Knirsch et al. EURASIP Journal on Information Security (2019) 2019:2

https://doi.org/10.1186/513635-019-0085-3

EURASIP Journal on
Information Security

RESEARCH Open Access
Check for
updates

Implementing a blockchain from
scratch: why, how, and what we learned

Fabian Knirsch, Andreas Unterweger ® and Dominik Engel

Abstract

Blockchains are proposed for many application domains apart from financial transactions. While there are generic
blockchains that can be molded for specific use cases, they often lack a lightweight and easy-to-customize
implementation. In this paper, we introduce the core concepts of blockchain technology and investigate a real-world
use case from the energy domain, where customers trade portions of their photovoltaic power plant via a blockchain.
This does not only involve blockchain technology, but also requires user interaction. Therefore, a fully custom, private,
and permissioned blockchain is implemented from scratch. We evaluate and motivate the need for blockchain
technology within this use case, as well as the desired properties of the system. We then describe the implementation
and the insights from our implementation in detail, serving as a guide for others and to show potential opportunities
and pitfalls when implementing a blockchain from scratch.

Keywords: Blockchain, Private chain, Implementation, Practical insights

1 Introduction

After being originally proposed as a public, decentral-
ized and trust-less ledger for digital currencies, blockchain
technology has gained widespread adoption in many fields
[1-3]. Recently, utilities and network operators in the
energy domain have begun focusing on using the novel
possibilities provided by blockchain technology for realiz-
ing such decentralized, trust-less applications that do not
rely on a single trusted third party. This includes protocols
for tariff matching [4, 5] and energy trading [6, 7]. Util-
ity providers and network operators aim at exploring the
properties and benefits, as well as the shortcomings of this
technology for their respective use cases!.

In this paper, a novel and previously unsolved real-
world use case of two major Austrian utility com-
panies is investigated: National legislature, which also
applies to other European countries, requires that for
a shared ownership of small photovoltaic power plants,
such as those commonly found in multi-party rental
apartments, customers can exchange portions of their
energy production with neighbors. This allows customers
to save money by shifting portions to other consumers

*Correspondence: andreas.unterweger@en-trust.at
Salzburg University of Applied Sciences, Center for Secure Energy Informatics,
Urstein Std 1, 5412 Puch bei Hallein, Austria

@ Springer Open

when they need less energy themselves, e.g., when they
are traveling.

For this use case, we evaluate the need for blockchain
technology and the applicability of different types of con-
sensus algorithms and permissions/visibilities. A num-
ber of existing implementations, such as MultiChain [8],
OpenChain?, Ethereum [9], and a Bitcoin fork [1], were
initially taken into consideration. However, due to scal-
ability issues on the desired hardware and for achieving
a lightweight and simple solution, a blockchain has been
implemented from scratch. Furthermore, this use case
does not only involve blockchain technology, but also
requires user interaction and customer acceptance, as well
as the processing of privacy-sensitive data, all of which
adds an additional layer of complexity.

This paper describes the real-world use case, the design,
and the final implementation as well as the outcomes in
detail. It aims at serving as a guide for others by showing
potential opportunities and pitfalls when implementing a
blockchain for a particular field of application other than
financial transactions.

The rest of the paper is structured as follows: In
Section 2, we give an introduction to blockchain tech-
nology. In Section 3, we describe the underlying use case
and its legal requirements in detail, including related
work on the subject. We further motivate the use of

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-019-0085-3&domain=pdf
http://orcid.org/0000-0002-3374-1636
mailto: andreas.unterweger@en-trust.at
http://creativecommons.org/licenses/by/4.0/

Knirsch et al. EURASIP Journal on Information Security (2019) 2019:2

blockchain technology for the proposed application. In
Section 4, we discuss existing blockchain implementations
and their drawbacks in our use case and continue to moti-
vate and describe our custom implementation in detail
in Section 5. Finally, in Section 6, we discuss the lessons
learned from our implementation before concluding the

paper.

2 Blockchain technology overview

This section provides an overview of blockchain technol-
ogy. The scope of this section is to introduce and present a
generic view of the technology and to go beyond its well-
known use for financial transactions. First, blockchain
technology is introduced as a decentralized, trustless, and
immutable database. It is further discussed how a consen-
sus is achieved within such a distributed network of nodes,
and the most common consensus algorithm is briefly dis-
cussed. Finally, the drawbacks of blockchain technology
are shown.

2.1 Blockchain technology

Blockchain technology can be described as a trustless and
fully decentralized peer-to-peer data storage that is spread
over all participants that are often referred to as nodes.
The blockchain is designed to hold immutable informa-
tion once data is committed to the chain, and it is there-
fore a decentralized, distributed, and immutable database
in which data is logically structured as a sequence of
smaller chunks (blocks). Each block B;.¢ is immutably
connected to a single preceding block B;_; through a
cryptographic hash function H(B;—1). Changes to B;_;
would yield an invalid hash in B; and all following blocks.
The very first block By is called the genesis block and is
the only block without a predecessor. In order to assure
the integrity of a block and the data contained in it,
respectively, the block is usually digitally signed.

For some applications, it is more useful to view a
blockchain as a state machine [9]. Each block contains a
new state with the very last block representing the current
state. Given the list of blocks and the data in this block,
there is a unique and immutable order of transitions that
lead to the current state.

The main features of blockchain technology can be
summarized as follows:

e Decentralization: Instead of relying on a single
trusted entity, trust is spread across multiple or all
participants, depending on the agreed-upon
consensus algorithm [10]. This does not only mean
that multiple copies of a data item are stored on all
nodes, but also that the integrity of the data is
governed by many decentralized parties.

e Immutability: Once data is committed to the
blockchain and a sufficient number of participants

Page 2 of 14

have agreed on this state, the information is stored
permanently and immutably. Changing the
information contained in a particular block would
require to also change all the following blocks up to
the last block, which is considered to be infeasible
[1,11].

e Scalability: The block rate, comprised of the
throughput and propagation time of information,
depends on the consensus algorithm and the number
of participants. This can be a limiting factor for
applications that require high throughput [10]. Since
all nodes hold a copy of the blockchain, scalability
issues also arise in terms of the total amount of data
that can be stored. Furthermore, in order to check
the integrity of the blockchain, a new node needs to
download a copy and validate the integrity of the
entire chain. Note that more recent proposals for
BFT-based consensus algorithms improved on this,
e.g., [12].

e Limited privacy: All data in the blockchain is publicly
visible to all participants. Private or permissioned
blockchains limit the range of disclosure. However,
they do not cryptographically protect the data. In
order to achieve privacy, additional layers, such as
zero-knowledge proofs [13] or a commitment
scheme are required [14].

In the originally proposed Bitcoin protocol from [1],
the blockchain is used to keep track of coins, i.e., a pub-
lic list of financial transactions and how many coins are
owned by each participant. For this purpose, each trans-
action contains sender and receiver information, as well as
the number of coins to be transferred. A number of such
transactions — once confirmed by the peers — become a
new block. Such a block also includes the hash of the pre-
vious block and is appended to the chain. The transactions
are therefore permanently linked to the series of previous
transactions.

This list of chained blocks is public, kept by all mem-
bers in the network, and can be verified by all participants
by checking the integrity of the new block and the cor-
rect calculation of the hash. Participants in the network
are identified by a private-public key pair, which is often
referred to as the ID or address.

A blockchain can be generalized to store arbitrary data.
In its simplest form, a block B; consists of the following
data:

e Hash of previous block h;: A cryptographic hash of the
previous block, i.e., 1; := H(B;_1), as described above.

® Payload p;: Arbitrary data that is stored in this block.
In many practical applications, this data has to follow
a predefined pattern (e.g., transactions in Bitcoin or
operations in Ethereum).

Knirsch et al. EURASIP Journal on Information Security (2019) 2019:2

e Signatures;: A digital signature of the block data, i.e.,
s; = o (hi|p;i), signed with the secret key sk of the
creator of the block. This signature can be verified by
the public key pk.

In public blockchains, all participants can create and
append new blocks. Once a new block is created and
successfully linked to the chain, it is broadcasted to the
network. If other participants receive such a new block
and consider it to be valid (i.e., by verifying the signature,
checking the hash, and checking the validity of the pay-
load), they extend their local copy of the chain with the
newly created block and eventually broadcast the block to
other participants. If a block is invalid, it is discarded and
does not become part of the chain.

Blockchains therefore boil down to the question of
how to achieve consensus in a distributed network with
potentially faulty participants. This is referred to as
Byzantine Fault Tolerance (BFT), originally introduced in
[15], together with optimal algorithms for a variable num-
ber of adversaries, up to one third of the participants. This
has been further investigated for asynchronous networks,
such as blockchains, by many others, e.g., [11, 16]. It must
be noted, however, that BFT algorithms for asynchronous
networks are only practical up to about 1000 participants
[17] due to the incurred overhead of the cryptographic
algorithms.

In [1], a practical solution for achieving consensus in
asynchronous networks of millions of participants and
under the presence of Sybil attacks, where one attacker is
in control of multiple nodes, is presented. Bitcoin requires
synchrony among nodes to achieve consensus and uses
the Proof-of-Work (PoW) algorithm. In order to consider
a new block to be valid, the participant who initially pro-
vides this block has to prove that a significant amount
of work has been spent for creating this block. The node
therefore varies the input of a cryptographic hash func-
tion in order to get an output that has a certain pattern,
e.g., a certain number of leading zeros. This becomes
a computationally expensive problem by exploiting the
preimage resistance of cryptographic hash functions [18].
Given such a hash function and its output # = H(m), it
is practically infeasible to find m for a given /. In order to
incentivize nodes to verify transactions and append new
blocks (and thus spend time computing time and energy),
the effort is rewarded in the form of newly created coins,
referred to as mining reward. The process of creating new
blocks is therefore also referred to as mining.

In practice, branches may occur, where one or more
nodes create new blocks at the same time. Commonly,
the branch that contains more work, i.e., the longer
branch, is considered to be the valid one. PoW there-
fore prevents malicious nodes from forging data or—in
the case of crypto currencies—from spending the same

Page 3 of 14

coin twice, also referred to as the double-spending attack.
In order to create a valid branch, a malicious subset of
nodes must control at least 50% of the computing power
in the network [1]. However, it is shown in [11] that
there is a theoretical threshold of only 33% for specific
attacks. The 50% threshold is improved by [19]. There-
fore, a blockchain does not require a single trusted party,
but instead is trustless if at least half of the computing
power used for creating and verifying blocks is spent by
honest peers.

Furthermore, peers and transactions are pseudonymous
in the sense that the sender and the receiver are only
identified by their addresses and that a new pair of keys
(and therefore a new address) can be created for every
transaction. Further advances in blockchain technology
are described in Section 4.

2.2 Drawbacks

Despite the advantages of decentralization, trustlessness,
and immutability, there are two major issues with cur-
rent blockchain technology—scalability and power con-
sumption [10]. Scalability refers to the time needed for
propagating, processing, and validating transactions. The
higher the number of nodes is, the more limiting network
bandwidth, overall storage space, and power consumption
become.

The current power consumption (as of May 2018) of
the Bitcoin network is approximately 70 TWh per year>.
This is mainly caused by the approximately 35 exahashes
per second (3.5 x 10'° H/s) which need to be computed
for the PoW. Thus, for energy-sensitive use cases, using
Bitcoin in its current state is not a sustainable approach.

3 Use case description

In this section, we describe the use case for which we
implemented our blockchain. We first describe the legal
requirements which make a (technical) implementation
of the use case necessary in the first place and provide
a high-level description of the use case with all actors.
Finally, we outline the reasons why a blockchain-based
implementation is sensible and discuss related work.

3.1 Legal requirements
Solar energy plants allow generating electricity at cus-
tomer premises. This additional energy can be consumed
by the customer directly and thus reduces the household’s
total energy consumption. It also avoids feeding power
into the public grid. If the amount of electricity generated
exceeds the amount of electricity consumed, the excess
energy has to be stored in (typically expensive) batteries
or fed into the public grid, the reimbursements for which
are often very small [20].

This problem exacerbates for multi-party homes with
shared solar energy plants, where the excess energy

Knirsch et al. EURASIP Journal on Information Security (2019) 2019:2

of one party could be “transferred” to another instead
of feeding into the public grid [21], thereby reduc-
ing the energy costs for the receiving party. How-
ever, various legal aspects and technicalities have made
such setups practically impossible [22] until recently
[21, 23], despite the large number of multi-party apart-
ment complexes and potential roof areas in urban
regions [23].

In 2017, legislation to enable energy “transfers” between
parties of a shared photovolatic power plant has been
introduced in both Austria [24] and Germany [25]. In par-
ticular, § 16a EIWOG 2010 [26] as of 2017 [24, 27] as well
as § 21, 21b and 21c EEG 2017 [25, 28, 29] require that
the energy provider considers “transferred” portions of
electricity generation for each customer at 15-min gran-
ularity. More precisely, the participants agree on a distri-
bution key for the energy generated by the shared solar
power plant for each 15-min time slot of each day, which
in turn reduces each participant’s energy consumption
accordingly.

3.2 Conceptual overview

For the implemented use case, two categories of actors
exist—utility providers and customers. A group of cus-
tomers is assigned to a shared photovoltaic power plant.
Usually, this power plant is installed at a multi-party apart-
ment building and each customer receives a certain per-
centage of the generated power. Customers further receive
power from the grid and are therefore assigned to a utility
provider.

For this work, it is assumed that participants who
invested in a shared solar energy plant agree on a default
distribution for their photovoltaic power, e.g., customer
A, 20%; customer B, 20%; and customer C, 60%. For each
15-min interval, customers can then transfer their con-
tributions independently and as desired, e.g., customer A
transfers the full 20% to customer B for the next 16 time
slots (i.e., 4 h).

If customers do not shift their portions, the default
distribution applies. After each day or 96 time slots?,
customers are billed based on their energy consumption
from the grid, minus the power generation relative to the
portions they were holding in each time slot. Note that
customers cannot transfer more portions than they hold,
but they can transfer portions they received. For instance,
if, for one time slot, customer A transfers 20% to customer
B (now holding 40%), customer B can— for this time slot—
transfer this portion entirely to customer C (then holding
100%).

In summary, customers agree on a distribution of shares
for each 15-min time slot. This information is forwarded
to the utility provider that individually bills each customer
based on their energy demand and supply for each time
slot.

Page 4 of 14

3.3 Use of blockchain technology

The reasons for building this use case atop a blockchain
are manifold. First, a global state needs to be stored
that all parties agree on. Second, customers do not fully
trust each other and malicious customers may attempt
to double-spend their portions in order to profit. Third,
there is no single trusted third party due to the number
of stakeholders involved. Therefore, a private and permis-
sioned blockchain is implemented. In [30], the use case
requirements for such a blockchain are defined as follows:

e Need for storing a state: For the desired use case, a
global state representing the portions for each
customer at each time slot needs to be stored.

® Dealing with multiple writers: Customers can
transfer portions at any time, simultaneously.

e Always-online trusted third party cannot be used:
Since each customer in the EU can choose their
energy provider individually [31], no utility provider
can be considered trusted by all participants in the
general case. Furthermore, customers in different
locations do not share the same network operator.
Thus, no trusted third party can be appointed.

e All writers are known: Initial portions of photovoltaic
power are assigned to customers. All customers
trading in the network are therefore known and need
to be verified for billing.

e Not all writers are trusted: Malicious users are
assumed to maximize their shares, i.e., try to
double-spend portions.

e DPublic verifiability is not required: The distribution of
shares only needs to be verified by other participants
within the network and the energy providers. The
latter need to observe valid states, i.e., no more than
100% of the portions are assigned in total.

In our private and permissioned blockchain, a consor-
tium of energy providers and network operators assigns
permissions to new customers. These permissions allow
customers to interact, i.e., read from and write to, the
blockchain, similar to [32]. A revocation process ensures
that inactive users no longer participate in the blockchain.

3.4 Related work
Due to the novelty of the legislature regulating the real-
ization of our use case, related work is sparse. Apart
from literature on energy trading in general, as out-
lined below, we are not aware of any publications which
specifically describe blockchain-based implementations
to record transferred photovoltaic energy portions as in
our use case at the time of writing (May 2018).
Blockchain-based solutions to trade energy between
households have been proposed. In [33], a Bitcoin-based
application is described which allows for energy trad-
ing, but comes at the cost of requiring micropayments

Knirsch et al. EURASIP Journal on Information Security (2019) 2019:2

for transactions as well as the general limitations of
the Bitcoin network such as transaction speed. Even
though they simulate solar energy production and sup-
port partial transfer of energy, the transaction costs of
their protocol are impractically high for a use case such
as ours.

In [34, 35], a custom cryptocurrency for local energy
trading is proposed which changes its monetary value
based on demand and supply. It allows “reserving” a cer-
tain amount of power for consumption at a future point
in time at the current market value. Our use case does not
require this feature since the prices are set by the energy
provider and individual customers can only transfer por-
tions, but not negotiate prices. Furthermore, the proposal
of a custom cryptocurrency by itself is not sufficient to
implement trading in practice, as opposed to our real-
world implementation. Similarly, the concept presented
in [22] proposes a private blockchain to handle local
energy trading, but rather focuses on trading aspects and
the market setup instead of presenting insights from an
implementation.

Other blockchain-based approaches include [6, 7, 36].
While [36] focuses on machine-to-machine trading of
energy in the context of the Chemical industry, [6] and
[7] trade actual monetary units similar to [33]. In con-
trast, in our work, the blockchain is only used to represent
portions, i.e., percentages of ownership for photovoltaic
energy production for each time slot. Billing data is there-
fore never released publicly, but processed within the
utility’s premises—the individual customers receive their
receipt along with the regular power bill.

Further related work on local energy trading with-
out blockchains is presented, e.g., in [37, 38]. They
assume trading processes via agents, but require a stock-
market-like exchange. Such a centralized trusted party (at
neighborhood- or provider-level) is not required in our
use case due to the security guarantees of blockchains.

4 Available implementations

For implementing the private and permissioned
blockchain, a number of available implementations were
considered. The following sections describe the relevant
implementations and our reasons for not choosing them.
Table 1 summarizes the properties of these implemen-
tations, as well as of ours at the time of selecting basis
implementations (September 2017).

4.1 Bitcoin

Bitcoin [1] and its client Bitcoin Core® are designed to
handle financial transactions. Even though it is possible to
include small amounts of meta data in each block, the lim-
ited available space as well as the low throughput and high
delay of the Bitcoin network make it unsuitable for storing
any significant amount of meta data [4].

Page 5 of 14

A private Bitcoin network would be more suitable for
our case—the meta data size limits as well as the through-
put could be increased. This would also allow zero-cost
transactions. However, the consensus algorithm of Bitcoin
only deals with double-spending of Bitcoins, not portions
of photovoltaic power. Modifying this algorithm would be
possible, but the design of Bitcoin does not fit the use case
well. For example, new Bitcoins are generated with new
blocks, whereas, for our use case, balances for each time
slot must be available regardless of the block rate.

Thus, we deemed the modifications to Bitcoin and its
most popular implementation to be infeasible. The effort
to modify the existing source could would very likely
exceed the effort of implementing a blockchain from
scratch. The same is true for ByzCoin [39], which uses a
BFT-based consensus algorithm, but is otherwise compa-
rable in design.

4.2 Ethereum

Ethereum [9] allows implementing smart contracts in var-
ious programming languages, e.g., Solidity®. Such smart
contracts are capable of representing practically arbitrar-
ily complex transactions. These are not limited to financial
transactions as in Bitcoin, but allow for representing states
and state changes as required by our use case.

Despite Ethereum’s flexibility, previous research found
that even smart contracts of modest complexity are rel-
atively expensive [14]. Furthermore, frequent changes
in the cost structure of executed operations as well as
changes in the exchange rate to Euros’ make costs unpre-
dictable [40, 41].

Even though the cost issue could be eliminated by using
a private blockchain, the complexity of Ethereum exceeds
the requirements for our use case by far. Whenever a
value needs to be stored in a smart contract, a modified
Merkle Patricia Trie is updated, which is relatively time-
consuming, as has been shown in [42]. In addition, it has
been shown that this leads to a slow speed of execution
when the volume of data increases, which is detrimental
for our use case, especially from the users’ perspective.

4.3 MultiChain

MultiChain [8] is a private and permissioned blockchain
implementation. Like Bitcoin, it is primarily focused on
financial transactions and thus the consensus algorithm
would have to be modified significantly. Although this is
likely easier than it is for Bitcoin, MultiChain’s currently
supported platforms are a major limitation for our use
case.

At the time of writing (May 2018), MultiChain is only
supported on 64-bit systems and has several related soft-
ware dependencies®. Furthermore, the current documen-
tation indicates that only x86-64 CPU architectures are
supported explicitly, which excludes low-power and low-

Knirsch et al. EURASIP Journal on Information Security (2019) 2019:2

Page 6 of 14

Table 1 Comparison of available implementations and their properties at the time of selecting basis implementations (September 2017)

and our work for comparison

Name Consensus Permissioned Limitation

Bitcoin Pow - Extent of modifications infeasible
Ethereum PoW - Complexity exceeds requirements
MultiChain PoW J Limited to high power consumption platforms
OpenChain PoA J PoA algorithm not suitable for use case
Hyperledger Sawtooth Dynamic J Not mature at time of evaluation
Hyperledger Fabric Dynamic N Known security flaws

HAWK PoW - Implementation not available

Corda PoA VA PoA algorithm not suitable for use case
Tendermint BFT N Not available at time of evaluation
Stellar BFT - Not mature at time of evaluation

EOS BFT J Not mature at time of evaluation

NEO BFT - Complexity exceeds requirements
OmniLedger BFT - Not available at time of evaluation
ByzCoin BFT - Extent of modifications infeasible

This work Pow* VA Requires tamper-proof hardware™

*See Section 6. T This is a requirement for electricity meters in the energy domain; see Section 5

costs hardware such as the Raspberry Pi, which is based
on ARM.

Even though it is possible to emulate x86-64 instruc-
tions on a Raspberry Pi, the possibilities are limited and
the overhead is significant. One of the most prominent
options for emulation, QEMU®, offers x86 support, but
only limited x86-64 support!?. Using an x86-64 platform
is not an option due to the price—Up Squared!!, for exam-
ple, which is one of the most similar to the Raspberry
Pi, costs about six times as much!? with a CPU power
consumption that is more than ten times as high!314,

As power consumption and price are main criteria in
our use case, we use Raspberry Pis without the overhead
of simulating x86-64 architecture on it. Thus, we cannot
use MultiChain to base our implementation on.

4.4 OpenChain

OpenChain'® is a private blockchain designed to be
efficient in terms of energy consumption, network com-
munication, and block rate. It is therefore built on a
client-server model rather than a peer-to-peer network
and uses proof of authority instead of proof of work as a
consensus algorithm. Since the objective of this work is to
build a decentralized and trust-less model, a centralized
approach such as implemented by the proof of authority
consensus algorithm in OpenChain cannot be used. Nom-
inating a designated authority that validates transactions
would contradict the desired security and trust proper-
ties. The same holds for all blockchains which use Proof
of Authority (PoA) to achieve consensus, e.g., Corda [32].

4.5 Otherimplementations

Hyperledger'® allows operating private blockchains.
However, at the time of selecting implementations
(September 2017), Hyperledger Sawtooth!” had not yet
reached version 1.0 and uses a storage structure similar
to the one of Ethereum. As described in the Section 4.2,
this structure is not suitable for our use case due
to processing time. Hyperledger Fabric has not been
chosen since it is insecure in case single nodes act
maliciously [43].

HAWK [44] is a privacy-preserving blockchain. How-
ever, at the time of writing (May 2018), no implementation
is available!8,

In addition, there are several blockchain implemen-
tations that use BFT as a consensus algorithm, e.g.,
Tendermint!'?, Stellar [45], EOS2 and OmniLledger [46].
However, at the time of selecting implementations
(September 2017), the aforementioned solutions were
either not available (Tendermint, OmniLedger) or had not
yet released a stable version (Stellar and EOS). In contrast,
the BFT-based NEO blockchain?! can be considered sta-
ble enough, but its complexity, which allows to execute
smart contracts similar to Ethereum, exhibits the same
issues as the latter (see above).

Due to the specific requirements of our use case and in
order to get insights into the full cycle of blockchain devel-
opment and implementation, we decided to build our own
custom blockchain tailored to the particular legal require-
ments and needs for sharing percentages of solar power
plants.

Knirsch et al. EURASIP Journal on Information Security (2019) 2019:2

5 Implementation

In this section, we describe our implementation. First,
we give an overview of our system. Second, we go into
detail for each of the three core components—the nodes,
the clearing server, and the smartphone app. Finally, we
discuss our network setup which guarantees that only
qualified participants can actually interact with the rest of
the network.

The implemented solution is currently in use in two
locations operated by different energy providers and net-
work operators—the Austrian Smart Grid Model region
Kostendorf in Salzburg?? and Boheimkirchen in Lower
Austria?3,

5.1 Overview

Figure 1 shows our system and its main components. Each
participant has a node installed in their home which runs
the blockchain node software as well as a portable app
which allows sending commands to the node, in particu-
lar to send and receive portions of solar energy. All nodes
are interconnected via the Internet, albeit within a vir-
tual private network (VPN), so that they can communicate
with one another despite not using public IP addresses. At
each utility’s premises, there is a clearing server installed.
It is connected to a node listening on the blockchain and
reading the portions of the utility’s customers in order to
calculate the net energy consumption of each participant.

]
4

Unconfirmed
Transactions

Blockchain

Fig. 1 Overview of the setup, including nodes, the clearing server, the
app, and a conceptual view of the blockchain. Each customer
possesses an app that is connected to a node (for sending new
transactions and receiving confirmations) and to the clearing server
(for billing). New transactions (denoted as Tx) reside in a pool of
unconfirmed transactions until they are mined by a node and
appended to the blockchain. The clearing server retrieves data from
the blockchain and sends billing information to the customers’
smartphone apps

Page 7 of 14

This information is also fed back to each user through the
app.

The following sections describe the design of the nodes
and the network. While the interface of the blockchain is
described, the details of both the clearing server and the
app are not within the scope of this paper. Thus, they are
only described briefly.

5.2 Nodes

The nodes are implemented in Java 8 and designed to run
on Raspberry Pi 2 Model B. This hardware was chosen
due to its general availability, ease of use, and little energy
consumption, which closely resembles the hardware capa-
bilities of a smart meter [47]. The device will be sealed and
installed in the customer premises, as is legally required
for electricity meters [48]. For the prototypical implemen-
tation of this use case, there are no specific performance
requirements, but cost and proximity to legal require-
ments is of the essence. Given the relatively low retail
prices24 and the availability of well-tested software??, the
Raspberry Pi is a reasonable choice as a platform.

Figure 2 illustrates the fundamental architecture of our
node implementation. The internal state of a node is rep-
resented by two main data structures—a tree and a state
table. The tree stores a representation of the blockchain as
currently seen by the node, and the state table is a tabu-
lar view of time slots and the corresponding portions for
each customer. The latter is extracted from incoming valid
transactions. On startup, the node reads the last persisted
state from disk and initializes the internal tree data struc-
ture, which represents the blockchain, as well as the state
table and connected auxiliary data structures. After that,
it starts the watchdog for the server threads to listen for
incoming messages from other known participants.

It also starts the mining thread which processes uncon-
firmed transactions and combines them to blocks which
are appended to the tree data structure. The list of uncon-
firmed transactions as well as other internal auxiliary data
structures is not depicted in Fig. 2 for clarity.

The mining thread is an infinite loop that waits for
unconfirmed transactions, checks their integrity and
validity, and then creates a new block. A block is con-
sidered valid if the numeric interpretation of its crypto-
graphic hash (SHA-256) is below a predefined threshold.
This is a slightly adapted version of the proof of work con-
sensus algorithm proposed in [1]. In our use case, every
node is a sealed hardware device provided by the network
operator upon registration in the network. In this real-
ization of the PoW, every node has the same hash rate.
Upgrading to more powerful mining devices is not pos-
sible, which makes the 51% attack hard, since a collusion
with half of the network is unlikely in practice.

When mining succeeds, the mined block is distributed
to other known nodes through client threads. Similar to

Knirsch et al. EURASIP Journal on Information Security (2019) 2019:2

Page 8 of 14

| Server 1 | | Server 2 | | Server n |

Tree

| client1 || client2 | - | Clientn |

State Table

Connection Watchdog

[i Tree and State Table persistence

Fig. 2 Program overview: The mining thread as well as up to n server threads and up to n client threads operate on the core tree data structure
representing the blockchain and the state table representing the assignments of portions. The state of the data structure as well as auxiliary
representations like time-slot-accurate portion assignments are persisted to disk. Server and client threads include watchdogs to detect and

potentially resume lost connections to other nodes

the server threads, there is one thread per peer, which
avoids delays due to permanent or temporary unreacha-
bility of other nodes. Watchdogs make sure that connec-
tion timeouts or remote failures lead to a re-initialization
of the corresponding connection. Note that there is no
mining reward as each node’s incentive to spend resources
is to operate a trustless network without a centralized
party such as the energy provider.

The central tree data structure representing the
blockchain is read from and written to by all threads
concurrently. This requires the use of concurrent pro-
gramming paradigms [49], which are simplified by Java
8's concurrent data structures for the auxiliary lists and
hash maps as well as atomic primitive types like coun-
ters?®. Under the absence of a concurrent tree class, an
append-only blockchain is implemented as a custom tree
data structure. The state of the tree is persisted using
Java’s serialization API%, and the state table is stored in an
SQLite?® database. Keeping a persistent tree reduces run-
time memory usage by having only a small portion of the
tree in the internal memory and by loading branches and
blocks from the disk only if needed.

In order to achieve a consensus with all nodes, blocks
and transactions need to be valid before actually being
stored in the tree. Both incoming blocks from other nodes
and blocks for mining undergo a conformity check before
being appended and broadcasted, respectively. This is a
two-stage check for (i) block integrity and (ii) transaction
validity. For checking the block integrity, the signature of
the block is checked and the hash of the block is recom-
puted. Then it is verified whether the block hash satisfies
the currently active difficulty level and whether the block
is appendable to the current tree. Checking the trans-
action validity is a more complex process that works as
follows:

1 Append the block temporarily to the tree and check
whether this block changes the longest chain.

2 If the longest chain has changed, find the first
common parent node for the branch of the previous
longest chain and the current longest chain;
otherwise proceed with step 5.

3 Temporarily revert all transactions (i.e., remove them
from the state table) from the previous branch up to
the common ancestor (parent) node.

4 Process all transactions from the current longest
branch starting from the common ancestor node.

5 If a single transaction in the newly added block is
invalid (e.g., due to double spending or unknown
recipients), the whole process is reverted and the new
block is discarded.

After a block has been appended successfully (or dis-
carded in case of an invalid block), the longest chain and
the state table represent the current state of the system,
i.e., all portions of all participants for all possible time
slots. For convenience, this information can be queried by
others, e.g., the smartphone app and the clearing server
through the node’s APL

5.3 Clearing server

Billing is one off-chain by a clearing server. One instance
of this server is operated by each utility provider. In our
use case, there are currently two clearing servers active.
Note that, while the clearing server is an essential com-
ponent for this use case, it is not required for running
the blockchain itself. It guarantees that the billing pro-
cess of each utility is handled off-chain and by each utility
individually.

To feed the billing process, the clearing server uses the
node’s API to request the currently known distribution of
portions. The portions held by each customer for each
time slot are then used for billing. Therefore, the cus-
tomers’ energy consumption and energy production (as
read from the smart meters) is mapped to their respective
portions. The resulting value in kWh and monetary units

Knirsch et al. EURASIP Journal on Information Security (2019) 2019:2

is displayed to the customer in the app. The details of the
mapping, the meter readings, and the internal billing are
out of scope for this paper.

5.4 Smartphone App

For user interaction, a smart phone app is provided to the
customers. The app focuses on a high degree of usability
and on being an abstraction layer between the under-
lying complexity of the blockchain and the high-level
customer interaction. The app is connected to a node
and the clearing server of the customer’s utility provider.
The connection to the node is used for sending new
transactions to the network and for receiving information
about incoming portions. The app therefore requests a
list of blocks from the longest chain and filters the con-
tained transactions for those related to the respective cus-
tomer. These transactions are visualized so that the cus-
tomers can see for each point in time how many portions

they hold.

5.5 Network setup

Nodes communicate with each other, the app and the
clearing server over TCP/IP and XML messages on the
application layer. Using a text-based protocol allows for
easy debugging and an illustration of messages which is
suitable also for non-technical people. This is an impor-
tant aspect of this work, where the abilities of blockchain
technology are observed in a practical setting.

The node’s API defines four main types of messages:
(i) Block, (ii) Transaction, (iii) Utility Transaction, and
(iv) Status. Block messages can either propagate a newly
mined block or be the response of a block request
from another node. Transaction messages are sent by
the smartphone app and initiate a new shift of por-
tions. Utility transaction messages are sent by dedicated
clients, e.g., the clearing servers of each utility that have
the permission to setup and create new photovoltaic
power plants and assign customers and default distribu-
tions to these power plants. Status messages are used
for displaying the node status to customers as well as
for debugging purposes. Internally, the XML for blocks
and transactions is serialized from and deserialized to
Java objects.

All communication links between nodes as well as
between the node and the app are secured with TLS v1.2
using a hybrid encryption scheme based on Elliptic Curve
Diffie-Hellman key exchange and AES-256 with CBC [50].
In order to reduce the overhead for communication, there
is no authentication on the TLS layer. However, this does
not weaken the security since all messages (most impor-
tantly blocks and transactions) are signed by their respec-
tive sender. In a permissioned blockchain, such as ours,
the public keys of all nodes are known to one another and
messages with invalid signatures are discarded.

Page 9 of 14

The communication link between the clearing server
and the app uses out-of-the-box HTTPS with authentica-
tion and encryption. All components of our system—the
nodes, the clearing servers, and the apps—communicate
over a virtual private network (VPN). Since the nodes
are placed on customer premises, where unchanging pub-
lic IP addresses are not guaranteed and network address
translation (NAT) is common, the VPN simplifies com-
munication on the network layer.

6 Outcomes

In this section, we outline what we have learned from
implementing our own blockchain as described in the pre-
vious section. We focus on the main take-aways which
are noteworthy due to their unexpectedness and/or their
value for others who plan on implementing their own
blockchain.

6.1 Scalability can be improved with BFT

After the real-world testing of the implemented
blockchain had started in June 2018, we learned that there
is a more viable alternative to the implemented PoW
algorithm for a small number of users. Since software in
the energy domain that runs in the customers’ premises
is required to be certified and usually operates on sealed
hardware, an in-place upgrade would have been neither
feasible nor practical.

Due to the private and permissioned nature of the
blockchain, in the implementation of the nodes (see
Section 5), mining is used to prevent Sybil attacks, which
would give the attacker an unfair advantage. In addition
to the permissioned nature, in our setup, all devices have
the same computing power and need to be tamper-proof.
Thus, such an attack is not feasible. Consequently and due
to the small number of nodes, PoW is not needed and
could be replaced by more lightweight approaches, such
as BFT consensus algorithms.

BFT consensus algorithms are a better choice for net-
works with about 1000 nodes or less [17, 39]. In our test
case, there are less than 1000 users and thus less than 1000
nodes. However, since our implementation is designed
as a prototype for a more general solution, houses with
significantly more than 1000 parties must be considered.
For example, the Autobahniiberbauung Schlangenbader
StrafSe in Berlin, Germany, has more than 2000 apart-
ments 2, where BFT would likely be infeasible.

After releasing our implementation for real-world test-
ing in June 2018, there appeared new works that resolve
the aforementioned limitations of BFT and provide better
scalability through sharding, e.g., [46].

6.2 TLS handshakes introduce significant delays
In our first prototype, we used unencrypted connections
to test the basic communication functionality of our net-

Knirsch et al. EURASIP Journal on Information Security (2019) 2019:2

work. When we switched to encrypted connections with
TLS [51], we noticed significant delays despite the small
amount of (test) data to be encrypted. The issue practi-
cally disappeared when the connections were kept open.
This indicated that the initial connection between two
nodes, i.e., the TLS handshake, was taking longer than
expected.

We decided to measure this for our setup, i.e., two
Raspberry Pis 2 Model B with Raspbian establishing Java-
based SSLSocket connections with TLS v1.2. We use
a local Gigabit Ethernet network with a Netgear GS108
gigabit switch between the nodes to keep the propa-
gation delay low. To measure the handshake delay, we
open a connection from one node to another and close
it immediately after successfully connecting. This is per-
formed for both regular sockets and TLS sockets. We use
the built-in System.nanoTime () command to mea-
sure the execution time on the sending node (i.e., the
one that opens a connection) and repeat the experiment
1000 times.

Figure 3 shows the connection times in milliseconds
for regular sockets and TLS-based sockets. It is clear
that the handshake, in particular the key exchange,
requires about as much time as the unencrypted con-
nection does in total. This makes the delay of a TLS-
based socket double that of a regular socket. In our
use case, this is still acceptable, but needs to be taken
into consideration during debugging when configuring
timeouts.

Page 10 of 14

6.3 AES-256 is disabled in Java 8 by default

Due to export restrictions’, Java 8 imposes a limit on the
cryptographic key sizes by default. For example, AES is
limited to 128 bits3!, meaning that AES-256 is not avail-
able. To work around this limitation, strong cryptography
has to be enabled explicitly.

The official solution proposed by Oracle is to install
the Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy Files 8 by overwriting two policy jar
files32. For a system-wide Java Runtime Environment
(JRE) installation like in our case, this requires root priv-
ileges which make deployment more difficult and intro-
duce an error source for JRE updates and system resets—
when the policy files are not overwritten, requesting
AES-256 encryption will fail.

A more flexible, albeit unofficial solution is to remove
the restrictions on strong cryptography via reflection33,
This does not require root privileges and can be per-
formed during startup of the node implementation. How-
ever, JRE updates might break the functionality as the
internals might change between JRE versions without
prior notice3*.

Circumventing cryptographic restrictions to achieve an
adequate level of security is undesirable. However, from
a practical point of view, it is more convenient than to
re-implement the nodes in another runtime environment
or programming language. Nonetheless, we would like to
point out that Java might not be the best choice for imple-
menting blockchains with strong cryptography. Assuring

Time in ms for establishing a connection with sockets

T

35

30 r

25

20 r

15

10

———‘-l—H—HH-+I- HHH A

—1L

1

T

+ -

+]

1

Regular Socket

Fig. 3 Connection times in milliseconds (ms) for regular sockets and TLS-based sockets

TLS-based Socket

Knirsch et al. EURASIP Journal on Information Security (2019) 2019:2

the latter on all devices in the network is hard and error-
prone, since fallbacks to AES-128 or other algorithms
might significantly weaken the security of node-to-node
communication.

6.4 One communication thread is not enough

When we initially designed the peer-to-peer communi-
cation for our node implementation, we dedicated one
thread to handle all the messages to be sent to the node’s
peers. This means that one thread with a message queue
would process the messages to be sent one by one and
other threads, e.g., the miner, would place the messages
to be sent in this queue. In a small and stable network,
this works fine. However, when connections are lost or the
number of nodes is larger, communication can slow down
significantly or even come to a halt.

When a connection is lost, the timeout can take sev-
eral seconds to be noticed by the transport layer. In the
meantime, the communication thread waits for a reply
or a timeout and is not able to process other messages
from its queue. This leads to the remaining nodes not
receiving further messages until the timeout is noticed.
Communication is slowed down significantly if timeouts
occur often, e.g., when a node has an unstable network
connection or is offline.

Similarly, when the number of nodes increases in a sta-
ble network, the message queue fills up because each mes-
sage transmission is synchronous and the time required
to send messages exceeds the time it takes to mine a new
block.

Note that a single-threaded messaging implementa-
tion is also a security liability. An attacker could delib-
erately cause connection timeouts and pre-mine blocks
which deliberately exclude certain transaction. Having
the longest chain and sustaining it by further deliberate
timeouts can postpone valid unconfirmed transactions
indefinitely.

To avoid these issues, we implemented one communi-
cation thread per peer, each with its own message queue,
as outlined in the previous section. Since timeouts on
one connection do not influence the other threads, the
latter can still make progress independently. However,
having one thread per peer increases runtime overhead
in terms of memory consumption and scheduling. In our
use case, the number of peers is small enough so that this
is not an issue. In larger networks, however, Raspberry
Pis might not be sufficient to handle the large number of
communication threads.

Bitcoin relays transactions to all of its peers, the list of
which is changing through a discovery process and is lim-
ited to 8 peers per node [52]. This number is similar to the
total number of clients in our network. Ethereum follows
an approach similar to Kademlia® for peer discovery and
each node has a configurable maximum number of peers.

Page 11 of 14

6.5 Resynchronization is hard

Sometimes nodes get out of synchronization due to
temporary network failures or due to a huge number
of concurrent messages. Incoming blocks are then not
appendable to the chain since one or more blocks between
the last appended block and the incoming blocks are miss-
ing. In this case, a backup algorithm is used that eventually
triggers a resynchronization with neighboring nodes.

The resynchronization algorithm for our blockchain
implementation works as follows: Once a node receives a
block that cannot be appended due to missing blocks in
between, it queries the sender of that block for the miss-
ing blocks. Additionally, the hash of the last known block
of the unsynchronized node is submitted in order to allow
the receiver to check whether it can serve the request, i.e.,
sender and receiver are on the same longest branch. If the
requested node does not reply (or cannot reply), the block
is discarded and the node proceeds with normal opera-
tion. Similarly, if the requested node replies with invalid
or unappendable blocks, synchronization with this node
is aborted to prevent the node from being locked by a
malicious actor.

All these actions are performed synchronously and in
a blocking function. This assures that the node is always
in a defined state while synchronizing and that threads
are not blocked by incoming transactions or not actively
requested incoming blocks. Note that our design of sepa-
rate client and server threads (see above) allows for con-
current operations and communication with all remaining
nodes.

Initially, we designed an algorithm that picks a random
node and requests the missing blocks for synchroniza-
tion. This was handled completely asynchronously, i.e.,
after sending the request, the other node sent blocks and
they were treated just as if they were normal incoming
blocks broadcasted by this node. If the list of unappend-
able blocks was still growing, an exponential backup was
triggered that increased the window of requested blocks.
This allowed to reuse already included features for resyn-
chronization and did not pose much overhead to the
requesting node.

While this simple algorithm is sufficient for small net-
works and low block rates, it fails if blocks are generated
at a higher frequency. In this case, nodes get out of syn-
chronization more likely and multiple nodes that are not
synchronized themselves try to find a new consensus
with each other. This additionally floods the network with
blocks and causes even more unsychronized states.

The source code of our implemented blockchain will be
made available for research purposes.

6.6 Idle chains are a security liability
Blockchains like Bitcoin and Ethereum see a constant
stream of new transactions to fill up their blocks®,

Knirsch et al. EURASIP Journal on Information Security (2019) 2019:2

with an adaptive mining difficulty to keep the time
between blocks roughly constant [1, 9]. In our use
case, however, it is expected that there are periods of
decreased or even no activity. On the one hand, all
users are in the same time zone, meaning that peri-
ods of nightly inactivity can be expected. On the other
hand, during winter or when energy generation is likely
to be insignificant, there are no portions transferred
as there would be no financial gain for either party.
Thus, it is possible that there may be no unconfirmed
transactions for several hours or even days within the
network.

This could be used by an attacker to pre-mine a
longer chain than the rest of the network during the
idle time and subsequently deliberately exclude certain
transactions from the longest chain. This issue has been
addressed in related work on proof-of-work security from
the pre-blockchain-era [53] as well as in [54] for a pro-
tocol similar to Bitcoin and in [55] for Bitcoin itself.
Although Bitcoin and Ethereum assume that there is
always a significantly high number of transactions to keep
the network active, they both allow for mining empty
blocks [54]%7.

Our proposed solution is to mine (empty) blocks even
if there are no transactions. There are sources, e.g., the
Wiki of libbitcoin3®, which mention the existence of empty
blocks, but not explicitly as a way to circumvent the secu-
rity issues of an idle blockchain. In a use case like ours,
where transaction frequency can be too low for a difficulty
adjustment to be effective, mining empty blocks might be
the only viable solution to prevent pre-mining attacks.

6.7 New insights would lead to a different approach
Given the outcomes mentioned above and the rapid devel-
opment of blockchain technology, a re-implementation
at the time of writing (May 2018) would lead to a
different choice for the consensus algorithm. Recently
published work, which was not available at the time
of selecting basis implementations, e.g., [46], shows
that scalability for BFT algorithms can be significantly
improved and allows for settings with more than 1000
nodes. This achieved by sharded blockchain, where not
every node has to store all blocks. A re-evaluation
of consensus algorithms and available implementations
would thus likely lead to a BFT-based approach instead
of PoW.

In addition, the choice for BFT is justified by the fact
that PoW is used to prevent Sybil attacks. In a setup as
the one in our use case, where participants have no incen-
tive to act dishonest or sealed hardware does not allow
to change the algorithm or upgrade the computing power,
a computationally less expensive consensus algorithm is
sufficient. This would reduce power consumption and
scale well nonetheless.

Page 12 of 14

7 Conclusion

We motivated and presented our blockchain implemen-
tation for fulfilling the recent legal requirements for
the transfer of energy from shared photovoltaic power
plants. We described our architecture as well as selected
details of our implemented system. In our analysis, we
elaborated on six take-aways blockchain implementers
should be aware of th following: (i) scalability can be
improved with Byzantinum Fault Tolerance algorithms
when the number of users is small; (ii) TLS handshakes for
secure communication links introduce additional delays
of approx. 6.6 milliseconds; (iii) AES-256 is disabled in
Java 8 by default due to export regulations, which requires
to remove the restrictions via reflection; (iv) one commu-
nication thread is not enough for asynchronous peer-to-
peer communication; (v) resynchronization of the node’s
states is hard, especially for small networks and high
block rates; (vi) idle chains are a security liability, which
can be mitigated by mining empty blocks; and (vii) new
insights would lead to a different implementation. In
summary, implementing a custom, private permissioned
blockchain from scratch is hard, but viable for use cases
like ours.

Endnotes

Lhttp://energyweb.org/news/ewf-february-5-2018/

2 https://www.openchain.org/

3 https://digiconomist.net/bitcoin-energy-
consumption

“Note that, due to daylight saving time, there are 2 days
in each year with 92 and 100 time slots, respectively.

>https://bitcoin.org/en/download

S http://solidity.readthedocs.io/en/develop/

"The same is true for US Dollars and other currencies.

8 https://github.com/MultiChain/multichain

% https://www.qemu.org/

O https://qemu.weilnetz.de/doc/qemu-doc.html#x86

U http://www.up-board.org/upsquared/

2 http://www.up-board.org/wp-content/uploads/2017/
11/UP-Square-DatasheetV0.5.pdf

B https://ark.intel.com/products/95598/Intel- Celeron-
Processor-N3350-2M- Cache-up-to-2_4-GHz

Y https://developer.arm.com/products/processors/
cortex-a/cortex-a7

15 https://www.openchain.org/

16 https://www.hyperledger.org/

7 https://github.com/hyperledger/sawtooth-core

18 http://oblivm.com/hawk/download.html

% https://tendermint.com/

2 https://eos.io/

http://energyweb.org/news/ewf-february-5-2018/
https://www.openchain.org/
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
https://bitcoin.org/en/download
http://solidity.readthedocs.io/en/develop/
https://github.com/MultiChain/multichain
https://www.qemu.org/
https://qemu.weilnetz.de/doc/qemu-doc.html#x86
http://www.up-board.org/upsquared/
http://www.up-board.org/wp-content/uploads/2017/11/UP-Square-DatasheetV0.5.pdf
http://www.up-board.org/wp-content/uploads/2017/11/UP-Square-DatasheetV0.5.pdf
https://ark.intel.com/products/95598/Intel-Celeron-Processor-N3350-2M-Cache-up-to-2_4-GHz
https://ark.intel.com/products/95598/Intel-Celeron-Processor-N3350-2M-Cache-up-to-2_4-GHz
https://developer.arm.com/products/processors/cortex-a/cortex-a7
https://developer.arm.com/products/processors/cortex-a/cortex-a7
https://www.openchain.org/
https://www.hyperledger.org/
https://github.com/hyperledger/sawtooth-core
http://oblivm.com/hawk/download.html
https://tendermint.com/
https://eos.io/

Knirsch et al. EURASIP Journal on Information Security (2019) 2019:2

2 http://docs.neo.org/en-us/whitepaper.html

2 http://www.smartgridssalzburg.at/content/website_
smartgrids/de_at/modellregion-salzburg.html

2 https://futurezone.at/b2b/verbund-und-salzburg-ag-
starten-blockchain- pilotprojekte/297.880.235

24 https://www.raspberrypi.org/blog/raspberry-pi-2-
on-sale/

B https://www.raspberrypi.org/blog/raspberry-pi-3-
on-sale/

2 https://docs.oracle.com/javase/8/docs/api/java/util/
concurrent/package-summary.html

Y https://docs.oracle.com/javase/8/docs/api/java/io/
Serializable.html

2 https://www.sqlite.org/

Y https://ugk-berlin.de/projects/schlangenbader-
strasse-ueberbauung-der-stadtautobahn/

30 https://docs.oracle.com/javase/8/docs/technotes/
guides/security/crypto/CryptoSpec.html#AppC

3L https://docs.oracle.com/javase/8/docs/technotes/
guides/security/SunProviders.html#importlimits

32 http://www.oracle.com/technetwork/java/javase/
downloads/jce8-download-2133166.html

)

3 https://stackoverflow.com/questions/1179672/how-
to-avoid-installing-unlimited-strength-jce-policy-files-
when-deploying-an/44056166#44056166

ploying

3 https://stackoverflow.com/a/38625821/4568958

5 https://github.com/ethereum/devp2p/blob/master/
rlpx.md

36 https://blockchain.info/

37 https://github.com/ethereum/EIPs/issues/186

38 https://github.com/libbitcoin/libbitcoin/wiki/Empty-
Block-Fallacy
Acknowledgements
The financial support by the Federal State of Salzburg is gratefully
acknowledged. Funding by the Austrian Research Promotion Agency (FFG)
under project number 865082 (ProChain) is gratefully acknowledged.
Additional funding as well as input and feedback by our company partners
Salzburg AG (Georg Baumgartner), Salzburg Netz GmbH (Christoph Groif3) and
Verbund AG (Werner Eder, Michael Schramel, Peter Poier, and Clemens
Theuermann-Bernhardt) is gratefully acknowledged. The authors would like to

thank the reviewers for their valuable comments which helped to significantly
improve this paper.

Funding
Funding information is provided in the “Acknowledgements” section.

Availability of data and materials
Not applicable.

Authors’ contributions

This paper was written by FK (45%), AU (45%), and DE (10%). The detailed
contributions are as follows: The idea for the paper and the blockchain
concept were developed by AU (40%), FK (40%), and DE (20%). The Abstract
was written by AU (50%) and FK (50%). Section 1 was written by AU (50%) and
FK (50%). Section 2 was written by AU (20%) and FK (80%). Section 3 was
written by AU (50%) and FK (50%). Section 4 was written by AU (60%) and FK

Page 13 of 14

(40%). Section 5 was written by AU (40%) and FK (60%). Section 6 was written
by AU (60%) and FK (40%). The conclusion was written by AU (50%) and FK
(50%). The legal background research was done by AU (100%). Editorial work
was done by DE (100%). All authors read and approved the final manuscript.

Authors’ information
The contact information of the first author is available on the very first page of
this document.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 7 June 2018 Accepted: 13 February 2019
Published online: 11 March 2019

References

1. S.Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System. Technical
report (2008). https://bitcoin.org/bitcoin.pdf

2. F.Tschorsch, B. Scheuermann, Bitcoin and beyond: a technical survey on
decentralized digital currencies. IEEE Commun. Surv. Tutor. 18(3),
2084-2123 (2016)

3. K Christidis, M. Devetsikiotis, Blockchains and smart contracts for the
Internet of Things. IEEE Access. 4, 2292-2303 (2016)

4. F.Knirsch, A. Unterweger, G. Eibl, D. Engel, in Sustainable Cloud and Energy
Services: Principles and Practices. Chap. 4, ed. by W. Rivera.
Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based
Smart Contracts (Springer, Cham, 2017), pp. 85-116

5. F.Knirsch, A. Unterweger, D. Engel, Privacy-preserving blockchain-based
electric vehicle charging with dynamic tariff decisions. J. Comput. Sci. Res.
Dev. (CSRD). 33(1), 71-79 (2018)

6. E.Munsing, J. Mather, S. Moura, in 2017 IEEE Conference on Control
Technology and Applications (CCTA). Blockchains for decentralized
optimization of energy resources in microgrid networks (IEEE, Mauna
Lani, 2017), pp. 2164-2171

7. E.Mengelkamp, B. Notheisen, C. Beer, D. Dauer, C. Weinhardt, A
blockchain-based smart grid: towards sustainable local energy markets.
Comput. Sci. Res. Dev. 33(1), 207-214 (2018)

8. G.Greenspan, MultiChain Private Blockchain - White Paper. Technical
report, Coin Sciences Ltd (2015). http://www.multichain.com/download/
MultiChain-White-Paper.pdf

9. G.Wood, Ethereum: A Secure Decentralised Generalised Transaction
Ledger. Technical report, Ethereum (2017). arXiv:1011.1669v3. https://
ethereum.github.io/yellowpaper/paper.pdf

10. K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P.
Saxena, E. Shi, E. Gun Sirer, D. Song, R. Wattenhofer, in International
Conference on Financial Cryptography and Data Security. On Scaling
Decentralized Blockchains (Springer, Christ Church, 2016), pp. 106-125

11. | Eyal, E. G. Sirer, in Financial Cryptography and Data Security, 18th
International Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014,
Revised Selected Papers, ed. by N. Christin, R. Safavi-Naini. Majority Is Not
Enough: Bitcoin Mining Is Vulnerable (Springer, Berlin Heidelberg, 2014),
pp. 436-454. arXiv:1311.0243

12. K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, I. Khoffi, J.
Cappos, B. Ford, in 26th USENIX Security Symposium (USENIX Security 17).
CHAINIAC: Proactive Software-Update Transparency via Collectively
Signed Skipchains and Verified Builds (USENIX Association, Vancouver,
2017), pp. 1271-1287

13. E.Ben-Sasson, A. Chiesa, C. Garman, M. Green, |. Miers, E. Tromer, M. Virza,
in Proceedings — IEEE Symposium on Security and Privacy. Zerocash:
Decentralized Anonymous Payments from Bitcoin (IEEE, San Jose, 2014),
pp. 459-474

14, A.Unterweger, F. Knirsch, C. Leixnering, D. Engel, in 2018 9th IFIP
International Conference on New Technologies, Mobility and Security (NTMS).
Lessons Learned from Implementing a Privacy-Preserving Smart Contract
in Ethereum (IEEE, Paris, 2018)

15. L. Lamport, R. Shostak, M. Pease, The Byzantine Generals Problem. ACM
Trans. Program. Lang. Syst. 4(3), 382-401 (1982). arXiv:1011.1669v3

16. R.Canetti, T. Rabin, in Proceedings of the Twenty-fifth Annual ACM
Symposium on Theory of Computing. Fast Asynchronous Byzantine

http://docs.neo.org/en-us/whitepaper.html
http://www.smartgridssalzburg.at/content/website_smartgrids/de_at/modellregion-salzburg.html
http://www.smartgridssalzburg.at/content/website_smartgrids/de_at/modellregion-salzburg.html
https://futurezone.at/b2b/verbund-und-salzburg-ag-starten-blockchain-pilotprojekte/297.880.235
https://futurezone.at/b2b/verbund-und-salzburg-ag-starten-blockchain-pilotprojekte/297.880.235
https://www.raspberrypi.org/blog/raspberry-pi-2-on-sale/
https://www.raspberrypi.org/blog/raspberry-pi-2-on-sale/
https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale/
https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale/
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://www.sqlite.org/
https://ugk-berlin.de/projects/schlangenbader-strasse-ueberbauung-der-stadtautobahn/
https://ugk-berlin.de/projects/schlangenbader-strasse-ueberbauung-der-stadtautobahn/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html#AppC
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html#AppC
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#importlimits
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#importlimits
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://stackoverflow.com/questions/1179672/how-to-avoid-installing-unlimited-strength-jce-policy-files-when-deploying-an/44056166#44056166
https://stackoverflow.com/questions/1179672/how-to-avoid-installing-unlimited-strength-jce-policy-files-when-deploying-an/44056166#44056166
https://stackoverflow.com/questions/1179672/how-to-avoid-installing-unlimited-strength-jce-policy-files-when-deploying-an/44056166#44056166
https://stackoverflow.com/a/38625821/4568958
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://blockchain.info/
https://github.com/ethereum/EIPs/issues/186
https://github.com/libbitcoin/libbitcoin/wiki/Empty-Block-Fallacy
https://github.com/libbitcoin/libbitcoin/wiki/Empty-Block-Fallacy
https://bitcoin.org/bitcoin.pdf
http://www.multichain.com/download/MultiChain-White-Paper.pdf
http://www.multichain.com/download/MultiChain-White-Paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

Knirsch et al. EURASIP Journal on Information Security

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

(2019) 2019:2

Agreement with Optimal Resilience 1 Introduction (ACM, San Diego,
1993), pp. 42-51

M. Vukoli¢, in Open Problems in Network Security. The Quest for Scalable
Blockchain Fabric: Proof-of-Work vs. BFT Replication (Springer, Cham,
2016), pp. 112-125

J.Katz, Y. Lindell, Introduction to Modern Cryptography, 1st edn. (Chapman
and Hall/CRC, New York, 2007), pp. 1-498

I. Abraham, D. Malkhi, K. Nayak, L. Ren, A. Spiegelman, in The 21st
International Conference on Principles of Distributed Systems. Solida: A Blockchain
Protocol Based on Reconfigurable Byzantine Consensus, (Lisbon, 2017),
pp. 1=17. http://arxiv.org/abs/1612.02916. Accessed 24 Jan 2019

J. A Lesser, X. Su, Design of an economically efficient feed-in tariff structure
for renewable energy development. Energy Pol. 36(3), 981-990 (2008)

L. Krampe, M. Winsch, Schlussbericht Mieterstrom — Rechtliche
Einordnung, Organisationsformen, Potenziale und Wirtschaftlichkeit von
Mieterstrommmodellen (MSM). Technical report (2017). https:.//www.bmwi.
de/Redaktion/DE/Publikationen/Studien/schlussbericht-mieterstrom.
pdf?__blob=publicationFile&v=10

E. Mengelkamp, J. Garttner, K. Rock, S. Kessler, L. Orsini, C. Weinhardt,
Designing microgrid energy markets: A case study: The Brooklyn
Microgrid. Appl. Energy. 210, 870-880 (2018)

Bundeskanzleramt, Kleine Okostromnovelle -Erlduterungen (2017).
https://www.ris.bka.gv.at/Dokumente/RegV/
REGV_COO_2026_100_2_1346954/CO0_2026_100_2_1347360.pdf.
Accessed 24 Jan 2019

Nationalrat, Anderung des Okostromgesetzes 2012, des
Elektrizitatswirtschafts- und -organisationsgesetzes 2010, des
Gaswirtschaftsgesetzes 2011, des KWK-Punkte-Gesetzes und des
Energie-Control-Gesetzes sowie Bundesgesetz, mit dem zusatzliche
Mittel aus von der .. BGBI. I Nr. 108/2017 (NR: GP XXV RV 1519 AB 1527 S.
190. BR: 9831 AB 9873 S. 870.) (2017). https://www.ris.bka.gv.at/eli/bgbl/I/
2017/108. Accessed 24 Jan 2019

Bundestag, Gesetz zur Férderung von Mieterstrom und zur Anderung
weiterer Vorschriften des Erneuerbare-Energien-Gesetzes.
Bundesgesetzblatt Teil . 2017(49), 2532-2539 (2017)

Nationalrat, Bundesgesetz, mit dem die Organisation auf dem Gebiet der
Elektrizitatswirtschaft neu geregelt wird (Elektrizitatswirtschafts- und
-organisationsgesetz 2010 — EIWOG 2010). BGBI. I Nr. 110/2010 (NR: GP
XXIV RV 994 AB 997 S. 86. BR: 8420 AB 8421 S.791.) (2010). https://www.
ris.bka.gv.at/eli/bgbl/1/2010/110. Accessed 24 Jan 2019

Nationalrat, Bundesrecht konsolidiert: Gesamte Rechtsvorschrift fir
Elektrizitatswirtschafts- und -organisationsgesetz 2010, Fassung vom
14.02.2018 (2018). https://www.ris.bka.gv.at/GeltendeFassung.wxe?
Abfrage=Bundesnormen&Gesetzesnummer=20007045. Accessed 24 Jan
2019

Bundestag, Gesetz zur grundlegenden Reform des
Erneuerbare-Energien-Gesetzes und zur Anderung weiterer
Bestimmungen des Energiewirtschaftsrechts. Bundesgesetzblatt Teil I.
2014(33), 1066-1132 (2014)

Bundestag, Erneuerbare-Energien-Gesetz vom 21. Juli 2014 (BGBI. | S.
1066), das zuletzt durch Artikel 1 des Gesetzes vom 17.Juli 2017 (BGBI. I S.
2532) gedndert worden ist (2017). https//www.gesetze-im-internet.de/
eeg_2014/BJNR106610014.html. Accessed 24 Jan 2019

K. Wst, A. Gervais, Do you need a Blockchain. https://eprint.iacr.org/
2017/375.pdf

European Parliament and Council of the European Union, Directive
2009/72/EC of the European Parliament and of the Council of 13 July
2009 concerning common rules for the internal market in electricity and
repealing Directive 2003/54/EC (2009). http://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX:32009L0072. Accessed 24 Jan 2019

M. Hearn, Corda: A distributed ledger, Version 0.5. Technical report. Corda.
Accessed September 2018 (2016). https://www.corda.net/content/corda-
technical-whitepaper.pdf

N. Zhumabekuly Aitzhan, D. Svetinovic, Security and Privacy in
Decentralized Energy Trading through Multi-signatures, Blockchain and
Anonymous Messaging Streams. IEEE Trans. Dependable Secure Comput.
15(5), 840-852 (2016)

M. Mihaylov, S. Jurado, N. Avellana, K. Van Moffaert, I. M. De Abril, A. Nowé,
in 11th International Conference on the European Energy Market, EEM.
NRGcoin: Virtual currency for trading of renewable energy in smart grids
(IEEE, Krakow, 2014)

M. Mihaylov, S. Jurado, K. V. Moffaert, A. Now, in Proceedings of the 3rd
International Conference on Smart Grids and Green [T Systems.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

Page 14 of 14

NRG-X-Change - A Novel Mechanism for Trading of Renewable Energy in
Smart Grids (SciTePress, Barcelona, 2014), pp. 101-106. arXiv:1011.1669v3
J.J. Sikorski, J. Haughton, M. Kraft, Blockchain technology in the chemical
industry: Machine-to-machine electricity market. Appl. Energy. 195,
234-246 (2017)

D. llic, P. G. Da Silva, S. Karnouskos, M. Griesemer, in [EEE International
Conference on Digital Ecosystems and Technologies. An energy market for
trading electricity in smart grid neighbourhoods (IEEE, Atlanta, 2012),

pp. 1-6

Y. Wang, W. Saad, Z. Han, H. V. Poor, T. Basar, A game-theoretic approach
to energy trading in the smart grid. [EEE Trans. Smart Grid. 5(3),
1439-1450 (2014). http://arxiv.org/abs/1310.1814

E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, B. Ford, in 25th
USENIX Security Symposium (USENIX 2016). Enhancing Bitcoin Security and
Performance with Strong Consistency via Collective Signing (USENIX
Association, Austin, 2016), pp. 279-296

J. Bucko, D. Palova, M. Vejacka, in Central European Conference In Finance
And Economics. Security and Trust in Cryptocurrencies (Technical
University of Kosice, Herlany, 2015), pp. 14-24

A. Unterweger, F. Knirsch, C. Leixnering, D. Engel, Update: Lessons
Learned from Implementing a Privacy-Preserving Smart Contract in
Ethereum. Technical report, Center for Secure Energy Informatics,
Salzburg University of Applied Sciences, Austria (nov 2017). http://www.
en-trustat/papers/Unterweger18a-t.pdf

F.Knirsch, A. Unterweger, K. Karlsson, D. Engel, S. B. Wicker, Evaluation of a
Blockchain-based Proof-of-Possession Implementation. Technical report,
Center for Secure Energy Informatics, Salzburg University of Applied
Sciences, Austria (2018). http://www.en-trust.at/papers/Knirsch18a-t.pdf
R. Han, V. Gramoli, X. Xu, in 9th IFIP Conference on New Technologies,
Mobility & Security (NTMS 2018). Evaluating Blockchains for loT (IEEE/IFIP,
Paris, 2018), pp. 0-4

A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, in 2016 IEEE Symposium
on Security and Privacy (SP). Hawk: The Blockchain Model of Cryptography
and Privacy-Preserving Smart Contracts (IEEE, San Jose, 2016), pp. 839-858
D. Maziéres, The Stellar Consensus Protocol: A Federated Model for
Internet-level Consensus. Technical report, Stellar Development
Foundation (2016). https://www.stellar.org/papers/stellar-consensus-
protocol.pdf

E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, B. Ford,
Omniledger: A Secure, Scale-Out, Decentralized Ledger via Sharding. IEEE
Symp. Secur. Priv., 583-598 (2018)

D. Engel, G. Eibl, Wavelet-Based Multiresolution Smart Meter Privacy. I[EEE
Trans. Smart Grid. 8(4), 1710-1721 (2017)

D. Laupichler, S. Vollmer, H. Bast, M. Intemann, Das BSI-Schutzprofil:
Anforderungen an den Datenschutz und die Datensicherheit fir Smart
Metering Systeme. Datenschutz und Datensicherheit - DuD. 35(8),
542-546 (2011)

M. Herlihy, N. Shavit, The Art of Multiprocessor Programming, rev. 1st edn.
(Morgan Kaufmann, Waltham, 2012)

E. Barker, W. Barker, W. Burr, W. Polk, M. Smid, C. S. Division, NIST 800-57:
Computer Security. NIST (2012). National Institute of Standards &
Technology. https://csrc.nist.gov/publications/detail/sp/800-57-part-1/
revised/archive/2007-03-01

T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (2008). https://tools.ietf.org/html/rfc5246. Accessed 24 Jan
2019

C. Decker, R. Wattenhofer, Information propagation in the Bitcoin network
Information Propagation in the Bitcoin Network (IEEE P2P 2013
Proceedings, Trento, 2013), pp. 1-10

M. Jakobsson, A. Juels, in Secure Information Networks: Communications
and Multimedia Security IFIP TC6/TC11 Joint Working Conference on
Communications and Multimedia Security (CMS'99) September 20-21, 1999,
Leuven, Belgium, ed. by B. Preneel. Proofs of Work and Bread Pudding
Protocols (Extended Abstract) (Springer, Dordrecht, 1999), pp. 258-272

. Eyal, A. E. Gencer, E. G. Sirer, R. van Renesse, in Proceedings of the 13th
Usenix Conference on Networked Systems Design and Implementation.
NSDI'16. Bitcoin-NG: A Scalable Blockchain Protocol (USENIX Association,
Santa Clara, 2016), pp. 45-59. http://arxiv.org/abs/1510.02037

M. Carlsten, H. Kalodner, S. M. Weinberg, A. Narayanan, in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security - CCS'16. On the Instability of Bitcoin Without the Block Reward
(ACM, Vienna, 2016), pp. 154-167

http://arxiv.org/abs/1612.02916
https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/schlussbericht-mieterstrom.pdf?__blob=publicationFile&v=10
https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/schlussbericht-mieterstrom.pdf?__blob=publicationFile&v=10
https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/schlussbericht-mieterstrom.pdf?__blob=publicationFile&v=10
https://www.ris.bka.gv.at/Dokumente/RegV/REGV_COO_2026_100_2_1346954/COO_2026_100_2_1347360.pdf
https://www.ris.bka.gv.at/Dokumente/RegV/REGV_COO_2026_100_2_1346954/COO_2026_100_2_1347360.pdf
https://www.ris.bka.gv.at/eli/bgbl/I/2017/108
https://www.ris.bka.gv.at/eli/bgbl/I/2017/108
https://www.ris.bka.gv.at/eli/bgbl/I/2010/110
https://www.ris.bka.gv.at/eli/bgbl/I/2010/110
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20007045
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20007045
https://www.gesetze-im-internet.de/eeg_2014/BJNR106610014.html
https://www.gesetze-im-internet.de/eeg_2014/BJNR106610014.html
https://eprint.iacr.org/2017/375.pdf
https://eprint.iacr.org/2017/375.pdf
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0072
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0072
https://www.corda.net/content/corda-technical-whitepaper.pdf
https://www.corda.net/content/corda-technical-whitepaper.pdf
http://arxiv.org/abs/1310.1814
http://www.en-trust.at/papers/Unterweger18a-t.pdf
http://www.en-trust.at/papers/Unterweger18a-t.pdf
http://www.en-trust.at/papers/Knirsch18a-t.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/revised/archive/2007-03-01
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/revised/archive/2007-03-01
https://tools.ietf.org/html/rfc5246
http://arxiv.org/abs/1510.02037

	Abstract
	Keywords

	Introduction
	Blockchain technology overview
	Blockchain technology
	Drawbacks

	Use case description
	Legal requirements
	Conceptual overview
	Use of blockchain technology
	Related work

	Available implementations
	Bitcoin
	Ethereum
	MultiChain
	OpenChain
	Other implementations

	Implementation
	Overview
	Nodes
	Clearing server
	Smartphone App
	Network setup

	Outcomes
	Scalability can be improved with BFT
	TLS handshakes introduce significant delays
	AES-256 is disabled in Java 8 by default
	One communication thread is not enough
	Resynchronization is hard
	Idle chains are a security liability
	New insights would lead to a different approach

	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	References

