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Abstract

An increasing amount of information today is generated, exchanged, and stored digitally. This also includes long-lived
and highly sensitive information (e.g., electronic health records, governmental documents) whose integrity and
confidentiality must be protected over decades or even centuries. While there is a vast amount of
cryptography-based data protection schemes, only few are designed for long-term protection. Recently, Braun et al.
(AsiaCCS"17) proposed the first long-term protection scheme that provides renewable integrity protection and
information-theoretic confidentiality protection. However, computation and storage costs of their scheme increase
significantly with the number of stored data items. As a result, their scheme appears suitable only for protecting
databases with a small number of relatively large data items, but unsuitable for databases that hold a large number of
relatively small data items (e.g., medical record databases).

In this work, we present a solution for efficient long-term integrity and confidentiality protection of large datasets
consisting of relatively small data items. First, we construct a renewable vector commitment scheme that is
information-theoretically hiding under selective decommitment. We then combine this scheme with renewable
timestamps and information-theoretically secure secret sharing. The resulting solution requires only a single
timestamp for protecting a dataset while the state of the art requires a number of timestamps linear in the number of
data items. Furthermore, we extend the scheme, that supports a single client, to a multi-client setting. Subsequently,
we characterize the arising challenges with respect to integrity and confidentiality and discuss how our multi-client
scheme tackles them. We implemented our solution and measured its performance in a scenario where 9600 data
items are aggregated, stored, protected, and verified over a time span of 80 years. Our measurements show that our
new solution completes this evaluation scenario an order of magnitude faster than the state of the art.

Keywords: Long-term security, Authenticity, Commitments, Timestamps, Proactive secret sharing

1 Introduction

1.1 Motivation and problem statement

Today, huge amounts of information are generated,
exchanged, and stored digitally, and these amounts will
further grow in the future. Much of this data contains sen-
sitive information (e.g., electronic health records, govern-
mental documents, enterprise documents) and requires
protection of integrity and confidentiality. Integrity pro-
tection means that illegitimate and accidental changes of
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data can be discovered. Confidentiality protection means
that only authorized parties can access the data. Depend-
ing on the use case, protection may be required for several
decades or even centuries. Databases that require protec-
tion are often complex and consist of a large number data
items of varying sizes that require continuous confiden-
tiality protection and whose integrity must be verifiable
independent from the other data items.

Today, integrity of digitally stored information is most
commonly ensured using digital signatures (e.g., RSA [21])
and confidentiality is ensured using encryption (e.g., AES
[19]). The commonly used schemes are secure under
certain computational assumptions. For example, they
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require that computing the prime factors of a large inte-
ger is infeasible. However, as computing technology and
cryptanalysis advances over time, computational assump-
tions made today are likely to break at some point in
the future (e.g., RSA will become insecure once quan-
tum computers are available [24]). Consequently, compu-
tationally secure cryptographic schemes have a limited
lifetime and are insufficient to provide long-term security.

Several approaches have been developed to mitigate
long-term security risks. Bayer et al. [1] proposed a tech-
nique for prolonging the validity of a digital signature
by using digital timestamps. Based on their idea, a vari-
ety of long-term integrity protection schemes have been
developed. An overview of existing long-term integrity
schemes is given by Vigil et al. in [25]. In contrast to
integrity protection, confidentiality protection cannot be
prolonged. There is no protection against an adversary
that stores ciphertexts today, waits until the encryption is
weakened, and then breaks the encryption and obtains the
plaintexts. Thus, if long-term confidentiality protection
is required, then strong confidentiality protection must
be applied from the start. A very strong form of protec-
tion can be achieved by using information theoretically
secure schemes, which are invulnerable to computational
attacks. For example, key exchange can be realized using
quantum key distribution [10], encryption can be real-
ized using one-time pad encryption [23], and data stor-
age can be realized using proactive secret sharing [14].
An overview of information theoretically secure solu-
tions for long-term confidentiality protection is given by
Braun et al. [4].

Recently, Braun et al. proposed LINCOS [3], which is
the first long-term secure storage architecture that com-
bines long-term integrity with long-term confidentiality
protection. While their system achieves high protection
guarantees, it is only designed for storing and protecting
a single large data object, but not databases that consist
of a large number of small data items. One approach to
store and protect large databases with LINCOS is to run an
instance of LINCOS for each data item in parallel. How-
ever, with this construction, the amount of work scales
linearly with the number of stored data items. Especially, if
the database consists of a large number of relatively small
data items, this introduces a large communication and
computation overhead.

1.2 Contribution

This paper is an extension of [7], which introduced an
efficient solution to storing and protecting large and com-
plex datasets over long periods of time. Concretely, we
present the long-term secure storage architecture ELSA
that uses renewable vector commitments in combination
with renewable timestamps and proactive secret sharing
to achieve this. In this full version of the paper, we also
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provide an extension to ELSA to support multiple clients
simultaneously while achieving the same security guar-
anties. The main contribution of this extension is MCELSA,
the multi-client version of ELSA, that is, Sections 5 and
6. We also improve several technical details with respect
to [7].

In Section 3, we construct an extractable-binding and
statistically hiding vector commitment scheme. Such a
scheme allows for committing to a large number of data
items by a single short commitment. The extractable bind-
ing property of the scheme enables renewable integrity
protection [5], while the statistical hiding property
ensures information theoretic confidentiality. Our con-
struction is based on statistically hiding commitments
and hash trees [18]. We prove that our construction is
extractable binding given that the employed commitment
scheme and hash function are extractable binding. Fur-
thermore, we prove that our construction is statistically
hiding under selective opening, which guarantees that by
opening the commitments to some of the data items no
information about unopened data items is leaked. The
construction of extractable binding and statistically hiding
vector commitments may be of independent interest, for
example, in the context of zero knowledge protocols [9].

In Section 4, we introduce the secure long-term storage
architecture ELSA, which uses our new vector commit-
ment scheme construction to achieve efficient protection
of large datasets. While protecting a dataset with LINCOS
requires the generation of a commitment and a times-
tamp for each data item separately, ELSA requires only a
single vector commitment and a single timestamp to pro-
tect the same dataset. Hence, the number of timestamps
is decreased from linear in the number of data items to
constant and this drastically reduces the communication
and computation complexity of the solution. Moreover,
as the vector commitment scheme is hiding under selec-
tive decommitment, the integrity of stored data items can
still be verified individually without revealing informa-
tion about unopened data items. ELSA uses a separate
service for storing commitments and timestamps, which
allows for renewing the timestamp protection without
access to the stored confidential data. The decommit-
ments are stored together with the data items at a set of
shareholders using proactive secret sharing. We show that
the long-term integrity security of ELSA can be reduced
to the unforgeability security of the employed timestamp
schemes and the binding security of the employed com-
mitment schemes within their usage period. Long-term
confidentiality security is based on the statistical hiding
security of the employed commitment and secret sharing
schemes.

In Section 5, we introduce an extension of ELSA called
MCELSA that provides efficient secure multi-client long-
term storage solution. For that, we transfer the single-
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client scheme ELSA that we constructed in Section 4, to a
multi-client setting. MCELSA provides the same integrity
and confidentiality guaranties as ELSA and involves the
same parties, yet supports multiple clients instead of a sin-
gle one. The multi-client setting entails several challenges
regarding the distribution of maintenance tasks and access
management. With respect to maintenance, we modify
the protocols and the tasks that the parties are entrusted
with, to balance the work load between parties in the
multi-client setting. In terms of access management, we
aim to avoid a single point of failure that is an individ-
ual instance deciding document access. We achieve this
by entrusting the shareholders, who store the documents,
with determining when to hand over shares to a client.
MCELSA is a true extension of ELSA, that is, if deployed in
with a single client, its behavior is identical to ELSA.

Finally, we experimentally demonstrate (Section 6) the
performance achieved by MCELSA in scenario where over
a course of 80 years documents are aggregated, stored,
protected, retrieved, and verified for each of several clients
simultaneously with different layouts of access permis-
sions. Our measurements show that MCELSA outperforms
ELSA (the performance analysis of which can be found in
[7]) and the former state of the secure long-term storage
architecture LINCOS by combining maintenance tasks to
minimize computational work load and storage demand.
In MCELSA, storage, retrieval, and verification of a data
item takes about a second on average. Overall, our evalu-
ation shows that MCELSA provides practical performance
and is suitable for storing and protecting large and com-
plex databases over long periods of time.

1.3 Related work
Our notion of vector commitments is reminiscent of the
one proposed by Catalano and Fiore [6]. However, they
do not consider the hiding property and therefore do not
analyze hiding under selective opening security. Also, they
do not consider extractable binding security. Hoftheinz
[15] studied the notion of selective decommitment and
showed that schemes can be constructed that are statis-
tically hiding under selective decommitment. However,
they do not consider constructions of vector commit-
ments where a short commitment is given for a set of
messages. In [2], Bitansky et al. propose the construc-
tion of a SNARK from extractable collision-resistant hash
functions in combination with Merkle trees. While their
construction is similar to the extractable-binding vec-
tor commitment scheme proposed in Section 3.2, our
construction relies on a weaker property (i.e., extractable-
binding hash functions) and our security analysis provides
concrete security estimates.

Weinert et al. [26] recently proposed a long-term
integrity protection scheme that also uses hash trees to
reduce the number of timestamps. However, their scheme
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does not support confidentiality protection, lacks a for-
mal security analysis, and is less efficient than our con-
struction. Only few work has been done with respect to
combining long-term integrity with long-term confiden-
tiality protection. The first storage architecture providing
these two properties and most efficient to date is LINCOS
[3]. Recently, another long-term secure storage architec-
ture has been proposed by Geihs et al.[8] that provides
access pattern hiding security in addition to integrity and
confidentiality. On a high level, this is achieved by com-
bining LINCOS with an information theoretically secure
ORAM. While access pattern hiding security is an inter-
esting property in certain scenarios where meta informa-
tion about the stored data is known, it is achieved at the
cost of additional computation and communication and it
is out of the scope of this work.

2 Preliminaries

2.1 Notation

Let n be a non-negative integer. By [ n] we denote the set
{0,1,...,n}. For avector V = (vp,...,v,), and a set I C
[ n], define the vector V; := (v;);er as well as V; := v; for
ani €[ n].

For a probabilistic algorithm A and input x, we write
A(x) —, y to denote that A on input x produces y using
random coins r. For a pair of random variables (A, B), we
define the statistical distance of A and B as A(A,B) :=
>, [Prax) — Pra(o).

2.2 Cryptographic primitives
We describe the cryptographic primitives that will be
relevant for the understanding of this paper.

2.2.1 Digital signature schemes

A digital signature scheme SIG is defined by a tuple
(M, Setup, Sign, Verify), where M is the message space,
and Setup, Sign, Verify are algorithms with the following
properties.

Setup — (sk, pk): This algorithm generates a secret sign-
ing key sk and a public verification key pk.

Sign(sk, m) — s: This algorithm gets as input a secret key
sk and a message m € M. It outputs a signature s.

Verify(pk, m,s) — b: This algorithm gets as input a public
key pk, a message m, and a signature s. It outputs b =
1, if the signature is valid, and 0, if it is invalid.

A signature scheme is e-secure [11] if for any ¢-bounded
algorithm 4 with access to a signing oracle O, we have

Verify(pk,m,s) =1 Am & Q:
Pr |:Setup — (sk, pk), A°(pk) — (m,s) <€),
where O(m) = {Q+=m1; Sign(sk, m) — s; returns; } and Q
is the set of messages m that A has queried O upon.
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2.2.2 Timestamp schemes
A timestamp scheme involves a client and a timestamp
service. The timestamp service initializes itself using algo-
rithm Setup. The client uses protocol Stamp to request
a timestamp from the timestamp service. Furthermore,
there exists an algorithm Verify that allows anybody to
verify the validity of a message-timestamp-tuple.
Timestamp schemes can be realized in different ways
(e.g., based on hash functions or digital signature schemes
[12]). Here, we only consider timestamp schemes based
on digital signatures. This works as follows. On initializa-
tion, the timestamp service chooses a signature scheme
SIG and runs the setup algorithm SIG.Setup — (sk, pk). It
publishes the public key pk. A client obtains a timestamp
for a message m, as follows. First, it sends the message to
the timestamp service. Then, the timestamp service reads
the current time ¢ and creates a signature on m and ¢ by
running SIG.Sign(sk, [m,t]) — s. It then sends the sig-
nature s and the time ¢ back to the client. Anybody can
verify the validity of a timestamp (%, s) for a message m by
checking SIG.Verify(pk, [m,t],s) = 1. Such a signature-
based timestamp scheme is considered secure as long as
the signature scheme is secure.

2.2.3 Commitment schemes

A (non-interactive) commitment scheme COM is defined
by a tuple (M, Setup, Commit, Verify), where M is the
message space, and Setup, Commit, Verify are algorithms
with the following properties.

Setup — pk: This algorithm generates a public commit-
ment key pk.

Commit(pk, m) — (c,d): This algorithm gets as input a
public key pk and a message m € M. It outputs a
commitment ¢ and a decommitment d.

Verify(pk, m,c,d) — b: This algorithm gets as input a
public key pk, a message 71, a commitment ¢, and a
decommitment d. It outputs b = 1, if the decommit-
ment is valid, and 0, if it is invalid.

A commitment scheme is considered secure if it is hid-
ing and binding. There exist different flavors of defining
binding security. Here, we are interested in extractable
binding commitments as this enables renewable and long-
term secure commitments [5]. A commitment scheme is
e-extractable-binding-secure if for any ¢;-bounded algo-
rithm A;, there exists an t¢-bounded algorithm &, such
that for any #;-bounded algorithm Aj,

Verify(pk, m,c,d) = 1 Am # m™ :

Pr Setup — pk, A1 (pk) —, ¢,
Epk,r) — m*, Ay (k,r) — (m,d)

< e(ly,te, t2).

For any public key k and message m, define Cy(m) as
the random variable that takes the value of ¢ when sam-
pling Commit(k, m) — (¢, d). A commitment scheme is
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e-statistically hiding if for any k € Setup, any pair of
messages (m1,m3), A (Cr(m1), Cr(mz)) < €.

2.2.4 Keyed hash functions

A keyed hash function is a tuple of algorithms (K, H) with
the following properties. K is a probabilistic algorithm
that generates a key k. H is a deterministic algorithm that
on input a key k and a message x € {0, 1}* outputs a short
fixed length hash y € {0,1}, for some € N. We say a
keyed hash function (K, F) is e-extractable-binding if for
any t;-bounded algorithm 4;, there exists a tg-bounded
algorithm &, such that for any #,-bounded algorithm A,,

H(k,x) = H(k,x*) ANx # «x* :

< €(ty1,te, ).
Kik[Al(k) —>ry,5(k,r)—>x*,v42(k,r)—>xj|_6(1 £:t2)

2.2.5 Secret sharing schemes

A secret sharing scheme allows a data owner to share a
secret data object among a set of shareholders such that
only authorized subsets of the shareholders can recon-
struct the secret, while all the other subsets of the share-
holders have no information about the secret. In this
work, we consider threshold secret sharing schemes [22],
for which there exists a threshold parameter ¢ (chosen by
the data owner) such that any set of at least ¢ sharehold-
ers can reconstruct the secret, but any set of less than
t shareholders has no information about the secret. A
secret sharing scheme has a protocol Setup for generat-
ing the sharing parameters, a protocol Share for sharing
a data object, and a protocol Reconstruct for reconstruct-
ing a data object from a given set of shares. In addition to
standard secret sharing schemes, proactive secret sharing
schemes additionally provide a protocol Reshare for pro-
tection against so called mobile adversaries [14]. The pro-
tocol Reshare is an interactive protocol between the share-
holders after which all the stored shares are refreshed so
that they no longer can be combined with the old shares
for reconstruction. This protects against adversaries who
gradually corrupt an increasing number of shareholders
over the course of time.

For MCELSA, ie., ELSA in a multi-client setting, we
will adapt the protocols provided by the secret sharing
scheme, so that they accommodate several clients simul-
taneously and the respective access permissions regarding
the stored documents. Also, we introduce a new proto-
col UpdatePerm that allows clients to manage the access
rights with respect to individual stored documents. We
will go into further detail in Section 5.

2.2.6 Public key infrastructure

Some of the schemes, that we listed above, take a public
key as a parameter for their protocols (see Sections 2.2.1,
2.2.2 and 2.2.4). In the single as well as the multiclient
client case, this public key is supplied by the client who
executes the protocol. While public key cryptography
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itself does not provide long-term security due to increas-
ing adversarial capabilities in terms of cryptoanalysis and
computing power, it offers prolonged security. That is, by
periodically performed maintenance and key updates, the
parties’ public keys can be considered secure. We there-
fore assume the existence of a public key infrastructure
(PKI), which provides the client with the appropriate pub-
lic key for the executed protocol. PKI will be treated as an
implicit parameter for protocols in need of public keys.
Thus we will omit public keys as parameters for ELSA’s
protocols.

3 Statistically hiding and extractable binding
vector commitments

In this section, we define statistically hiding and
extractable binding vector commitments, describe a con-
struction, and prove the construction secure. This con-
struction is the basis for our performance improvements
that we achieve with our new storage architecture pre-
sented in Section 4.

3.1 Definition

A vector commitment scheme allows to commit to a vec-
tor of messages (my,...,my,). It is extractable binding,
if the message vector can be extracted from the com-
mitment and the state of the committer, and it is hiding
under partial opening if an adversary cannot infer any
valuable information about unopened messages, even if
some of the committed messages have been opened. Our
vector commitments are reminiscent of the vector com-
mitments introduced by Catalano and Fiore [6]. How-
ever, neither do they require their commitments to be
extractable binding, nor do they consider their hiding

property.

Definition 1 (Vector commitment scheme) A vector
commitment scheme is a sextuple (L, M, Setup, Commit,
Open, Verify), where L € N is the maximum vector length,
M is the message space, and Setup, Commit, Open, and
Verify are algorithms with the following properties.

Setup — k: This algorithm generates a public key k.

Commit(k, (my, ..., my)) — (¢,D): On input key k and
message vector (my,...,my) € M", where n €[L],
this algorithm generates a commitment c and a vector
decommitment D.

Open(k, D, i) — d: On input key k, vector decommitment
D, and index i, this algorithm outputs a decommit-
ment d for the ith message corresponding to D.

Verify(k, m, c,d, i) — b: On input key k, message m, com-
mitment ¢, decommitment d, and an index i, this
algorithm outputs b = 1, if d is a valid decommit-
ment from position i of ¢ to m, and otherwise outputs
b=0.

Page 5 of 20

A vector commitment scheme is correct, if a decommit-
ment produced by Commit and Open will always verify for
the corresponding commitment and message.

Definition 2 (Correctness) A vector commitment
scheme (L, M, Setup, Commit, Open, Verify) is correct, if
foralln €[ L], M € M", k € Setup, i €[ n],

Pr Verify(k, M;,c,d) = 1: _1
Commit(k, M) — (c,D),Open(k,D,i) — d |

A vector commitment scheme is statistically hiding
under selective opening, if the distribution of commit-
ments and openings does not depend on the unopened
messages.

Definition 3 (Statistically hiding (under selective open-
ing)) Let S = (L, M, Setup, Commit, Open, Verify) be a
vector commitment scheme. For n €[ L], [ C[n], M € M",
k € Setup, we denote by CDyx(M,I) the random vari-
able (c,D;), where (¢, D) < Commit(k, M) and D <«
(Open(D, i))ic[n). Let € €[0,1]. We say S is e-statistically
hiding, if for all n € N, I C[n], M1,My € M" with
(M1); = (M2)}, k € Setup,

A (CDx(My, 1), CDr (M2, 1)) < €.

A vector commitment scheme is extractable binding,
if for every efficient committer, there exists an efficient
extractor, such that for any efficient decommitter, if the
committer gives a commitment that can be opened by a
decommitter, then the extractor can already extract the
corresponding messages from the committer at the time
of the commitment.

Definition 4 (extractable binding) Let
€ : N3 —[0,1]. We say a vector commitment scheme
(L, M, Setup, Commit, Open, Verify) is e-extractable-
binding, if for all t1-bounded algorithms A, tg-bounded
algorithms &, and ty-bounded algorithms As,

Verify(p, m,c,d,i) =1 Am; #m:
Pr Setup() — k, A1 (k) =, ¢,
Ek,r) = (my,my,...), Ax(k,r) = (m,c,d,i)

<e(ti, te, t2).

3.2 Construction: extractable binding

In the following, we show that the Merkle hash tree con-
struction [18] can be casted into a vector commitment
scheme and that this construction is extractable binding if
the used hash function is extractable binding.

Construction 1 Let (K, H) denote a keyed hash function
and let L € N. The following is a description of the hash tree
scheme by Merkle cast into the definition of vector commit-
ments. We denote the vertices of the tree by h;j, where i is
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the level of h;; within the Merkel tree and j is the index of
h;j in the ith level.

Setup() — k: Run K — k and output k.

Commit(k, (m1,...,my,)) — (¢,D): Set l <«
min{i eN:n< 2i}, Forje{0,...,n — 1}, compute
hyj < H(k,mj1), and forj € {n,...,2" =1}, set
hj < L Fori=1-1t0,j € {0,...,2°—1},
set hi,j <~ H(k, (hi+1,2j; hi+1,2j+1))~ Finally,
compute ¢ <« H(k, (l, ho,o)) and  set
D« (hiJ)ie{o ,,,,, 1},je(0,...2i—1) and output (¢, D).

Open (k,D,i*) — d: Let (hivf)ie{o ,,,,, 0jefo,.2i-1) < D. Set
a; < i*. Fori = [to1l, set by < ay + 2(ay mod
2) =1 g < hyp, and ap—y < lay/2]. Setd =
(gl, e ,gl) and output d.

Verify(k, m, ¢, d, i*) — b*: Let (g1,...,g) < d. Set a; <
i* and compute H(k,m) — h;. For i = [ to
L if aimod2 = 0, set by < (hg), and if
a;imod?2 = 1, set b; < (gi hi), and then compute
H(k,b;)) — hij_j andseta;_1 < |a;/2]. Finally, com-
pute H (k, (I, hy)) — ¢ and set b* < (¢ == ().
Output b*,

Theorem 1 The vector commitment scheme described in
Construction 1 is correct.

Proof of Theorem 1. Let (L, M, Setup, Commit, Open,
Verify) be the scheme described in Construction 1. Fur-
thermore, let n €[L], M € M", k € Setup, i €
[#], Commit(k, M) — (c,D), Open(k,D,i) — d, and
Verify(k, Mj,c,d) — b. By the definition of algorithms
Commit and Open, we observe that d = (gl,...,gl)
are the siblings of the nodes in the hash tree D =
1) on the path from leaf H(k, M;) to
the root /. We observe that algorithm Verify recom-
putes this path starting with H(k, M;). Thus, ho = hopo =
c. It follows that b = 1. O

Theorem 2 Let (K, H) be an e-extractable-binding hash
function. The vector commitment scheme described in
Construction 1 instantiated with (K, H) is €'-extractable-
binding with €'(t1, te, tp) = 2L x €(t1 + te /L, te /L, £3).

Proof of Theorem 2. Let (K,H) be an e-extractable-
binding keyed hash function and let the tuple
(L, M, Setup, Commit, Open, Verify) be the vector
commitment scheme described in Construction 1 instan-
tiated with (K, H). To prove the theorem, we use the
extractable-binding property of (K,H) to construct an
extractor for the vector commitment scheme.

Fix t1,tg,t2 € N and ¢1-bounded algorithm A;. We
observe that, because (K, H) is e-extractable-binding, for
any t-bounded algorithm A4, there exists a tg-bounded
algorithm 5Z such that for any t;-bounded algorithm
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Ay, for experiment A(k) —, h, Ay(k,r) — m, and
Sj(k, r) — m', we have H(k,m) = h and m # m’ with
probability at most € (¢, t¢, t2).

Define Agp as an algorithm that on input &, samples 7,
computes 6’;11 (k,r) — (l, ho,o), and outputs /. Recur-
sively, define 4;; as an algorithm that on input k, sam-

ples r, computes 51,71 ) (k,r) — (hg, h1), and outputs

hj mod 2+

Now define the vector extraction algorithm & as fol-
lows. On input (k, r), first compute 551 (k,r) =, (l, ho,o).
Then, for i € {0,...,2[ — 1}, sample r; and compute
Ej” (k, (r, v, ri)) — miy1. Output (ml, cets mzz).

We observe that for any f;-bounded algorithm A,
for experiment A;(k) —, ¢, Axk,r) — (md,i),
and E(k,r) — M, the probability of having
Verify(k, m,c,d,i) = 1 and M; # m is upper-bounded by
the probability that at least one of the node extraction
algorithms relied on by £ fails. As there are at most 2L
nodes in the tree, this probability is upper-bounded by
2L x e(max{ty, te}, te, b2).

It follows that Construction 1 is €’-extractable-binding
with €'(t1, te, ty) = 2L x €(t1 + tg /L, te /L, t3). O

3.3 Construction: extractable binding and statistically
hiding

We now combine a statistically hiding and extractable
binding commitment scheme with the vector commit-
ment scheme from Construction 1 to obtain a statistically
hiding (under selective opening) and extractable binding
vector commitment scheme. The idea is to first commit
with the statistically hiding scheme to each message sep-
arately and then produce a vector commitment to these
individually generated commitments.

Construction 2 Let COM be a commitment scheme and
VC be a vector commitment scheme.

Setup() — k: Run COM.Setup() — ki, VC.Setup() — ky,
set k < (ki, k2), and output k.

Commit(k, (my,...,my,)) — (¢,D): Let k —
(k1,kz).  For i € {1,...,n}, compute
COM.Commit(ky, m;) —  (ci,d;). Then compute
VC.Commit (ky, (c1,...,cn)) — (¢, D), set
D <« (((c1,d1) ..., (cnrdn)), D), and output (c, D).

Open(k,D,i) — d: Let k — (ki,ky) and D —
(((c1,d1)s ..., (curdn)), D). Compute VC.Open(ks,
D',i) — d,setd < (c;,d;, d"), and output d.

Verify(k,m,c,d,i) — b: Let k — (ki,ko) and d —
(¢,d',d"). Compute COMNerify (ky, m,c’,d') — b
and then compute VCVerify(ky,c',c,d”,i) — by, set
b < (b1 A by), and output b.

Theorem 3 The vector commitment scheme described in
Construction 2 is correct if COM and VC are correct.
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Proof of Theorem 3. Let (L, M, Setup, Commit, Open,
Verify) be the scheme described in Construction 2. Let
n ell], M € M", k € Setup, i €[n], Commit(k, M) —
(¢, D), Open(k, D, i) — d, and Verify(k, M;,c,d) — b. We
observe that D = ((ci, ai)icn] ,D’) and furthermore d €
VC.Open(ky, D', i). By the correctness of COM, it follows
that COM.Verify(k1, Mj, ¢;,d;)) = 1, and by the correct-
ness of VG, it follows that HT.VC(ko, ¢;, ¢, d,i) = 1. Thus,
Verify(k, M;, ¢, d, i) = 1. O

Theorem 4 The vector commitment scheme described
in Construction 2 is Le-statistically hiding (under selective
opening) if the commitment scheme COM is e-statistically
hiding.

We prove Theorem 4 in Appendix B.

Theorem 5 If COM and VC of Construction 2 are e-
extractable-binding, Construction 2 is an €'-extractable-
binding vector commitment scheme with €' (t1,ts,ty) =
Lxe(t1 +tg/L, te/L, t).

Proof of Theorem 5. Let t1,tg,tp € N and fix any
t1-bounded algorithm A; that on input k outputs c.

We observe that because VC is e-extractable-binding
that there exists a tg-bounded extraction algorithm &
such that for any #-bounded algorithm A, for experi-
ment Setup — k, A1 (k) —, ¢, A2(k,r) — (c;,d, i), and
Eo(k,r) — C, we have VCVerify(ky, c;,¢,d,i) = 1 and
C; # c; with probability at most € (¢1, t¢, £2).

Define A; as an algorithm that on input &, samples 7,
computes & (k,r) — C, and outputs C;.

For i > 0, define &; as a tg-bounded extraction algo-
rithm such that for any f,-bounded algorithm Aj, for
experiment K — &k, A;(k) —, ¢, &kr) — m,
Ay (k, ) — (m;,d;), we have COMVerify(ky, my, c;, d;) = 1
and m; # m; with probability at most € (Z¢, tg, t2).

Now, we define a message vector extraction algorithm &£
as follows. On input (k, r), first compute & (k,r) —, C.
Then, for i €[|C|], compute &; (k, (r,r')) — m;. Output
(Wll, . ,WI|C| .
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We observe that for any f;-bounded algorithm Ay,
for experiment A; (k) —, ¢, Ay(k,r) — (m,d, i), and
E(k,r) — M, we have Verify(k,m,c,d,i) = 1 and M; # m
with probability at most L x €(¢; + ¢, te, t2).

It follows that the vector commitment scheme
described in Construction 2 is €’-extractable-binding
with €' (t1,te,t2) = Lx € (i1 + te /L, te /L, ). O

4 ELSA: efficient long-term secure storage
architecture

Now we present ELSA, a long-term secure storage archi-
tecture that efficiently protects large datasets. It provides
long-term integrity and long-term confidentiality protec-
tion of the stored data. ELSA uses statistically hiding and
extractable binding vector commitments (as described in
Section 3) in combination with timestamps to achieve
renewable and privacy preserving integrity protection.
The confidential data is stored using proactive secret shar-
ing to guarantee confidentiality protection secure against
computational attacks. The data owner communicates
with two subsystems (Fig. 1), where one is responsi-
ble for data storage with confidentiality protection and
the other one is responsible for integrity protection. The
evidence service is responsible for integrity protection
updates and the secret share holders are responsible for
storing the data and maintaining confidentiality protec-
tion. The evidence service also communicates with a
timestamp service that is used in the process of evidence
generation.

4.1 Construction

We now describe the storage architecture ELSA in
terms of the algorithms Init, Store, RenewTs, RenewCom,
RenewShares, and Verify. Algorithm Init initializes the
architecture, Store allows to store new files, RenewTs
renews the protection if the timestamp scheme’s secu-
rity is weakened, RenewCom renews the protection if the
commitment scheme’s security is weakened, RenewShares
renews the shares to protect against a mobile adversary
who collects multiple shares over time, and Verify verifies
the integrity of a retrieved file.

Commitments,
Timestamps

Timestamp
Service

Evidence

Service
Fig. 1 Overview of the components of ELSA

O Secret Shares I ﬁ E
—

Data owner

Shareholders
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We use the following notation. When we write
SH.Store(name, dat) we mean that the data owner shares
the data dat among the shareholders using protocol
SHARE.Share associated with identifier name. If the shared
data dat is larger than the size of the message space of the
secret sharing scheme, dat is first split into chunks that
fit into the message space and then the chunks are shared
individually. Each shareholder maintains a database that
describes which shares belong to which data item name.
When we write SH.Retrieve(name), we mean that the data
owner retrieves the shares associated with identifier name
from the shareholders and reconstructs the data using
protocol SHARE.Reconstruct.

4.1.1 Initialization

The data owner uses algorithm ELSA.Init (Algorithm 1)
to initialize the storage system. The algorithm gets as
input a proactive secret sharing scheme SHARE, a tuple
of shareholder addresses (shURL;);c[n, a threshold ¢, and
an evidence service address esURL. It then initializes the
storage module SH by running protocol SHARE.Setup and
the evidence service module ES by setting ES.evidence
as an empty table and ES.renewLists as an empty list.

Algorithm 1: ELSA.Init(SHARE, (shURL;);c(n), £, esURL)

SH.INit(SHARE, (SAURL;) e (x> £);
ES.Init(esURL);

4.1.2 Data storage

The client uses algorithm ELSA.Store (Algorithm 2) to
store data files (filei)ie[n], which works as follows. First a
signature scheme SIG, a vector commitment scheme VC,
and a timestamp scheme TS are chosen. Here, we assume
that SIG is supplied with the secret key necessary for signa-
ture generation and VC s supplied with the public parame-
ters necessary for commitment generation. The client first
signs each of the data objects individually. The algorithm
then stores the file data and the generated signature in the
instance SH of the secret sharing storage system. After-
wards, a vector commitment (c, D) to the file data vector
and the signatures are being generated. For each file, the
corresponding decommitment is extracted and stored at
the shareholders. The file names filenames, the com-
mitment scheme instance VC, the commitment ¢, and the
chosen timestamp scheme instance TS are sent to the evi-
dence service. We remark that signing each data object
individually potentially allows for having a different signer
for each data object. If the data objects are to be signed
by the same user, an alternative is to sign the commitment
instead of the data objects.
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When the evidence service receives
(filenames, VG, TS), it does the following in algo-
rithm AddCom (Algorithm 3). It first timestamps the
commitment (VC, ¢) and thereby obtains a timestamp ts.
Then, it compiles the quintuple [ = (VC,¢, L, TS, ts) and
assigns [ as the first entry of the proof of integrity for
each document in filenames. Also, it adds / to the list
renewLists, which contains the lists that are updated
on a timestamp renewal.

The third component of each entry of a proof of
integrity is either a L or it consists of a pair (d, /), where d
is a decommitment value extracted from a vector decom-
mitment and j is its index in said vector decommitment.
For a given entry e of a proof of integrity, we shall denote
this by either (e.decom.d,e.decom.index) = (d,j) or
e.decom = L. During the execution of ELSA.Store, each
document’s decommitment value is stored in SH, so we
have [.decom = L.

Algorithm 2: ELSA Store((file;)

filenames <« {};

fori €[n] do

SIG.Sign(file;.dat) — s;

SH.Store (('data’, file;.name), (file;.dat, SIG.Cert, s;))

’

filenames+=file;.name;

SIG, VG, TS)

ie[n]’

vC.Commit ((file; dat, SIG.Cert,5;) ., ) — (@ D);

fori €[n] do
VC.Open(D, i) — d;
| SH.Store (('decont,file;.name,0) , (d, 1));

ES.AddCom(filenames, V(G ¢, TS);

Algorithm 3: ES.AddCom(filenames, VG, ¢, TS)

TS.Stamp((VC, ¢)) — ts;

l < (VCc, L, TS, ts);

for name € filenames do
evidence[ name] +=I;

L renewLists+=/;

4.1.3 Timestamp renewal

Algorithm ES.RenewTs (Algorithm 4) is performed by the
evidence service regularly in order to protect against the
weakening of the most recently used timestamp scheme.
The algorithm gets a vector commitment scheme instance
VC' and a timestamp scheme instance TS as input. It
first creates a vector commitment (c/,D’) for the list
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of renewal items renewLists. Here, we only require
the extractable-binding property of VC’, while the hid-
ing property is not required as all of the data stored at
the evidence service is independent of the secret data
due to the use of unconditionally hiding commitments
by the data owner. For each updated list item i, the
freshly generated timestamp, commitment, and extracted
decommitment are added to the corresponding evidence
list renewLists[].

Algorithm 4: ES.RenewTs (VC', TS)

VC'.Commit(renewLists) — (c/,D/);
TS.Stamp ((VC', ') — ts;
fori € [[renewLists]|] do
L VC'.Open (D, i) — d';
renewLists[i] +=(VC,c, (d,i),TS, ts);

4.1.4 Commitment renewal

The data owner runs algorithm ELSA.RenewCom (Algo-
rithm 5) to protect against a weakening of the currently
used commitment scheme. It chooses a new commit-
ment scheme instance VC and a new timestamp scheme
instance TS and proceeds as follows. First, the table of evi-
dence lists ES.evidence is retrieved from the evidence
service and complemented with the decommitment val-
ues stored at the shareholders. Next, a list with the data
items, the signatures, and the current evidence for each
data item is constructed. This list is then committed to
using the vector commitment scheme VC. The decommit-
ments are extracted and stored at the shareholders, and
the commitment is added to the evidence at the evidence
service reusing algorithm ES.AddCom.

4.1.5 Secret share renewal

There are two types of share renewal supported by ELSA.
The first type (Algorithm 6) triggers the share renewal
protocol of the secret sharing system (i.e., the protocol
SHARE.Reshare). This interactive protocol refreshes the
shares at the shareholders so that old shares, which may
have leaked already, cannot be combined with the new
shares, which are obtained after the protocol has finished,
to reconstruct the stored data. The second type (Algo-
rithm 7) replaces the proactive sharing scheme entirely.
This may be necessary if the scheme has additional secu-
rity properties like verifiability (see proactive verifiable
secret sharing [14]), whose security may be weakened. In
this case, the data is retrieved, shared to the new share-
holders, and finally, the old shareholders are shutdown.
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Algorithm 5: ELSA.RenewCom(VC, TS)
filenames <« {}; comIndices « {};
comCount <« {}; L <[];
for name € ES.evidence do
(dat, SIG.Cert, s) < SH.Retrieve (('data’, name));
ES.evidence[name] — ¢
for i € [|le|]] do
if e;,decom = 1 then
L (e;.decom.d, ¢;.decom.index) <«

SH.Retrieve (('decon’, name, i));

L+=(dat, SIG.Cert, s, e);
comIndices[name] < |L|;
comCount[name] < |e|;
filenames+=name;

VC.Commit(L) — (¢, D);

for name € ES.evidence do

VC.Open(D, comIndices[name]) — d;

SH.Share (('decom’, name, comCount[name] ) ,
(d,comIndices[name]));

ES.AddCom(filenames, VG, ¢, TS);

Algorithm 6: ELSA.RenewShares()
SH.Reshare();

Algorithm 7: ELSA.ReneWSharing(SHARE,(ShURLi)iE[N] , T)

SH.Init(SHARE, (shURL;)en), T);

I < ES.itemInfos;

for name € I do

L SH.Retrieve ('data’, name) — dat;

SH'.Share ('data’, name, dat);

SH.Shutdown();
SH <« SH/;

4.1.6 Dataretrieval

The algorithm ELSA.Retrieve (Algorithm 8) describes the
data retrieval procedure of ELSA. It gets as input the name
of the data file that is to be retrieved. It then collects the
evidence from the evidence service and the data from the
shareholders. Next, the evidence is complemented with
the decommitments and then the algorithm outputs the
data with the corresponding evidence.

4.1.7 Verification

Algorithm ELSA.Verify (Algorithm 9) describes how a ver-
ifier can check the integrity of a data item using the
evidence produced by ELSA. Here, we denote by time(ts)
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Algorithm 8: ELSA.Retrieve(name)

Algorithm 9: ELSA Verify (name, tore)

e < ES.evidence[ name];
fori €[ e|] do
if e;.decom = | then
(e;.decom.d, e;.decom.index) <«
L SH.Retrieve (('decom’, name, i));

SH.Retrieve (('data’,name)) — (dat, SIG.Cert, 5);
E < (SIG.Cert,s, e);
return (dat, E);

the point in time, when a given timestamp £s was gen-
erated, i.e. TS.Verify (PKl, (m, time(¢s)),ts) = 1 if ts <«
TS.Stamp(m). ELSA.Verify gets name, the identifier of the
document in question and a point in time £y, as input.
The algorithm returns 1, if dat, i.e. name’s data, is authen-
tic and has been stored at Zgye.

In more detail, the verification algorithm works as fol-
lows. It first checks the initial element of name’s proof of
integrity, that is whether the signature s is valid for the
data object dat under signature scheme instance SIG at the
time of the first timestamp of the evidence list e. It also
checks whether the corresponding commitment is valid
for (dat, SIG, s) at the time of the next commitment and
the timestamp is valid at the next timestamp. Then, for
each of the remaining |e| entries of e, the algorithm checks
whether the corresponding timestamp is valid at the time
of the next timestamp and whether the corresponding
commitments are valid at the time of the next commit-
ments. The algorithm outputs 1 if all checks return valid,
and it outputs 0 in any other case.

4.2 Security analysis

4.2.1 Computational model

In a long-running system, we have to consider adver-
saries that increase their computational power over time.
For example, they may increase their computation speed
or acquire new computational devices, such as quantum
computers. We capture this by using the computational
model from [5].

A real-time bounded long-lived adversary A is defined
as a sequence (A, A1), A@),...) of machines with
Ay € M, and is associated with a global clock Clock. We
assume that the class M; of computing machines avail-
able at time ¢ widens when ¢ increases, i.e., M; € M for
t < t'. The adversary is given the power to advance the
clock, but it cannot go backwards in time. When Aok js
started, then actually the component A g is run. When-
ever a component A, calls the clock oracle to set a new
time ¢, then component A is stopped and the com-
ponent Ay is run with input the internal state of A.
Real-time computational bounds are expressed as follows.

e < ES.evidence[ name];
/* Get evidence record for name. */
e <« ¢
/* Make a copy of the proof of
integrity, which will be completed
below. */
fori=0,...,|¢| do
if €/.decom = 1 then
L e.decom « (d,j) =
SH.Retrieve ((’ decom’, name, i));

(dat, SIG.Cert,s) < SH.Retrieve ((' data’, name));

(VCoc, (d,)), TS, ts) < e

/* Check the first entry of the proof
of integrity. x/

L < Lstores

b < SIG.Verify (SIG.Cert, dat, s) A

VC.Verify (PKI, dat, c, d, ) A

TS.Verify (PKL, ((VC,¢), t) , ts);

for i =1 tole| do

(VC, ¢ (d, j) ,TS, ts) e

t = time(ts);

if e;.decom = 1 then

/* In this case, the i-th entry
came from a commitment
renewal. */

bA =

vCVerify (PKL (dat, SIG,s,¢f,_y)) . ¢,d.j)

TS.Verify (PKL, (VG ¢) , £) , Ls);
else
/* Otherwise, the i-th entry of e
came from a timestamp
renewal. */
bA = VC\Verify (PKL, e[;_1}, ¢, d, ) A
TS.Verify (PKIL, (VG ¢) , t) , Ls);

return b;

Let A% be a computing machine associated with Clock,
and let p : N — N be a function. We say A is p-bounded if
for every time ¢, the aggregated step count of the machine
components of 4 until time ¢ is at most p (¢).

4.2.2 Integrity

First, we analyze integrity protection, by which we mean
that it should be infeasible for an adversary to forge a valid
evidence list for a data object, but the data object has
not been authentically signed at the claimed time. This
is captured in the following definition, where we define
security with respect to a set of schemes S (e.g., commit-
ment schemes, signature schemes, timestamp schemes)
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that are available within the context of the adversary. Also,
we assume that each scheme instance S; is associated with
a breakage time tf’ after which it is considered insecure.
The experiment (Algorithm 10) has a setup phase, where
all the scheme instances are initialized by means of param-
eter generation. We write S;.Setup() — (sk, pk) to denote
that a scheme potentially generates a secret parameter sk
(e.g., a private signing key) and a public parameter pk (e.g.,
a public verification key or the parameters of a commit-
ment scheme instance). We allow the adversary to access
the secret parameters of an instance once it is considered
insecure (via oracle Break).

Definition 5 (Integrity) We say ELSA is (M, e¢)-
unforgeable for schemes S, if for any p-bounded machine
Ae M,

Pr[Exp*(A) = 1] < e(p).

The experiment ExpF®'9 is described in Algorithm 10.

Algorithm 10: Exp‘FSOrge (A)

SetupExperiment();

ACIock,PKI,SIG,TS,Break - (dat Lstorer E);

Lyerify < time;

b < Verify(PKI, tyerity; dat, Zstore, E) A dat ¢

Qtstore;
return b;
SetupExperiment():
time <« 0; Clock(®):
fori €[|S|] do if £ > time then
Si.Setup — (sp, pp); | time <
SP[i] < sp; PP[i] < pp;
SIG(i, m):
PKI(i): é?stffft Sz‘]fipe = sig;
, ime] +=m;
return PPUil || Gion(splil;m) — s;
return s;
TS(i, m):
Assert S;.type = ts; Break(i):
Sign(i;[time,m]) —| |if time > S;.th then
s; L return SP|[ i];
return (time,s);

Next, we prove that the security of ELSA can be reduced
to the extractable binding security of the used commit-
ment schemes and the unforgeability of the used signature
schemes within their validity period.
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Theorem 6 Let M = (M;); specify which com-
putational technology is available at which point in
time and let S be a set of cryptographic schemes,
where each scheme S; € S is associated with a
breakage time tf’ and is €;-secure against adversaries
using computational technology Mtg,. In particular, we
require unforgeability-security for siglnature schemes and
extractable-binding-security for commitment schemes. Let
PE be any computational bound and L be an upper
bound on the maximum vector length of the commit-
ment schemes in S. Then, ELSA is (M, €)-unforgeable

for S with e(p) = (Z@G € (p (tlb) PE (tlb) L2)> +
(Siecones (o () e () £ ()

The proof of Theorem 6 can be found in Appendix B.

4.2.3 Confidentiality

Next, we analyze confidentiality protection of ELSA. Intu-
itively, we require that an adversary with unbounded com-
putational power who observes the data that is received by
the evidence service and a subset of the shareholders does
not learn any substantial information about the stored
data. In particular, it should be guaranteed that an adver-
sary does not learn anything about unopened files even if
it retrieves some of the other files and the corresponding
signatures, commitments, and timestamps.

We model this intuition by requiring that any
(unbounded) adversary A should not be able to distin-
guish whether it interacts with a system that stores a
file vector F; or a system that stores another file vector
Fy, if A only opens a subset I of files and F; and F; are
identical on I. This is modeled in experiment ExpP'T
(Algorithm 11), where we use the following notation. For
a secret sharing scheme SHARE, we denote by SHARE.AS
the set of authorized shareholder subsets that can recon-
struct the secret. For a protocol P, we write (P)yjew to
denote an execution of P where View contains all the data
sent and received by the involved parties. For an involved
party P, we write View(P) to denote the data sent and
received by party P.

Definition 6 (Confidentiality) We say ELSA is e-
statistically hiding for S, if for all machines A, subsets I,
sets of files F1, Fy with (F1); = (F2)p, forall L € N,

|Pr[Exp2St (A, F1, 1) = 1] - Pr[Exp25H(A, Fo, D =1]| < ().
The experiment ExpPT is described in Algorithm 11.
Next, we show that ELSA indeed provides confidential-

ity protection as defined above if statistically hiding secret
sharing and commitment schemes are used.
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Algorithm 11: Expgij_t (A, Files, I)

SetupExperiment();

’
ACIock,ELSA — b

return b;

SetupExperiment():

time <— O; N < 0;
Generate parameters for S;
ELSA.Init(S.SHARE, SH, ES);

Clock(?):
if t > time then
L time <« ¢

ELSA (op, param):
if N < L then
N+=LT < T
if op = Store A param ¢ S.SHARE.AS then
| (ELSA.Store(Files, param))view; T < param;
else if op = Retrieve A param € I then
| (ELSARetrieve(param))view;
else if op = ReTs then
| (ELSA.RenewTs(param))view;
else if op = ReCom then
| (ELSA.RenewCom(param))view;
else if op = ReShare A param ¢ S.SHARE.AS then
L (ELSA.RenewShares())view; T’ < param;

return View(ES, SHy, Receiver);

Theorem 7 Let S be a set of schemes, where S.SHARE
is an e-statistically hiding secret sharing scheme and every
commitment scheme in S is e-statistically hiding. Then,
ELSA is €'-statistically hiding for S with €' (L) = 2Le.

Proof of Theorem 7. We observe that the statistical dis-
tance between the view of the evidence service and the
receiver for F; and the view for F, is at most € per call
to ELSA” because the vector commitment schemes in S
are e-statistically hiding. The statistical distance between
the view of an unauthorized subset of shareholders for
F; and the view of the same subset of shareholders for
F, is also at most € because the secret sharing scheme
is e-statistically hiding. It follows that the statistical dis-
tance for each query of the adversary diverges by at most
2¢. Hence, overall the statistical distance is bounded by
2Le. O

With regard to protecting the network communication
between the data owner and the shareholders, we ideally
require that information theoretically channels are used
(e.g., based on quantum key distribution and one-time pad
encryption [10]), so that a network provider, who could
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potentially intercept all of the secret share packages, can-
not learn any information about the communicated data.
Implementations of QKD have, however, not yet reached
a state in which they may be deemed a viable method
to connect a larger number of parties. Thus, manual
key exchange may be considered as a temporary solu-
tion. If information theoretically secure channels are not
available, we recommend to use very strong symmetric
encryption (e.g., AES-256 [19]).

5 MCELSA: ELSA for multiple clients

In Section 4, we proposed ELSA, a long-term storage solu-
tion, that provides information theoretical confidentiality
and continuously prolonged computational integrity for
the documents stored within it. In this section, we will
adapt ELSA so that several clients can interact with the
same instance simultaneously. We denote this multi-client
version by MCELSA. MCELSA delivers the same guarantees
as ELSA with respect to the stored documents’ integrity
and confidentiality.

Compared to the single-client setting, the multi-client
setting introduces new challenges concerning access man-
agement and the distribution of maintenance tasks. In this
section, we go into further detail about the nature of these
challenges and propose solutions for them:

¢ In any multi-client storage system, access
management breaks down to hindering unauthorized
parties (clients, shareholders, or the evidence service)
from obtaining a document while enabling access for
authorized parties. An intuitive solution is to employ
an external party that decides for each client’s queries
whether to grant access or deny it. That party itself
may not have access to stored documents. This
solution contradicts MCELSA’s aim to provide robust
confidentiality by storing documents in a secret
sharing scheme and thereby eliminating central
points of failure. More precisely, an attacker who
corrupted the access deciding party would gain
unlimited document access. Hence, we dismiss this
approach and instead shift the access management to
the shareholders. We go into more detail in
Section 5.1.

e ELSA’s maintenance in essence consists of timestamp,
commitment, and share renewal (see Algorithm 4, 5,
and 6). We will amend ELSA’s protocols in Section 5.2
to the multi-client setting, so that they distribute
these tasks among the clients, shareholders and
evidence service in order to minimize the combined
workload while respecting access privileges.

5.1 Modifications to the secret sharing schemes
Before going into detail regarding the modifications to
ELSA’s protocols, we first discuss the amendments to the
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underlying schemes. While we leave the signature, vec-
tor commitment and timestamp schemes unchanged in
comparison to the single-client setting, we do need to
apply some modifications to the employed secret shar-
ing scheme in order for it to support the aforementioned
access management.

We elaborate the modifications in terms of the proto-
cols, which the secret sharing scheme provides. Access
management will be realized by having each individual
shareholder decide upon receiving a query from a client ¢,
whether ¢ has the necessary permissions for the query he
issued. Each shareholder then acts accordingly indepen-
dent of the other shareholders. Below, we list the modified
protocols with an appended asterisk and compare them
to SH’s original protocols. The updated secret sharing
scheme will be denoted by SH*.

e Setup® establishes the secret sharing parameters as
SH.Setup does, too. Yet, it additionally fixes the
layout, in which the permissions for each document
are to be denoted. Subsequent data access queries
must adhere to these parameters.

e Store™ takes a tuple of documents (file,-)i el and a list
of permissions (p;) [, as an additional argument. It
generates shares of the documents and sends the
shares to the shareholders for storage, yet it attaches
the permissions to each share.

e Retrieve™ takes a document identifier name as input.
Compared to the original Retrieve, it introduces a
further step. Assume a client ¢ issued
Retrieve*(name). Upon receiving this request, each
shareholder consults the permissions attached to his
share of name. He then proceeds to transmit his
share to ¢, if ¢ is authorized to retrieve name.
Otherwise, s query is ignored. Also, if a shareholder
hands over his shares, he sends the permissions
alongside it. Thus, a client has to convince an
authorized set of shareholders to send their shares in
order to obtain it and if he does, he also learns the
respective permissions.

e Reshare* has the shareholders derive new,
uncorrelated shares of the stored documents, that is,
it behaves as SH.Reshare does, yet we point out that
the attached permissions for each share must remain
unchanged.

e UpdatePerm*: We extend the secret sharing scheme
by this protocol to enable the clients to change the
permissions with respect to a document without
having to retrieve and share it anew. Thus, if a client
issues UpdatePerm™ with a document list identifier
and a permissions list as arguments, the shareholder
check whether that client is authorized for his query
and, if so, they swap the old permissions attached to
their shares for the ones provided by the client.
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Thereby, the permissions are updated without
reassembling the documents.

With the modifications above, we shift the task of access
management to the shareholders, which avoids a central
point of failure and leaves ELSA’s general setup unchanged
apart from introducing further clients. Furthermore, we
hereby achieve the same confidentiality guarantees as with
ELSA, that is, if a party wants to obtain a document,
to which it is not permitted access, it has to corrupt
an authorized set of shareholders, i.e., break the secret
sharing scheme SH.

We also let the shareholders maintain an initially empty
list of document identifiers for each client. This list will be
denoted by /,,, where u goes over all clients. The purpose
of the list will be explained in Section 5.2.2.

5.2 Modifications to ELSA’s protocols

In Section 5.1, we amended the secret sharing scheme
in which the documents and their respective decommit-
ment values are stored so that it supports multiple clients
and access management. This of course leads to changed
interfaces for SH’s protocols, which implies some amend-
ments to ELSA’s protocols, too. We split the protocols into
three categories: data access, maintenance, and integrity
verification.

5.2.1 Dataaccess

The protocols for data access, i.e., storing and retrieving
documents, in ELSA are Store (Algorithm 2) and Retrieve
(Algorithm 8). We briefly describe their updated workflow
and point out the applied changes.

Data storage. A client in MCELSA stores documents
(file,«)ie[n] by executing MCELSA.Store (Algorithm 14) with
parameters (file,')ig[n] ,SIG,VC,TS, and  (pi)c(,, where
(file;), SIG, VC, and TS agree with those of ELSA.Store
and p; denotes the permissions with respect to the docu-
ment file;, i €[ n]. He executes MCELSA.Store as he would
execute ELSA.Store, yet when storing the documents and
decommitment values via SH*.Share®, he passes (p;);c[,]
as the additional argument for the access permissions.
Thereby, the client establishes each parties’ access rights
to the documents (file;) (and the respective decom-
mitment values).

Data retrieval. To obtain a document identified by
name, a client issues MCELSA.Retrieve(name). This
implies executing SH.Retrieve(name) with respect to the
document and its decommitment values from the share-
holders and retrieving the remaining proof of integrity
from the evidence service. The modification compared to
ELSA.Retrieve is that the client only obtains the document
if he is authorized and, if so, he also obtains the permis-
sions concerning name due to the changes in the secret
sharing scheme SH*.

i€[n]
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Permission modification. Changing the permissions
on one or more documents identified by (hame;);c(,
can be achieved by retrieving said documents via
MCELSA Retrieve ((name;);c[,) and subsequently stor-

ing them via MCELSA.Store ((name,-)ie[,,] , (P)) ) with

[p;]i el being the updated permissions. The drawback of
this approach is that the documents are reconstructed
at the client’s site. Thus, we introduce the protocol
MCELSA.UpdatePerm. The parameters for this proto-
col are (name;);c[,] and (p;) The protocol executes

i€[n]

ie[n]”
SH*.UpdatePerm* (name;, p}) for each i €[ n]; if the client
is authorized, the shareholders then swap name;’s permis-
sions for p).

5.2.2 Maintenance

Adapting the protocols for data access to the multi-client
scenario was fairly straightforward, yet transferring the
maintenance tasks is somewhat more involved. As we
mentioned before, there are three procedures to be dis-
cussed: timestamp, share, and commitment renewal.

Timestamp renewal. The amendments to this protocol
are purely for optimization purposes: whereas in ELSA,
the evidence service ES renewed the timestamps on all
proofs of integrity when executing ES.RenewTs (Algo-
rithm 4), we take a more refined approach in MCELSA
to reduce memory consumption. MCELSA.RenewTs (Algo-
rithm 15) works as follows: ES updates all expiring
timestamps by generating a vector commitment (¢, D)
on renewlLists and obtains a timestamp &' on (¢, D)
from a given timestamp scheme TS. As a last step, ES
appends the quintuple (VC', ¢/, (4, i), TS, £s) to each proof
of integrity evidence[name] whose last used times-
tamp scheme coincides with that of renewLists;, that
is, it satisfies evidence [name]icyigencename)| - 1S =
renewLists;.TS.

Share renewal. ELSA’s protocol for renewing the shares
of stored documents stays unchanged apart from exe-
cuting SH*.Reshare™ instead of SH.Reshare. Thereby new,
uncorrelated shares of the documents replace the old
shares while keeping the access permissions.

Commitment renewal. Renewing the commitments is
the most involved task to transfer to the multi-client set-
ting. In ELSA, the client first collects all stored documents
as well as their complete proofs of integrity in a list L. He
then generates a vector commitment (¢, D) on said list and
has the evidence service append the commitment along
with a freshly generated timestamp to the existing proofs
of integrity via ES.AddCom. The newly generated decom-
mitment values are then stored within the secret sharing
scheme.

The obvious complication with ELSA’s approach in the
multi-client setting is that a client, who is authorized to
retrieve all stored documents, does not even have to exist
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or have to be online! Two solutions would seem to offer
themselves if we wished to uphold ELSA’s solution of hav-
ing a single party recommit to the stored documents:
either an external trusted party gains access to all docu-
ments and recommits to them or an involved party (for
example, the evidence service or a client) gains access to
all documents and recommits to them. Both approaches
strongly contradict MCELSA’s confidentiality aim, i.e., only
authorized parties gain access to a document.

We solve this conflict by employing—if necessary—
more than one client to assist in commitment renewal.
Also, in order to keep storage demand of MCELSA as low
as possible, we have clients recommit only to documents
that are affected by an expiring commitment instead of all
documents. Thus, commitment renewal is split into three
steps:

1. Assume that a vector commitment (c, D) is expiring.
The evidence service ES, having knowledge of all
commitment values in ELSA, executes
MCELSA.detRecom (Algorithm 12) and compiles a list
L of documents that are affected by (¢, D)’s expiry. ES
then hands L to the shareholders.

2. The shareholders have knowledge of the access
permissions with respect to the stored documents.
Thus, they will assign the documents in L to clients in
such a manner that as few as possible clients become
involved in the commitment renewal procedure
while respecting the access permissions. This
minimizes the number of commitments to maintain.
The lists [, that the shareholders maintain, now
come into action. For each client u, [,, contains the
identifiers of the documents that had been assigned
to u for commitment renewal. Once u has generated
a new vector commitment for his list /,,, it is emptied.
Yet, in a long-term storage solution such as MCELSA,
a further commitment may expire while a list /,, still
contains a document. Thus, upon receiving L from
the evidence service, the shareholders merge L with
the lists /,, and distribute the resulting list among the
clients. Finally, each client #’s newly assigned
documents are denoted in /. For an exact
description, how to assign the extended list L to the
clients, see MCELSA.distrRecom (Algorithm 13).

For MCELSA.detRecom, we have to introduce the
following notation: by perm,, we denote the set of
documents that a client u is permitted to retrieve;
also, the set of all clients is denoted by U. The
cardinality of a set X will be denoted by #X.

3. Whenever a client u connects to MCELSA, he is
handed [,, and executes MCELSA.userRenewCom
(Algorithm 16). For that, he retrieves all documents
in [,, (by design he is permitted access to each
name € [,) and their respective complete proof of
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integrity (this includes the data stored at ES and the
decommitments that were deposited in the secret
sharing scheme). Afterwards, # commits to the
gathered documents and proofs of integrity. The
resulting decommitment values are then stored in SH
appropriately, whereas the commitment value is
handed to ES via ES.AddCom (/,,, VG, ¢, TS) to be
appended to the proofs of integrity associated with
the documents in /,,. In comparison to
ELSA.RenewCom, the client that executes
MCELSA.userRenewCom recommits to all documents
in [, instead of all stored documents.

Algorithm 12: MCELSA.detRecom (c)

recomList <« {};
for name € ES.evidence do
e < evidence[ name]j;
i=lel;
repeat
ife;c =cAe.d= 1 then
‘ recomList+=name;

untili =0Vve.d = 1;

return recomList;

Algorithm 13: MCELSA.detRecom (recomList)

recomList < recomList U, lus
foru € U do
L by < {h

The shareholders determine ©y € U with

#(permuo ﬂrecomList) =maL)1(# (perm,NrecomList)
uc

lyy < perm,, N recomList;

n<1

while

recomList \ U;:ol Ly, # 0 Aug, ... up—1} # U do
The shareholders determine u,, € U \ {ui};‘;ol with

max
uel\(u}i=3

n—1
# (permun N recomList \ U lu,) =

i=0

n—1
# <permu N recomList \ U lui)
i=0

l,, < perm, NrecomList \ U/ L
n<n+1;

Page 15 of 20

For Algorithms 13 and 16 to work correctly, we make a
few basic assumptions:

e The access permissions, that are attached to the files
in L at the shareholders site, coincide. If this were not
the case, then constellations can be constructed quite
easily in which two shareholders arrive at two distinct
document distributions after MCELSA.detRecom’s
execution.

e The clients connect to MCELSA within sufficiently
short timespans to recommit to the documents in [,
in a timely manner.

e For each document stored in MCELSA, there exists a
client, who has permission to retrieve it.

We now prove, that by executing MCELSA.detRecom the
shareholders correctly distribute the list of documents,
they receive from the evidence service, among the clients.
That is, each document is assigned to a client.

Proposition 1 Let recomList be a set of documents
and U be a set of clients, so that, for each document
name € recomList U, L there is client u € U who
has permission to reconstruct name. After Algorithm 13’s
execution, we have

recomList U U I, < U Ly,
uell uell

where ), denotes I, before Algorithm 13’s execution.

Proof Assume the contrary, that is

recomList U U I, 2 U Ly
ueld ueld

after Algorithm 13 has terminated. Let U/’ be the set of all
clients, that have been chosen during the algorithm’s exe-
cution. Then, there is a document name € recomList U
Uueu b\ Uyeyr b with name ¢ [, for all u € U, in par-
ticular, we have name ¢ /,,,. Let Uname be the set of clients
u € U that have permission to reconstruct name. Now, we
have to distinguish two cases:

® Uname C U': Let u* be the first client in Uname
selected by Algorithm 13; w.l.o.g. u* = up. We have
name € [+ N recomList, hence name € [, = I+,
a contradiction.

® Uname  U': Now, let u* € Uname \ U’ and
n*: = |U'|. Thereby, we have
name € recomList \ U,io ly; # ¥ and
u* € U\ U # ¥; hence, the while-loop has not yet
terminated and therefore neither has Algorithm 13.

In conclusion, we obtain name € UME u lu» @ contradiction.
O
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We do not list all of MCELSA’s algorithms here; an overview
of those we skipped can be found in A Algorithms.

5.2.3 Integrity verification

In Section 5.2, we modified ELSA’s maintenance pro-
tocols in order to support multiple clients. Ye,t this
has purposefully not changed the make of the proofs
of integrity for the stored documents. Thus, we leave
the protocol ELSA.Verify (Algorithm 9) unmodified. We
should however point out, that—due to access permission
limitations—only the integrity of documents that a client
u is authorized to retrieve can be verified by u, since he
has to reconstruct the document as well as the according
decommitment values during ELSA.Verify’s execution.

6 Performance evaluation

In our performance evaluation, we omit ELSA, since it is
just a special case of MCELSA with a single client. We eval-
uate the performance of our new architecture MCELSA in
terms of resource demand for the evidence service and
the secret sharing instance. We will also measure the time
elapsed for integrity verification of individually stored
documents.

6.1 Testing parameters

We simulate a continued runtime of 80 years for MCELSA,
i.e.,, approximately one human lifetime. During that
period, we let each client store one document each month
for the whole duration of the experiment.

We assume the following renewal schedule for protect-
ing the evidence against the weakening of cryptographic
primitives. The signatures are renewed every 2 years, as
this is a typical lifetime of a public key certificate, which
is needed to verify the signatures. While signature scheme
instances can only be secure as long as the corresponding
private signing key is not leaked to an adversary, commit-
ment scheme instances do not involve the usage of any
secret parameters. Therefore, their security is not threat-
ened by key leakage and we assume that they only need
to be renewed every 10 years in order to adjust the cryp-
tographic parameter sizes or to choose a new and more
secure scheme.

As the vector commitment scheme, we use Construc-
tion 2 with the statistically hiding commitment scheme
by Halevi and Micali [13] whose security is based on
the security of the used hash function which we instan-
tiate with members of the SHA-2 hash function family
[20]. If we model hash functions as random oracles, the
extractable-binding property required by Theorem 6 is
provided. This vector commitment scheme construction
also provides statistical hiding security as required by
Theorem 7. We adjust the signature and commitment
scheme parameters over time as proposed by Lenstra and
Verheul [16, 17].
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Concerning the document storage, i.e., the secret shar-
ing scheme, we instantiate it as a standard Shamir secret
sharing [22] with four shareholders and a reconstruction
threshold of three, that is, any set of three or more clients
can reconstruct a stored document.

Now, since the layout of the access permissions strongly
influences the resulting maintenance task distribution, we
distinguish the three following cases.

Single client: We form a baseline for our perfor-
mance evaluation by testing MCELSA with a sin-
gle client. We compare these results with those of
LINCOS, up until now the fastest storage architecture
that provides long-term integrity and confidentiality.
Isolated clients: Ten clients are being simulated for
this test, where each client is permitted to access
only his own documents. The provided functionality
is that of running ten parallel instances of ELSA, yet
in using MCELSA, only one instance of SH and one
instance of ES is needed.

Privileged clients: In this case, we simulate a small
doctor’s office. Again, we consider ten clients, eight
of which represent patients and two of which doc-
tors. Each patient may of course only access his own
health record, whereas the doctors can access those
of all their patients.

After the 80th year has passed, the client(s) verify the
integrity of the stored documents and we measure the
time that is needed for the integrity verification.

Our implementation was done using the programming
language Java. In order to have consistent environment
parameters, the experiments were performed in a virtual
Linux machine with a two-core processor running at 2.8
GHz, 16GB of storage space, and 8GB of RAM.

6.2 Results

We now present the results of our performance analy-
sis. Figure 2a shows the storage demand at the evidence
service’s site over the course of eighty years. The storage
need at the shareholders is plotted in Fig.2b. In Fig.3, we
summarize our evaluation results. We should remark that
the longer a document has been stored in MCELSA, the
more entries its proof of integrity has, thus the longer the
integrity verification takes. More precisely, assuming that
verifying a single entry of a proof of integrity takes con-
stant time, the time needed for integrity verification goes
linearly with the time, for which the document had been
stored.

We observe that increasing the number of client scales
reasonably well in MCELSA, more than that, MCELSA per-
forms about 5% better than ELSA; this can be seen by
comparing with ELSA’s performance results in [7]. We
attribute this increased performance to the optimizations,



Muth et al. EURASIP Journal on Information Security (2020) 2020:9

Page 17 of 20

storage in MB
130 superclients
120 isolated clients
110
100
90
S0
0
60
50
10
30
20

10 single client

10 20 30 40 50 G0 70 80 tin years

(a) Storage need at the evidence service

Fig. 2 Plots of MCELSA's evaluation results concerning storage demand
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(b) Storage need at the secret sharing service

that we applied to the maintenance protocols, and to some
improvements in the simulation implementation.

In conclusion, we see that the storage demand in the sce-
nario of several isolated clients is approximately the same
as that of a single client multiplied with the number of
engaged isolated clients.

We furthermore observe that we drastically decreased
the used resources by employing two clients, which were
able to retrieve all documents in the super client scenario.

7 Conclusions

We have proposed MCELSA as an extension of ELSA.
MCELSA is a long-term secure storage architecture that
provides efficient protection for large datasets and sup-
ports multiple clients simultaneously while upholding the
same security guaranties that ELSA provides with respect
to integrity and confidentiality of the stored data.

The multi-client setting raised the issues of access
management and distribution of maintenance tasks.
We achieved robust distributed access management by
entrusting the shareholders with determining individual
access privileges. We also proposed a set of algorithms
to distribute the entailed maintenance tasks among the
engaged parties with the aim of minimizing MCELSA’s
resource demand.

ELSA improved the performance of existing state of

the art long-term storage solutions. MCELSA in turn
achieves further performance improvements by optimiz-
ing ELSA’s protocols and implementation. This became
evident, when testing MCELSA’s performance in terms
of time elapsed for document verification, commitment
renewal and storage demand. We observed that MCELSA
outperforms ELSA regarding resources demand per client.

We achieve nearly constant computation and storage
costs for timestamp renewal by using a new type of
vector commitment, while for existing solutions, these
costs scale linearly with the number of stored items. Our
performance measurements show that MCELSA provides
practical performance for application scenarios, where the
stored data has to be maintained of extended periods of
time.

We envision the following research directions for future
work. It would be interesting to investigate how to com-
bine our vector commitments with ORAM technology
in order to obtain a storage architecture that addition-
ally provides long-term access pattern hiding security.
Another interesting direction is to combine secure multi-
party computation protocols with our storage architecture
in order to allow for computation on the stored and pro-
tected data. Also, it would be interesting to see whether
commitment renewal without the help of the data owner
is possible.

Scenario Storage SH

Storage ES

Verificaton time per file

53.26 MiB
670.44 MiB
439.30 MiB

Fig. 3 Evaluation of the three tested scenarios

Single Client
Isolated Clients
Super Clients

13.115 MiB
121.305 MiB
131.198 MiB

1.41s
1.18s
0.94s
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Appendix

A Algorithms

In this section we list the algorithms that we omitted in
Section 5.

Algorithm 14: MCELSA.Store ((file;),_(,;  Pi)iein) - SIG,
Ve, Ts)

filenames <« {};
for i €[ n] do
s; < SIG.Sign (file;.dat) s;;

SH.Store* ((” data’, filez.name), (file;.dat, SIG, 5;) , p;);

filenames+=file;.name;

(¢, D) < VC.Commit ((ﬁlei.dat, 5|G,si)i€[n]);

for i €[n] do
d; < VC.Open (D, i);
SH.Store* ((” decom’, file;.name) , (d;, ));

ES.AddCom (filenames, VC, ¢, ts);

Algorithm 15;: MCELSA.RenewTs(VC',TS)

(¢, D) « vC'.Commit (renewLists);
ts < TS.Stamp ((VC', ¢));
renewLists <[];
fori € [[renewLists|] do
d' < VC.Open (D, i);
for name € evidence do
if evidence [name]|cyidencelname]| 19 =
renewLists;.TS then
evidence[name] += (VC', ¢, (d’, i) ,TS, ts);

renewLists+4= (VC’, d,L,TS, ts);

B Proofs
Proof of Theorem 4. Let
(L, M, Setup, Commit, Open, Verify) be the scheme

described in Construction 2. For any n €[L], I C[#],
M e M", k € Setup, and event A C Q(CDy(M,I)),
denote by Prjs(A) the probability that A is observed when
sampling from CDy (M, I).

Let n €[ L], I S[n), M1, My € M" with (My); = (M);,
k € Setup. By the definition of the statistical distance, we
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Algorithm 16: MCELSA.userRenewCom (1,,,VC, TS)

DocIndices <« {};
comCount <« {};
L <[}
for name € [, do
(dat, SIG.Cert, s, p) <
SH.Retrieve* (’ data’, name);
e < ES.evidence[ name];
fori € [le|]] do
ife;.d = 1 then
L L e;.d < SH.Retrieve* (' decom’, name, i);

L+ = (dat, SIG.Cert, s, e);
DocIndices[name] < |L|;
comCount|[ name] < |e|;

VC.Commit(L) — (¢,D);/+ L contains all
documents and Pol ’s.

for name € [, do
d < VC.Open (D,DocIndices[name]);
SH.Store™ ((* decom’, name, comIndices[name]),
(d,DocIndex[ name)));

ES.AddCom (/,, VC, ¢, TS);

*/

have

A (CDy (M1, 1), CDy (Ma, 1)) = )
¢,Dy

Pr(c.Dr) = Pr (e, D)

We observe that for any M (my,...,m,) €
M?", algorithm Commit(k, M) — (c,D) first computes
Com(ky, m;) — (ci,d;), for each i €[n], and then com-
putes HT.Tree (ka, (¢1, . .., ¢,)) — T.Denote C= (¢)ieln)
and D = (d;) ic[n)- By the law of total probability we have

Pr (D) = ZIX} (D11 Dr) = Pr (D).
C.Dy:
C,D]

Furthermore, we observe that ¢ and T are determined
by (k, 6) We also observe that on input k, D

(T, (cis di)ie[,,]), and i €[n], algorithm Open computes
HT.Path (ky, T,i) — P and outputs d = (¢;, d;, P). Hence,
the output d is determined by (k,T,i,c;, d;). Hence,
Pra(c,D7|C,D;) > 0 implies Pry(c, D;|C,Dp) = 1. It
follows that

Z Pr (C,D[|6,D1> * Pr (6,[)1) = Z Pr (é, D]) .
M M M
é,?}: &,é[:

¢,Dy ¢,Dy

Next, we observe from the description of algorithm
Commit that each call Com(M;) — (¢;, d;) is independent
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of the other calls Com (M;) — (cj, d}),j # i. Thus,
br(C,Dy) =Pr (CiDr) + [ Preco.
ie[n]\I
By the description of algorithms Commit and Open, we

have that (61,151) is determined by M;. We observe that
(M) = (M3);. Thus,

B (GnPu) = pr (G 1),

It follows that
AIj[r (CI,DI) * l_[ Pr(c;) —AI:Ir (C'I,D1> * 1_[ Pr(c;)
1 i\ 2 i\ 2
=Pr (CpDr)* || J] Preea| = [] Prea
M ( ) ie[n]\IMl ie[n]\IMz

—~

Cubr)+ Y.

ieln\I

< Pr Pr(c;) — Pr(c;
=p (ci) Mz( i)

We observe that because Com is e-statistically hiding,
we have that ‘Per (ci) — Pray, (ci)’ < e. It follows that

2

ieln\I

< Le.

]I\’/[r(cl‘) - ]{’41;(01‘)

In summary, we obtain
A (CDg (M1,1),, CDg (M2, D)) =< Le.
O

Proof of Theorem 6. Suppose any p-bounded machine
A that interacts with interfaces Clock, PKI, SIG, and TS
and outputs (dat, store, E). For each signature scheme i €
SIG, construct a machine B; with the goal to break the
unforgeability of scheme i until time tf’ . B; in the signa-
ture unforgeability experiment gets as input a public key
pk and access to a signing oracle Sign. Its goal is to output
(m, s) such that S;.Verify(pk, m,s) = 1 and the oracle Sign
was not queried with m. B;, on input pk, does the follow-
ing. It runs A until time tf’ and simulates the environment
of A with the following difference. B; sets the public key
of signature scheme i to pk and whenever the simulation
of the experiment for A requires the generation of a sig-
nature for scheme i, B; requests the signature from the
oracle Sign. While A is running, 5; searches the outputs
of A for a valid message-signature-pair, where the mes-
sage has not been queried to the signing oracle thus far.
B; also uses the extractable-binding property of the com-
mitment schemes, as follows. Whenever, A queries the
timestamp service TS with a commitment, then B; uses
a pe-bounded commitment message extractor to extract
the corresponding messages out of A. Let L be an upper
bound on the maximum length supported by all the used
vector commitment schemes COM. Then, B; runs in at
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most pp, = p (tlb) * PE (tf’) * L? operations and adheres
to the computational model M ;.

We  observe that an evidence object E
is a tuple (SIG,s,CDTy, ...,CDTy), where
CDT; = (VC,-, ¢, dj, VC;, C;», d:, TS,;, tS,'). Define
CT; = (VC;, ¢, d;,TS;, tsi). The verification algorithm

of ELSA ensures that ts; is a valid timestamp for
(VGj,¢j, CTj,.. ., CTi—1), where j is the largest index such
that VG; # 1 andj < i. If V(; # L, then it also ensures
that d; is a valid opening of ¢; to (dat,SIG,s, CDT,
..., CDT;_1). It follows that in every run in which A out-
puts (dat, fsore, £) with Verify (PK, fyerify; dat, fsore, E) = 1
and dat € Q,,., there is at least one B; that wins its
unforgeability experiment before time ¢’ or at least
one of the extractors used by B; fails. Hence, the
probability that .4 breaks ELSA is upper bounded by

(Ciesic € (p5,)) + (ZieCOM € (P (’?) ' PE (tfj> P (tzb))>’
where COM denotes the set of commitment schemes and
SIG denotes the set of signature schemes of S. O
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