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Abstract

This paper first gives a regularity theorem and its corollary. Then, a new construction of generating hard random
lattices with short bases is obtained by using this corollary. This construction is from a new perspective and uses a
random matrix whose entries obeyed Gaussian sampling which ensures that the corresponding schemes have a
wider application future in cryptography area. Moreover, this construction is more specific than the previous
constructions, which makes it can be implemented easier in practical applications.
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1 Introduction
A lattice has a typical linear structure and some problems
about it have been proven to be NP-hard. Many exciting
developments in lattice-based cryptography have occurred
in the past few years [1–10], and there has been renewed
interest in lattice-based cryptography as prospects for a
real quantum computer improve. As is well known, some
lattice-based cryptosystems can be resistant to attack by
both classical and quantum computers. But the basic
problems about short bases and short vector are studied
in only a few papers [11–14]. But such problems occupy
an important place in the study on lattice-based cryptog-
raphy. And more researches are based on these basic
problems.
Ajtai’s seminal work [15] in the lattice-based cryptog-

raphy demonstrated a random class of lattice whose ele-
ments could be generated along with a short vector in
them for which finding a short nonzero vector in the
random lattice is at least as hard as finding the length of
a shortest nonzero vector for any random lattice, and is
at least as hard as finding a basis for the random lattice
in 1996. And he showed how to generate a hard random
lattice with knowledge of one relatively short nonzero
lattice vector which can be used as secret information in
cryptography applications. In addition, Ajtai also had

given the reductions of some hard problems on the
lattice.
In 1999, Ajtai also demonstrated an entirely different

method of generating a random lattice along with a short
basis based on his previous studies [11]. His algorithm
had an important property that the resulting lattice is
drawn, under the appropriate distribution, from the hard
family defined in [15]. Interestingly, the algorithm appar-
ently went without application until recently, when Gen-
try, Peikert, and Vaikuntanathan constructed several
provably secure cryptographic schemes that crucially use
the short bases as the secret keys [16].
Alwen and Perkert revisited the problem of generating

a hard random lattice with a relatively short basis [12] in
2011. They elucidated and modularized Ajtai’s basic ap-
proach for generating a hard random lattice with a rela-
tively short basis. They endeavored to give a top-down
exposition of the key aspects of the problem and the
techniques. They have based the algorithm around the
concept of the Hermite normal form.
Micciancio and Peikert then gave the methods for gen-

erating and using “strong trapdoors” in cryptographic
lattices [7]. Their methods involved a kind of trapdoor
and included specialized algorithms for inverting LWE,
randomly sampling SIS preimages, and securely delegat-
ing trapdoors. The trapdoor generator strictly subsumed
the prior ones of [11, 12], in that it proves the main the-
orems from those works.
We construct a new hard random lattice together with

a relatively short basis from a new perspective in this
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paper. Firstly, we give and demonstrate a useful theorem
called regularity theorem, which plays an important role
in the cryptography area. Before this, we get that after
proper matrix elementary transformations, any random
matrix uniformly on Zk�l1

q can be written a special

matrix whose first k columns consist an identity matrix
and the other columns are uniformly on Zk

q . Further-

more, we can learn from the theorem that the result
matrix of the above special matrix right multiplied by a
matrix whose entries follow Gaussian distribution is a
uniform matrix. Then, by using the regularity theorem,
we give our simple, wider applied, and more particular
algorithm in which Gaussian distribution is used. Then,
the concrete expression of each matrix in our algorithm
is given. Lastly, we give the analysis of the short basis in
our algorithm.

2 Preliminaries
Some notations are given in this section that will be
used throughout the paper. We denote the integer ring
by Z and the modular q residue ring by Zq. For any real
x, the largest integer not greater than x is denoted by
⌊x⌋. For a vector x = (× 1, ···,xn), ⌊x⌋ is defined as (⌊× 1⌋,
···, ⌊xn⌋). We write log for the logarithm to the base 2,
and logq when the base q is any number possibly differ-
ent from 2. A negligible amount in n is defined as an
amount that is asymptotically smaller than n−c for any
constant c > 0. Also, when we say that an expression is
exponentially small in n, we mean that it is at most
2−Ω(n). Finally, when we say that an expression is expo-
nentially close to 1, we mean that it is 1 − 2−Ω(n).
All the k-dimensional vectors over a domain D are

written by Dk. Similarly, (D)m × n denotes all m by n
matrices whose entries belong to D. The Euclidean norm

of a vector x = (x1,⋯, xn) ∈ R
n is kxk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

x2i
r

, and the

associated distance of two vectors x and y is dist(x, y)=
‖x − y‖. The distance function is extended to sets in a
customary way: dist(x, S) = dist(S, x)= miny ∈ S dist(x, y)
where x is a point, S is a set, and y ∈ S. We often use
matrix notation to denote sets of vectors. For example,
the matrix S ∈ Rn ×m represents the set of n-dimensional
vectors s1, ⋯, sm, where s1, ⋯, sm are the columns of S.
[A | B] denotes a block matrix whose left part is A and
the right part is B. We denote the maximum norm of
the column vectors in S by ‖S‖ and the number of all
elements in S by |S|. For the vectors x = (x1,⋯, xn) and
y = (y1,⋯, yn) in Rn, 〈x, y〉 denotes the inner product of x
and y, that is, 〈x, y〉 = ∑ixiyi. The linear space spanned
by a set S of m vectors s1, ⋯, sm is denoted by span
(S) = {∑ixisi : xi ∈ Rfor 1 ≤ i ≤m}. For any set of n linearly
independent vectors in S, we define the half-open paral-
lelepiped as PðSÞ ¼ fPixisi : 0≤xi < 1 for 1≤ i≤n g .

Random matrix is a matrix whose each entry is chosen
randomly from some set.
We now review some basic definitions of lattice. A lat-

tice in Rn is defined as the set of all integer combinations
of n linearly independent vectors. This set of vectors is
known as a basis of the lattice and it is not unique.
Definition 21. [15] An n-dimensional lattice A is the

set of all integer combinations

Λ ¼ L Bð Þ ¼
Xn
i¼1

xibi : xi∈Z for 1≤ i≤n

( )

of n linearly independent vectors b1, ⋯, bn in Rn.
The set of vectors b1, ⋯, bn is called a basis for the

lattice. A basis can be represented by the matrix B = (b1,
⋯, bn) ∈ R

n × n having the basis vectors as its columns.
The lattice generated by B is denoted L(B). Notice that
L(B) = {Bx : x ∈ Zn}, where Bx is the usual matrix-vector
multiplication.
For any lattice basis B B and point x, there exists a

unique vector y ∈ P(B) such that y − x ∈ L(B). This vector
is denoted by y = xmod B, and it can be computed in
polynomial time when given B and x.
The dual of a lattice Λ in Rn, denoted ΛV, is the lattice

given by the set of all vectors y ∈ Rn such that 〈x, y〉 ∈ Z
for all vectors x ∈Λ.
We now recall some about Gaussian measures.
Definition 22. [17] For any vectors c, x and any r > 0, let

ρr;c xð Þ ¼ e−π x−cð Þ=rk k2

be a Gaussian function centered in c scaled by a factor
of r and normally let c = 0.

Note that
Z
x∈Rn

ρr;cðxÞ ¼ rn . Hence, Gaussian distribu-

tion around c with parameter r can be defined as its
probability density function

∀x∈Rnð ÞDr;c xð Þ ¼ ρr;c xð Þ
rn

:

We know that the expected square distance from c of
a vector chosen from the distribution is nr2/(2π). So Dr, c

can be seen as a sphere of radius r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ð2πÞp

centered
around c. Notice that a sample from the above Gaussian
distribution can be obtained by taking n independent
samples from the 1-dimensional Gaussian distribution.
For any vector c, real r > 0, and lattice L, define the

probability distribution DL, r, c over L by

∀x∈Lð ÞDL;r;c xð Þ ¼ Dr;c xð Þ
Dr;c Lð Þ ¼

ρr;c xð Þ
ρr;c Lð Þ :

We refer to DL, r, c(x) as a discrete Gaussian distribu-
tion. And for a large enough r, DL, r, c behaves in many
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respects like the continuous Gaussian distribution Dr, c.
In particular, vectors distributed according to DL, r, c

have an average value which is very close to the center c
and the expected squared distance from the vector c is
very close to nr2/(2π). The center vector is zero some-
times and is omitted.
We give the definition of smoothing parameter intro-

duced by Micciancio and Regev.
Definition 23. [17] For a lattice Λ and a positive real

ε > 0, the smoothing parameter ηε(Λ) is the smallest s
such that

ρ1=s Λ
vn 0f gð Þ≤ε:

Lemma 24. [17] For any lattice Λ, real ε > 0 and s ≥
ηε(Λ), and c ∈H, we have ρs(Λ + c) ∈ [1 ± ε]sn det(Λ)−1.

3 New hard random lattice
We will give a new method of generating a hard random
lattice along with short bases by using our regularity the-
orem in this section. On the topic of hard random lattice
with short bases, the large hard random matrix and its
corresponding short base are required simultaneously in
cryptography to ensure the security. But the matrix in
our regularity theorem needs to be a special form, that
is, the left part is an identity matrix and the right part is
a random matrix. So we must first transform the hard
random matrix into the special form matrix.
We now describe our basic framework for construct-

ing our new hard random lattice and the corresponding
short basis.
Firstly, we must ensure that the large hard random

matrix contains an invertible submatrix, and we will
prove that any k × l1 random matrix A uniformly chosen

from ðZqÞk�l1 , with very great probability, contains k in-
dependent column vectors, that is, A contains an invert-
ible submatrix.
Secondly, our regularity theorem, which can be ex-

tended a useful corollary, will be constructed and be
proved. Moreover, an effective parameter will be calcu-
lated in the regularity theorem which ensures that our
hard random lattice with a short basis is generated.
Thirdly, we will give the new construction of generat-

ing the hard random lattice with a short basis and the
framework of our algorithm by using the fact in the first
part of this section and the regularity in the second part
of this section.
Fourthly, the concrete expression of each matrix in the

algorithm is given.
Finally, the quality of the short basis S will be

analyzed.

3.1 Generate a random matrix containing an invertible
submatrix
Let q be an integer and Zq be a modular q residue ring. Let

A∈ðZqÞk�l1 be a random matrix where k, l1 ∈Z whose en-
tries are chosen randomly from Zq.

Case 1: Let p be a prime integer and q ¼ pk be an inte-
ger for some integer k . It is obvious that a submatrix on
(Zq)

k × k contained in A is invertible if and only if the sub-
matrix mod p is invertible.
Firstly, we choose a k-dimensional vector on Zq

k ran-
domly and the probability that the vector can be one col-

umn of the invertible submatrix of A is ðpk−1Þpkðk−1Þ
qk ¼ pk−1

pk .

Then we let this column be the first column of A.
After fixing the first column of A, we choose a

k-dimensional vector randomly on Zk
q again and the

probability that this vector can be another column of the

invertible submatrix of A is ðpk−pÞpkðk−1Þ
qk ¼ pk−p

pk .Similarly,

we let this column be the second column of A.
And so on, after fixing the first k − 1 columns of A,

the probability that a vector is chosen randomly can be

the kth column of the invertible submatrix of A is pk−pk−1

pk .

Thus, we choose a matrix A randomly on ðZqÞk�l1 , the
probability that A contains an invertible submatrix isQk

i¼1ð1− 1
piÞ.

Case 2: From another perspective, let q ¼ pk11 pk22 ⋯pktt ,
where each pi is a prime and ki ∈ Z(i = 1, 2,⋯, t). Simi-
larly, the probability of generating a random matrix on

ðZqÞk�l1 which contains an invertible submatrix in t

steps is
Qt

s¼1

Qk
i¼1ð1− 1

psi
Þ.

If l1≫ k, then any k × l1 random matrix A uniformly

chosen from ðZqÞk�l1 , with very great probability, con-
tains k independent column vectors, and we suppose
these columns are the first k columns of A. After proper
elementary matrix transformations, A can be written as
ðIjAÞ , where I is a k × k identity matrix and A is a

k × (l1 − k) uniformly random matrix on ðZqÞk�ðl1−kÞ . And
the columns of A generate all of the Zq

k.

3.2 Regularity
We will construct a theorem called “Regularity The-
orem” and the proof also will be given in this subsection.
The regularity theorem can be widely used into cryptog-
raphy applications, who gives an important property that
a special matrix being multiplied by a vector sampled
from Gaussian distribution, with great probability, pro-
duces a uniform vector.

Suppose that A ∈ðZqÞk�l1 , we define
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Λ⊥ Að Þ ¼ z∈Zl1 : Az ¼ 0 modqZ
� �

:

Then, we give our regularity theorem on integer lattice
as following:
Theorem 31. Let z be an integer and q ≥ 2 be an inte-

ger. Let A ¼ ðIk jAÞ∈ðZqÞk�l1 , where Ik ∈ (Zq)
k × k is iden-

tity matrix and A∈ðZqÞk�ðl1−kÞ is a uniformly random

matrix. Then, for all r (
ffiffiffiffi
l1

p
< r <

ffiffiffiffi
l1

p
gs ), EA½ρ1=rðΛ⊥

ðAÞVÞ�≤1þ 2−ΩðkÞ.
Proof For any A∈ðZqÞk�l1 , the dual lattice of Λ⊥(A) is

Λ⊥ Að Þð ÞV ¼ Zl1 þ 1
q
AT s : s∈Zk

q

� �
:

Then, we have

EA ρ1=r Λ⊥ Að Þð ÞV
h i

¼
X
s∈Zk

q

EA ρ1=r Zl1 þ 1
q
AT s

� �	 


¼
X
s∈Zk

q

ρ1=r Zk þ s
q

� �
þ Ea ρ1=r Z þ a; sh i

q

� �	 
l1−k

where a is chosen uniformly from Zk
q . For any s

¼ ðs1;⋯; skÞT∈Zk
q , let hs = gcd(s1,⋯, sk, q) and define

the ideal

Is ¼ hs � Zð Þ ¼ s1Zþ⋯þ skZþ qZ⊆Z:

Let j Is
qZ j ¼ gs ¼ q= gcdðs1;⋯; sk ; qÞ. Note that 〈a, s〉 is

uniformly random on Is
qZ. Then

Ea ρ1=r Z þ a; sh i
q

� �	 

¼ Is

qZ

����
����
‐1

ρ1=r
Is
q

� �

Then, the expectation is

EA ρ1=r Λ⊥ Að Þð ÞV
h i

¼
X
s∈Zk

q

ρ1=r Zk þ s
q

� �
þ Ea ρ1=r Z þ a; sh i

q

� �	 
l1−k

¼ ρ1=rZ
l1 þ

X
s∈Zk

q ;s≠0 modq

ρ1=r Zk þ s
q

� �

þEa ρ1=r Z þ a; sh i
q

� �	 
l1−k

≤ρ1=rZ
l1 þ

X
Is;s≠0 modq

Is
qZ

����
����
− l1−kð Þ

�ρ1=r
Is
q

� � l1−kð Þ
� ρ1=r

Is
q

� �k

−1

 !

≤ρ1=rZ
l1

þ
X

Is;s≠0 modq

Is
qZ

����
����
− l1−kð Þ

� ρ1=r
Is
q

� �l1

−1

 !

¼ 1þ
X
Is

Is
qZ

����
����
− l1−kð Þ

� ρ1=r
Is
q

� �l1

−1

 !

≤1þ
X
s

gs
� 
− l1−kð Þ � ρ1=r

Z
gs

� �l1

−1

 !

≤1þ
X
s

gs
� 
− l1−kð Þ η

r

� �l1
gs
� 
l1 ρ1=η Zl1

� 

−1

� �
Let η >

r
gs

� �

≤1þ
X
s

gs
� 
k η

r

� �l1
ρ1=η Zl1

� 

−1

� �

Because q ¼ pk11 pk22 ⋯pktt . So we haveX
s

gs
� 
k

¼
Yt
i¼1

1þ pki þ p2ki þ⋯þ pkiki

� �

¼
Yt
i¼1

1−pk kiþ1ð Þ
i

1−pki

≤
Yt
i¼1

pkkii

1−p−ki

¼ qk �
Yt
i¼1

1−p−ki
� 
−1

¼ qk � e ln
Yt

i¼1
1−p−kið Þ−1

¼ qk � e
Xt

i¼1
ln 1þ 1

pk
i
−1

� �
≤e � qk :

So the above expectation is as the following

1þ
X
s

gs
� 
k η

r

� �l1
ρ1=η Zl1

� 

−1

� �
≤1þ qk � e η

r

� �l1
ρ1=η Zl1

� 

−1

� �
≤1þ eqk �

ffiffiffiffi
l1

p
r

� �l1

2−2l1 Let η ¼
ffiffiffiffi
l1

p� �
≤1þ 2−Ω kð Þ ffiffiffiffi

l1
p

< r <
ffiffiffiffi
l1

p
gs

� �
Because of the fact that the matrix A contains an iden-

tity submatrix and Lemma24, then we can get the fol-
lowing more applicative corollary.
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Corollary 32. Let Z, q, t, k, and l1 be as in Theorem

31. Assume that A ¼ ðIk jAÞ∈ðZqÞk�l1 is chosen as in
Theorem 31. Then, with probability 1–2−Ω(k) over the
choice of A, the distribution of Ax ∈(Zq)

k, where each

coordinate of x ∈ðZqÞl1 is chosen from a discrete Gauss-

ian distribution with parameter r (
ffiffiffiffi
l1

p
< r <

ffiffiffiffi
l1

p
gs) over

Z, satisfies that the probability of each of the possible
outcomes is within statistical distance 2−Ω(k) of the uni-
form distribution over (Zq)

k.
Therefore, any random matrix A′ chosen uniformly

from Zq
k�l1 , after proper matrix elementary transforma-

tions, with great probability, can be written as the special

formal ðIjAÞ where A∈Zq
k�ðl1−kÞ is a uniformly random

matrix. That is, A0T¼cA ¼ ðIjAÞ∈Zq
k�l1 , where T is the

product of the proper elementary transformation matri-
ces. Similarly, for a matrix R∈Zq

l1�l2 whose entries are
chosen from Gaussian distribution with parameter r (ffiffiffiffi
l1

p
< r <

ffiffiffiffi
l1

p
gs ), we know that AR is a uniformly ran-

dom matrix on Zk�l2
q .

3.3 Framework of our new algorithm
By using the regularity theorem and its corollary ob-
tained in the previous subsection, the algorithm for con-
structing a hard random lattice with a short basis is
given in this subsection. Also, our construction is simple
and guaranteed bound on basis quality.
Now we will give the common framework in Table 1.

G � S
¼ IAjA1
� 
 I−RP − RþFð ÞB

P B

� �
¼ 0 modq

Let l = l1 + l2 for some sufficiently large dimensions l1
and l2. Before discussing our algorithm, we first give a
uniformly random matrix A0∈Zk�l1

q and then using the

proper elementary transformation matrices, we can

obtain the special form matrix A ¼ ðIjAÞ , where A is a
uniformly random matrix with great probability.
Our algorithm for constructing a hard random lattice

with a short basis is given, where the input of the algo-

rithm is the uniformly random matrix A∈Zk�ðl1−kÞ
q .

and A can be extended to the matrix G ¼ ðAjA1Þ ¼ ðI
jAjA1Þ∈Zk�l

q by generating A1∈Zk�l2
q together with some

short basis S ¼ I−RP −ðRþ FÞB
P B

� �
∈Zl�l of ∧⊥(G).

From Table 1, we can see that the output matrix S has
a block structure, which contains four component matri-
ces B, F, P, and R. The properties of the four matrices
are as following:

– B is nonsingular and typically unimodular;
– F has entries that grow geometrically, which is a

relationship to the parameter q and the special
matrix A;

– P is a short matrix depending on F such that FP is
short;

– R is a randomly short matrix whose entries are from
Gaussian distribution with the parameter r whereffiffiffiffi
l1

p
< r <

ffiffiffiffi
l1

p
gs.

The matrix A′ is uniformly random matrix on Zk�l1 , then
the matrix A′T is also uniformly random matrix which fol-
lows from the uniformity of A′. We have the matrix (A 'T|
A 'T(R + F))= (A|A(R + F)) is near-uniformly random be-
cause of random choice of R whose entries from Gaussian
distribution by Theorem 3.1 and its corollary.
Since the matrix A ¼ ðIjAÞ∈Zk�l1

q , and let Λ⊥ðAÞ ¼ fx
: x∈Zl1 ;Ax ¼ 0 modqg . Obviously, the basis matrix of the

lattice Λ⊥(A) can be obtained, that is,H ¼ qI −A
0 I

� �
.

Let D =R + F, then we can get that

Aj0ð Þ I D
0 I

� �
I −D
0 I

� �
H 0
0 I

� �
¼ 0 modq;

That is,

AjADð Þ H −D
0 I

� �
¼ 0 modq;

and we let the matrix B be a nonsingular matrix, then
the block matrix

I 0
P B

� �
is also a nonsingular matrix,

so we can get that

AjA Rþ Fð Þð Þ H − Rþ Fð Þ
0 I

� �
I 0
P B

� �
¼ 0 modq;

that is,

Table 1 The framework for constructing the hard random
lattice with a short basis
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AjA Rþ Fð Þð Þ H− Rþ Fð ÞP − Rþ Fð ÞB
P B

� �
¼ 0 modq;

Because the entries of the short random matrix R are
from Gaussian distribution which leads to the matrix
(A|A(R + F)) is uniformly random with great probability.
Furthermore, H is the basis of Λ⊥(A) and I is the identity
matrix, thus we have that

H− Rþ Fð ÞP − Rþ Fð ÞB
P B

� �
¼ I−RP − Rþ Fð ÞB

P B

� �

is a nonsingular matrix.
In the block structure, we know the matrices P, B, and

R are short matrices and so are the matrices RP and RB.
But the norm of F is large, so we must use B to reduce the
norm of the block matrix, such that the matrix FB is also

short. Then, the block matrix
I−RP −ðRþ FÞB
P B

� �
is

short. Simultaneously, we must ensure that the matrix
equation I + FP =H is correct.
Lemma 33. The algorithm shows that if I + FP ⊂

Λ⊥(A), we have S ⊂Λ⊥(G). Moreover, S is a basis of
Λ⊥(G) if and only if I + FP is a basis of Λ⊥(A).
Proof It is obvious that A(I + FP) = 0 mod q implies

GS = 0 mod q, that is, I + FP ⊂Λ⊥(A), implies S ⊂Λ⊥(G).
By the block structure of S, the determinant of S is

Sj j ¼ I−RP − Rþ Fð ÞB
P B

����
���� ¼ Iþ FPj j Bj j

Since the matrix B is nonsingular, that is |B| ≠ 0, then
we have that the block matrix S is nonsingular if and
only if the matrix I + FP is nonsingular. Because all the
columns of A1 =A(R + F) can be linearly represented by
the columns of A, we have that the additive subgroup G

⊆Zn
q generated by the columns of A is exactly the sub-

group generated by the columns of G = (A| A1).
Therefore,

det Λ⊥ Gð Þð Þ ¼ Gj j ¼ det Λ⊥ Að Þð Þ
Then S is a basis of Λ⊥(G) exactly when I + FP is a

basis of Λ⊥(A).
Now, we know that the block matrix S is the basis of

Λ⊥(G), then the remaining problem is that S must be rela-
tively short. By the above discussion, we know that the
matrices B and R are short, where B is unimodular and R
is chosen from Gaussian distribution on Zl1�l2 ; moreover,
the matrix P must be short and the columns of I + FP is
ensured to be nontrivial vectors in Λ⊥(A). So a part of the
matrix F should be long. Simultaneously, the matrix FB
must be short because it is a part of −(R + F)B where R
and R are short or a part of the block matrix B.

3.4 Concrete expression
The framework of our algorithm for constructing the
hard random lattice with a short basis was given in the
previous subsection. In this subsection, the concrete ex-
pression of each matrix in our algorithm will be shown
as follows.
Given any random matrix A' uniformly on Zq

k�l1 , after
proper matrix elementary transformations, A' can be
written as ðIjAÞ where A is uniformly matrix on

Zq
k�ðl1−kÞ with great probability. The chosen uniformly

random matrix A' corresponds to the formal A ¼ ðIjAÞ
where A is uniformly random. So we can give A. By the
discussion in the last subsection, H is the basis of Λ⊥(A),

and let H=I + FP. So FP=H−I=
ðq−1ÞI −A

0 0

� �
. Let d

be an integer and m = logdq.
Definition of F: The matrix F has the formal

F ¼ F 1ð ÞjF 2ð Þj⋯jF l1ð Þj0
� �

∈Zl1�l2 ;

which has l1 + 1 blocks containing l1 blocks F(i)(i = 1, 2,
⋯, l1), each of which has m columns, and one zero block
having remaining l2 − l1m columns. The first k blocks
have the structure that the vector f ¼ ð f 1; f 2;⋯; f mÞ
¼ ðb q−1

dm−1c; b q−1
dm−2c; ⋯; bq−1d c; q−1Þ is the ith row in F(i)(i =

1, 2,⋯, k) and other rows are zero vectors. The other l1
− k blocks have the structure that FðkþiÞ ¼ ðb−aðiÞ

dm−1c; b−aðiÞdm−2c;
⋯; b−aðiÞd c;−aðiÞÞ ði ¼ 1; 2;⋯; l1−kÞ where a(i) denotes the

ith column of A. We can get that the entry of f1 in each
F(i) is in the range [0,r−1].
Definition of P: The columns of the matrix P ¼ ðp1; p2

;⋯; pl1Þ∈Zl2�l1 are some identity vectors which are writ-

ten as p j ¼ ejm∈Zl2 where j = 1, 2, ⋯, l1. This construc-
tion of P guarantees that FP=H−I and ‖pj‖

2 = 1(j = 1, 2,
⋯, l1).
Definition of B: Let the matrix B∈Zl2�l2 be a unimodu-

lar matrix such that FB is short. Let Bm ∈ Zm ×m be the
unimodular matrix whose diagonal entries are 1, upper
diagonal entries are −d, and zero entries elsewhere, that
is,

Bm ¼

1 −d 0 ⋯ 0 0
0 1 −d ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 −d
0 0 0 ⋯ 0 1

0
BBBBBB@

1
CCCCCCA
:

Then define B∈Zl2�l2 to be a block-diagonal matrix
consisting of l1 the block Bm and one identity matrix

block I∈Zðl2−l1mÞ�ðl2−l1mÞ in the main diagonal, and other
blocks are zero matrices, that is,
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B ¼

Bm 0 ⋯ 0 0
0 Bm ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ Bm 0
0 0 ⋯ 0 I

0
BBBB@

1
CCCCA

and we can learn that ‖bi‖
2 ≤ d2 + 1(j = 1, 2,⋯, l2).

Then, FB ¼ ðFð1ÞBmjFð2ÞBmj⋯jFðl1ÞBmj0Þ∈Zl1�l2 ; and
all the entries of FB are in the range [0,d]. So the norm
of each column of FB is less than or equal to d

ffiffiffiffi
l1

p
and

FB is short.
Definition of R: The entries of the matrix R∈Zl1�l2 are

chosen randomly from Gaussian distribution with the
parameter r where

ffiffiffiffi
l1

p
< r <

ffiffiffiffi
l1

p
gs . Then by the The-

orem 3.1, the entries of (I|A)R are uniformly on Zq with
great probability. Because the parameter r is relatively
large, we have that the vectors distributed according to
Gaussian distribution have an average value very close to
zero and expected squared distance from zero very close

to r2l1/(2π). So the norm of R is less than or equal to rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1=ð2πÞ

p
.

The above discussion in this subsection shows that
our algorithm for constructing the hard random lattice
with a short basis is reasonable, and the basis of the dual
lattice is indeed short. We will analyze the quality of the
basis matrix S to prove the advantage of short in the
next subsection.

3.5 Analysis and comparison
We analyze the norm of the basis matrix S in this sub-
section. Firstly, we have that

Sk k2≤ max I−RPk k2 þ Pk k2; RBk k þ FBk kð Þ2 þ Bk k2� �
From the discussion in the previous subsection, we

know that ‖P‖2 = 1 and kI−RPk2≤ðr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1=ð2πÞ

p þ 1Þ2 .
Then,

I−RPk k2 þ Pk k2≤2r2l1= 2πð Þ:
Then we consider the other part, ‖FB‖2 ≤ l1d

2, ‖RB‖2 ≤
(d + 1)2r2l1/(2π), and ‖B‖2 ≤ d2 + 1. So we have

RBk k þ FBk kð Þ2 þ Bk k2
≤4 RBk k2
≤4 dþ 1ð Þ2r2l1= 2πð Þ

Our construction for generating a hard random lattice
with a short basis was from a new perspective and our
algorithm in the construction first used a random matrix
whose entries were obeyed Gaussian distribution, not an
independent {0, ±1}-valued random variable in [12] or
uniform distribution from the set {0,1} in [11] as shown
in Table 2, and the parameter q is a large regular, which
ensure that our algorithm has a wider application future

in cryptography area. Moreover, our construction is
more specific than the previous constructions which
makes our construction be implemented easier in prac-
tical applications. What is more, the problem we dis-
cussed is the basis of lattice-based cryptograph, so it can
resist the attack by quantum computers.

4 Conclusion
In this paper, we firstly have proved a fact that a uni-
formly random matrix contains an invertible submatrix
and using elementary transformations the uniformly ran-
dom matrix can be transformed into the special matrix
which contains two parts, an identity matrix part and a
uniform matrix part. Secondly, a useful regularity the-
orem and its corollary on Zq has been proved and the
useful parameters could be obtained. Thirdly, using the
above fact and corollary, a new construction of hard ran-
dom lattice with a short basis have been proposed, and
then we have given the framework of our algorithm.
Fourthly, the concrete expression of our construction,
that is the concrete form of the matrices in our algo-
rithm, has been given. Lastly, we have analyzed the qual-
ity of the short basis S, which shows that the quality of
the short basis in our algorithm is as same as the Alwen
and Peikert algorithm.
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