Xu et al. EURASIP Journal on Information Security (2018) 2018:12
https://doi.org/10.1186/513635-018-0083-x

EURASIP Journal on
Information Security

RESEARCH Open Access

@ CrossMark

A generic integrity verification algorithm
of version files for cloud deduplication data
storage

Guangwei Xu'T, Miaolin Lai, Jing Lif, Li Sun® and Xiujin Shi

Abstract

Data owners' outsourced data on cloud data storage servers by the deduplication technique can reduce not only
their own storage cost but also cloud’s. This paradigm also introduces new security issues such as the potential threat
of data lost or corrupted. Data integrity verification is utilized to safeguard these data integrity. However, the cloud
deduplication storage only focuses on file/chunk level to store one copy of the same data hosted by different data
owners, and is not concerned with the same part of different data, e.g., a series of version files. We propose an integrity
verification algorithm of different version files. The algorithm establishes the generic storage model of different
version control methods to improve the universality of data verification. Then, the methods of verification tags and
proofs generating are improved based on the index pointers corresponding to the storage relationship in the version
groups and chained keys. Finally, the random diffusion extraction based on the random data sampling in the version
group is proposed to improve the verification efficiency. The results of theoretical and experimental analysis indicate

that the algorithm can achieve fast and large-scale verification for different version data.

Keywords: Data integrity verification, Version file storage, Version group, Random diffusion extraction

1 Introduction

With the rapid development of the cloud computing,
cloud storage as a new generation of computing infras-
tructure has received more and more attention. At the
same time, more and more cloud storage services spring
up which can provide users with low cost but huge data
storage space. Although cloud storage can provide conve-
nient storage and fast access to data at any time and etc.,
the paradigm of outsourced data service also introduces
new security challenges. No matter how high degree of
reliable measures cloud service providers would take, data
loss or corruption could happen in any storage infrastruc-
ture due to natural corruption and malicious corruption
[1]. Sometimes, in order to save storage space, the mali-
cious storage service provider may delete the data that
has not been accessed or accessed less, but claim that
these data are completely stored on the remote servers.

*Correspondence: dh.xuguangwei@gmail.com

*Guangwei Xu, Jing Li and Li Sun contributed equally to this work.

School of Computer Science and Technology, Donghua University, 201620
Shanghai, China

@ Springer Open

These misgivings have prompted the data owners to worry
whether the outsourced data are intact or corrupted
on the remote servers since they are deprived of the
direct control of these data [2]. Data integrity verification
[2—-12] has been proposed to check the integrity of owners’
remote stored data. These existing verification algorithms
based on homomorphism technology can exactly identify
the corrupted data (i.e., each block or file) in the verifi-
cation. Recently, many commercial cloud storage services,
such as Google Drive and Dropbox, utilize deduplication
technique at the file/chunk level to store one copy of the
same data hosted by different data owners. Liu et al. [13]
proposed one-tag checker to audit the data integrity on
encrypted cloud deduplication storage.

1.1 Motivation

As it is described above, the existing cloud deduplication
storage is not concerned with the same data part of differ-
ent files, e.g., a series of version files. As we know, a project
such as documents, computer programs, and other col-
lections of information needs to be continuously modified
from original designing to final realization over a long

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-018-0083-x&domain=pdf
mailto: dh.xuguangwei@gmail.com
http://creativecommons.org/licenses/by/4.0/

Xu et al. EURASIP Journal on Information Security (2018) 2018:12

period of time. A series of changes of the project are usu-
ally identified by a number or letter code, which is termed
the “revision number” in revision control [14]. The revi-
sion number can track and provide control over changes.
Moreover, some important information like medical or
trade records requires more complete preservation. Also,
old version files need to be integrally saved in order
to review and recover the key information in different
periods. Nowadays, there are two major version control
methods. One is the incremental storage, e.g., subversion.
In this method, the earliest version file is stored fully, and
then, the subsequent version files are stored incremen-
tally. Another is the opposite of incremental storage, e.g.,
git, in which the latest version is stored fully.

These major version control methods bring infeasibility
and insecurity to the existing cloud deduplication storage
and data integrity, respectively. On the one hand, the exist-
ing cloud deduplication storage only focuses on file/chunk
level to store one copy of the same data hosted by dif-
ferent data owners rather than the same part of different
data [13] so that the technique is disabled in decreas-
ing the efficiency of cloud storage. On the other hand,
these version control methods incur some security issues
for the data integrity even though the restorability of ver-
sion files is improved. First, the security of version data
is still weakened for these version control methods. Once
a middle version file is corrupted, any subsequent ver-
sion file cannot recover the full content of the project
due to the insufficient middle version file storage. Second,
the little opportunity of each version file being verified
decreases the integrity of the full content of version files
even though a verified version file is intact after the data
verification. The storage space of version data is boosted
with the increase of the version files. At the same time, the
opportunity of any corrupted version file being identified
is decreased since the existing verification algorithms are
only oriented to every file instead of a set of version files
[10, 11] while these files are randomly extracted. A large
number of version files result in more verification cost. In
this case, the random data extraction which is applied in
the existing verification algorithms reduces the security of
full version files.

1.2 Contributions
To improve the efficiency and universality of data verifi-
cation on the cloud deduplication storage, in this paper,
we propose a verification algorithm of different version
files (VDVF) that can verify the integrity of version data
in remote storage while protecting users’ privacy. In sum-
mary, the contributions of the proposed algorithm are
described as follows.

1) We improve the method of verification tags gen-
erating which is based on the generic storage model of
different version files and established by combining the

Page 2 of 15

full storage and the incremental storage. It can improve
the universality of data verification to meet the needs of
version data controlled by different storage methods, i.e.,
full storage, incremental storage, and differential storage.

2) We improve the method of verification proofs gen-
erating which is based on the version groups and chained
keys. In the verification, verification tags and proofs can
be gained by index pointers corresponding to the storage
relationship in the version groups and chained keys.

3) We design a novel random diffusion extraction
method in the verification, which is based on the random
data sampling and the version storage group. It can find
all version files related to the chosen data through the link
relationship in the version storage group and then extends
the Boneh-Lynn-Shacham (BLS) signature scheme to sup-
port batch verification for multiple files. In this way, we
improve the number of the verified data to effectively pro-
tect the integrity of version data under the condition of
limited verification cost.

The remaining of the paper is organized as follows. In
Section 2, we briefly summarize the current researches
on the verification of data integrity. Section 3 outlines
the system model and problem statements. In Section 4,
we propose an efficient and generic integrity verification
algorithm of different version files. Section 5 gives the
analysis of our proposed algorithm in terms of security.
Section 6 evaluates the performance of algorithm by simu-
lations. Finally, the conclusion and future extension to the
work is given in Section 7.

2 Related work

At present, the integrity verification methods for remote
storage data can be divided into two types, i.e., prov-
able data possession (PDP) [3] and proof of retrievability
(POR) [4]. PDP can guarantee the data integrity from
probability and certainty, but it cannot ensure the recov-
erability of the data. POR indicates that the server can give
the recoverable proof of the data, and the data which have
a certain degree of damage can be recovered through data
coding technique.

e Verification schemes based on remotely stored data.
Deswarte Y. et al. [5] first proposed two data integrity
verification schemes for remotely stored data. One is
to preprocess the files which are going to be veri-
fied with hash, and then, multiple challenge-response
modes are mainly applied in the verification process.
This scheme needs to store a large amount of check-
sum in order to prevent replay attacks of malicious
servers. The other is based on the Diffie-Hellman
key exchange protocol. But with the amount of data
increasing, the cost of the server’s calculation will
grow at exponential rates. In 2007, Ateniese et al.
[3] proposed PDP, and they applied homomorphic

Xu et al. EURASIP Journal on Information Security (2018) 2018:12

verifiable tag in this scheme. Users generate a tag
for each data block, servers then store these data
blocks and tags. When users ask for data verifica-
tion, servers generate the proofs for pairs of data
blocks and tags that needed to be verified according
to challenge information. Users can verify the data
integrity by verifying the proofs returned from servers
without getting the data back. In 2008, Ateniese et
al. [6] improved their scheme by adding symmetric
key. They proposed a dynamic provable data posses-
sion protocol based on cryptographic hash function
and symmetric key encryption. A certain number of
metadata need to be calculated in advance during the
initialization phase, so that the number of updates and
challenges is limited and fixed. Each update operation
needs to recreate the existing metadata which is not
applicable to large files. Moreover, their protocol only
allows append-type insertions. Erway et al. [7] also
extended the PDP model to support dynamic updates
on the stored data.

Juel and Kaliski first proposed POR [8], the main
idea of which is to encode the file first and then add
“sentinels” which cannot be distinguished from the
file data into the file randomly. When verifying the
entire file, the verifier only needs to verify these sen-
tinels. But this scheme can only do limited times chal-
lenge. Afterwards, Shacham et al. [4] applied homo-
morphic authentication in two improved schemes so
that it can not only reduce the overhead of commu-
nication, but carry out unlimited challenges as well.
Wang et al. [9] proposed a scheme based on homo-
morphic token value and RS codes which cannot only
verify the integrity of the file but also locate the dam-
aged data blocks. After that, Yang et al. [10] proposed
an efficient and secure dynamic auditing protocol
which supports data privacy-preserving and dynamic
update. This scheme is also applicable to multiple
users and multiple clouds. Ziad et al. [11] proposed
a scheme based on game theory in order to find an
optimal data verification strategy. Recently, Zhang et
al. [15] used indistinguishability obfuscation to reduce
the auditor’s computation overhead while the auditor
is equipped with a low-power device.

e Verification schemes based on deduplication stor-
age. Data deduplication in computer storage refers
to the elimination of redundant data. In [16], each
user computes the integrity tags of each file with
his private key, even though the file has been stored
in the cloud. Then, the tags on the same block are
aggregated into one tag by the cloud to reduce the
cost of tag storage and computation. However, the
public key aggregated by the multiplication of all
the file owners” associated public keys easily reveals
the file ownership information while the adversary

Page 3 of 15

launches brute-force attack. Moreover, Liu et al. [13]
proposed a message-locked integrity auditing scheme
based on proxy re-signature techniques in encrypted
cloud deduplication storage without an additional
proxy server. However, their algorithm is only appli-
cable to the deduplicated storage which stores one
copy of the same data hosted by different data
owners.

All above schemes only deal with each individual file or
block rather than a set of version files. Certainly, these ver-
ification algorithms can simply apply into the verification
of version files if each version file is dealt with like a gen-
eral file. In this way, all the files which include the version
files are treated equally in the verification. However, if a
middle version file is not verified or worse yet it is actu-
ally corrupted, the integrity of the subsequent version files
will be hard to be ensured. Certainly, if all the version files
are verified, it will produce large computation cost. In this
paper, we improve the verification of different version files
to reduce the impact of these problems on the integrity of
version files.

3 System model and problem statements

3.1 Data integrity verification model

The basic model of remote data storage service is that
after an agreement is reached between the user and the
data storage provider, the user hosts his data and veri-
fication tags generated by data units to remote servers
provided by the data storage provider. After that, accord-
ing to the requests from the user, the server provides
access to related data.

In traditional data integrity verification model, it is
based on the agreement between the two sides of the data
storage service to verify the integrity of the stored data.
As either side of user or data service provider may pro-
vide biased verification results to cheat the other side, our
verification model introduces the third party verifier like
in [12] for the fairness of data verification. Thus, there are
three participants in our data verification model, namely,
user, data service provider (DSP), and third party veri-
fier (TPV). Assume that the TPV can be fully trusted
while the TPV is composed of a public verifier group
rather than an individual to execute the verification, i.e.,
the number of group’s members exceeds a certain value.
Therefore, we can consider that the verification result
provided by the TPV is fair and credible. The details
about the number of the public verifier group members
are not discussed in this paper due to the limitation
of space.

In the verification of the remote data storage, we apply
Challenge-Response model to perform the data verifica-
tion, which is shown in Fig. 1. Firstly, the TPV sends
data verification challenges to the DSP. Secondly, the DSP

Xu et al. EURASIP Journal on Information Security (2018) 2018:12

Page 4 of 15

Fig. 1 Data integrity verification model

generates the integrity proofs of the challenged data based
on the received challenges and then sends the proofs back
to the TPV. Finally, the TPV judges whether the data have
been intact or not by comparing the proofs from the DSP
with the corresponding verification tags.

3.2 Version file storage model

The storage of different version files is one of the key
technologies in version control. It is the management of
changes to a set of files. Each version file is associated
with a timestamp and the person who made the change.
Certainly, version files can be compared, restored, and
merged with some types of files. Version control also
enables data administrators to easily track data changes
made and roll back to earlier version files when required.
In version control, unique version names or version num-
bers are assigned to keep track of different version files
of electronic information incrementally such as semantic
versioning. The revision number of version file includes
major version number, minor version number, file phase
identification, and revision version number. For example,
the revision number of a file is “1.1.1”

In the process of version files generating, an efficient
data structure is needed to link different version files. In
terms of graph theory, version files are stored by a line
of a trunk with branches. Version relationship model can
be divided into two kinds based on the generation of the
version files. One is based on the generation time of the
version files to build the file chain and finally form the
linear version chain model [17] as shown in Fig. 2. In real-
ity, the structure is more complicated to form a directed
acyclic or branched graph. If multiple people are working

on a single data set or document, they implicitly create
branches of the data (in their working copies) which will
finally form the other one, i.e., split version tree model
[18], as shown in Fig. 3, in which black solid lines are the
trunk of the tree, black dotted lines are branches, and the
blue dotted lines represent the merge of branches.

Definition 1 (storage node of version files). Each ver-
sion file in the version chain or version tree is called
storage node of version files which is shorten to storage
node.

Each storage node is corresponding to each version file.

There are three main types of version files’ storage, i.e.,
full storage, incremental storage, and differential storage.
The full storage is the starting point for all other storages
and contains all the data in a file that are selected to be
stored. The incremental storage is to store all the changed
data in a file since the last storage was made. They do this
whether the last storage was a full one or an incremental
copy. For example, if a full storage was done by node 1,
node 2 stores all the changed data of the file after node 1
by the incremental storage. Likewise, node 3 only copies
those changed data in the file after node 2’s incremental
storage. The differential storage copies those changed data
in the file since the last full storage took place. For exam-
ple, if a full storage was done by node 1, node 2 will copy
all changed data of the file by the differential storage since

OO 02,00

Fig. 2 Linear version chain

Xu et al. EURASIP Journal on Information Security (2018) 2018:12 Page 5 of 15

node 1’s storage copied everything. Also, node 3 will copy
all changed data of the file by the differential storage since
V1 node 1’s full storage was made.
In version file storage model, we make two following
- S, assumptions. (1) Once some data of the file are changed, a
new version file will be inevitably generated. Changing the
file content without updating the version file will lead to
the conflict between version files. (2) Every version file has
a unique predecessor and successor. Only if the file con-
| tent changes, a new and unique version number of the file
\ v is increased. To conveniently describe the key problem,
\ we focus on the linear version chain or the trunk chain of
the version tree in the following discussion. The branches’
chain of the version tree has a similar approach to it. While
the version tree is boiled down to the trunk chain, it is
equivalent to the linear version chain. In this paper, we
uniformly call the linear version chain or the trunk chain
of the version tree the version chain.

3.3 Attack model

The main threats of untrusted remote data storage come
from that DSPs intentionally or unintentionally lost or
corrupt users’ data. There exist several following possible
attack scenarios [19] on the integrity of the storage of dif-
ferent version files: (1) Attacker corrupts users’ data and
then forge the verification proofs by the revealed private
key to pass the data verification. If only one private key is
reused to generate the verification tags in all version files,
the DSP can forge verification proofs of the verified data
blocks in these version files and deceive the TPV while the
private key is revealed by a sloppy user which is shared
by all users in a project development team. (2) Attacker
reduces the number of copies of the same data to save the
storage space so that any part in a series of version files
being corrupted will be unable to guarantee the integrity
of version files. Generally, three copies of the same data
are stored to maintain data service availability since the
availability of users’ data depends heavily on the number
of copies [11]. The unreasonable storage model of version
files further increases the potential risk of data corruption.
For example, in the incremental storage, if any predeces-
sor version file in a version chain is corrupted, the sequent
version files will not be restored completely.

(3) Attacker easily escapes data corruption identifica-
tion from the verification even if he corrupts key data in
a series of version files. Due to the limited cost and num-
/ ber of checked data in each verification, all the verification
algorithms only execute the probabilistic verification. In
this way, many data cannot be verified while only a part
of the data is extracted to be checked by the random data
sampling. Moreover, considering that the DSP may not
recognize that the verified data are corrupted only if the
user declares, we introduce the TPV to verify the integrity
of these data.

7 ~

\
/

Fig. 3 Split version tree

Xu et al. EURASIP Journal on Information Security (2018) 2018:12

3.4 Problem statements

The existing verification algorithms treat all the files
equally whether the file is one of the version files or not
and is only corresponding to its expiry date or not. Due
to the particularity of version files, the traditional verifi-
cation results in the lack of computational efficiency and
reliability in the integrity protection while these existing
verification algorithms are directly applied in the ver-
ification of version files. We summarize the following
problems.

(1) Although each verified file or block can be guaran-
teed whether it is intact, the complete content may still be
corrupted if only one of the version files is checked in the
verification.

In addition to the full storage of version files, the other
storage methods only store the increment or difference to
their precursor file, i.e., most of version files in a set of ver-
sion files only store part of their complete content. Thus,
the change of version files depends on the base version.

Definition 2 (base version file). A version file which is
stored by the full storage is called the base version file.

For example, in git, the latest version file which is fully
stored is the base version file. On the contrary, the earli-
est version file is the base version file in subversion. Thus,
the verification of each independent file or block can only
ensure the integrity of the verified file or block rather
than the integrity of its actual content. Under the existing
random verification mechanism, every version file is inde-
pendently extracted to execute the verification. Thus, the
integrity of only a part of version files can be guaranteed
rather than the full content contained in the set of ver-
sion files. Thus, even if a verified file or block is intact, it
can also cause corruption or loss of important data related
to the file or block in the version chain since there exists
a predecessor and successor linkage in a version chain.
Although a file is judged to be intact after the verification,
the integrity of its precursor and successor file cannot
be guaranteed so that user cannot accurately recover the
original data content from remote version files’ storage
due to the loss or corruption of the key version data. This
uncertainty is more serious especially while the number of
version files in a version chain is large.

(2) There exists a potential danger that only one fixed
private key is utilized to generate the verification tags of all
the version files. As it is discussed in attack model, a group
of users in a project development team share a private key.
In this case, any sloppy user can reveal the private key so
that the attacker can obtain the private key and forge the
verification proofs to deceive the TPV.

(3) Even if the integrity of each version file stored by the
full storage can be enforced by the integrity verification,
it results in excessive computation and transmission over-
head. Thus, it is very important to the choice of the base
version.

Page 6 of 15

In view of the above problems, we need to improve tra-
ditional verification methods. By improving the storage
method of version files, we ensure the integrity of the
content of version files in the version chain.

4 Data integrity verification algorithm for
different version files
4.1 Constructing the generic storage model of version
files
Assume that there is a series of files in a version chain,
e.g, {Vi1, V12, Via1, Vi, Vaia, Voo, Vaa, Vi, Vaaa, ..
Referring to the common version files’ storage methods,
they can be stored by the incremental storage (e.g., subver-
sion) or the inverse incremental storage (e.g., git). If these
files are stored by the former, the earliest version file is
the base version, and the successor version files are stored
by the incremental storage. If these files are stored by the
latter, the latest version file is the base version, and the
predecessor version files are stored by the inverse incre-
mental storage. Thus, for the former, if any version file
is corrupted, the full content of version files cannot be
recovered. In this case, the security of version files is poor.
For the latter, even though the security of version files is
improved, the storage space of version data is increased.
Especially, the security of version data is weakened while
there are many version files and each version file is only
randomly extracted in each verification.

Therefore, to improve the security of version data and
reduce the storage space of version data, we redesign the
base version of version files to meet the needs of different
storage methods of version data in this paper. We call each
version file in the version chain the storage node, which
can also be shorten to node. Moreover, in order to protect
data privacy, when TPV performs the data verification,
we apply bilinear maps and homomorphic encryption to
guarantee the security of the verification and the reliabil-
ity of the verification results, and meanwhile, effectively
reduce the traffic cost in network communication. The
homomorphic encryption generates an encrypted result
on ciphertexts, which matches the result of the operations
on the plaintext when decrypted. The purpose of homo-
morphic encryption is to allow computation on encrypted
data.

4.1.1 Grouping version files based on storage threshold
Considering the advantage of several storage ways and
less storage overhead, we combine the full storage and
incremental storage when users store version files to
remote servers. Thus, we partition the version chain based
on version storage threshold into several version groups
referring to [20].

Definition 3 (version group). A version group which is
a part of a version chain is composed of several version
files sorted by the version number.

Xu et al. EURASIP Journal on Information Security (2018) 2018:12

The number of members in a version group depends on
version storage threshold.

Definition 4 (version storage threshold). The version
storage threshold which is a value controls the maximum
number of the version group members.

By selecting the appropriate version storage threshold,
we store the first version file in each version group by the
full storage and then make an iterative incremental stor-
age to every successor version file in the group. Thus, in
the storage of version files, the version store threshold
determines the size of each version group. For example,
on the left side of Fig. 4, we set the version storage thresh-
old to 4. Therefore, the version chain is partitioned into
two version groups. The first version group includes four
members, i.e., nodes Vi, V5, V3, and V4. The second ver-
sion group includes two members, i.e., nodes V5 and V5.
In the first version group, node V; which is the basic ver-
sion is stored by the full storage, and nodes V3, V3, and
V4 are all stored by the incremental storage and based
on their respective precursor version file in a form of the
incremental storage. Likewise, node V5 is the basic ver-
sion and stored by the full storage. Node Vj is stored by
the incremental storage based on node V5. So the version
tree is finally formed as shown on the right side of Fig. 4.
The shadow nodes represent the basic versions, and oth-
ers represent the incremental storage nodes based on the
basic versions.

According to previous analysis, the version storage
threshold and the partition of the version group are the
most important selection in version file storage. The
research on the storage threshold has been studied in [20],
and in this paper, we will not discuss it. We set the version
storage threshold to T.

Vi Vi
] !
V2 V'

i Version control ! :
Vs storage Vs
| |
Vi V4
| |
VS VS
| |
Vs V'

Fig. 4 Version files grouped

Page 7 of 15

The process of version files grouping is as follows.
Before the partition of the version group is performed,
the set of version files should be first ensured referring to
the same file description series. Secondly, the length (or
depth) of the version chain can be determined. Finally, the
number of members in each version group is calculated
based on the version storage threshold T and then splits
the version chain into several version groups.

For example, given a series of files V; with file name
V and version numbers i (i €[1,#7]) in a linear version
chain. Assume Vj is identified as the first version file. V}’s
(i €[2,n]) offset compared to V7 in the version chain is
L = f(Vy), where f is the offset calculate function to
figure out the offset of V; relative to the first version file
in the version chain. When the version number i is the
biggest one, its offset value relative to the first version file
in the chain is the maximum length of the version chain
Lmax- In a version chain, we can simply carry out the ver-
sion group by dividing the maximum length of the chain
according to the equal threshold. Thus, once the version
storage threshold is given, the number of version groups c
can be calculated by

¢ = [Lmax/T1, 1)

where [.] means that the value takes an integer being
greater than or equal to the current value. In version tree
model, we need to take the vertical and horizontal devel-
opment of the version tree into account to perform the
version group. The depth of the version tree is determined
by the maximum value of the trunk on the version tree,
namely, the number of the major version. Therefore, the
depth of the version tree is calculated based on the num-
ber of the main version, which is similar to the linear
version chain, i.e., L = f(getmajorversionnumber(Vy,)),
where {.} is file’s version number.

4.1.2 Storage and restoration of deduplication-based
version files

According to the sequence of version number and content
correlation between two version files of adjacent version
numbers, we can set up the associated storage of version
files in practical. For the sake of explaining the storage of
version files, let us see an example. We suppose that there
exist two successive version files, i.e, Version 1 and Version
2, respectively. These two version files are locally stored
as independent and full files as shown in the left of Fig. 5.
When users want to store them on remote servers, they
should do block processing on these version files referring
to [5]. Providing that Version 1 can be divided into 4 data
blocks, namely, Block_1, Block_2, Block_3, and Block_4.
Also, Version 2 can be divided into 4 data blocks, namely,
Block_2, Block_4, Block_5 and Block_6, where Version
2’s duplicate block numbers comparing with Version 1’s
means that the content of blocks is the same. Compared

Xu et al. EURASIP Journal on Information Security (2018) 2018:12

—— Block 1 rBlock_1
{Block_2 fBlock 2
l:'iff Block 3

Block 3
Version 1-{-|Block 4 Block 4

s

ry

r|Block 2
l:lﬁii Block 4
—— Block 5

Version 2L-{Block 6

Block 5]
Version 2L|Block 6|

Local storage Remote storage

Fig. 5 Comparison between local and remote storage of version files

to Version 1, Version 2 deletes Block_1 and Block_3 and
adds Block_5 and Block_6 as shown in the shaded rectan-
gles on the left side in Fig. 5. In remote storage, Version 1
is selected as the base version, and all blocks in the file (i.e.,
Block_1, Block_2, Block_3 and Block_4) are fully stored as
shown on the right side of Fig. 5. However, only Block_5
and Block_6 in Version 2 are stored by the incremental
storage, and in addition, the index pointers of Block_2 and
Block_4 pointing to corresponding data blocks in Version
1 are put. Certainly, if Block_1 in Version 1 is updated into
Version 2, it will be firstly deleted and then replaced by a
new added block (i.e., Block_5) in Version 2. If we need
to restore Version 2 in the local station, we can directly
download the stored Block_5 and Block_6 and indirectly
download Block_2 and Block_4 by their index pointers
pointing to the corresponding data blocks. Thereby, the
entire content of Version 2 is restored.

In order to further discuss the data storage and data
restoration in the version control mode, we give a set of
version files consisting of four version files, as shown in
Fig. 6. The left side of the figure indicates that all of the
version files adopt the full storage when they are stored
locally, that is, each file is independent and fully stored.
The middle of the figure indicates the content of each ver-
sion file when they are uploaded to remote servers. Let
the version storage threshold be set to 4, and all version
files form a version group. V7 is the first file and stored by
the full storage, and other files in this group V>, V3, and
V4 adopt the incremental storage. Let Ajyq|y;, i €[1,3]

Original version Stored version Restored version

— —» Incremental computation

— Version restoration

Fig. 6 Storage and restoration of a version file

Page 8 of 15

indicate the contents of the incremental storage of version
file Vi1 with respect to its predecessor version file V;,
namely, the differential content from V; to V4. Followed
by analogy, the contents of the other version files can be
got. When getting a version file, we find the version group
it belongs to and the first version file in the group, and
then restore the full files in sequence according to the ver-
sion chain as shown in the right side of Fig. 6. For example,
if the version file V3 needs to be fully restored, it first gets
the version file V1, and then supplements A and A3, i.e.,
V3 = Vi + Ay + As. Certainly, A; relative to V] includes
the added data as well as the deleted data.

In the process of the incremental storage between differ-
ent version files, the difference information between two
files needs to be calculated. Considering that rsync as a
type of delta encoding is used for determining what parts
of the file need to be transferred over the network con-
nection, we apply the core idea of rsync algorithm [21] to
distinguish the difference information between two files.

4.2 Generating the chained keys

To ensure the association between different version files,
we apply chained keys in the generation of keys. In
[22], the authors combined the hysteresis signatures with
chained keys to build a link structure between signatures.
However, in the verification, it needs to verify both times-
tamps and signatures so that it will add computation and
communication overhead. In particular, the larger set of
version files (i.e., more revisions) needs more verification
time. Thus, we design a scheme of chained keys. On the
basis of the basic key, the processing key of every version
file is calculated by hashing key of its predecessor ver-
sion file. Figure 7 illustrates the generation process of the
chain keys in which the hash operation is a one-way hash
function /4(.) and considered to be secure since it is easy
to compute y = h(x) with given x and hard to compute
x = h~1(y) with given y. Key in the figure indicates the
basic key, and it can get a pair of private-public key (sk, pk)
through the key generation algorithm in Section 4.4. Key,
indicates the key of version file V7 and hashes from Key.
Straight arrow in this figure indicates the hash function
h(.). Every Key;(i > 2) is hashed from Key,_;, where i indi-
cates the version number. At last, all the keys Key;(i > 1)
on the key chain can be obtained.

4.3 Extracting the challenged data
Existing data integrity verification algorithms mainly
extract some data from the entire set of data randomly

‘ Key ‘M Keyl ‘—h—(lr‘ Key2 0 Key3 }—}i)—»‘ Key4‘

Fig. 7 Generation of the chained keys

Xu et al. EURASIP Journal on Information Security (2018) 2018:12

to execute the verification [23]. Thus, even though there
exist different version files, each time the data extraction
is independent and random.

Considering the combination storage method of the full
storage and the incremental storage is applied by these
version files, we do not just verify the chosen file, but scale
up the extraction range to all version files related to the
chosen file by the link relationship in the version group
while one of these files is extracted to be verified. Thus, we
need to locate the version group the chosen file belongs to
and the relative version files in the version group. All the
files in the current version group are determined whether
they are intact. Therefore, while a file in a version group
is randomly extracted and verified, all the files in the ver-
sion group will be extracted to execute the verification
actually. We define this data extraction as random diffu-
sion extraction corresponding to random extraction. The
random diffusion extraction collects the results of ran-
dom extraction and then finds a relevant version group by
the version relationship model to determine the final set
of extracted files. By performing batch verification of all
these extracted files, we can verify the integrity of the full
content of the chosen file. Meanwhile, once the verifica-
tion can cover multiple continuous version files even all
version files, the reliability of data storage can be further
enhanced.

We define the random extraction data set as V¢pay, the
random diffusion extraction data set as V, .. Before the
verification, we need to extract the set of challenged files
Vehall by the random extraction. If there exists a file in a
version chain being extracted in V¢han, we locate the ver-
sion group the chosen file belongs to according to the file
and storage threshold 7, and then put its precursor ver-
sion files in the group into V/, to prepare for the data
verification. For example, in Fig. 2, let the storage thresh-
old T be 4. If V3 exists in Vcpay, all precursor version files
of V3 in the same version group should be put into V7, ,,,
namely, Venant = {V3} = V. = (V1, Vo, V).

If there exists a file in a split version tree model being
extracted in Vcha, we need to determine the major ver-
sion number of the file firstly and then locate the ver-
sion group which includes version files on the trunk
and branches of the split version tree. Finally, put all of
these precursor version files into V; . to prepare for the
data verification. For example, in Fig. 3, let the storage
threshold be set to 3. If V3 is extracted in V¢pay, all pre-
cursor version files in the current version group should
be put into V7, ,,, namely, Vehant = {V3} — V)
{Vi1, Via, Viaa, Vaa, Vo, Voo, Vaa, Vaa, Vaoal

Of course, the amount of files actually extracted will
increase accordingly while the data set Vcpa extracted by
the random extraction extends to the data set V, ;, by the
random diffusion extraction. However, the number of files
being verified is limited by the data verification overhead.

Page 9 of 15

Thus, how to determine the size of extracted data set rea-
sonably is also a key problem to be considered. In order to
control the amount of data being verified under the limi-
tation of data verification overhead, we need to restrict the
size of the extracted data set in the process of the random
data extraction. Providing that the standard size of each
data block is fixed, the number of data blocks in the base
version file of a version group is #, the storage threshold
is T, and the modified probability of each successor ver-
sion file based on the predecessor file is «. In addition, we
assume that with the constraints of data verification over-
head, the total amount of data blocks verified each time
is g. Thus, the amount of files randomly extracted every
time ¢ is
f=— 1 (2)
n+ (T — Dan
Accordingly, the total number of files in random diffu-
sion extraction £ is

t=Txt (3)

After determining the amount of files in the random
extraction, we put all the chosen files into the set V pa.
Then, each file is extracted from the set to analyze its
version group, and all the precursor version files in the
version group are put into the set V7, . Finally, the data
set V; . is formed and challenged the data integrity.

4.4 Algorithm design

Because the traditional verification methods do not distin-
guish the different version files, after introducing version
files, the corresponding verification algorithm needs to
take into account the impact of version files’ storage.
Namely, the bigger the version number is, the newer the
file is. In this algorithm, we combine the batch verification
and short signature technology based on bilinear map.
The algorithm needs to improve the efficiency of the ver-
ification while ensuring its security and correctness. Our
algorithm designs as follows.

Let Gi, G, and G be the multiplicative groups with
the same prime order p and e : G; X Gy — Gr be the
bilinear map. Let g1 and g be the generators of G; and Ga,
respectively. Let /1 : {0,1}* — G be a keyed secure hash
function that maps {0, 1}* to a point in G, where {0, 1}* is
the abstract information of the data.

(1) Chained key generation algorithm CKeyGen(V;) —
(sk;, pk;). The user first selects a random number A and
then acquires a secure random big number sk € Z, as the
private key and computes pk = gjk € @G; as the public
key through the key generation algorithm KenGen(i) —
(sk, pk). On the basis of a basic pair of private-public
key (sk,pk), we can get the key pair of the version file
Vi by chained key generation function h((sk, pk), Vi) =
(sk;, pk;).

Xu et al. EURASIP Journal on Information Security (2018) 2018:12

(2) Tag generation algorithm TagGen(M, sk;) — T. Let
M be the set of outsourced data. The tag generation algo-
rithm generates a tag t;; for every data block m;; in the
encrypted version file V; € M which is composed of #
data blocks, i.e., mj1, mj, ..., m;,, where j represents the
identification number of the data block m;; and j €[1, n].

It first chooses random value x; € Z, for each version
file and computes u; = gfi € Gj. For each data block
my; (my = {0,1}%), it computes a data tag t; for the data
block as

Lj = (h(mt}ID”]) X U; l/)Sk (4)

where m1;;,p is the identification of the data block 1;;, and
|| denotes the concatenation operation. It outputs the set
of data tags T = {£;}ic[1,4] j[1,n]> where d is the maximum
version number of the set of version files.

(3) Batch challenge algorithm BChall(M,) — C. In all
outsourced data M, applying the ratio of data extracted 8,
it first gets the random extraction data set Vipay. Refer-
ring to the set Vg, it then assigns the random diffusion
extraction data set Véhall which is the challenge set of
version groups that related to those chosen files through
organization of challenged data algorithm. Afterwards,
it constructs a set of extracted data blocks as the chal-
lenged set Q for the set V/, .. Assume that there are ¢
files in V7, ;- In addition, it generates a random num-
ber u; for each extracted file V; and chooses a random
number r € Z,, and then computes the set of challenge
stamp R; = pk]. Finally, it outputs the challenge as C =

(E’ Vc/hall’ Q (R })'

(4) Prove algorithm Prove(C) — P. After receiv-
ing the challenge, the DSP computes the proofs of all
challenge data PP, which consist of the tag proof TPy,
and the data proof DPy, Assume each version file
includes n data blocks. The tag proof is generated as
TPy, = [Tjepim t;.ij , where v;; is a series of chosen random
numbers. To generate the data proof, it first computes the
linear combination of all the challenged data blocks as
MPy, = ng[l,n] vjm;; and then computes the data proof
as DPy, = e(u;, RHYMPV: 1t gets the proof of each version
file Py, = {TPy,;, DPy,} and then outputs the set of proof
of all extracted files P = {Py,}y,cy, and sends it to TPV.

(5) Batch verification algorithm BVerify ((C, P, pk;,t,
0/1. For each file that needs to be verified V;, it computes
the set of identifier’s hash values /(1 ;p||j), and then uses
these hash values to compute a challenge value Hy, by
Hy, = Hje[l,n] h(mijpllj)"™7. When finished with the cal-
culation of all the challenged files, it verifies the proofs by
the verification equation as

1—[DPy, = (TPVi’gg).
VieVihan (H‘/i,pki)

r) —

(5)

Page 10 of 15

If Eq. (5) is true, it outputs 1 and indicates that all
the verified files are intact. Otherwise, it outputs 0 and
indicates there exist corrupted files.

If there exist corrupted files in the verification result,
it can locate these corrupted files by challenging level by
level. That is, each version group is challenged separately
to locate the corrupted version group, and then each ver-
sion file in the group is verified separately to locate the
corrupted version files.

5 Security analysis

The proposed algorithm should ensure the security in
terms of the correctness of the algorithm, the security of
the data storage, data privacy-protecting, the security of
the batch verification, and the timeliness of the algorithm.
To facilitate the analysis, we first give a security definition
referring to [24] as follow.

Definition 5 (computational Diffie-Hellman (CDH)
problem). If g, g%, and g” are known, it is computationally
infeasible to calculate g*? with unknown a, b € Zp.

To hide the corrupted data, the DSP must try to forge
the verification data to pass the verification Eq. (5). The
security of the proposed algorithm is analyzed respec-
tively in Sections 5.2, 5.3, and 5.4.

5.1 Correctness of algorithm

We can judge the correctness of the algorithm by verifying
the correctness of the verification equation. The proof of
the verification formula is as follows.

[[pPv; [[e, pky)
= [[pPv; - e(Hv,, pk;)
= [[e, R)M™i - e(Hy,, pk;)

= [T e (wpi) Ze0 ™ e | T homyumllp™, pk,

je[1,n]

(sk; r) vy e (l—[h(mypl|)"™" ’ggkl)
(9,50 e (T mganllpr™, 2°)
. <qu X vijmi) H h(mii)™, g5)
e (""" TThomyanli) g3%)

[l

[

[

e

[1e ((uZ 5 T omyanl p) ,gﬁ)
[

[

[

[1

e

e

sk,vi/- .

h(mz/IDH])

ski Y vygmi
e Ml' ,g2

e

(I1
e (TThomupllp - "y, g3)
(M=)

e TPVL g2

Xu et al. EURASIP Journal on Information Security (2018) 2018:12

According to the proof of the verification formula,
homomorphism can be used to verify the integrity of
data. In every verification, our method can generate an
encrypted proof with the challenge stamp by using the
property of the bilinear pairing. Even though the TPV can-
not decrypt it, she can verify the correctness of the proof
without decrypting it. In addition, when challenging the
integrity of data, the TPV randomly generates the value
of each challenge. The DSP cannot predict it or save the
corresponding data proofs and tag proofs after calculat-
ing these data. Due to the randomness of the value of
the challenge, the repetition rate of challenge in different
verification is very small which can effectively resist the
replay attack on the DSP. Only if the received challenge
and the corresponding data blocks are used while the DSP
generates the proofs, the verification can be passed. We
can draw conclusion from the previous analysis that our
proposed algorithm is correct.

5.2 Security of data storage

In order to ensure the security of the data storage, we
need to prove that only when the remote server stores
the user’s data correctly, the verification formula can be
passed through. Based on Definition 5, it is computa-
tionally infeasible to forge DPy,, TPy,, and Hy, in our
algorithm. Thus, the DSP cannot forge Py, = {TPy,, DPy;}
effectively and get the true results.

We introduce an encrypted proof with the challenge
stamp R; = pk| in our algorithm. The DSP cannot decrypt
r from R; and pk;. Meanwhile, we can see from the formula
DPy, = e(u;, R;))Mi that if DPy; is effective, MPy, and
my; are effective in MPy, = Z}'e[l,n] vim. In every veri-
fication, v; is generated randomly. According to the small
index technique mentioned in [25], the correctness of the
data blocks that extracted randomly can be guaranteed.

Based on the analysis above, the storage security of
user’s data is guaranteed, and the algorithm can effectively
resist the forge attack and replace attack.

5.3 Data privacy-protecting

During a verification process, we need to ensure that
the user’s data and tags cannot be acquired by the TPV
from the proof returned from the DSP. We can see from
MPy; =} i1, viimij that if TPV can acquire MPy;, she
can solve the user’s data by obtaining the linear combina-
tion equation of the data blocks.

In DPy, = e(u; R)M™i, MPy, is hidden. In u; =
gy, x; is randomly selected when uploading the file and
unknown to TPV. Even if TPV knows the value of u;,
she is difficult to solve MPy, based on Definition 5. In

y ki
Vij e\ SKi
[jerim & (1 liera,m A(mijpl |])V”)
ki ski
Sjetta Vi \ " Setva Vi \ "
(u« jen) we can see that (w7 is

formula TPy, =

4 4

Page 11 of 15

ki
hidden by (]_[je[l,n] h(m,7.1D||j)"ii>s , and it is a com-
putational Diffie-Hellman problem for TPV to calcu-

sk)
tate (TTjequn h0mioll)) " by [jeis,n AOmml)" and

pk;, = ggki based on Definition 5. On the basis of
Definition 5 and the previous analysis, we can find that

sk
i Vijmij
TPV cannot acquire Zje[l,n] vijm;; and (uiz’e[l’"] Y
Based on the analysis above, the privacy of user’s data
can be protected well.

5.4 Security of batch verification

The batch verification method proposed in our algorithm
is based on the aggregate signature. Thus, the security of
the storage and privacy-protecting of users’ multiple files
in batch verification are the same as that of single file.
From the previous analysis, the security of the storage and
privacy-protecting of users’ single file in the verification
are guaranteed. Similarly, it is also satisfied for multi-
ple files. Thus, the security of batch verification is also
guaranteed.

5.5 Timeliness of algorithm

We assume that after uploading files to remote servers,
user will delete the local files. So before generating a new
version file, it is necessary to download the newest ver-
sion file stored on the server. Thus, before modifying the
previous version file, the user needs to verify the integrity
of the file. If the result is true, user can modify the file.
Otherwise, user cannot do the modification. In this way,
the version files applying the incremental storage will be
able to restore the entire content successfully. In addition,
it prevents any predecessor version file in version chain
from being corrupted.

5.6 Computational complexity

The computation cost of the algorithm is mainly com-
posed of three parts, i.e., the computation cost of the user,
the computation cost of the DSP, and the computation
cost of the TPA. Many algorithms divided data blocks into
sectors like in [10, 13]. Assume that s is the number of
sectors in one block. Let s = 1 so that our algorithm can
compare with the computation cost of these algorithms
in the same way. The computation cost of users mainly
focuses on the generation time of verification tags which
depends on the execution time of formula (4). Thus, our
algorithm needs the computation cost O(nd) while the
verification tags of all blocks of d versions are generated,
where # is the number of blocks in one version file. Sim-
ilarly, the computation cost of users are both O(nd) in
[10, 13] while the verification tags of d files and each
file with n blocks are generated. Secondly, the computa-
tion cost of DSP is analyzed. Assume that g blocks are
extracted to execute the verification. The computation

Xu et al. EURASIP Journal on Information Security (2018) 2018:12

cost of our algorithm is O(g) by the random diffusion
extraction, and the computation cost in [10] and [13] is
both O(gq) by the random extraction. Finally, TPA’s com-
putation cost is mainly concentrated on the judgment
stage, which is determined by formula (5). The computa-
tion cost of our algorithm is the same with the algorithms
[10, 13] and all O(g). Therefore, the computation cost of
our algorithm is the same as these algorithms. Even so, our
algorithm verifies the files and its corresponding version
files precisely, but these algorithms only verify g blocks
which are randomly extracted from all files.

6 Simulation

All the tests are performed on a cloud storage platform
and two laptops. The cloud storage platform which is
composed of two servers, each equipped with Xeon E5-
2403 1.8 GHz CPU and 32 GB RAM, is built as the DSP.
The two laptops which are equipped with Intel Core i5-
4210M 2.60 GHz CPU and 4 GB memory work as the User
and the TPV, respectively. In the process of the experi-
ment, to reduce the experimental time, we set the size of
every stored file to 1 MB. In the incremental storage, the
ratio of the version file modified to its precursor version
file o is 10%, so that the size of each incremental stor-
age file is 0.1 MB. Let the size of each data block be fixed
to 512 bytes, the hash algorithm be the secure hash algo-
rithm (e.g., , SHA-256) with high security, and the version
storage threshold be set to 4. All the simulation results are
the mean of 20 trials.

Considering the relativity between our algorithm with
the existing verification algorithms, we call the verifica-
tion algorithms based on deduplication storage like in
[10] P-PAP. We call the verification algorithms based on
remotely stored data like in [13] VRSD. P-PAP and VRSD
are both oriented to the verification of each individual
file. However, our algorithm verifies the version files. We
compare the performance of our algorithm with P-PAP
in terms of the generation of tags and batch verifica-
tion of multiple files. We will analyze the performance
of the algorithms from several following aspects, i.e.,
verification storage and transmission overhead, time effi-
ciency, the coverage of the verified file, and verification
efficiency.

6.1 Verification storage and transmission overhead

The storage overhead during the verification is mainly
the storage of tags of the data blocks that the user gen-
erates for all files. We set the size of each tag to z. Let
the size of each file be 1M. For P-PAP, the space required
to store tags is 2048z. For VDVE, the space required to
store tags of four files in one version group is 2662.4z.
The space storing the same four files for VRSD is 8192z
which is almost three times of that for VDVE. The stor-
age space for P-PAP is approximately similar to that for

Page 12 of 15

VDVE. With the increase of amount of files, the stor-
age space of tags also increases, and the space required
in VRSD is almost three times of that in VDVF and P-
PAP all the time. This is mainly because that most of
the version files apart from the base version in a version
group which is totally stored (1 MB) apply incremen-
tal storage (0.1 MB). Thus, the storage space of the tags
is saved.

In terms of the transmission overhead in the verifica-
tion, under the premise of the same verification data size,
the data transmission overhead of P-PAP and VDVF in the
network is the same.

6.2 Time efficiency

In our combination storage model based on the full stor-
age and incremental storage, apart from the first file in a
version group, others only deal with the incremental data
when generating data tags. Thus, for the same file, only
less data blocks need to be treated in our algorithm. In
Fig. 8, we compare VDVF with VRSD and P-PAP in terms
of the tag generation time with modification ratio and the
number of version files. From the figure, we can see that
VDVF and P-PAP costs the same time which is less than
VRSD in Fig. 8a. However, VDVF and VRSD cost the same
time which is more than P-PAP in Fig. 8b while the num-
ber of version files is 5. The reason is that VDVF needs to
generate the tags of the total file of 1 MB according to our
combination storage model.

Alike in the verification, apart from the first file in a
version group, others only deal with the incremental file
in the verification. The verification execution time with
different modification ratio and different version number
among VRSD, P-PAP, and VDVF is compared in Fig. 9.
Also, VDVF and P-PAP normally cost less time than
VRSD. However, VDVF and VRSD cost the same time
which is more than P-PAP in Fig. 9b while the number of
version files is 5. The reason is that our algorithm gen-
erally verifies less data blocks apart from the number of
version files being 5.

6.3 Coverage of the verified file

Definition 6 (coverage of the verified file). The number
of the checked file in the random extraction or the random
diffusion extraction is extracted in the verification, where
the random diffusion extraction is extended based on the
random extraction according to the relationship among
version files.

The coverage of the verified file is closely related to the
storage model. There are four files in a version group due
to the version storage threshold being 4. The total size of
four files in a version group is 1.3 MB. In the case of the
same amount of verification data each time, the results
of our algorithm VDVF compared with VRSD and P-PAP
are shown in Fig. 10. We can see from the figure that

Xu et al. EURASIP Journal on Information Security (2018) 2018:12

Page 13 of 15

alZ

10

Time (s)

8
6
4
2 4
0

Ratio of revised data

10 20 30 40 50 60 70 80 90

o

300 T T T
250

200
150

Time (s)

100
50

0 Il Il Il
1 2 3 4 5 6 7 8

Number of version files

Fig. 8 Tag generation time. a different modification ratio. b different version number

in the same amount of verified data, P-PAP and VDVF
can execute the verification of more files than VRSD. It is
mainly because these algorithms apply the different data
storage model. VDVF expands the amount of verified files
and the coverage of the verified files due to the relation-
ship between version files under the same data verification
quantity.

6.4 Verification efficiency

The verification efficiency refers to the proportion of reli-
able data storage after the data verification, which is the
ratio of the number of the verified files to the total num-
ber of stored files. In data batch verification, the more
the number of files that eventually accept the verifica-
tion, the higher the reliability of the data and the greater
the efficiency of data verification. We set the version stor-
age threshold to 4, and thus, there are four files in a
version group. We change the number of files from 1
to 4 in the experiment. For VDVFE, if the user randomly
selects a number from 1 to 4, it is the number of files
that are finally verified. If the version number of chosen
file is 5, the number of files that are finally verified is
1 due to 5 minus 4. However, for VRSD and P-PAP, the

verification is executed fully in accordance with the files
that user randomly extracts. Assume that there are 1000
sets of version files stored on the server, every set has
four version files, the total number of the files is 4000.
After a certain number of files is randomly selected by
the user, these algorithms acquire the proportion of the
number of files received verification actually to the total
number of the stored files according to respective oper-
ation situation. The experimental results are shown in
Fig. 11. We can see that in the case of the same num-
ber of chosen files, the quantity of the verified files in
VDVE is three times more than that in VRSD and P-PAP.
It is because that under the condition of the same data
extraction, the number of the verified files is expanded due
to the version group relationship between different ver-
sion files. Thus, VDVF realizes the integrity verification of
more files and has a higher efficiency than the other two
algorithms.

7 Conclusions

Although the cloud deduplication storage can reduce stor-
age cost, the reliability of files will decrease while tradi-
tional verification schemes are applied into the integrity

A
10t -
~ 8 -
)
R ——
E 4l 1
VRSD —=—
2t P-PAP .
O L L L L V\DVF\ L

10 20 30 40 50 60 70 80 90
Ratio of revised data

Fig. 9 Verification execution time. a different modification ratio. b different version number

o

Time (s)

0 | | | | | |
1 2 3 4 5 6 7 8

Number of vesion files

Xu et al. EURASIP Journal on Information Security (2018) 2018:12

Number of verified files

1 2 3 4 5 6 7 8 9 10
Data size (Mbyte)

Fig. 10 Number of verified files under the same data verification
quantity

verification of version files. The reason is that these
schemes do not distinguish version files and treat them
the same as common files. These common files can uti-
lize the traditional verification schemes based on the
cloud deduplication storage to decrease the verification
cost. However, these version files have the same data
among each others so that the traditional verification
schemes cannot still be used directly. In this paper, we
proposed an efficient integrity verification algorithm for
remote data storage of version files. This algorithm adopts
the combination storage model based on the full stor-
age and incremental storage to reduce the size of file
storage and tag storage. Also, it reduces the transmis-
sion overhead in the verification due to less verifica-
tion costs at the same time. The chained key is used
to improve security of the storage keys of different ver-
sion files. The data security in the process of the ver-
ification is assured by applying BLS technology. From
theoretical and experimental analysis, we can figure out

~ 50 T T . | | | I
IS VRSD = |
: 40 - P-P AP

=

3 30| |
=

S b
> o o)
4

o]

. 9 1 0 B |
=

~ fm I

100 200 300 400 500 600 700 800

Number of random extraction files
Fig. 11 Proportion of files that actually execute the verification after

random extraction

Page 14 of 15

that the algorithm effectively expands the coverage of
verified files, improves the efficiency of file verification,
and meets the security request at the same time. In the
future, we will further make a trade-off between the opti-
mal storage of version files and data integrity protecting
to meet the needs of rapid restoration of any version file at
any time.

Acknowledgements

The work was sponsored by Natural Science Foundation of Shanghai
(Nos.15ZR1400900 and 16ZR1401100), Education and Scientific Research
Project of Shanghai (C160076), National Natural Science Foundation of China
(N0.61772128).

Funding

The work was sponsored by the Natural Science Foundation of Shanghai (nos.
15ZR1400900 and 17ZR1400200), Education and Scientific Research Project of
Shanghai (no. C160076), and National Natural Science Foundation of China
(no.61772128).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from
the corresponding author on reasonable request.

Authors’ contributions

GX carried out the conception and design of the proposed verification
algorithm and drafted the manuscript. ML and JL carried out the analysis of
simulation and results. LS and XS participated the evaluation of algorithm’s
correctness. All authors read and approved the final manuscript.

Authors’ information

Guangwei Xu is an associate professor in the School of Computer Science and
Technology at Donghua University, Shanghai, China. He received the M.S.
degree from Nanjing University, Nanjing, China, in 2000, and the Ph.D. from
Tongji University, Shanghai, China, in 2003. His research interests include the
data integrity verification and data privacy protection, QoS, and routing of the
wireless and sensor networks. E-mail: gwxu@dhu.edu.cn

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 16 February 2018 Accepted: 29 August 2018
Published online: 20 September 2018

References

1. G.Xu,Y.Yang,C.Yan,Y.Gan, A rapid locating protocol of corrupted data for
cloud data storage. Ksii Trans. Internet Inf. Syst. 10(10), 4703-4723 (2016)

2. C.Wang, Q. Wang, K. Ren, W. Lou, in proceedings of IEEE INFOCOM 2010.
Privacy-preserving public auditing for data storage security in cloud
computing (IEEE, San Diego, 2010)

3. G.Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, D.
Song, in Proceedings of the 14th ACM conference on Computer and
Communications Security. Provable data possession at untrusted stores
(ACM, New York, 2007), pp. 598-609

4. H.Shacham, B. Waters, in Proceedings of the 14th International Conference
on the Theory and Application of Cryptology and Information Securit.
Compact proofs of retrievability (Springer, Berlin, 2008), pp. 90-107

5. Y.Deswarte, J-J. Quisquater, A. Saidane, in Proceedings of IFIP Advances in
Information and Communication Technology. Remote integrity checking
(Springer, Boston, 2003), pp. 1-11

6. G.Ateniese, R. D. Pietro, L. V. Mancini, G. Tsudik, in Proceedings of the 4th
International ICST Conference on Security and Privacy in Communication
Networks. Scalable and efficient provable data possession (ACM, Istanbul,
2008), pp. 1-10

Xu et al. EURASIP Journal on Information Security (2018) 2018:12

7. C.Erway, A. KipgU, C. Papamanthou, R. Tamassia, in Proceedings of the
16th ACM conference on Computer and communications security. Dynamic
provable data possession (ACM, Chicago, 2009), pp. 213-222

8. A.Juels, B.S. Kaliski, in Proceedings of the 14th ACM conference on Computer
and communications security(CCS'07). Pors: proof of retrievability for large
files (ACM, Alexandria, 2007), pp. 584-597

9. Q. Wang, C. Wang, J. Li, K. Ren, W. Lou, in Proceedings of the 14th European
Symposium on Research in Computer Security. Enabling public verifiability
and data dynamics for storage security in cloud computing
(Springer-Verlag Berlin Heidelberg, Saint-Malo, 2009), pp. 355-370

10. K Yang, X. Jia, An efficient and secure dynamic aduiting protocol for data
storage in cloud computing. IEEE Trans. Parallel Distrib. Syst. 24(9),
1717-1726 (2013)

11. Z.Ismail, C. Kiennert, J. Leneutre, L. Chen, Auditing a cloud provider's
compliance with data backup requirements: a game theoretical analysis.
|IEEE Trans. Inf. Forensic Secur. 11(8), 1685-1699 (2016)

12. C.Wang, Q. Wang, K. Ren, W. Lou, in Proceedings of the 17th International
Workshop on Quality of Service. Ensuring data storage securityin cloud
computing (IEEE, Charleston, 2009), pp. 1-9

13, X.Liu, W.Sun, W. Lou, Q. Pei, Y. Zhang, in proceedings of IEEE INFOCOM
2017. One-tag checker: message-locked integrity auditing on encrypted
cloud deduplication storage (IEEE, Atlanta, 2017)

14. B.O'Sullivan, Mercurial: the definitive guide. (O'Reilly Media, Inc., Sebastopol, 2009)
15. Y. Zhang, C. Xy, X. Liang, H. Li, Y. Mu, X. Zhang, Efficient public verification
of data integrity for cloud storage systems from indistinguishability

obfuscation. IEEE Trans. Inf. Forensic Secur. 12(3), 676-688 (2017)

16. J.Yuan, S.Yu, in Proceedings of IEEE Conference on Communications and
Network Security (CNS). Secure and constant cost public cloud storage
auditing with deduplication (IEEE, Washington DC, 2013), pp. 145-153

17. F.Grandi, in Proceedings of the Joint EDBT/ICDT Workshops. Dynamic
multi-version ontology-based personalization (ACM, Genoa, 2013),
pp. 224-232

18. K. Jea, H.Feng, Y. Yau,S. Chen, J. Dai, in Proceedings of 1998 Asia Pacific
Software Engineering Conference. A difference-based version model for
oodbms (IEEE, Taipei, 1998), pp. 369-376

19. G.Xuy, CY.Y.G. Yanbin Yang, A probabilistic verification algorithm against
spoofing attacks on remote data storage. Int. J. High Perform. Comput.
Netw. 9(3), 218-229 (2016)

20. S.Hou, L.He, W. Zhao, H. Xie, in Proceedings of the 2nd International
Conference on Industrial and Information Systems. Research on
threshold-based version hybrid storage model (IEEE, Dalian, 2010),
pp. 136-139

21. A Ghobadi, E. H. Mahdizadeh, Y. L. Kee, L. K. Wei, M. H. Ghods, in
Proceedings of the 2th International Conference on Advanced
Communication Technology. Pre-processing directory structure for
improved rsync transfer performance (IEEE, Jeju Island, 2011),
pp. 1043-1048

22. S.TEZUKA, R. UDA, K. OKADA, in Proceedings of IEEE 26th International
Conference on Advanced Information Networking and Applications. Adec:
assured deletion and verifiable version control for cloud storage (IEEE,
Fukuoka, 2012), pp. 23-30

23. Y. Zhu, H. Hu, G-J. Ahn, M. Yu, Cooperative provable data possession for
integrity verification in multicloud storage. IEEE Trans. Parallel Distrib. Syst.
23(12),2231-2244(2012)

24. N.Koblitz, A. Menezes, S. Vanstone, The state of elliptic curve
cryptography. Des. Codes Crypt. 19(2), 173-193 (2000)

25. M. Bellare, J.A. Garay, T. Rabin, in Proceedings of Advances in Cryptology-
EUROCRYPT'98. Fast batch verification for modular exponentiation and
digital signatures (Springer, Espoo, 1998), pp. 236-250

Page 15 of 15

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Keywords

	Introduction
	Motivation
	Contributions

	Related work
	System model and problem statements
	Data integrity verification model
	Version file storage model
	Attack model
	Problem statements

	Data integrity verification algorithm for different version files
	Constructing the generic storage model of version files
	Grouping version files based on storage threshold
	Storage and restoration of deduplication-based version files

	Generating the chained keys
	Extracting the challenged data
	Algorithm design

	Security analysis
	Correctness of algorithm
	Security of data storage
	Data privacy-protecting
	Security of batch verification
	Timeliness of algorithm
	Computational complexity

	Simulation
	Verification storage and transmission overhead
	Time efficiency
	Coverage of the verified file
	Verification efficiency

	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	References

