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Abstract

A new approach is proposed to quantitatively evaluate the binary detection performance of the biometric personal
recognition systems. The importance of correlation between the overall detection performance and the area under
the genuine acceptance rate (GAR) versus false acceptance rate (FAR) graph, commonly known as receiver
operating characteristics (ROC) is recognized. Using the ROC curve, relation between GARmin and minimum
recognition accuracy is derived, particularly for high security applications (HSA). Finally, effectiveness of any binary
recognition system is predicted using three important parameters, namely GARmin, the time required for
recognition and computational complexity of the computer processing system. The palm print (PP) modality is
used to validate the theoretical basis. It is observed that by combining different useful feature-extraction
techniques, it is possible to improve the system accuracy. An optimum algorithm to appropriately choose weights
has been suggested, which iteratively enhances the system accuracy. This also improves the effectiveness of the
system.

Keywords: False acceptance rate (FAR), Genuine acceptance rate (GAR), Receiver operating characteristics (ROC),
Area under the curve (AUC), Score level summing, Optimal weights algorithm (OWA)

1 Introduction
Extensive work has been done in the area of biometric
recognition using different traits such as face, finger
print, iris, voice, different hand-based modalities, gait,
etc. [1–4]. However, unimodal systems have their own
advantages and limitations. They require only one sensor
to acquire data. Therefore, the data acquisition becomes
less expensive and more user-friendly. They also require
limited signal processing time and less computational ef-
forts. However, the performance of any unimodal system
gets degraded due to several reasons like erroneous
database, spoofing attacks, etc. [5–7]. The unimodal sys-
tems provide lower values of genuine acceptance rate
(GAR) and low to middle range of accuracies [8–10].
The proposed work in this paper focuses on increasing
this low value of minimum value of genuine acceptance
rate (GARmin) for unimodal systems, with a view to

boost their accuracies. This is done using mathematical
modeling of signal detection performance and derivation
of accuracy in terms of GARmin for high security applica-
tions (HSA). In this paper, efforts are made for enhancing
the accuracy of palm print (PP)-based recognition using
different feature extraction techniques, such as use of dif-
ferent discrete wavelet transform (DWT) coefficients and
combinations of different DWT coefficients. Compared to
other traits, PP features have certain distinct advantages.
PP modality provides reasonably good recognition accur-
acy. PP authentication ensures advantages such as very
stable line features, low intrusiveness, and requires low
resolution imaging. As the palm area is much larger, more
distinctive features can be captured. [11–13].
The GARmin decides the detection performance of the

system. The paper clearly brings out the correlation be-
tween the system accuracy with area under the curve
(AUC) of its “GAR versus FAR characteristics,” commonly
known as receiver operating characteristics (ROC) of the
system. In order to validate theoretical concepts proposed,
PP modality is used. For PP modality, various feature
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extraction techniques are used to increase AUC of its
ROC characteristics. Further, an appropriate iterative
optimal weights algorithm (OWA) is suggested to fur-
ther enhance the accuracy of the system. Finally, ef-
fectiveness of any binary recognition system is
computed in terms of GARmin, recognition time, and
computational complexity.
The paper is organized as follows: after brief intro-

duction, Section 2 outlines the work done by other
researchers in this field. Section 3 is devoted for math-
ematical background for binary signal detection and
definition of effectiveness of the system. Section 4 elabo-
rates the proposed methodology for the biometric image
data acquisition, feature extraction, and feature mapping.
Section 5 includes the system effectiveness calculations,
analysis of the recognition performance, and the dis-
cussions on results, followed by conclusions.

2 Related work
Researchers have used different biometric traits for per-
sonal recognition purposes. As our focus is mainly on
enhancing accuracy of unimodal hand-based systems, we
have briefly reviewed research efforts, which reflect
accuracies obtained for specific hand-based modalities.
E. Wong et al. (2008) [14] and M. Dale et al. (2009)

[15] have worked on PP-based biometric recognition.
They have reported accuracy levels of 94.84% and 97%
respectively. Zhenhua Guo et al. (2011) [16] have used
(2D) PCA for PP feature extraction. They have obtained
an accuracy of 97.43%. Goh Kahong Michael et al.
(2012) [17] have described a contactless hand-based bio-
metric system. They have extracted features using direc-
tional coding techniques, and normalized hamming
distance has been used to find similarity between two
feature sets. For individual modality, they have obtained
GAR of 0.89 for hand geometry, 0.95 for PP, 0.75 for
knuckle finger print, and 0.96 for finger vein modality.
Kuang-Shyr Klu et al. (2013) [18] have used directional
filter bank for palm vein modality in their work. They
have quoted an accuracy of 99%. Sibi Sasidharan et al.
(2015) [19] have presented a paper in which they have
given analysis of various methods and algorithms that
identify the vein patterns for authentication purpose.
They have concluded that palm vein recognition using
neural network to be quite efficient and accurate. Ragha-
vendra et al. (2015) [20] have explored the idea of PP
recognition using a sparse representation of features ob-
tained from Bank of Binarized Statistical Image Features
(BSIF). Bank of BSIF that comprises of 56 different Bank
of BSIF filters whose responses on the given PP modality
image is processed independently and classified using
sparse representation classifier (SRC). In the given PP
sample, they obtained response on each of the Bank of
BSIF filter and then they obtained the corresponding

comparison score using SRC. Finally, they have selected
the best comparison score that corresponds to the mini-
mum value of the residual error. S. Khellat-Kihel et al.
(2016) [21] have mentioned GAR values of 0.927, 0.846,
0.547 for finger knuckle print, finger vein, and finger-
print modalities respectively. Kunal Kumar et al. (2016)
[5] have presented the strengths and weakness of
selected biometric mechanisms and recommend novel
solutions to include in multimodal biometric systems to
improve on the current biometric drawbacks. Gopala et
al. (2016) [6] have proposed fusion of PP, palm-phalan-
ges print (PPP), and dorsal hand vein (DHV) in their
paper. They have obtained GAR of 94% for PP, 98.2% for
PPP, 92% for DHV, and GAR of 99.6% for score level fu-
sion of PP-PPP-DHV. They have implemented score
level fusion with conventional operators like Yager’s or-
dered weighted averaging (OWA) operator and t norm
fusion operator. Shital Baghel et al. (2017) [7] have men-
tioned the drawbacks of unimodal systems compared to
multimodal systems. Gopal Chaudhary et al. (2017) [8]
have developed system using biometric trait, PPP. They
have used different feature extraction techniques such as
histograms of oriented gradients, Gaussian membership
function (GMF) feature, mean value, and average abso-
lute deviation method. Anchal Bansal et al. (2018) [9]
have presented a review of different features of finger-
print recognition systems. The invariant and discrimin-
atory information present in the fingerprint images are
captured using fingerprint ridges known as minutiae.
They have compared pattern recognition-based ap-
proach with wavelet-based approaches. Rupali L. et al.
(2014) [22] have proposed the score level fusion of face
and fingerprint modalities. Minutiae matching and Ga-
bor filter techniques have been used for fingerprint rec-
ognition and principal component analysis for face
recognition. After performing score normalization, score
level fusion was done using simple sum rule. They have
quoted an overall accuracy of 97.5% with FAR and FRR
of 1.3% and 4 .0 1% respectively. Assuming occurrence
of equiprobable hypotheses, this represents a percentage
accuracy of approx. 97.235%. Furthermore, FAR level
mentioned makes this approach not at all suitable for
HSA, which is the prime focus of the present paper.
Kamer Vishi et al. (2017) [23] have combined the nor-
malized scores obtained from finger-veins and finger-
prints modalities using different score level fusion
techniques. They have implemented four score fusion
approaches namely minimum score, maximum score,
simple sum, and user specific weighting. They have con-
sidered using user specific weighting because they found
that some biometric traits cannot be reliably obtained
from some people. Hence, they have given a lower
weight to a fingerprint score and a higher weight to a
finger-vein score to reduce the probability of a false
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rejection. However, it appears that the weight assign-
ment is rather on intuitive basis and not on any math-
ematical logic. As mentioned earlier, focus of the
proposed work in this paper is mainly on enhancing ac-
curacy of unimodal system so that it should be useful
for HSA or very, very low FAR applications. Further, it
may be observed that among various hand-based modal-
ities, PP modality gives reasonably good accuracy.
Therefore, focus of the proposed work is to explore the
techniques, which may be useful for further improving
the recognition accuracy of the PP modality based on lo-
gical, sound mathematical approach. The proposed uni-
modal system gives enhanced accuracy of 99.25% with
very low FAR level of 0.0001 which is substantially
greater than present day multimodal systems quoted
above. Before explaining image capture, processing, and
feature extraction, we introduce the mathematical basis
for binary signal detection, with a view to understand
the relationship between important parameters like
GARmin, ROC, accuracy, etc. in the following section.

3 Mathematical preliminaries
3.1 Mathematical background for binary signal detection
The problem of binary detection is formulated and ana-
lyzed in various signal detection and estimation books
[24, 25]. The simplest binary communication system is
shown in Fig. 1. A typical simple case consists of a single
observation of the received signal corrupted by additive
noise. The input signal is assumed to be in the binary
form with two distinct values “mo” and “m1,” corre-
sponding to two binary hypotheses, “H0” and “H1” re-
spectively. The received signal “r” can be expressed as,

r=Hi ¼ m=Hi þ noise i ¼ 0 or 1ð Þ ð1Þ

In the above Eq. (1), symbol “r/Hi” represents received
signal “r” assuming hypothesis “Hi” is true and symbol
“m/Hi” represents mean value of the received signal as-
suming hypothesis “Hi” is true. The last term “noise”

represents undesirable degradations due to fine dust, il-
lumination effects, blurring effects, etc. In this paper, it
is further assumed that overall effect of all degradations
due to central limit theorem of statistics leads to zero
mean Gaussian distribution with variance “σ2.” Further,
the probability density function (PDF) for the observed
signal can be expressed as,

P r=Hið Þ ≝ G mi; σ2
� � ð2Þ

In Eq. (2), symbol “ ” means equality in PDF and “G”
represents standard Gaussian distribution. For the sim-
plest example of binary hypothesis testing considered,
the generalized likelihood ratio test (GLRT) has been de-
rived as [24, 25],

GLRT ¼ P rjH1ð Þ
P rjH0ð Þ

H1
>
<
H0

γ ð3Þ

In Eq. (3), “γ” represents decision threshold. For the
simple case of single observation, the above equation
leads to,

r

H1
>
<
H0

γ ð4Þ

In Eq. (4), the term “γ” is given by Eq. (5).

γ ¼ σ2

m1
ln ηð Þ þm1

�
2 ð5Þ

In Eq. (3), signal value for the hypothesis “H0” has
been assumed to be zero (i.e., m0 = 0) for simplicity and
in Eq. (5), “η” represents ratio of occurrence of a priori
probabilities of two hypotheses H0 and H1. For equi-
probable hypotheses, “η = 1” and decision threshold be-
comes “γ =m1/2” which is expected.
The GAR can now be expressed as,

Fig. 1 The simplest binary communication system
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GAR ¼
Z∞

γ

P rjH1ð Þdr ð6Þ

Similarly, FAR can be expressed as,

FAR ¼
Z∞

γ

P rjH0ð Þdr ð7Þ

In biometric terms GAR and FAR are known as “True
Positive” and “False Positive” respectively. The ROC
curve represents plot of “GAR versus FAR” as value of
decision threshold “γ” is varied from very low value to
very large value. As “γ” threshold increases, both GAR
and FAR get reduced. In this case, we follow the test
suggested by Neyman-Pearson (NP) [24], in which deci-
sion threshold is pre decided by level of maximum FAR
permissible in the application. In this method, GAR is
maximized for the stipulated value of FAR. In high se-
curity applications, value of FAR ≤ 0.0001 (maximum of
one among 10,000 samples may be falsely acceptable).
Hence, we set our threshold based on equation no. (7),
with FAR = 0.0001.
Typical ROC characteristics for the simplest case are

shown in the Fig. 2, where typical signal values, m5 >
m4 >m3 >m2 >m1 are used and “m0” is assumed to be
zero. The ideal characteristics would be GAR = 1 and

Fig. 2 ROC curves for different signal values

Fig. 3 Data acquisition system
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FAR = 0 and the worst scenario, GAR = FAR which is di-
agonal solid line marked as “Worst Performance” in
Fig. 2. It is observed that as the signal value increases,
the ROC curve shifts toward the ideal curve and the de-
tection performance improves [24].
The error in the binary system can be defined as,

Er ¼ P0 � false acceptance rateð Þ þ P1 � genuine rejection rateð Þ½ �
ð8Þ

In Eq. (8), genuine rejection rate (GRR) represents
false negative for biometric system. Further, P0 and P1
represent a priori probabilities of hypotheses H0 and H1

respectively. Assuming two hypotheses to be equally
likely, i.e., P0 = P1 = ½, the error situation can be
expressed as,

Er ¼ FARþ GRRð Þ=2 ð9Þ
The detection accuracy can be expressed as,

Accuracy ¼ 1−Erð Þ ð10Þ
For the simple equiprobable binary hypothesis, Eq.

(10) leads to,

Accuracy ¼ 1−
FARþ 1−GARð Þð Þ

2

� �
ð11Þ

Further, for high security applications, where FAR is
very small compared to GAR, above Eq. (11) approxi-
mates to,

Percentage accuracy min: ¼ 1
2

1 þ GAR min:ð Þ
� �

� 100%

ð12Þ

It is readily seen from the ROC that GARmin is the
value of GAR, at which the ROC curves depart from
FAR = 0 (i.e., Y-axis) tangentially. Further, as a value of
AUC (0.5 < AUC < 1.0) increases, the value of GARmin

also increases, which leads to accuracy enhancement.
For the worst scenario, GARmin = 0. For ideal scenario,
GARmin approaches to 1. Thus the accuracy level in-
creases from 50 to 100%. One more commonly used
method in binary recognition is equal error rate (EER)
method, i.e., FAR =GRR. In this case, for equiprobable
hypotheses, the accuracy in % units can be expressed as,

Percentage accuracy ¼ 1−GRRð Þ � 100 ð13Þ
Percentage accuracy ¼ GARð Þ � 100 ð14Þ

However, in this case, GAR has to be determined at
the EER point. In this paper, as our main focus is on
high security applications, we use only NP test ex-
plained above and evaluate the percentage accuracy
using Eq. (12).

3.2 System effectiveness
The term “system effectiveness є” represents the quanti-
tative measure of effectiveness of biometric recognition
system, which can be defined as follows,

System effectiveness εð Þ ¼ GAR min: � t max:

t

� �
� Cc

ð15Þ
In Eq. (15), “tmax” represents maximum permissible

time as per system requirements stipulated and “t”

Fig. 4 Enhanced palm prints ROI images
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represents actual time required for recognition process.
Further, “CC” represents the hardware complexity of the
computer configuration used. Effectiveness of the system
increases with increase in “GARmin” which enhances the
recognition accuracy and with reduction in the actual
recognition time t. The system effectiveness also in-
creases with increase in complexity of the computer
configuration used. The higher the value of system ef-
fectiveness, the better will be the biometric system.
With above analytical background and definitions, we

now consider the image acquisition, feature extraction
techniques, and features mapping techniques used for
the biometric recognition system.

4 Image data acquisition, feature extractions, and
feature mapping techniques
4.1 Image capture process
The data acquisition system (DAS) has been designed,
developed, and fabricated. Regarding this DAS and the
required image pre-processing, we have explained in de-
tail in our paper published during the Conference on
Advances in Signal Processing (CASP), 2016 [11]. DAS
to extract PP modality is shown in Fig. 3. Webcam with
medium resolution 640 × 480 has been used to acquire
images and database of 150 users has been created. In
this case, all 150 users were asked to wash/clean their
hands before image capture process. This ensures that
the database was reasonably error free data and only
noise during capture can lead to the degradation of im-
ages. For every user, ten images of PP modality have
been captured. Extraction of PP ROI has been discussed
in detail in the paper published during International
Conference on Electronics and Communication Systems
(ICECS), 2014 [12]. The enhanced ROIs for palm print
images are shown in Fig. 4. The biometric feature ex-
traction is discussed in the following subsection.

4.2 Techniques for palm print feature extraction
Two techniques namely Harris Corner Detector (HCD)
and DWT are used for feature extraction. These tech-
niques are briefly discussed below:

4.2.1 Feature extraction using HCD
HCD algorithm was used to extract palm print fea-
ture vector [26]. Algorithm is stepwise explained in
the following.

Step 1: Compute X and Y derivatives of image by
convolving image “I” with Prewitt operator.

Ix ¼ Gx
σ � I; Iy ¼ Gy

σ � I ð16Þ

In Eq. 16, Gx
σ ¼ Prewitt vertical edge operator and Gy

σ
¼ Prewitt horizontal edge operator

Step 2: Compute products of derivatives at every pixel.

I2x ¼ Ix:Ix; I2y ¼ Iy:Iy; IxIy ¼ Ix:Iy ð17Þ

Step 3: Compute the sums of the products of
derivatives at each pixel.

Ix2 ¼ Gσ0 � I2x; Iy2 ¼ Gσ0 � I2y; Ixy
¼ Gσ0 � IxIy ð18Þ

In Eq. (18), Gσ’ = Gaussian filter

Fig. 5 Palm print with corners and its binary matrix
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Step 4: Define at each pixel (x, y) the matrix.

M ¼ Ix2 x; yð Þ Ixy x; yð Þ
Ixy x; yð Þ Iy2 x; yð Þ

� �
ð19Þ

Step 5: Compute the “response” of the detector at each
pixel.

R ¼ Det Mð Þ−K Trace Mð Þð Þ2 ð20Þ

In Eq. (20), “K” is a constant, which lies in between
the range 0.04 to 0.07 [12, 26]. All pixels that have
scores greater than a certain threshold value “R” have
been marked as the “Corner points or Tracking points”
on the ROI of palm print image. We have taken the size
of this ROI 256 by 256 pixels. Number of corner points
lies in between 12 and 16 depending upon the value of
“K” [12, 26]. These corner points have been mapped
from ROI of 256 by 256 pixels into a binary matrix of
size 8 × 8, as shown in Fig. 5. Thus, PP feature vector
has been created. HCD has few limitations. HCD con-
sumes substantial time to detect the corners. Further, as
HCD uses spatial domain processing, the accuracies may
be adversely affected due to intensity artifacts, rotation
effects, degradation effects, etc.

4.2.2 Palm print feature extraction using DWT
The methodology for extraction of DWT features has
been explained in detail in Pallavi Deshpande et al. [11].
As indicated therein, two vectors of size 25 × 54, one for
the approximate coefficients and the other for horizontal
coefficients for each of the image, are stored in the data-
base. In this paper, a novel algorithm for optimally choos-
ing the weights of the approximate and horizontal
coefficients to create a final feature vector of the PP image
is proposed to enhance the accuracy of the system. Fur-
ther, empirical-based technique and optimal-based
“optimum weights algorithm” are used to decide the
weights of approximate and horizontal coefficients in the
combined feature vectors to boost the accuracy.

4.3 Feature matching
4.3.1 Methodology for mapping HCD features
Feature vector, i.e., binary matrix of new user (size 8 by
8), is compared with every stored feature matrix (each of
size 8 by 8) in the training database. Logical “AND” op-
eration between this new user’s matrix is done with each
and every feature vector/matrix present in the database.
For genuine user, maximum number of 1’s will be ob-
tained through this logical ANDING operation in the
output matrix. Finally, summation of all 1’s in the output
matrix will give the overall score. The maximum score
gives best match as shown in Fig. 6 [12].

Fig. 6 Logical AND operation performed on two binary matrices
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a

b

Fig. 7 a ROC curves plotted using approximate and horizontal wavelet coefficients for PP modality. b ROC curves plotted using vertical and
diagonal wavelet coefficients for PP modality

Fig. 8 ROC of palm print modality for both the databases using approximate coefficients only
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4.3.2 Methodology for mapping DWT features
In this case, the Euclidean distance (E.D.) is computed
between the new user’s DWT feature vector of size 25 ×
54 and every stored DWT feature vector (of size 25 × 54)
in the database using Eq. (21),

E:D: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
i ¼ 1

xi‐yið Þ2
vuut ð21Þ

In this case, “x1, x2 …. xn” represent coefficients from
feature vector of new user and “y1, y2 … yn” represent
coefficients from feature vector of stored palm print and
“L” represents size of feature vector which is of size 25 ×
54. The minimum Euclidean distance gives the best
match.

4.4 Methodology for accuracy prediction
Different techniques are used to create feature vectors
for the proposed PP based biometric system. Their ac-
curacy estimation methods are given below.

4.4.1 HCD technique-based biometric recognition system
For the HCD features, considering the correct assess-
ment of GAR using the acquired database, GARmin has
been estimated as 0.9536. This is based on the entire
mapping process carried out within the database, where

out of 220 images, the exact match was found for 210
images. For rest of the ten images, there was mismatch,
thus giving GARmin. 0.9536. Based on this, accuracy for
high security applications works out to 97.68% using Eq.
(12). Even though the above accuracy appears to be
good, due to need for pixel by pixel mapping and totally
spatial domain signal processing, as mentioned earlier,
the HCD would be more likely to degrade the accuracy
performance further. The DWT, on the other hand, has
some distinct advantages.
DWT technique uses joint time–frequency domain ap-

proach, hence pixel by pixel comparison is not required.
Further, the degradations due to rotation, size, and
brightness effects are much less severe for DWT [13,
27]. Typical ROC curves for PP modality using DWT
technique are plotted for acquired error free database of
150 users and are shown in Fig. 7a, b. All four types of
DWT coefficients (i.e., approximate, horizontal, vertical,
and diagonal) are extracted and ROCs are plotted for all
four types of DWT coefficients. After comparing ROC
characteristics of all four types of DWT coefficients, it
can be readily seen that a ROC for approximate coeffi-
cients is very close to the ideal ROC curve (AUC lies in
between 0.95 and 1.0). ROCs for vertical and diagonal
coefficients are far away from the ideal curve (in fact
they are nearer to the worst scenario, i.e., AUC equals to
0.50). The ROC curve for horizontal coefficient lies in

Fig. 9 ROC of palm print modality for both the databases using horizontal coefficients only

Table 1 Comparison using three feature extraction techniques

Sr.
No.

Method used Acquired database COEP database

GARmin Accuracy GARmin Accuracy

1 Harris Corner Detector 0.9536 97.68% – –

2 DWT with approximate coefficients 0.972 98.60% 0.975 98.75%

3 DWT with horizontal coefficients 0.940 97.00% 0.950 97.50%
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between the two extremes. Therefore, it is proposed to
use “only approximate coefficients” or “only horizontal
coefficients” or “the combination of approximate plus
horizontal coefficients” for the formation of the feature
vectors. Analysis and further enhancing accuracy using
approximate and horizontal DWT coefficients is dis-
cussed in the following subsection.

4.4.2 Feature vectors using “only approximate” DWT
coefficients-based biometric recognition system
Using feature vectors based on only approximate DWT
coefficients, as per methodology discussed in Section
4.2.2, ROCs for our acquired PP database of 150 users
and the standard PP database provided by College of En-
gineering, Pune (COEP) are shown in Fig. 8. As ex-
plained earlier, tangential departure of the ROC from
FAR = 0 (i.e., Y-axis) gives the values for GARmin and
AUC values.
Following performance level can be determined using

the ROC curve plotted for our own acquired database.

� AUCAPP = 0.975
� GARmin = 0.972
� Accuracymin = 98.60% using Eq. (12)

For benchmarking purposes, the standard publically
available COEP database is used. (http://www.coep.
org.in/resources/coeppalmprintdatabase). This data-
base consists of eight different images of single user
having resolution of 1600 × 1200 pixels per image.
The database consists of total 1344 images pertaining
to 168 users. Figure 8 also includes ROC of the palm
print modality using COEP database. Following per-
formance level can be determined using the ROC
curve.

� AUCAPP = 0.98
� GARmin = 0.975
� Accuracymin = 98.75%

4.4.3 Feature vectors using “only horizontal” DWT
coefficients-based biometric recognition system
Using identical approach as explained in Section 4.2.2
ROCs are plotted using only horizontal DWT coeffi-
cients. The ROC curves for both the databases are
shown in Fig. 9. The parameters namely AUCHPP and
GARmin are determined and accuracy is calculated using
Eq. (12) for acquired database as shown below.

� AUCHPP = 0.9211
� GARmin = 0.94
� Accuracymin = 97.00%

Similarly, Fig. 9 also includes ROC of the palm print
modality for COEP database. Following performance
level is determined using the ROC curve.

� AUCHPP = 0.94
� GARmin = 0.95

Fig. 10 Flow chart indicating sequence of iteration process
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� Accuracymin = 97.50%

Table 1 shows GARmin and accuracy values using three
feature extraction techniques for PP recognition. Com-
paring the accuracies for DWT features for our database
and COEP standard database, it is seen that our algo-
rithm gives comparable performance levels for both da-
tabases. This indicates that the algorithm proposed can
very well be used irrespective of database. As accuracies
predicted for our own database (which is error free data-
base) and COEP database are almost same, it also sug-
gests that COEP database is also fairly clean and error
free database.
The accuracies indicated in Table 1 are good. However,

in order to further boost accuracies, “Empirical method”
or “OWA” can be used. These methods are discussed in
the following subsections.

4.5 Performance prediction using combination of feature
vectors
Two different methods namely “OWA” and “Empir-
ical method” are discussed below to combine ap-
proximate and horizontal DWT coefficients to create
new feature vectors in order to boost accuracy of
the system.

4.5.1 Performance prediction using analytical approach
Suppose there are “n” coefficients be combined, the gen-
eralized formulation to decide the weights of coefficients
of the system can be expressed as

Wn ¼ ∝� AUCn with;
XN

n¼1
Wn ¼ 1 ð22Þ

In Eq. (22), each of Wn (0 <Wn ≤ 1) represents weight
for the nth coefficient with AUC for ROC curve denoted
by AUCn (0.5 < AUCn ≤ 1). In our case, we consider only
two coefficients, approximate and horizontal. Therefore,
N = 2. For deciding optimum values of weights W1APP and
W2HPP, areas under two ROCs of acquired database
(shown in Figs. 7 and 8 respectively) are to be considered.

The proportionality constant “α” can now be determined
using

W 1APP þW 2HPP ¼ 1 ð23Þ

Above Eq. (23) leads to the equation,

Wn ¼ AUCnPN
1 AUCn

ð24Þ

In the proposed system, considering AUCAPP = 0.975,
AUCHPP = 0.9211, we get α = 0.5291005291, giving values
of W 0

1App ¼ 0:5132275132 andW 0
2HPP ¼ 0:4867724868.

We now commence our iteration process for the zer-
oth iteration (i = 0) with above values of W 0

1APP and
W 0

2HPP By using these weights, area under the revised
ROC curve (AUC0) was 0.9720 and GARmin was mea-
sured as 0.9800. This results in accuracy of 99.00% using
Eq. (12). The performance can be further improved
through series of iterations as illustrated below.
For this, it was observed that AUCAPP > AUCHPP.

Therefore, we go on increasing weight of approximate
coefficients “W 0

1APP ” in small positive steps (Δ = 0.05) in
each iteration and weight of horizontal coefficients “

W 0
2HPP” has to be decreased appropriately.
The general equations for iterations are as follows.

Wiþ1
1APP ¼ Wi

1APP þ Δ ð25Þ

and

Table 2 Summary of parameters at different iterations for our acquired database

Sr. No. of iteration (i) Wi
1APP Wi

2HPP GARmin % of minimum accuracy achievable Performance

0 0.513227513 0.486772487 0.9800 99.00 Good

1 0.563227513 0.438172487 0.9810 99.05 Good

2 0.613227513 0.389572487 0.9810 99.05 Good

3 0.663227513 0.340822487 0.9810 99.05 Good

4 0.713227513 0.292072487 0.9820 99.10 Better

5 0.763227513 0.243247487 0.9820 99.10 Better

6 0.813227513 0.191322487 0.985 99.25 Best

7 0.863227513 0.144422487 0.9820 99.10 Better

8 0.913227513 0.09522386 0.9810 99.05 Good

Table 3 Results obtained for different combinations of weights

Sr. No. ESUMPP Our acquired database

GARmin Accuracy Performance

1 [(0.5 × EAPP) + (0.5 × EHPP)] 0.9810 99.05 Good

2 [(0.6 × EAPP) + (0.4 × EHPP)] 0.9810 99.05 Good

3 [(0.7 × EAPP) + (0.3 × EHPP)] 0.9820 99.10 Better

4 [(0.8 × EAPP) + (0.2 × EHPP)] 0.984 99.20 Best

5 [(0.85 × EAPP) + (0.15 × EHPP)] 0.9810 99.05 Good
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Wiþ1
2HPP ¼ Wi

2HPP−Δ� AUCi ð26Þ

In Eqs. (25) and (26), Wi + 1 represents the weight
assigned for (i + 1) iteration, where i = 1, 2, 3, 4….. repre-
sents the iteration sequence number and AUCi repre-
sents area under the corresponding ROC curve after ith
iteration. After each iteration, two parameters namely
AUC and the new value of GARmin with revised ROC
are determined. Using the GARmin, the accuracy predic-
tion is done using Eq. (12). It is observed that after every
iteration, the accuracy goes on increasing. Iteration
process is continued until accuracy reaches to max-
imum. After this, any further increase in W1APP leads to
reduced value of GARmin which decreases the accuracy.
We stop the iteration process at this point. Typical se-
quence of iterations is depicted in Fig. 10. The iteration
process implemented is illustrated in the following.

4.5.1.1 First iteration Let us take i = 1. Take the previ-
ous value of W 0

1APP = 0.5132275132 and Δ = 0.05. Using
Eq. (25), we get W 1

1APP = equal to 0.563227513. Using
Eq. (26), we get W 1

2HPP equal to 0.438172487. Using
these new weights, the new revised ROC was plotted
and the area under this new ROC curve (AUC1) was
0.9720 and GARmin was measured as 0.9810, giving an
accuracy of 99.05%. To improve the accuracy further, we
continued the same process in second iteration.

4.5.1.2 Second iteration To explore further improve-
ment possible, the weight for approximate coefficients
was further increased by Δ = 0.05 to W 2

1APP ¼ 0:61322
7513 . Following exactly identical procedure, as in the
first iteration, the new weights are determined as,

W 2
1APP ¼ 0:613227513 and W 2

2HPP
¼ 0:389572487

Using these new weights, the new ROC was plotted
and the area under this new ROC curve (AUC2) was
0.9750 and GARmin was measured as 0.9820, giving an
accuracy of 99.10% which is marginally higher than the
accuracy obtained in the first iteration. This process has
been continued further. Table 2 shows the summary of
the number of iterations carried out.
From Table 2, it can be observed that values of weights

for the 6th iteration yields the highest maximum accu-
racy. Beyond this, the accuracy decreases for the sub-
sequent iterations. Hence, those values of weights are
considered as optimal values. Hence, the optimum
values of the weights after 6th iteration are as follows,
W 6

1APP = 0.813227513 and W 6
2HPP = 0.191322487.

Using these new weights, the new ROC was plotted
and the area under this new ROC curve was 0.9776 and
GARmin works out to be 0.9885, giving an accuracy of
99.25%, which is the highest possible value of the accu-
racy of the system. Based on the above optimum weight
algorithm, Sum rule is,

ESUM ¼ 0:813227513�WAPPð Þ þ 0:191322487�WHPPð Þ
ð27Þ

4.5.2 Weights selection using empirical method
In addition to analytical method, one can use simple em-
pirical method to decide the weights. The simple
method is described in the following. After feature ex-
traction, score normalization is done using “Z score”
normalization technique [4]. In order to increase the ac-
curacy of the system, the horizontal and approximate
normalized scores are combined with the following sum-
ming rule:

Table 4 Comparison between two configurations

Sr. No. Parameters Configuration 1
Dell Inspiron N5050

Configuration 2
HP Pavilion 15 cc134tx

1 Processor used Intel I3 2350M Intel Core i7

2 Clock speed 2.3 GHz 4.0 GHz

3 Processor generation 2nd generation 8th generation

Table 5 Mapping time required using approximate plus horizontal coefficients

Sr.
No.

Acquired database
(approximate + horizontal
coefficients)

Mapping time required per image in seconds

Configuration 1
Dell Inspiron N5050

Configuration 2
HP Pavilion 15 cc134tx

1 60 users (60 × 6 = 360 hands) 1.88625 0.96312

2 100 users (100 × 6 = 600 hands) 2.99375 1.49687

3 150 users (150 × 6 = 900 hands) 4.115625 2.15781

Deshpande et al. EURASIP Journal on Information Security          (2019) 2019:6 Page 12 of 16



ESUM ¼ W 1APP � NSAPPð Þ þ W 2HPP � NSHPPð Þ½ �
ð28Þ

In Eq. 28, W1APP and W2HPP are the weights empiric-
ally chosen for normalized scores of approximate
(NSAPP) and horizontal (NSHPP) coefficients of PP mo-
dality respectively. Here, we start with equal weights
W1APP =W2HPP = 0.5. Comparing the two ROC curves,
we know that AUCAPP > AUCHPP. Therefore, weight of
approximate coefficients is increased in the step of 0.1
and weight of horizontal coefficients is decreased ac-
cordingly. For each step, the new ROC is plotted and
GARmin is determined. The accuracy is determined using
Eq. 12. The results of GARmin and accuracy for different
empirical choices of W1APP and W2HPP are indicated in
Table 3.
From Table 3, it can be observed that GARmin and

accuracy values appear to be best for the following rule:

ESUM ¼ 0:8� NSAPPð Þ þ 0:2� NSHPPð Þ½ � ð29Þ
It is readily observed that the above weights based on

empirical method are fairly closer to the weights sug-
gested by “OWA” in Section 4.5.1.

4.6 Evaluation of the system effectiveness
Time required for extracting palm print features of a
new users’ hand image is observed to be approximately
3 se. After feature extraction, the average feature map-
ping time has also been recorded. While taking average,
20 iterations are done and average time of these twenty
iterations is recorded. The average mapping time varies
according to database size (i.e., 60, 100 or 150 users) and
also depends upon the computational complexity in the
hardware used. Comparison between the two configura-
tions from hardware complexity view point is depicted
in Table 4 below.

All the other parameters such as type of display, Cache
memory, RAM/ROM sizes, etc. are not relevant for our
application and therefore not considered for complexity
estimation. Here, clock speeds for the two configurations
are different. Cost for the two configurations would vary
substantially and it would also depend upon local taxes,
duties, etc. Therefore, the cost is not included in de-
ciding Cc values. We determine the computational
complexity “Cc” factor as follows:

Cc for configuration 1 ¼ Dell Inspiron N5050 ¼ 1:0
Cc for configuration 2 ¼ HP Pavilion 15 cc134tx

¼ 4GHz=2:2GHz ¼ 1:8181

Tables 5 and 6 show the mapping time required for
the two main feature extraction techniques namely, only
approximate DWT coefficients and combined approxi-
mate plus horizontal DWT coefficients using above con-
figurations. These two configurations were used for
system effectiveness calculations as the two configura-
tions were readily available with us at our research cen-
ter. Form Tables 5 and 6, it is seen that there is very
small difference between mapping times for DWT
methods using “only approximate coefficients” and using
combined “approximate plus horizontal coefficients” for
two different configurations. But the accuracy prediction
results indicate that there is some definite improvement
in accuracy when both “approximate and horizontal co-
efficients” are combined (refer serial no. 6 from Table
no. 2).
It can be seen from Tables 5 and 6 that mapping time

varies as per size of database. As expected, the mapping
time increases if size of the database is increased from
60 to 100 and from 100 to 150. Therefore, system effect-
iveness calculations will also change as per the size of
the database. Just for illustration, a system effectiveness

Table 6 Mapping time required using only approximate coefficients

Sr.
No.

Acquired database
(approximate coefficients)

Mapping time required per image in seconds

Configuration 1
Dell Inspiron N5050

Configuration 2
HP Pavilion 15 cc134tx

1 60 users (60 × 6 = 360 hands) 1.77797 0.88998

2 100 users (100 × 6 = 600 hands) 2.96562 1.48281

3 150 users (150 × 6 = 900 hands) 3.948437 1.995618

Table 7 Summary of results for CC = 1.0

Sr.
No.

Technique used GARmin t in seconds System effectiveness
for CC = 1.0CC = 1.0

1 DWT with approximate coefficients 0.972 2.96562 1.6387804

2 DWT with horizontal coefficients 0.940 2.96560 1.5848394

3 DWT with approximate and horizontal coefficients 0.985 2.99375 1.6450939
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calculation for the database of 100 users is shown in the
next section.

5 Results and discussion
Based on the approach described in Section 4 above, the
summarized results are presented in what follows.
Further illustrative results for database of 100 users only
are included.

5.1 System effectiveness calculations for N = 100
Tables 7 and 8 summarize the results for system effect-
iveness for database of 100 users for the two configura-
tions CC = 1.0 and CC = 1.8181 respectively. As discussed
in Subsection 3.2, we use Eq. (15) for system effective-
ness calculations.
It is clearly seen from Table 8 that when the “configur-

ation 2” computing facility is used for combined “ap-
proximate and horizontal coefficients” technique with
the use of weight optimization algorithm, the effective-
ness increases to 5.9818. This is due to substantial
higher clock frequency of configuration 2, as compared
to configuration 1.

5.2 Performance prediction using combination of feature
vectors-based biometric recognition system
Figure 11 shows ROC of the palm print modality using
both approximate and horizontal coefficients as per “op-
timal weights algorithm.”

� AUCPP = 0.9776
� GARmin = 0.985
� Accuracymin = 99.25%

Similar procedure was also carried out for COEP data-
base for validation and benching marking of the optimal
weights algorithm. Figure 11 also shows ROC of the
palm print modality using both approximate and hori-
zontal coefficients using optimum weights algorithm.

� AUCPP = 0.97
� GARmin = 0.984
� Accuracymin = 99.20%

System gives an enhanced accuracy of 99.25% using
this “optimal weights algorithm.” From the above dis-
cussions, it can be seen that ROC and accuracy of PP
modality using combined approximate and horizontal

Table 8 Summary of results for CC = 1.8181

Sr.
No.

Technique used GARmin t in seconds System effectiveness
for CC = 1.8181CC = 1.8181

1 DWT with approximate coefficients 0.972 1.48281 5.9589

2 DWT with horizontal coefficients 0.940 1.44232 5.9245

3 DWT with approximate and horizontal coefficients 0.985 1.496875 5.9818

Fig. 11 ROC of palm print modality for both the databases using optimal weights algorithm for approximate and horizontal coefficients
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coefficients are certainly better than ROC and accuracy
of palm print modality using only approximate coeffi-
cients or using only horizontal coefficients. The summa-
rized results using different techniques using our own
database and also using a publically available COEP
database are depicted in Table 9. It may be seen from
Table 9 that our proposed “optimum weights algorithm”
gives same enhanced accuracies using acquired database
as well as COEP database. Further, we make use of only
two techniques indicated at serial no.3 and serial no.4
(refer to Table 9) as they provide best possible accur-
acies. It is proposed to use optimum weight algorithm
with values of 0.81 for the approximate coefficients and
0.19 for horizontal coefficients, as it would provide best
possible percentage accuracy.

6 Conclusion and future scope
The paper provides a mathematical basis for evaluating
the accuracy of the biometric recognition system. This
paper clearly brings out a strong correlation between the
detection accuracy of the system with the area under the
curve (AUC) of its ROC. It has been shown that combin-
ing various useful DWT features leads to enhancement in
accuracy. Use of iterative optimal weights algorithm
(OWA) is proposed to further improve the accuracy of
the system. Testing, validation, and benchmarking of the
algorithm are done using the acquired database, as well as
with standard publically available COEP database. The
proposed system gives enhanced accuracy of 99.25% with
very low FAR level of 0.0001. This represents fairly accur-
ate and significantly user-friendly biometric system, suit-
able for higher security applications. Even though we have
used the algorithm only for combining the two types of
coefficients, the proposed optimization algorithm may be
very effectively used for combining different normalized
scores of any multimodal (N > 2) biometric recognition
system, with a view to boost the accuracy and increase the
effectiveness of multimodal systems. Further, one can also
consider systematically extending the procedure to more
number of modalities using the standard principles of
mathematical induction.
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