannot verify completeness of the input
phrases (QA), this pre-processing obviously is not
possible. Thus, in T3, we consider each (encrypted)
keystroke to be as expected.

3. In testing with subjects, an assumption is made that
they input their search terms correctly without any
typing errors for each phrase. Due to increased
complexity in considering mistyped phrases, we limit
ourselves to analysis of perfectly input samples, all
inputs with errors are discarded. The captured data is
not changed in any other way.

In addition, for T3, a limitation of the experiment could
be the uncontrolled usage of various computer hardware
and Internet connections. This is a result of the increased
number of test subjects for T3.

4 Evaluation procedure
The sets CHW and CSW contain all possible keyboard
inputs on KHW and KSW , respectively. We define a set of
all keyboard inputs as CT ⊆ CHW = CSW . Moreover, a
set of possible phrases P, generated from set of keyboard
inputs, is defined as P = {p | p = c1c2 . . . cn | cm ∈
CT ∧ n,m ∈ N}. Our set of phrases for T2 tests is PT2A =
{p1, p2, p3} ⊂ P for B1A (Android) and PT2L = {p1, p3} ⊂ P
for B1L (Linux). For T3, the set used is PT3 = {p1, p2} ⊂ P
for B2V . The corresponding phrases are:

• p1 = “weather”
• p2 = “security and biometrics”
• p3 = “department of computer science”

The targeted sample collection totals for these phrases
are presented in Table 2.
Additionally for the initial T1 exploratory tests, the

phrase p0 “weather oldtown” is used to cover search
inputs in line with T1.4. The phrase p0 is always cor-
rectly predicted and suggested throughout the first word,
but when entering the second word, never correctly pre-
dicted as the full phrase through SSF (on any search
engine tested). This allows comparison of any keystroke
sending behaviour both while predictions are and are not
correct.
For each keyboard input, wemeasure the corresponding

timestamp using our test setup (see Section 3.3). In our
experiments across both KHW and KSW , it is important
to make a distinction in the features captured given the
different default behaviours of input to the search field:

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 7 of 16

Fig. 3 T1 and T2 captured network traffic

• KHW : Keys are input immediately on each key-down
instance.

• KSW : Due to the typical behaviour of KSW , different
characters can be selected by holding a key, and
selection is only confirmed and input on release of
the key, i.e. each key-up instance.

Assuming consistent delay, the time difference between
KHW keystrokes captured is DD and the KSW distance is
UU (as introduced in Section 1). Both of these have been
shown to be viable features of comparable performance
[10], therefore, we use these temporal distances in evalu-
ation for both T2 and T3 (though the distinction between
the types of events limits direct comparison across the two
environments).
Due to the conceptional difference in the considera-

tion of decrypted network packets for QA in experiments
involving T1 and T2, and encrypted packets in T3, we
suggest two complementary procedures using temporal
distances as features. In all circumstances, the timestamps
are based on the capture times of the network packets
(observer time). In T1 and T2, the timestamps originate
from mitmproxy, whereas they are captured within the
virtual appliance in T3. Section 4.1 details evaluation pro-
cedures forT1 andT2, whereas Section 4.2 presents details
on the approach for T3.

4.1 Decrypted keystrokes for QA (T1 and T2)
The experiments T1 and T2 both consider temporal dis-
tances extracted from decrypted network packets. Pre-

processing steps are similar for both T1 and T2, but
the processes involving feature extraction and subsequent
classification are exclusively in line with test goal T2 in
this section. An example for extracted features is shown in
Fig. 4.

4.1.1 Pre-processing
According to T2 test setup, data is captured and recorded
from both B1L and B1A for all phrases PT . A Python script
extracts the timestamps of the inputs from the file (.cap)
generated by mitmproxy for each keystroke. As shown
in Fig. 3 the timestamp of the first packet sent from
the client to the search engine provider, containing the
request string (in mitmproxy called first request byte),
is used.

Table 2 The targeted sample totals for collection in T2 and T3
experiments

Test goal Subjects Browser – search
engine

Phrase Samples per
subject

Total
samples

T2 5 B1A – S1 p1 10 50
p2 10 50
p3 10 50

*B1L – S1 p1 40 200
p3 10 50

T3 10 B2V – S1 p1 20 200
p2 20 200

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 8 of 16

Fig. 4 Basic T2 example (artificial data) for the phrase p1 with time differences between each consecutive letter as features

Even though no decryption is needed as the used times-
tamps are metadata of when packets arrived at the proxy,
we use the decrypted stream between client and proxy
only as QA in our investigation to determine changes in
characters or if packets were omitted.
The file structure contains packets in sequence, from

which we examine the GET requests generated by a
change made in the input search query. The irrele-
vant GET requests, e.g. for image data, are ignored.
The sequential order we capture is not reliably the
actual order in which the inputs were typed, but we
sort our extracted keystrokes by the extracted times-
tamp of the first request byte of each packet. Within
each such packet, the current query phrase string
is sent as part of the request, e.g. p3 can be seen
as “q=department%20of%20computer%20science” after
packet decryption with mitmproxy. In comparison with
the previous string, it is viable to determine whether it
is a newly input character, character deletion, or, in some
cases, whether packet omission has occurred.
In cases of intermediary packet omission, there are steps

taken either to remove or salvage samples. As mentioned
in Section 3.3, if the first or last character of a phrase is
not captured we do not consider it to be a usable sam-
ple and therefore immediately discard it. However, if any
other timestamps within the sample phrase are omitted as
a result of measurement or network errors, we estimate
the missing data by one-dimensional linear interpolation.
This divides the time difference between the captured
characters spanning the window containing omission(s)
equally amongst the missed characters. For example, if
p1 (“weather”) is missing characters “t” and “h”, the time

difference from “a” to (the second) “e” will be divided by
three and produce equal estimated “at”, “th” and “he” dis-
tances. This example is visually presented in Fig. 5. This
method of interpolation ensures we have a full set of
features in the sample for analysis. Nonetheless, in the fol-
lowing Section 5.2, for T2, we consider our results when
using purely the complete samples as well as with those
interpolated.
Due to variability in how many samples were gathered

from each subject (explained in Section 5.1.2), and in
the interests of avoiding distortion of results, the amount
of samples across subjects for each class are balanced.
With this approach, we can present and compare results
when classification uses either balanced or unbalanced
classes. When considering only our complete samples
in the experiment, excess samples are removed from
the set in overrepresented classes, specifically the latest
captured ones (in consideration of reducing the effects
of learning). In the case of our interpolated samples,
we first prioritise removing the samples with the most
interpolations for the sake of sample quality, then sim-
ilarly further remove any by latest captures if necessary
until all classes are balanced. Table 3 shows the amount
of instances of each class, which is the same total for
each subject, after balancing. From the table, it is evi-
denced that tests with at least one subject only captured
two and one samples for p1 and p2 respectively. This
motivates our interpolation method to make more sam-
ples, and therefore these classes, usable in subsequent
classification.
The result of these steps is a set of files (.csv) with

extracted timestamps and corresponding query phrases,

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 9 of 16

Fig. 5 Incompletely captured T2 example (artificial data) with raw timestamps for “t” and “h” omitted. The time difference values calculated
following the interpolation process are shown through the dashed line

sorted by timestamp. The data is pre-processed in all the
possible permutations of including interpolations and/or
balancing classes.

4.1.2 Feature extraction
In order to evaluate our data, we define empirical val-
ues that we can use to classify the data. Overall, for each
phrase used in our tests, we have an initial feature set
comprised of all the total distances between each neigh-
bouring character in the phrase. Additionally, the average
is calculated and appended to each sample as an additional
feature. Therefore, for each of our phrases, we have feature
totals: 7, 23 and 30.
Our evaluation data M is defined as pairs of sequences

of characters of the test phrases in PT and the corre-
sponding timestamps of each sequence, that is M =
{〈c1, t1〉, 〈c1c2, t2〉, ..., 〈c1c2...cn, tm〉 | n,m ∈ N}.
We calculate the time difference between two consecu-

tive keyboard inputs ci and ci+1 simply as:

di,i+1 = ti+1 − ti | i ∈ N (1)

When applied to all characters of a phrase p ∈ PT ,
we obtain a set Dp = {

d1,2, ..., dn−1,n | n = |p|} of time
differences for all consecutive key pairs.
We calculate the average (mean) for each phrase as an

additional feature. The average over all time differences
between two consecutive keyboard inputs for one phrase
can be calculated by:

Dp = 1
n − 1

n−1∑

i=1
di,i+1 (2)

4.1.3 Classification
For every phrase p entered by a test subject, we have
a set Fp = {

d1,2, ..., dn−1,n,Dp
}
of all features of that

particular phrase. With samples of the same phrase, we
can try to classify each subject by some classification
algorithms. We choose Gaussian naive Bayesian (NB)
and nearest neighbour by Euclidean distance (NN) as
classifiers specifically, due to their effective performance
with small data sets.

4.2 Encrypted keystrokes without QA (T3)
The experiment T3 utilises temporal distance features
extracted from the encrypted data stream. As the data
is encrypted, this means definitive QA of packet content
for correct key information is not possible. The classifi-
cation is performed on the foundation of the Euclidean
distance between the feature vector and a subject’s
template.

Table 3 From T2 tests, amount of samples remaining after
balancing, per subject (e.g. 41 × 5 = 205 total for B1L - S1 - p1)

Browser – search
engine

Phrase Only complete
samples

Including
interpolated
samples

B1A – S1 p1 2 8
p2 1 8
p3 6 9

B1L – S1 p1 41 -
p3 9* -

*Only nine complete samples were collected from one subject due to human error
in the capture process setup

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 10 of 16

4.2.1 Pre-processing
The pre-processing of the encrypted data captures con-
sists of the following steps:

1. Determination of the IP addresses of the search
engine by analysing DNS responses from the name
server.

2. Extraction of candidate type sessions based on the
determined target IP addresses.

3. Selection of the pre-sessions based on the session
length.

Firstly, the capture files are read using Scapy and anal-
ysed towards the DNS responses for the specified search
engine domain. In our case, the search engine is limited to
S1 (in top-level domain .com). The DNS response contains
one or multiple IP addresses which are contacted in order
to perform the search. Each IP from the DNS response is
stored in a set to compare with the destination IP of each
network packet.
During the second step, sessions are extracted based on

their metadata: packet length between 208 and 300 bytes
and monotonic increase of the packet size in compari-
son with the previous packet to the same destination IP,
which is equivalent to two consecutive key-presses result-
ing in key down-down times. Due to the compression and
encryption of the requests, we can assume that the next
network packet including one additional character will be
either as large as its predecessor or one byte longer. If the
packet size is lower or significantly larger, the session will
be terminated. Furthermore, sessions with less than five
packets will be discarded. If the inter-packet-time exceeds
5000 ms, the session will be terminated as well.
For the last step, the candidate sessions are manually

selected based on the session length:

• Between 5 and 9 packets: p1 (“weather”)
• Between 21 and 24 packets: p2 (“security and

biometrics”)

The intervals are chosen because packets might be omit-
ted in the capture file. Furthermore, additional packets
sent during the typing session might sporadically interfere
with the total number of detected packets. This selection
process is a realistic consideration because an external
observer would also have to deal with the same issues.

4.2.2 Feature extraction and selection
From the extracted sessions, statistical features are
extracted based on the timestamps of two consecutive
packets within the session. Overall, we differentiate
between a set of length-independent features F1 and a
length-dependent feature in F2 from an encrypted session
E with n ∈ N packet timestamps en ∈ E:

1. F1min = argmin
en∈E,n>1

(en − en−1)

2. F1max = argmax
en∈E,n>1

(en − en−1)

3. F1mean = ē = 1
n−1

n∑

i=2
ei − ei−1

4. F1variance = σ 2 = 1
n−1

n∑

i=2
((ei − ei−1) − ē)2

5. F1skewness = 1
n−1

n∑

i=2
(
(ei−ei−1)−ē

σ
)3

6. F1kurtosis = 1
n−1

n∑

i=2
(
(ei−ei−1)−ē

σ
)4

7. F1median = ẽ
8. F1regressslope : slope of the linear regression of

inter-packet-times
9. F2total = en − e1

From these features, we calculate the templates for each
test subject based on the first three of the four sessions. In
particular, we create three templates—for p1, for p2, and
for all samples from p1 and p2: p1p2. The templates are cal-
culated by determining themean of all training/enrolment
sessions (15 out of 20 samples). In addition to that, we
determine the intra-person-variance as a foundation for
the feature selection.
The feature selection is performed empirically by com-

paring the equal error rates (EER) after selection of the
subsets of features. In particular, a variance threshold of
0.5 for each feature, resulting in selection of the features
F1min, F1mean, F1median and F1regressslope which yield
the best performance based on our data set.

4.2.3 Classification
Thematching is performed by a standard template match-
ing approach using the Euclidean distance between the
trained template and a feature vector. In addition, we
have evaluated the Manhattan distance as well as the
Canberra distance; however, both yielded lower detection
performances. We evaluate the biometric system in the
verification mode and in the identification mode up to a
rank level of three.

5 Experiments
Firstly, in Section 5.1 “Data collection” we detail what data
we actually captured through use of our test setup. This is
followed by Section 5.2 “Results” in which our analysis is
discussed and presented for each of our test goals in turn.

5.1 Data collection
5.1.1 T1 collection
To address test goals T1.1 – T1.4, the data was collected
across the specified browsers B1L, B2L, B1A and B2A, on
search engines S1 – S4 with the phrase p0 as introduced
in Section 4. Two subjects were used in completing the

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 11 of 16

inputs across two days. The website of each respective
search engine was visited, the input was made into the
search bar provided, and then it was submitted with the
enter key. Subsequent searches and amendments to the
term were made on the results page where a search field
remained accessible.
To test any keystroke sending behaviour when the same

data is re-entered, first “weather” is typed, deleted by
backspace, and then re-entered exactly. The second “old-
town” input is entered and then a similar test is performed
after completion of the full phrase: the phrase was par-
tially deleted by the backspace key to leave only “weather”,
and then “oldtown” was re-entered. To test the behaviour
while suggestions were no longer visibly generated, fur-
ther non-specific words were input—chosen in direct con-
tradiction to any further search suggestions—until they
were no longer provided, then one word more was typed
beyond that boundary.

5.1.2 T2 collection
All data was collected on a single day for the KSW and
across two neighbouring days for the KHW . The test sub-
jects typed all instances of each phrase in one single
session.
We used the three phrases defined in Section 4. The

phrase p1 was chosen specifically because it is one of the
most commonly searched terms across all search engines
and, therefore, serves as an indication of whether the typ-
ing behaviour can be used to track people. The other
two terms p2, p3 were chosen as examples of longer, more
uncommon terms as per T2.2.
Each phrase was first typed five times to train the per-

son on the unfamiliar keyboard and phrase. Then each
person entered the phrase at least ten times correctly.
Any phrases with mistakes were discarded at this stage as
described in Section 3.3. Any method for clearing the text
was permitted, such that the next sample could be input
into a newly blank search field.
The subjects came from different language back-

grounds, and while all use both kinds of keyboards daily,
the keyboard layout usually used differed. The keyboard
layout did not get swapped for any subject. The KHW used
was a German language layout keyboard; however, only
phrase p2 involved a key not identically placed to that of an
English keyboard (Y/Z). The KSW was used with a default
English keyboard layout.
Every test for T2 was conducted while using search

engine S1 on the Chrome B1 browser on both devices. For
the initial tests with theKSW , at least ten samples were col-
lected from each subject for each phrase: p1, p2 and p3. In
each case, the subject was asked to be certain if they had
input the full amount of phrases correctly without typing
errors; therefore, in some cases, more than ten samples
were collected.

For the second round of tests involving KHW , ten p3
samples were collected in a similar manner. However, it
was decided while testing to focus on at least 40 inputs for
p1 per person. This change was motivated by issues raised
from the small sample sizes of initial results gathered from
the KSW , discussed in Section 5.2.

5.1.3 T3 collection
The sessions for T3 are recorded within a fixed soft-
ware setup provided by the virtual machine V (using
B2V with S1). The test subjects were instructed to type
p1 “weather” and p2 “security and biometrics” five times
within each session. Hereby, the keyboard layout should
be ignored and all subjects should type with the lay-
outs they are accustomed to. Since the actual content of
the search string cannot be determined due to the TLS
encryption, the impact of an incorrect search string is
negligible. However, the test subjects are instructed to
abort the current search if they recognise a mistyped
character. In total, four sessions are recorded by each of
the test participants yielding 20 samples for p1 and p2
per subject.

5.2 Results
5.2.1 T1 presentation
In Table 4, the tendencies of sending keystrokes are pre-
sented for the scenarios outlined in T1.1 – T1.3, denoted
by symbols corresponding to disclosure levels of full,
irregular or none, which we define as follows:

Table 4 Results for T1.1 – T1.4

Browser Search
engine

During
suggestions

During no
suggestions

During
re-entry

B1L S1 � � �
S2 � � ��
S3 �� �� ��
S4 � � �

B2L S1 � � �
S2 � � ��
S3 �� �� ��
S4 � � �

B1A S1 � � �
S2 � � ��
S3 �� �� ��
S4 � � �

B2A S1 �* � �
S2 � � ��
S3 �� �� ��
S4 � � �

� full, �� irregular, � none
*Unique behaviour: if the present phrase entered continues to match all (in this
case five) displayed SSF, there are no further keystrokes sent until the phrase no
longer matches SSF

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 12 of 16

• Full : Up to (but no more than) two consecutive
keystrokes may not be sent in these conditions. We
consider this a “full” tendency given the general
behaviour to send every keystroke.

• Irregular: At least one occurrence is recorded where
more than two keys in a row are omitted from
phrases. Therefore, incomplete samples are regularly
captured.

• None: No evidence is found of keystrokes being sent
in packets.

The latter three headings of Table 4 address theT1.4 pro-
cess as detailed in Section 5.1.1; in summary, these are the
situations during which:

• Suggestions: Entry while SSF are predicted and
presented to the user.

• No suggestions: Entry as further text is entered such
that SSF have ceased.

• Re-entry: The phrase entered (which SSF had been
generated for) is deleted by backspace and then
retyped exactly, intended to trigger the same
suggestion.

5.2.2 T1 discussion
Our exploratory data collection across these scenarios
demonstrates reliable keystroke collection to some extent
across three of the four search engines. With such data
disclosure occurring, this suggests potential for the data
to be used in recognition applications.
We note that regardless of the conditions in our tests,

whenever a packet was successfully sent on keystroke
input, the size difference was always the same for any indi-
vidual keystroke. While from our results we observe that
packets were not always sent due to packet omission, this
irregularity was a behaviour observed to be independent
of how fast or slow a user types.
One search engine behaviour shown in Table 4—which

is not transparent to the user—is how keys are sent even
when SSF are no longer presenting suggestions. This is
true for S1, S2 and S3, while S4 does not send keystrokes
after suggestions can no longer be predicted.
Another observation present in Table 4, is the re-

sending of keystrokes when text is deleted and re-entered,
therefore, triggering the same suggestions as before. This
user action noticeably reduced the sent keystrokes for
S2 and S3, with none sent for S4, which simply reused
the previously requested suggestions. S1’s behaviour was
consistent in reliably sending regardless of circumstance.
To partially address the reason for differing behaviour

between search engines on Linux and Android, it is to be
noted that the “mobile” versions of websites differ from
“desktop” counterparts. This difference is at the very least

visible in presentation, but also may be responsible for
different underlying behaviours.
Due to the highest reliability and consistency observed

by B1 and S1 across both the Linux and Android operating
systems, this was selected as the preferred environment
for addressing T2.

5.2.3 T2 presentation
For classification of each set of samples, both the NB
and NN classifiers are applied. Classification is performed
using Python through use of the scikit-learn packages
[11]. To split testing and training data, fivefold cross val-
idation is used, and for each fold, the macro average of
the EER is calculated. The EER presented in the Table 5
is the mean of these averages across all five folds for
each phrase on each device. Two concatenation combi-
nations of p1p2p3 for KSW and p1p3 for KHW are also
included.
Results for both unbalanced and balanced classes are

shown. The results also show when samples with miss-
ing values are excluded or included with interpolations.
For KSW phrases p1 and p2, when missing values are
excluded, the EER cannot be calculated as there are too
few instances of some classes for fivefold cross validation.
Therefore, interpolation is a prerequisite for evaluation by
our classification process in these two cases.

5.2.4 T2 discussion
In overall observation of the results of Table 5, we can
see lower EER results from KHW than KSW . For example,
considering our longest single phrase p3 with balanced
classes in the samples, for KSW , we see EER of 18.04% and
22.28% for NB and NN respectively, whereas forKHW EER
5.11% and 9.44% are the respective values. Similarly with
our shortest phrase p1, balanced class results for KSW of
24.12% and 34.36% are markedly lower for KHW at 12.97%
and 16.83%.
One reason for lower EER with KHW is likely the more

reliable data capture of the environment. Despite ensur-
ing correct input and using the browser and search engine
combination deemed most reliable in T1 for KSW , some
expected packets were omitted; therefore, we had incom-
plete samples. While still usable to an extent through
interpolation, omission is information loss and naturally
would be expected to affect performance. Furthermore,
the familiarity with the KHW environment would make
inputs more consistent as all subjects have previously used
a physical keyboard with a similar layout. The KSW on the
other hand is on a smaller device, which subjects may not
be used to, hindering natural movements. Nonetheless,
what likely had the most impact would be that subjects are
instructed to type without KSW predictions/suggestions
and expected to make no mistakes. Given the prevalence
of keyboards with auto-corrective systems, users would

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 13 of 16

Table 5 Results for T2.1 and T2.2: fivefold cross validation equal error rates (EER) for each phrase under Gaussian naive Bayes (NB) and
Euclidean nearest neighbour (NN)

Bi – Si p ∈ PT Missing values Balanced NB (EER%) NN (EER%)

B1A − S1 p1 Excluded ✗ – –
✓ – –

Interpolated ✗ 18.48 30.11
✓ 24.12 34.36

p2 Excluded ✗ – –
✓ – –

Interpolated ✗ 19.81 26.06
✓ 12.18 25.36

p3 Excluded ✗ 16.47 24.04
✓ 18.04 22.28

Interpolated ✗ 25.58 27.75
✓ 27.56 27.77

p1p2p3 Interpolated ✗ 17.18 13.34
✓ 11.37 13.35

B1L − S1 p1 N/A ✗ 15.49 16.31
✓ 12.97 16.83

p3 N/A ✗ 9.18 9.41
✓ 5.11 9.44

p1p3 N/A ✗ 11.17 12.29
✓ 9.73 15.60

Results are shown for when samples with missing values are excluded (not always possible if too few samples) or included with interpolations and for sample sets with either
unbalanced or balanced classes

be accustomed to making frequent small mistakes, which
contrasts with our assumption of a totally flawless input.
Concatenation of the three phrases showed clear

improvement in EER for KSW , with balanced classes the
lowest KSW EER value of 11.37% is achieved by NB with
concatenation. The improvement is greater for NN with
an EER value of 13.35% compared to the previous (bal-
anced and interpolated) lowest of 25.36%.
The concatenation of p1 and p3 for KHW also showed

lower EER results when compared with p1. However, EER
values for p3 alone are the lowest. Due to disparate sam-
ple totals for p1 and p3 (41 and 9 respectively in the case
of balanced classes), this meant concatenation of the two
is limited to producing nine samples. As only one con-
catenation configuration was trialled, this coincidentally
may have included the least effectively distinct intra-class
samples for p1 to concatenate with p3, increasing EER
values by NB and NN, rather than decreasing EER values
as desired.
To address the issue of missing values captured from

the KSW , we assess results both when only complete sam-
ples are considered, and when samples with interpolated
values are also included. However, as only p3 contained
enough samples for each class for fivefold cross validation,
we can only examine the differences for p3. Interpola-
tion here appears to increase the EER value, suggesting

samples with interpolation are not significantly valuable
and in some cases may produce samples without utility
for classification. Introducing a maximum threshold for
interpolations within a phrase may be a compromise to
make more samples usable without risk of filling them
with too much insufficiently meaningful data.

5.2.5 T2 latency
To further assess the conditions of our T2 results, we
review our assumption on latency. If the packet goes
through the Internet and to the search engine provider,
in reality, due to variation in traffic or route distances,
the travel time could be variable. Therefore, interpretation
of our results assumes a stable travel time despite these
potential conditions. However, beyond this assumption,
due to our captured local keystrokes, some basic statistical
analysis can be performed on the average delay in com-
parison with network results. Capturing p2 on the KSW
is the scenario with the most omitted packets for one of
the subjects—only one complete sample from N1 without
interpolation can be derived—so we use the p2 collection
as our most diverse example for latency comparison.
Table 6 shows the delay on our sessions for each sub-

ject for inputs of p2. As client and server are running
on unsynchronised clocks, we consider “delay” to be
additional time beyond the minimum difference between

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 14 of 16

Table 6 Latency effects on T2: p2 keystrokes delay beyond
minimum offset (ms)

Subjects Max Average

N1 1239 601

N2 88 56

N3 78 51

N4 697 267

N5 251 202

timestamps as an offset for each subject, e.g. for N1,
the minimum difference was 23,683 ms, so we make the
assumption that the clocks were 23,683 ms out of sync in
p2 collection for N1, and look at average and maximum
delays beyond that baseline offset. Table 7 summarises
the absolute value differences in feature calculations; the
features calculated based on local timestamps are com-
pared with those calculated based solely on the network
timestamps.
For phrase p2, packet omission occurred for N1, N4

and N5. Most frequently for N1—with the largest delay
in Table 6—and least frequently for N5—with the small-
est delay of those with omissions. In this case for N2 and
N3, we saw no instances of packet omission, and these
display the shortest delays of under 100 ms even at their
maximum.
While this is limited data for comparison, the average

difference between local and network features is under
100 ms for all subjects, suggesting that while adverse net-
work conditions affect the delay and likely increase packet
omission, even in poorer network conditions, the delay
was consistent to such a degree that the features which
are captured remain very close to the true locally captured
values.

5.2.6 T3 presentation
The results for the evaluation of verification performance
T3.1 with the ten test subjects are depicted in Fig. 6.
Table 8 summarises the results of the identification

within the scope of T3.2 on the encrypted data stream up
to a rank level of three. An attempt to identify a subject

Table 7 Latency effects on T2: difference in p2 features
calculated from local timestamps compared with features
derived from respective network timestamps (ms)

Subjects Min Max Average

N1 2 233 67

N2 2 73 27

N3 0 54 16

N4 2 456 44

N5 1 250 52

is considered successful when the correct identity is con-
tained within a ranked list. The rank of the list describes
the number of its entries; for rank 1, the template with the
minimum distance is the only one contained in the list.

5.2.7 T3 discussion
In comparison with T2, we can see a lower classification
performance for the encrypted data stream. Based on the
results shown in Fig. 6, we can infer that an increased
length of the search string leads to increased verification
performance and a lower EER. Hence, the best perfor-
mance is achieved for p2 with an EER value of 23.61%.
We can also see that, at least in our experiment, for dif-
ferent search string lengths, the overall performance will
be similar to the performance of evaluation of the short-
est search string. However, due to our limitation to two
different search strings, we cannot quantify this finding.
The analysis of the identification partially confirms the

assumption that the experimental setup is influenced by
the differences in the utilised hardware. At least two
test subjects shared a common computer for recording
the sessions—during the identification of the samples
from those two subjects, usually both have yielded high-
est similarities with the stored templates. Nevertheless,
mostly the correct decision was made by the identification
algorithm.

6 Conclusion
Due to the nature of biometrics, data is generated at every
step we take in an online environment. Combined with
easily accessible processing power and algorithms, it is
easier than ever to identify or track people by methods
they may be totally unaware of. The behaviour of each
search engine may differ, but we have demonstrated the
principle potential of recognising users of SSF, even in
scenarios where data is incomplete. We only consider the
data that is transmitted independently yet have demon-
strated the capability and risks.We have demonstrated the
overall approach both under consideration of decryption
of single packets (using mitmproxy) and by considering
only encrypted packets, the latter using a simple Wire-
shark network tool. In both cases, we filter client out-
going network streams to search engine providers and
extraction of metadata to build the biometric features for
identification and/or verification purposes.
Without clear consent, biometric data is given and

could be collected for each user and processed for track-
ing purposes. As further data can be gathered, this
would only increase the ability to identify people, either
through particularly distinct phrases with high intra-
class variation or through methods such as concatenation
as shown.
Our first proof-of-concept experiments indicate that

biometric recognition is feasible with an EER of up to

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 15 of 16

Fig. 6 DET graph for T3.1 (lower EER values indicate a better performance)

5.11% in the non-encrypted stream, e.g. by the operator
of a search engine, and 23.61% for the encrypted stream,
which is visible to any network node transferring the
search requests. This is especially worrisome since infor-
mation like monitor resolution, operating system, and
other hardware details can already be captured by web ser-
vice providers. This information can be exploited along
with an IP to track themachine used. In light of keystrokes
used as an identifier on top of these established methods,
even in a scenario with several people in one house-
hold sharing use of the same device, the search provider
may learn to distinguish users and, therefore, learn which
search terms are searched by each such user. To this end,
the new interesting field of biometrics in SSF-enabled web
systems has been established.
To protect against this potential for tracking, as a

basic protectionmeasure, we would recommend disabling
JavaScript. This demonstrably disables any suggestion
behaviour within the four tested search engine websites,
and would ensure the most vulnerable biometric data
would not be transmitted. However, this is not a total solu-
tion against browser inputs which do not have JavaScript
dependencies such as typing in the address bar or through
search engine browser extensions. Alternatively, develop-
ment of some specific browser add-on could offer protec-
tion, for example by withholding user input until pressing
enter. Note that either of these approaches would also
naturally disable the SSF outright.
We have only considered the basic scenario of a

fixed-text keystroke system to examine the possibility of
identification through network packets generated from

typing behaviour. As we have demonstrated such capabil-
ity, we recommend further work to inspect the potential
beyond fixed-text to free-text analysis. This would explore
the risks of whether previously unrecorded search terms
could be used to identify people and therefore would cover
even broader scenarios of identification from searching
behaviour.
There is great scope for future work in this field of

biometrics. More extensive investigation using more sub-
jects in similar experiments could uncover potential for
identification of larger user groups. Further experimenta-
tion with pre-processing, such as utilisation of discarded
incomplete samples as substrings of phrases, or adjust-
ment of the approach to missing values and/or inter-
polation, could improve results. Different classification
approaches and advancements in machine learning could
be applied beyond the NB and NN classifiers presented,
and additional examination and experimentation with
control over network conditions is warranted. For the
template, matching additional features could be evaluated.
Beyond that, further header data could be evaluated in
order to minimise artefacts in the extracted sessions.
Moreover, the application of the methods presented in

Table 8 Identification performance in the encrypted data stream
T3.2 (value range [0,1]; higher values indicate better results)

Rank-Level p1 p2 p1p2

rank-1 0.2553 0.3541 0.3895

rank-2 0.4255 0.6458 0.4526

rank-3 0.6170 0.7916 0.5684

Whiskerd et al. EURASIP Journal on Information Security (2020) 2020:2 Page 16 of 16

this article should be investigated further for other ser-
vices that use user input, e.g. for cloud-based office solu-
tions. Another field of further investigations might be the
de-anonymisation of users in the TOR network, specifi-
cally when observing the entry node traffic.

Abbreviations
KHW : Hardware keyboard (Linux); KSW : Software keyboard (Android); EER: Equal
error rate; QA: Quality assurance of packet contents; SSF: Search suggestion
functions; B: Browser; K : Key input method; S: Search engine; V : Virtual machine

Acknowledgements
The work presented has been supported in part by the European Commission
through the MSCA-ITN-ETN - European Training Networks under Project ID:
675087 (“AMBER - enhAnced Mobile BiomEtRics”). The information in this
document is provided as is, and no guarantee or warranty that the information
is fit for any particular purpose is given or implied. The user thereof uses the
information at one’s own sole risk and liability. We thank all the anonymous
volunteers for contributing test data to experiments T2 and T3.

Authors’ contributions
JD originally proposed the idea and MH performed the initial speculative tests.
All authors contributed in the discussion of the topic and the overall approach.
JD, KL and SEG each gave input during the project and provided their
experience to aid NW, NK and KJ in their implementation, testing, and
reporting of T1 and T2. MH implemented the algorithms and performed the
tests for T3 with all authors performing analysis of the test results. JD and CV
both gave significant guidance on the motivation section and the article
structure, while all authors contributed in writing and approved of the final
manuscript.

Funding
The work presented has been supported in part by the European Commission
through the MSCA-ITN-ETN - European Training Networks under Project ID:
675087 (“AMBER - enhAnced Mobile BiomEtRics”). This project has received
funding from the European Union’s Horizon 2020 research and innovation
programme.

Availability of data andmaterials
The keystroke data sets collected and analysed during the current study are
not publicly available due to the sensitivity of biometric data. Volunteers had
privacy concerns and did not consent to wider data sharing (as is their right in
GDPR).

Competing interests
Two of the guest editors for this submission, Richard Guest and Christian
Kraetzer, are members of the European Training Network AMBER, as are
authors NW, SEG, JD and CV. Furthermore, Christian Kraetzer is also a member
of the AMSL workgroup at OVGU, which is represented by all authors.

Author details
1Multimedia and Security Lab (AMSL), Otto-von-Guericke-University,
Magdeburg, Germany. 2Department of Informatics and Media, Brandenburg
University of Applied Sciences, Brandenburg an der Havel, Germany.

Received: 23 August 2019 Accepted: 14 January 2020

References
1. European Parliament and Council, Regulation (EU) 2016/679 of the

European Parliament and of the Council of 27 April 2016 (General Data
Protection Regulation), Official Journal of the European Union, L 119, 1-88
(2016)

2. K. Haring, Ham Radio’s Technical Culture, 1st edn. (MIT Press, Massachusetts,
2006), p. 23

3. R. S. Gaines, W. Lisowski, S. J. Press, N. Shapirog, Authentication by keystroke
timing: some preliminary results, Rand Rep. R-2526-NSF. (RAND Corporation,
California, 1980)

4. F. Monrose, A. Rubin, in Proceedings of the 4th ACM Conference on
Computer and Communications Security, 4CCS97, Zurich, Switzerland, April
1-4, 1997. Authentication via keystroke dynamics, (1997), pp. 48–56.
https://doi.org/10.1145/266420.266434

5. P. H. Pisani, A. C. Lorena, A systematic review on keystroke dynamics. J.
Braz. Comput. Soc. 19, 19–573 (2013). https://doi.org/10.1007/s13173-
013-0117-7

6. D. Buschek, A. D. Luca, F. Alt, in Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, CHI’15, Seoul, South
Korea, April 18-23, 2015. Improving accuracy, applicability and usability of
keystroke biometrics on mobile touchscreen devices, (2015). https://doi.
org/10.1145/2702123.2702252

7. C. Rathgeb, A. Uhl, A survey on biometric cryptosystems and cancelable
biometrics. EURASIP J. Informa. Secur. 2011(1), 3 (2011). https://doi.org/
10.1186/1687-417X-2011-3

8. R. Koch, G. D. Rodosek, in Proceedings of the 6th International Conference on
Network and Service Management, CNSM 2010, Niagara Falls, Canada,
October 25-29, 2010. User identification in encrypted network
communications, (2010), pp. 246–249. https://doi.org/10.1109/CNSM.
2010.5691292

9. A. Cortesi, M. Hils, T. Kriechbaumer, contributors, mitmproxy: a free and
open source interactive HTTPS proxy [Version 4.0] (2019). https://
mitmproxy.org/. Accessed 6 December 2019

10. D. Hosseinzadeh, S. Krishnan, Gaussian mixture modeling of keystroke
patterns for biometric applications. IEEE Trans. Syst. Man Cybern. C (Appl.
Rev.) 38(6), 816–826 (2008). https://doi.org/10.1109/TSMCC.2008.2001696

11. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1145/266420.266434
https://doi.org/10.1007/s13173-013-0117-7
https://doi.org/10.1007/s13173-013-0117-7
https://doi.org/10.1145/2702123.2702252
https://doi.org/10.1145/2702123.2702252
https://doi.org/10.1186/1687-417X-2011-3
https://doi.org/10.1186/1687-417X-2011-3
https://doi.org/10.1109/CNSM.2010.5691292
https://doi.org/10.1109/CNSM.2010.5691292
https://mitmproxy.org/
https://mitmproxy.org/
https://doi.org/10.1109/TSMCC.2008.2001696

	Abstract
	Keywords

	Motivation
	Related work
	Experimental setup
	Test setup
	Decrypted network capture involving man-in-the-middle (T1 and T2)
	Encrypted network capture (T3)

	Test goals
	Assumptions and limitations

	Evaluation procedure
	Decrypted keystrokes for QA (T1 and T2)
	Pre-processing
	Feature extraction
	Classification

	Encrypted keystrokes without QA (T3)
	Pre-processing
	Feature extraction and selection
	Classification

	Experiments
	Data collection
	T1 collection
	T2 collection
	T3 collection

	Results
	T1 presentation
	T1 discussion
	T2 presentation
	T2 discussion
	T2 latency
	T3 presentation
	T3 discussion

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

