Aldwairi et al. EURASIP Journal on Information Security (2017) 2017:9
DOI 10.1186/513635-017-0062-7

EURASIP Journal on
Information Security

RESEARCH Open Access

Pattern matching of signature-based IDS ®

CrossMark

using Myers algorithm under MapReduce

framework

Monther Aldwairi'2"

, Ansam M. Abu-Dalo' and Moath Jarrah'

Abstract

MapReduce implementations over MPI respectively.

The rapid increase in wired Internet speed and the constant growth in the number of attacks make network
protection a challenge. Intrusion detection systems (IDSs) play a crucial role in discovering suspicious activities and
also in preventing their harmful impact. Existing signature-based IDSs have significant overheads in terms of
execution time and memory usage mainly due to the pattern matching operation. Therefore, there is a need to
design an efficient system to reduce overhead. This research intends to accelerate the pattern matching operation
through parallelizing a matching algorithm on a multi-core CPU. In this paper, we parallelize a bit-vector algorithm,
Myers algorithm, on a multi-core CPU under the MapReduce framework. On average, we achieve four times speedup
using our multi-core implementations when compared to the serial version. Additionally, we use two
implementations of MapReduce to parallelize the Myers algorithm using Phoenix++ and MAPCG. Our MapReduce
parallel implementations of the Myers algorithm are compared with an earlier message passing interface (MPI)-based
parallel implementation of the algorithm. The results show 1.3 and 1.7 times improvement for Phoenix++ and MAPCG

Keywords: Information security, Intrusion detection systems, Signature-based, Pattern matching, MapReduce

1 Introduction

Digital devices and services are essential to ease our
personal and business lives. However, as connectivity
between different services increases, the number of pos-
sible threats and their suspicious behaviors grow accord-
ingly. Therefore, an efficient detection process of attacks
is needed to ensure the availability of the different ser-
vices [1].

The most common technique used to inspect pack-
ets’ payloads for malicious threats is intrusion detection.
Performing packet inspection requires matching attack
signatures with each captured packet. The sheer volume
of new attack signatures coupled with the rapid increase
in links’ speeds poses a challenge in terms of process-
ing time, area, and power. Aldwairi et al. stated that the
signature matching operation is the most CPU-intensive

*Correspondence: munzer@just.edu.jo; monther.aldwairi@zu.ac.ae
'Computer and Information Technology Faculty, Jordan University of Science
and Technology, Irbid 22110, Jordan

2College of Technological Innovation, Zayed University, P.O. Box 144534 Abu
Dhabi, United Arab Emirates

@ Springer Open

task [2]. For example, Snort, the most commonly used
open-source IDS, includes a large rule set containing
more than 10,000 signatures [3]. Consequently, provid-
ing an efficient matching algorithm to improve the IDS
operations at low cost remains an open research problem.
Several researchers proposed enhanced IDS imple-
mentations either using software or hardware [4-11].
Software-based IDS applies a pattern matching algorithm
to scan the system files for attack and malware signa-
tures. This operation results in decreasing the system
performance by adding significant overheads on the CPU,
memory, and power. Hence, software solution’s efficiency
still needs to be improved. Specialized hardware devices
can use parallelism and provide large enough memory to
store the growing data. They can satisfy the high per-
formance requirements of the computationally intensive
pattern matching task. However, they are difficult to pro-
gram, provide poor flexibility, and have a high cost.
MapReduce framework provides parallelism and data
distribution among multiple processors [12]. It was

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-017-0062-7&domain=pdf
http://orcid.org/0000-0003-1150-2404
mailto: munzer@just.edu.jo
mailto: monther.aldwairi@zu.ac.ae
http://creativecommons.org/licenses/by/4.0/

Aldwairi et al. EURASIP Journal on Information Security (2017) 2017:9

designed to hide the complexity of the programming and
to facilitate the development process of data-driven appli-
cations. As a result, MapReduce can be used to process
the large number of signatures in an efficient way. In this
paper, we propose a MapReduce implementation of the
Myers algorithm. Myers algorithm is the fastest approxi-
mate string matching algorithm available [13]. We use two
different implementations of MapReduce to parallelize
the algorithm: Phoenix++ and MAPCG. We compare our
implementations with a popular message passing interface
(MPI) parallel implementation. Our MapReduce imple-
mentation is faster than the MPI implementation by an
order of magnitude.

The rest of this paper is organized as follows. Section 2
provides the necessary background. Section 3 provides a
brief review of the related work. Section 4 describes our
two implementations in details. The evaluation metrics
and experimental results are presented and discussed in
Section 5. Section 6 concludes the paper and presents
suggestions for future work.

2 Background

This section provides the necessary background to under-
stand the problem in hand. Sections 2.1 and 2.2 shed the
light on intrusion detection systems, Snort rules, and pat-
tern matching. Section 2.3 introduces Myers algorithm
and dynamic programming. Section 2.4 briefly reviews the
related parallel programming techniques, and Section 2.5
presents the MapReduce framework and the two different
implementations.

2.1 Intrusion detection systems

The noticeable growth in the number of diverse attacks
on today’s network and computer systems brings a signifi-
cant attention to security. IDSs play a major role to protect
the networks against those threats. These systems use a
deep packet inspection process to monitor network traf-
fic against intrusions and abnormal activities. Based on
the detection methodology, intrusion detection systems
can be classified into two groups: signature-based IDS and
anomaly-based IDS. A signature-based IDS inspects net-
work traffic using the signatures of predefined attacks that
are stored in a database. The signature matching process
is considered the most intensive task in terms of CPU time
and power. Anomaly-based IDS on the other hand finds
malicious activities by measuring the traffic deviation
from the expected baseline. It relies on machine learn-
ing and artificial intelligence (Al) to classify the network
traffic into normal or abnormal [2].

Page 2 of 11

Snort is a popular open-source signature-based IDS. It
is widely used by researchers and production environ-
ments [3]. Snort has a large database of rules, which covers
known attacks. As new attacks are discovered, Snort’s
database increases in size. Unfortunately, experts must
write the rules manually. Figure 1 shows the basic ele-
ments of a Snort’s rule. The rule consists of two parts:
the header and the options. The rule’s header consists
of the action to be taken, the protocol, and the packet’s
flow information. The header takes the form [Action]
[Source IP Address] [Source Port number] — [Destina-
tion IP Address] [Destination Port number]. The options
part contains more than 24 different keywords such as
alert messages to be logged if a match occurs. In addition,
the options part contains the content which is the most
important keyword of a rule. Content holds the string or
the attack’s signature to be matched with the packet’s pay-
load. For example, the Snort rule in Fig. 1 can be read
as follows: Alert the system administrator by firing the
message “WEB-MISC phf attempt,” if any incoming TCP
packet flows to any address with port number 80 and
contains the string: "/cgi-bin/phf". Additionally, the rule
defines the risk level of the attack which is 10 as shown by
Fig. 1.

2.2 Pattern matching

In order to find the suspicious packets, most of IDSs
employ a pattern matching algorithm. The algorithm
checks the presence of a signature in the incoming packet
sequence and outputs the location of the string within the
packet. The algorithm must be fast enough to detect the
malicious behavior, and it must be scalable in order to
meet the increase in both the number of signatures and
the link speed.

String matching algorithms can be categorized into sin-
gle and multiple pattern matching algorithms. In the sin-
gle pattern matching, one pattern is matched against the
entire text at a time [14]. In contrast, the multiple pattern
matching approach compares the text sequence against all
signatures all at once [15]. Obviously, the multiple match-
ing approach is a better choice for intrusion detection
to avoid sweeping the packet many times. However, it
consumes more memory and requires a pre-processing
phase to program the patterns before matching can
commence.

2.3 Myers algorithm
The Myers algorithm is an approximate string matching
algorithm. An approximate matching algorithm matches

alert tcp any any = any 80 (msg:"WEB-MISC phf attempt"; \content:"/cgi-bin/phf"; priority:10;)

Fig. 1 Snort rule sample

Aldwairi et al. EURASIP Journal on Information Security (2017) 2017:9

a large text of length # with a short pattern p of length m
allowing up to k differences, where k is a chosen thresh-
old error [16]. The Myers algorithm relies on a simple
dynamic programming (DP) concept [17]. It uses recur-
sive formulas and simple bit operations to compute the
edit distance between the text and patterns to find the
equalities or differences [18]. The edit distance between
two strings is expressed as the minimum edit operations
required to transform a text £1 to another text £2 or vice
versa. Commonly, there are three typical variations of
edit distance. The first form is called the Hamming dis-
tance [19]. It computes the number of positions in the
text that has different characters, i.e., how many charac-
ters are needed to convert a text tI to another text £2.
The compared texts or strings must be of the same length.
The second form is called the Levenshtein distance, which
does not have any restriction over the text size [20]. The
edit distance is the minimum number of edit operations:
insertion, deletion, and substitution, which are needed to
convert two strings into each other. The third one is the
Damerau edit distance. It allows the transposition of two
adjacent characters to complete the conversion between
the two strings [21]. Figure 2 shows examples of the edit
operations.

The Myers algorithm uses the Levenshtein distance to
compute the matches. It considers two strings similar
if the edit distance (ed) between the two strings (A, B)
is less than or equal to a predefined threshold (k) (ed
(A,B) <= k).

The formal approach to solve the problem of approx-
imate string matching and to find the minimum edit
distance is to use dynamic programming. Dynamic pro-
gramming is an approach which uses a recursive formula
to compute new values based on a prior knowledge of pre-
vious values. For two strings of lengths m and 7, a matrix
of size m x n is filled column-wise or row-wise, respec-
tively, with distances between the strings. The patterns
are arranged vertically and the packet is arranged hori-
zontally. Initially, the matrix cells are initialized as follows.
Cells C[0,j]] = O0and cells C[i,0] = i, and next, the
matrix is expanded according to the recursive formulas in
Eq. (1) [22].

Cli—1,j]+1
Clij—1]+1 1)
Cli—1,j—1]+6;;

Cli,jl= min

Page 3 of 11

Where

5 0,ifpi = t;
b 1, otherwise

Each cell of the matrix, C[,], represents the edit dis-
tance between the two strings P[1—i], T[1—j] ending at
positions i, j. The addition of one in Eq. 1 is the penalty if a
match does not exist. This case represents a substitution.

As an example, we explain how to find an occurrence
of the pattern “execut” in the text “feexecutingprogram”
with difference k equals to 0. This case represents an exact
match. The dynamic programming (DP) matrix is filled as
shown in Table 1.

The last row in Table 1 indicates the number of differ-
ences between the two strings in that position. The zero
in the last row (underlined and bold) is a solution to the
problem C[m,j] <= k (occurrences with k or less dis-
tance value). A value of zero in this row indicates an exact
match; a value of one indicates that there is at least one
transformation required to change the strings into each
other and so on. The Myers algorithm encodes the DP
matrix and uses a bit-vector to process each column of
the matrix [23]. Bit parallelism is a mechanism that takes
advantage of bit-level parallelism in a computer word at
the hardware level. This is efficient because the proces-
sor can process the entire computer word in one memory
cycle. Each cell in the DP matrix differs only by —1, 0,
or +1 from its neighbor cells (upper, left, and upper left).
Based on this observation, Myers algorithm re-encodes
the DP matrix and finds the differences between the adja-
cent cells in each successive row or column using the
formulas in Egs. (2) and (3) [13].

Ahij = Cij — Cij1 (2)

Avij = Cij— Ci_yy (3)

In addition, each cell in the matrix relies on three pos-
sible states for the horizontal and vertical deltas {—1, 0,
and +1} and on two states for the diagonal deltas {0 and 1}.
Since the main goal is to represent the entire matrix in
a bit-vector format, clearly the diagonal deltas are in the
required format {0, 1}. However, the vertical and hori-
zontal deltas are not in the appropriate format because
they have a —1 value. In order to solve this problem,
Myers algorithm expresses each value with a vector. That
is, one vector (HP) represents the positive values and

a) ABC b) ABC

ABCD AC

d) ABC ¢) ABC

ADC ACB

Fig. 2 Edit operations. a Insertion. b Deletion. € Substitution. d Transposition

Aldwairi et al. EURASIP Journal on Information Security (2017) 2017:9

Table 1 DP matrix

Page 4 of 11

F E E X E C U T \ N G P R) G R A M

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
X 2 2 1 1 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2
E 3 3 2 1 1 0 1 2 3 3 3 3 3 3 3 3 3 3 3
@ 4 4 3 2 2 1 0 1 2 3 4 4 4 4 4 4 4 4 4
U 5 5 4 3 3 2 1 0 1 2 3 4 5 5 5 5 5 5 5
T 6 6 5 4 4 3 2 1] 1 2 3 4 5 6 6 6 6 6

The zero in the last row (underlined and bold) is a solution to the problem C[m,] <= k

the second vector (HN) represents the negative values.
HP represents the vector when A/ = +1, and HN repre-
sents the vector when Ak = —1. Finally, Myers produces
five vectors that are denoted by VP, VN, HP, HN, and DO
to compute the distance of each cell. These vectors have
the same length of 32 or 64 depending on the machine
word size.

Algorithm 1 shows the Myers algorithm. HP and
HN represent the horizontal deltas, VP and VN repre-
sent the vertical deltas, and DO represents the diagonal
delta. In addition, X represents the current horizon-
tal and vertical state of a column. The search phase
in this code computes the vectors, scoring, and the
matching results of the approximate matching problem.
For example, if m = 6 and the horizontal positive vec-
tor value equals to 100,000 in line 9 of the algorithm, the
if statement in line 9 evaluates to true and the score is
increased by one.

Each cell in the matrix can be represented in one
bit (either 0 or 1). Therefore, 32 or 64 cells are
concatenated in one-bit vector. Additionally, the
Myers formulates the required operations to com-
pute the next complete column from its previous
one using the minimum number of bit operations
performed on the bit-vectors. If the vertical text
(the pattern in this case) exceeds the machine word
length, several bit-vectors are concatenated to rep-
resent the matrix column (called a block) [13].
Furthermore, the patterns are encoded using bit-vectors,
and each of length equals to the pattern length. A bit, in
this vector, is set to one if the character of the pattern
matches one of the alphabet characters. For example,
consider the alphabets)" composed of {A, B, C, D}, and
the pattern P = ABDCCABD, the bit mask for the pattern
will be:

B [A] = 00100001
B [B] = 01000010
B [C] = 00011000
B [D] = 10000100

2.4 Parallel programming

Parallel programming is a technique in which many com-
putations are performed concurrently. Parallel compu-
tation divides a big task into smaller sub-tasks to be
executed simultaneously. Parallelism can utilize multi-
core processors in a single machine or multi-processors in
a cluster of machines.

The parallel execution on a multi-core or a clus-
ter can take many forms. It can be categorized into
bit-parallelism, data parallelism, or task/function par-
allelism. The focus of bit-parallelism is to minimize
the count of instructions to execute an operation. This
can be done by increasing the processor word size.

Algorithm 1: Myers Algorithm

begin
foreach C € © /* Preprocessing phase %/
do
| B[C]=0"
forj e[1, m]
o

| B[Pj]=B[P]Vv0" 710!

VP =1"; VN = 0™ /% Vectors of size m
initialized to ones or zeros x/

Score = m

1 foreach pos €[1, n] /* Searching, Scoring,
and output phases %/
do

VP = (HN << 1) v =(X v D0)
if (HP A 10"~ 1) £ 0™ then

| Increment Score
if (HN A 10™~1) &£ 0™ then

| Decrement Score

if (Score <= k) then
L Report occurrence at pos

2 X = B[tyos] VVN

3 DO=((VP4+ (X AVP)VVP)VX
4 HN = VP A DO

5 HP = VN v —~(VP v DO0)

6 X=HP <<1

7 VN =X A DO

8

9

—
(=]

11
12

13
14

Aldwairi et al. EURASIP Journal on Information Security (2017) 2017:9

In data parallelism, the data is split into many pieces and
is distributed to multiple cores or processes. All proces-
sors run the same code simultaneously but on different
data piece. This is also known as single instruction multi-
ple data (SIMD) approach. In contrast to data parallelism,
task parallelism is a form of parallelism where multi-
processors run different codes or tasks on the same piece
of data simultaneously.

2.4.1 MPI

MPI is a standard interface that contains a set of libraries
and routines to write a parallel program and distributes
it over a cluster of machines or a multi-core processor.
There are two basic components which are implemented
in each MPI library. The first one deals with the compi-
lation such as mpicc [24]. It is a wrapper that links the
MPI library and provides an easy operation to set the
appropriate paths of both the library and the included
files. mpicc also passes its argument to the C compiler
which is required to run the program. The second tool is
an agent which is responsible for executing the code in a
distributed environment such as the mpirun or mpiexe.

2.4.2 Open multi-processing (OpenMP)

MPI s just a standard. It has several implementations such
as MVAPICH, Intel MPI, and OpenMP. OpenMP [25] is
a high-quality open-source implementation of the latest
MPI standard with a superior performance compared to
other implementations [26]. It provides a set of applica-
tion programming interfaces (APIs) that is easy to use.
OpenMP supports shared memory in a multi-processor
environment, which gives more flexibility to programmers
to develop their distributed applications. It is comprised
of a set of library routines and compiler directives that
allow the master processor to distribute the data and tasks
among the processing units.

2.5 MapReduce
MapReduce is a programming model released by Google
to handle the processing of large dataset in parallel [27].
The idea behind this framework is to hide the complex-
ity of parallelism from the programmer. Moreover, the
framework provides the programmer with a simple API to
present the logical perspective of an application.
Recently, MapReduce has been widely used in both
academia and industry. MapReduce has become a stan-
dard computing platform used by large companies such as
Google, Yahoo!, Facebook, and Amazon. Statistics show
that Google uses MapReduce framework to process more
than 20 petabytes of data per day [27].

2.5.1 MapReduce basic programming model
MapReduce framework consists of two primitive func-
tions defined by the user: Map and Reduce. Additionally,

Page 5 of 11

it has a runtime library to automatically manage the paral-
lel computations without the need for user interventions.
The library handles data parallelization, fault tolerance,
and load balancing.

In MapReduce model, the input and output data take
the form of key/value pairs < key,value >. Map and
Reduce are the main two operations that are applied to
the key/value pairs. A large input data is split into chunks
of a specified size. For example, Google’s implementation
partition the data into M pieces each of size 16—-64 MB.
The Map function takes the input as a series of key/value
pairs < k1,v1 > and performs the task assigned by the
programmer. The output of the Map function is a series of
intermediate key/value pairs < k2,v2 >.

The framework performs a shuffle phase in order to
group the values of the same key. Afterwards, the inter-
mediate data pairs are sent to the appropriate Reduce
function. The Reduce phase takes the combined interme-
diate values as a key and a list of values and then executes
the user-defined Reduce function to produce the final
result.

2.5.2 Phoenix MapReduce

Phoenix is a MapReduce implementation introduced by
Stanford University [28]. It targets multi-core and multi-
processor systems. Phoenix relies on the same principles
of the original MapReduce implementation. It provides
a runtime system library and a set of APIs that han-
dle the underlying parallelism issues automatically. Unlike
Google’s MapReduce, Phoenix uses threads instead of
clusters to perform the Map and Reduce tasks. Addition-
ally, it uses shared memory for the purposes of communi-
cation.

Phoenix provides two distinct types of APIs: the first
set is defined by the user such as Map, Reduce, and
Partition. The second set includes the runtime APIs
that deal with system initialization and emitting of
the intermediate and final output as key/value pairs.
Pthreads library is the basic development package of
Phoenix runtime. The execution flow of the runtime
passes through four basic stages: Split, Map, Reduce, and
Merge. At the beginning, the user program initiates a
scheduler that controls the creation of Map and Reduce
threads. A buffer is used to provide the communication
between workers. Data and function arguments, such as
the number of workers, the input size, and the function
pointers, are passed to the scheduler.

The Map phase splits the input pairs into equal chunks
and provides a pointer for each data chunk to be pro-
cessed by the mappers. The intermediate data that is
generated by the mapper is partitioned into units as well
and ordered by the partition function to be ready for the
reduce phase. The reduce phase does not start until the
entire Map task is finished.

Aldwairi et al. EURASIP Journal on Information Security (2017) 2017:9

The scheduler assigns the tasks to the reducer dynami-
cally. Each unique key with its associated list of values is
processed at a reducer node or thread. At the end, the final
outputs of the tasks are merged into a buffer and sent back
to user program.

2.5.3 MAPCG MapReduce

Nowadays, hardware accelerators are being widely
used to perform general-purpose computations. Some
researchers have implemented MapReduce on hard-
ware accelerators such as FPGAs and GPUs [29].
These implementations try to exploit the parallelism
capabilities of the accelerators to improve the execution
time of the MapReduce framework. GPUs have received a
great attention due to their high performance capabilities.

MAPCG framework relies on the accelerators con-
text that says "Write once, run anywhere". It was
designed to provide a portable source code between
CPU and GPU using MapReduce framework [30].
MAPCG’s runtime library allows the user to focus on
the logical perspective of the algorithm implementation
rather than dealing with the side-burdens of parallelism
such as load balancing and communication issues. In
short, MAPCG was designed to parallelize data-intensive
applications on multi-core CPUs and GPUs. It automat-
ically generates a portable code that can schedule the
MapReduce tasks on both CPU and GPU. In addition, it
implements a dynamic memory allocator for the CPU and
GPU that behaves efficiently even when using a massive
number of threads. Moreover, a hash table was designed
to group the intermediate data on GPUs to enhance the
sorting phase of MapReduce keys.

Basically, MAPCG has two main parts, a high-level
programming language and the runtime library. The high-
level language facilitates and unifies the programming
task, while the runtime is responsible of executing the
code on different processing units such as the CPU or
GPU. As other MapReduce frameworks, the execution
begins by splitting the data inputs into chunks and send-
ing them to the Map phase. The function Map is applied
to each data chunk and outputs the intermediate data. The
Reduce function performs the appropriate computations
on the intermediate data to produce the final outputs.

3 Related work

An intrusion detection system that meets the growth
of Internet speeds and the increase in attack numbers
have become a necessity. Many software and hardware
solutions are proposed in the literature to provide the
required high performance and throughput rates. Soft-
ware solutions generally lack the scalability and do not
achieve the desired performance. On the other hand,
hardware solutions address these issues and additionally
provide parallelism capabilities with a high performance.

Page 6 of 11

Unfortunately they suffer from low configurability and
high cost.

IDS parallelism enables the manipulation of traffic pack-
ets simultaneously to reduce the overall processing time. It
also may divide the signatures among threads in data par-
allelism multi-threading techniques. Additionally, it may
benefit from task parallelism and distribute the match-
ing tasks among many processing units. There is plenty of
work in literature to parallelize IDSs using either data par-
allelism or function parallelism. Aldwairi and Ekailan pro-
posed a hybrid partitioning multi-threaded algorithm [4].
Aho-Corasick (AC) and Wu-Manber (WM) algorithms
[15] were used to implement the system. The authors
divided the matching operation over multiple threads.
The pattern signatures were partitioned into classes based
on their length. The classes had almost equal share of pat-
terns according to the length percentages in the signature
database. For the shorter strings, the authors used AC
algorithm to perform the matching, while the WM algo-
rithm was used for longer patterns. The authors achieved
33% reduction time over the serial implementation by
using four threads.

Kharbutli et al. provided a task and data paral-
lelism implementations of Wu-Manber algorithm [5]. The
authors proposed three different approaches to parallelize
the algorithm. The first one is the shared position algo-
rithm where several scanning windows were executed
at the same time on different processing units. A posi-
tion variable is shared between the units. The second
implementation used the trace distribution algorithm to
divide the traffic traces equally between the threads. The
final one is a combination of the previous two imple-
mentations. These implementations provided excellent
performance results. The evaluation results for these
implementations achieved two times speedup over the
serial one [5].

Su et al. proposed a parallel implementation of the AC
algorithm on a multi-core processor [6]. They used a
data parallelism technique to improve the performance.
The parallel implementation divides the text into # parts,
where 7 equals to the number of forked threads. The over-
lap concept was used to guarantee the accuracy of the
search algorithm. The results of their parallel AC showed
at least two times speedup over the serial AC.

Holtz, David, and Timoteo proposed an architecture
that collected the Internet traffic from different dis-
tributed IDSs residing in different locations of the net-
work. The analysis of the collected data, in terms of
matching, correlation, and others, was carried out on
a cloud environment using MapReduce framework. The
authors conducted several experiments to verify their
method. They aimed to distribute and decentralize both
the data collection and storage. Their implementation
used Snort IDS [7].

Aldwairi et al. EURASIP Journal on Information Security (2017) 2017:9

Kouzinopoulos and Margaritis implemented Naive,
Kunth-Morris-Pratt, Boyer-Moore-Horspool, and Quick-
Search pattern matching algorithms on NVIDIA GTX 280
GPU card [31, 32]. The GPU card contains 30 multi-
processors and 240 cores. They were the first to use
CUDA to program the GPU to parallelize the algorithms.
A speedup of 24 times was achieved when compared with
the serial version on a CPU.

Hu et al. tried to optimize the lookup table of Aho-
Corasik algorithm in Gnort [8, 33]. The goal was to solve
two issues: the increase in the number of signatures and
the decrease in performance. Gnort used a modified algo-
rithm, called CSAC, on a GPU card. The authors con-
ducted their experiments using different dataset sizes. In
addition, they tested their GPU implementation on differ-
ent GPU cards: GTS 8800 and Tesla C2050. The authors
concluded that as the number of pattern increases, CSAC
can still achieve a good performance improvement and
reduce the memory usage using compression techniques.

Xu, Zhang, and Fan improved the execution time of
the traditional WM algorithm by implementing a parallel
version (G-WM) on GPU [9]. They achieved a remark-
able speedup of 12 times over the serial implementation.
They used a hash table to reduce the number of pat-
terns that may match the text. Additionally, they replaced
the original linked list in the original WM with a two-
dimensional array to reduce the computational time. The
authors divided the large data into pages. The pages can be
processed by different threads concurrently, and they are
stored as follows. First, the pages are stored in the global
memory so threads can access them easily. Second, the
pages are stored in a shared memory that is 20 times faster
than the global one. Theoretically, the approach of using
the shared memory should be faster. However, the paper’s
results showed the opposite. This is because the data block
to be copied to the shared memory is larger in size than
the shared memory. In addition, there is a high overhead
of copying the data from the global memory to the shared
memory. These two factors decreased the performance.

Xu et al. proposed a new bit parallel algorithm imp-
MASM for approximate string matching, called imp-
MASM [10]. The original MASM algorithm required
the entire patterns to be of the same length [10].
In impMASM, the researchers addressed this issue and
made their new implementation of the algorithm to have
no restriction on the pattern length. They concatenated
the entire patterns into one single long pattern and stored
it in a table. impMASM splits the text into pages of the
same size. This pre-processing stage is placed on the CPU
side while the matching process is placed on the GPU
side. The matching results are sent back to the CPU at the
end of execution. inpMASM was tested using GeForce
310M card and achieved a speedup of 28 times over the
CPU one.

Page 7 of 11

Hung et al. proposed an intrusion detection system that
targets several GPU memory architectures [11]. Their
approach tried to balance the load among several threads
based on a hierarchical hash table. The results showed that
the proposed method achieved a throughput of 2.4 Gbit/s
while processing the traffic.

4 Parallel implementations of Myers algorithm
This section explains our parallel implementations of
the Myers IDS algorithm. Section 4.1 explains previ-
ous attempts to parallelize Myers algorithm using MPL
Section 4.2 details our multi-core implementation of
Myers algorithm using Phoenix++. Section 4.3 presents
our parallel implementation using MAPCG framework.

4.1 MPIlimplementation

Chibli parallelized Myers algorithm using a multi-
processor technique in [34]. The author divided the data
between clusters of processors communicating through
MPI. To assure correctness, the author used overlap-
ping to make a redundant copy of the data where the
cut occurs. Chibli parallelized the DP matrix over the
processors based on the fact that the current column
computations depend only on its previous one.

Chibli’s implementation was tailored to the bioinformat-
ics search problem. He assumed that the data and the
signatures are stored locally on each processor’s disk and
the matrix computation is the part that needs to be par-
allelized. To evaluate the implementation, a workstation
of 13 processors was used to run the experiments. We re-
implement Chibli’s approach in this paper for comparison
purposes. We managed to achieve a significant speedup
over Chibli’s work using Phoenix and MAPCG.

4.2 Phoenix++ implementation

Phoenix originally implemented a simple string matching
application. This program took a decrypted word from
a file, encrypted it, and applied a comparison to a list
of encrypted words from another file. The comparison
process aims to find words that were used to generate
the words in the encrypted file. It simply uses strcmp()
C function to compare the two words. Additionally, only
four words are used for evaluation. These four words are
hand-coded directly into the code. We modify Phoenix++
(C++ implementation of Phoenix) and replace the string
matching algorithm with Myers algorithm [35]. In addi-
tion, all the patterns are read offline and stored in an array.
Then, the arrays are sent to the encodePattern() function
to generate a bit mask for each pattern as described in
Section 2.

The Map function implements the search algorithm.
The main challenge in writing the Map function is to make
the search algorithm deal with a distributed data. Original
implementation of Myers algorithm reads the data from a

Aldwairi et al. EURASIP Journal on Information Security (2017) 2017:9

text file and compares it against a single keyword. That is,
it reads the data and the search commences in a sequen-
tial manner. However, in our implementation of the Map
function, the data is distributed among many workers and
it needs to be searched for each encountered pattern.

Data reading was modified in the original algorithm to
meet the requirements of the Map function. Finally, a loop
is executed over the entire stored patterns and three func-
tions are applied at each round to find the matches. The
three functions are encodePattern(), setupSearch(), and
search().

Our implementation follows the same steps as in the
original Phoenix flow. First, the input traffic is read and
split into chunks, and then, the Map function is applied to
output the total number of matches. In our implementa-
tion, we did not need to use the Reduce function since we
tailored the Map function to spit out desired output. The
Map function prints and counts the matches outputted
from the search algorithm (function search()).

4.3 MAPCG implementation

String matching is one of the benchmarks used to evaluate
MAPCG framework. It simply compares a single pattern
that is passed as an argument by the user with a large text
file searching for a possible match. Because we plan to use
Myers algorithm to match the Snort signatures against a
packet traces, we re-implement the string match to fit our
needs.

A function is implemented to read the patterns and store
them in a vector. Additionally, we use the modified Myers
algorithm, the same that was used in Phoenix++, to per-
form the matching. The Myers algorithm is implemented
in the Map function as well.

5 Evaluation and analysis

This section summarizes the experiments that were used
to evaluate our implementations. We present the experi-
mental results of both memory usage and execution time.
In addition, we compare between the different implemen-
tations.

5.1 Experiments’ environment

The experiments of the aforementioned implementations
are conducted on Intel core i5 2410M machine with 4 GB
of RAM. The packets and signatures are read offline from
text files. The experiments of performing the matching
are repeated 10 times and then averaged to compute the
execution time and memory usage.

5.2 Traffic and signature extraction

Snort 2.9.0.4 rule set released on March 2011 is used
to extract the signatures from the content keyword [3].
Six traces are chosen from the work by Aldwairi and
Alansari to run our experiments [36]. The traces are read

Page 8 of 11

using Wireshark analyzer [37]. They differ from each
other in the number of intrusions, and they cover the
best and worst performance test cases. Both bad and ugly
traces represent the worst cases, and the good traces rep-
resent the best case. The ugly: traces 51 and 58 are the
most malicious and are composed on average of 43.3 and
44.6% of malicious packets, respectively. The bad: traces 1
and 22 are less malicious and on average contain 15.9 and
20.4% of malicious packets, respectively. The good traces
represent daily network traffic such as good download
(gd) and audio and video traces (av). Those traces contain
the least number of intrusions and are used to represent
the best or everyday normal traffic. Good download trace
contains 2% malicious packets, and audio and video trace
contains 1% malicious packets.

5.3 Execution time

The execution time is the time from reading the pattern
until the end of the matching process. The matching pro-
cess compares patterns with packet traces and writes out
the results. This time includes the execution of pattern
reading, packet reading, pattern encoding, MapReduce
scheduler initialization, and the searching of the Map
function. Moreover, it includes the output of the interme-
diate data and the matching count.

We compare four CPU implementations: original serial
Myers algorithm, MPI parallelized version, Phoenix++,
and MAPCG, in terms of the execution time. To do so, we
use the six traces described in Section 5.2. Figure 3 shows
the execution time for all Snort signatures. The result
shows that our MapReduce implementations perform bet-
ter than the serial and the MPI versions from literature.
In addition, it shows that our MAPCG implementation
of the algorithm is the fastest compared with the rest of
implementations for all kinds of traces.

5.4 Speedup

The speedup is computed using the serial code as the
baseline. Figure 4 shows the speedup for the three par-
allel implementations using the six traces over serial

250

200
% 150 " Myers
E o
£ 100 MPI

Phoenix++
50 BMAPCG
AN
av ed 1 22 51 58
Trace
Fig. 3 Execution time of Myers algorithm using all signatures

Aldwairi et al. EURASIP Journal on Information Security (2017) 2017:9

E- 3
823
-3
@w 2
1.5
1
0.5
0 _| | _| _| i
av ed 1 22 51 58

Trace

" MPI
¥ Phoenix++

MAPCG

Fig. 4 Speedup over the serial implementation

Myers algorithm. MAPCG achieves the best speedup of all
implementations. The speedup was more than four times
for the normal (gd) network traffic trace. The (gd) trace
is the largest dataset that was used in the evaluation. This
is because a large data size allows the MapReduce run-
time to better utilize its underlying design and remove
the overheads of buffer allocation and task management.
MapReduce is actually a framework designed for use in big
data analytics.

Additionally, we cannot help but notice the significant
increase in speedup of MAPCG over Phoenix++. This
is due to the different strategies that are used in mem-
ory allocation and key/value management. Phoenix uses
sorting for intermediate keys; however, MAPCG does
not, therefore eliminating the sorting overhead. Overall,
both MapReduce frameworks (Phoenix++ and MAPCG)
provide excellent solutions for data-intensive applications.

Both implementations considerably over-perform tradi-
tional MPI parallelism solution. Table 2 summarizes the
speedup values for both parallel Myers implementations,
Phoenix++ and MAPCG, over the MPI parallel imple-
mentation. It is clear that MapReduce performs better
than MPI even on CPU. This is because MPI spends more
time in process communication to send the data between
nodes. If the data is large, the high overhead degrades the
performance. In addition, in MPI framework, if one of
the processes fails, the whole task is terminated. However,
MapReduce implements fault tolerance mechanisms that

Table 2 Speedup of MapReduce over MPI

Trace Phoenix++ MAPCG
av 1.328 1.847
gd 1.326 1.882

1 1.289 1527
22 1.25 1.753
51 1.244 1.64

58 1.207 1.742

Page 9 of 11

overcome this shortcoming. Therefore, MapReduce is a
favorable choice. It is clear from Table 2 that MAPCG par-
allel implementation outperforms the Phoenix++ imple-
mentation for all traces.

5.5 Memory usage

Nowadays, large memories are more affordable and even
small personal computers are shipped with large memo-
ries of 4 GB or more. Memory usage measures the max-
imum memory consumption of an application during its
runtime. In our computation of memory consumptions,
we include the memory space needed for the pattern vec-
tor, the trace file, and the intermediate data generated by
the MapReduce paradigm. Figure 5 shows the memory
consumption for all implementations, all traces, and all of
Snort signatures. It shows that the MapReduce implemen-
tations (MAPCG, Phoenix++) consume more memory
compared to the serial Myers and the MPI version. This is
due to the intermediate data produced by the Map phase.
The serial implementation processes the data items one
by one, and there is no intermediate data to store and
emit. Given the fact that Snort has almost 10,000 signa-
tures and each of the traces has over 700,000 packets, we
believe memory usage of under 2 GB is acceptable. With
the current memory sizes of commercial machines, it is
reasonable to trade-off this overhead in memory usage
in order to achieve IDS speeds fast enough to prevent
network attacks in real-time.

5.6 Complexity analysis

The complexity of Myers algorithm is easily computed
as O(m x SizeOf (}_) + n), where SizeOf (") is the
size of the alphabet), m is the length of the pattern or
attack signature p, and # is the length of the text or packet
[13]. This is assuming an exact matching of edit distance
k = 0.Because of the different operations that might take
place within Map and Reduce functions as well as com-
bining the results of all Mappers and Reducers, computing

2000
1800
1600
1400

2

& .

z Myers

=

E o ®MPI

]

= Phoenix++
"MAPCG

(=3

1200

1000

800

600

400

200
0 = — — — — —
av gd 1 22 51 58

Trace

Fig. 5 Memory usage of the parallel implementations

Aldwairi et al. EURASIP Journal on Information Security (2017) 2017:9

an exact complexity model does not lead to easy algorith-
mic analysis. Even if we consider Mappers and Reducers
separately, the different nature of each network traffic
trace and attack signatures dataset makes the task of com-
ing up with formal model more difficult. Finally, different
implementations of MapReduce such as Phoenix++ and
MAPCG do not make the complexity analysis any eas-
ier. This is because Phoenix++ adds Split and Merge, and
MAPCG adds a runtime library functions. However, the
main tasks that affect our algorithm complexity are the
sum of maximum size, the running time, and the mem-
ory of all < key, value > pairs input to or output from all
Mappers/Reducers.

6 Conclusions and future work

A network intrusion detection system is a powerful sys-
tem to inspect traffic and discover malicious activities.
Pattern matching is the most intensive task in the detec-
tion process in terms of CPU time and memory. In this
paper, we introduce different parallel implementations
of the Myers algorithm to accelerate the matching pro-
cess. Moreover, we evaluate the suitability of MapReduce
framework as a new programming model to parallelize
the algorithm. We parallelize Myers algorithm using dif-
ferent MapReduce implementations on a multi-core CPU.
Myers algorithm with its various implementations are
thoroughly evaluated under different workloads. Experi-
ments show that Myers using MapReduce on multi-core
CPU achieves an average speedup of more than four
times compared to the serial implementation. In addi-
tion, MapReduce implementations achieved better perfor-
mance than the traditional MPI parallelism techniques.
Therefore, our performance improvement decreases the
detection time and can lend a helping hand to meet the
changes in the wire speed and the increasing number of
attack signatures.

Several frameworks for parallel and distributed process-
ing of big data have been proposed after the conclusion
of this work. Apache introduced Spark in 2014 as an
open-source framework for big data processing. Spark
batch processing is tens of times faster than MapReduce
because of its in-memory sharing. Later, Apache intro-
duced stream processing Flink. It is faster than Spark’s
batch method. Both of these systems are being investi-
gated to extend this work in the near future.

Acknowledgements
We would like to acknowledge the efforts of Yaser Jararweh and the valuable
feedback of the reviewers.

Funding

This work was supported by the Deanship of Research at Jordan University of
Science and Technology, grant 2011/287, and in part by Zayed University
Research Office, Research Incentive Grant R15121.

Availability of data and material
Not applicable.

Page 10 of 11

Authors’ contributions

MA suggested the problem, solution, methodology, evaluation procedure,
metrics, and experiments and supplied the datasets. MA prepared, cleansed,
and parsed the traffic traces and Snort attack signatures. MA is the main
author, he modified the write-up, proofread and submitted the final version.
AA carried out the actual research, simulation implementation, coding,
testing, and measurements. She prepared the raw initial draft of the paper. MJ
was instrumental in the parallel multi-core and GPU implementations, and he
was the major paper author. In response to the reviews, MA and MJ wrote the
algorithm, performed the complexity analysis, and took care of the rest of the
comments. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 22 July 2016 Accepted: 17 May 2017
Published online: 02 June 2017

References

1. Computer Insecurity (2017). https.//www.sciencedaily.com/terms/
computer_insecurity.htm. Accessed 19 Apr 2017

2. MAldwairi, Y Khamayseh, M Al-Masri, Application of artificial bee colony
for intrusion detection systems. Secur. Commun. Netw. 8(16), 2730-2740
(2015)

3. Snort: the open source network intrusion detection system. (2017).
http://www.snort.org. Accessed 19 Apr 2017

4. M Aldwairi, N Ekailan, Hybrid multithreaded pattern matching algorithm
for intrusion detections systems. J. Inform. Assur. Secur. 6(6), 512-521
(2011)

5. MKharbutli, A Mughrabi, M Aldwairi, Function and data parallelization of
Wu-Manber pattern matching for intrusion detection systems. Netw.
Protoc. Algorithms J. 4(3), 46-61 (2012)

6. X Su,ZlJi, ALian, in Proceedings of the 2nd International Conference on
Computer Science and Electronics Engineering. A parallel AC algorithm
based on SPMD for intrusion detection system, (2013). https://www.
researchgate.net/publication/266646801_A_Parallel_AC_Algorithm_
Based_on_SPMD_for_Intrusion_Detection_System

7. MHoltz, B David, R Junior, Building scalable distributed intrusion
detection systems based on the MapReduce framework. Revista
Telecomunicacoes J. 13(2) (2011)

8. L Hu,ZWei, F Wang, X Zhang, K Zhao, An efficient AC algorithm with
GPU. Procedia Engineering. 29, 4249-4253 (2012). ISSN 1877-7058,
doi:10.1016/j.proeng.2012.01.652. http://www.sciencedirect.com/
science/article/pii/S1877705812006625

9. D Xu, HZhang, Y Fan, The GPU-based high-performance
pattern-matching algorithm for intrusion detection. J. Comput. Inform.
Syst. 9(10) (2013)

10. KXu, W Cui, Y Hu, L Guo, Bit-parallel multiple approximate string
matching based on GPU. Procedia Computer Science. 17, 523-529
(2013).1SSN 1877-0509, doi:10.1016/j.procs.2013.05.067. http://www.
sciencedirect.com/science/article/pii/S1877050913002007

11. CLHung, CY Lin, Hh Wang, CY Chang, in 2012 IEEE 14th International
Conference on High Performance Computing and Communication & 2012
IEEE 9th International Conference on Embedded Software and Systems.
Efficient packet pattern matching for gigabit network intrusion detection
using GPUs, (Liverpool, 1612). doi:10.1109/HPCC.2012.235. http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=_&arnumber=
6332370&isnumber=6331993

12. JDean, S Ghemawat, in Proceedings of the 6th conference on Symposium
on Operating Systems Design & Implementation. MapReduce: Simplied data
processing on large clusters (Berkeley, CA, USA, p. 2004)

https://www.sciencedaily.com/terms/computer_insecurity.htm
https://www.sciencedaily.com/terms/computer_insecurity.htm
http://www.snort.org
https://www.researchgate.net/publication/266646801_A_Parallel_AC_Algorithm_Based_on_SPMD_for_Intrusion_Detection_System
https://www.researchgate.net/publication/266646801_A_Parallel_AC_Algorithm_Based_on_SPMD_for_Intrusion_Detection_System
https://www.researchgate.net/publication/266646801_A_Parallel_AC_Algorithm_Based_on_SPMD_for_Intrusion_Detection_System
http://dx.doi.org/10.1016/j.proeng.2012.01.652
http://www.sciencedirect.com/science/article/pii/S1877705812006625
http://www.sciencedirect.com/science/article/pii/S1877705812006625
http://dx.doi.org/10.1016/j.procs.2013.05.067
http://www.sciencedirect.com/science/article/pii/S1877050913002007
http://www.sciencedirect.com/science/article/pii/S1877050913002007
http://dx.doi.org/10.1109/HPCC.2012.235
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6332370&isnumber=6331993
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6332370&isnumber=6331993
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6332370&isnumber=6331993

Aldwairi et al. EURASIP Journal on Information Security (2017) 2017:9

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31

32.

33

34.

G Myers, A fast bit-vector algorithm for approximate string matching
based on dynamic programming. J ACM. 46(3), 395-415 (1999)

R Boyer, J Moore, A fast string searching algorithm. Commun. ACM.
20(10), 762-772 (1977)

S Wu, U Manber, A fast algorithm for multi-pattern searching, Technical
Report TR-94-17. Department of Computer Science, University of Arizona,
1994)

L Langner, Parallelization!ofiMyers Fast!BitDVector! Algorithmlusing GPGPU.
(Diploma/Thesis, Freie Universitat, Berlin, 2011). http://www.mi.fu-berlin.
de/en/inf/groups/abi/theses/master_dipl/langner_bitvector/
dipl_thesis_langner.pdf

G Navarro, A guided tour to approximate string matching. ACM Comput.
Surv. 33(1), 31-88 (2001)

Edit_distance (2017). http://en.wikipedia.org/wiki/Edit_distance.
Accessed 6 Mar 2017

RW Hamming, Error detecting and error correcting codes. Bell Syst. Tech.
1,29 (147). http://garfield.library.upenn.edu/classics 1982/
A1982NY35700001.pdf

V Levenshtein, Binary codes capable of correcting deletions. Insertions
Reversals. Sov. Phys. Dokl. 10(8), 707 (1966)

F Damerau, A technique for computer detection and correction of
spelling errors. Commun. ACM. 7(3), 171-176 (1964)

S Wandelt, D Deng, S Gerdjikov, S Mishra, P Mitankin, M Patil, E Siragusa, A
Tiskin, W Wang, J Wang, U Leser, State-of-the-art in string similarity search
and join, vol. 43, (2014), pp. 64-76. doi:10.1145/2627692.2627706. http://
dl.acm.org/citation.cfm?id=2627706

Bit array (2017). https://pypi.python.org/pypi/bitarray/0.8.1. Accessed 22
July 2016

mpicccomplier (2016). http://www.mcs.anl.gov/research/projects/mpi/
www/www1/mpicc.html. Accessed 19 Apr 2017

OpenMP (2017). http://www.openmp.org/. Accessed 19 Apr 2017
OpenMP (2017). https://computing.linl.gov/tutorials/openMP/. Accessed
19 Apr 2017

J Dean, S Ghemawat, MapReduce: simplified data processing on large
clusters. Commun. ACM. 51(1), 107-113 (2008).
doi:10.1145/1327452.1327492. http://dl.acm.org/citation.cfm?id=
1327492

CRanger, R Raghuraman, A Penmetsa, G Bradski, C Kozyrakis, in 2007 IEEE
13th International Symposium on High Performance Computer Architecture.
Evaluating MapReduce for multi-core and multiprocessor systems,
(Scottsdale, 2007), pp. 13-24. doi:10.1109/HPCA.2007.346181. http//
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
4147644&isnumber=4147636

Y Shan, BWang, J Yan, Y Wang, N Xu, H Yang, in Proceedings of the 18th
annual ACM/SIGDA international symposium on Field programmable gate
arrays (FPGA '10). FPMR: MapReduce framework on FPGA (ACM, New York,
2010), pp. 93-102. doi:10.1145/1723112.1723129. http://dl.acm.org/
citation.cfm?id=1723129

CHong, D Chen, W Chen, W Zheng, H Lin, in Proceedings of the 19th
international conference on Parallel architectures and compilation techniques
(PACT '10). MapCG: writing parallel program portable between CPU and
GPU (ACM, New York, 2010), pp. 217-226. doi:10.1145/1854273.1854303.
http://dl.acm.org/citation.cfm?id=1854303

CS Kouzinopoulos, KG Margaritis, in 2009 13th Panhellenic Conference on
Informatics. String matching on a multicore GPU using CUDA, (Corfu,
2009), pp. 14-18.doi:10.1109/PC1.2009.47. http://ieeexplore.ieee.org/
stamp/stamp jsp?tp=&arnumber=5298766&isnumber=5298190

RN Horspool, Practical fast searching in strings. Software Practice and
Experience. 10(6), 501-506 (1980). doi:10.1002/spe.4380100608. http://
onlinelibrary.wiley.com/doi/10.1002/spe.4380100608/full

G Vasiliadis, S Antonatos, M Polychronakis, EP Markatos, S loannidis, in
Proceedings of the 11th international symposium on Recent Advances in
Intrusion Detection (RAID '08), ed. by R Lippmann, E Kirda, and A
Trachtenberg. Gnort: High Performance Network Intrusion Detection
Using Graphics Processors (Springer-Verlag, Berlin, 2008), pp. 116-134.
doi:10.1007/978-3-540-87403-4_7. http://dl.acm.org/citation.cfm?id=
1433016

E Chibli, A multiprocessor parallel approach to bit-parallel approximate
string matching, Master thesis. (Faculty of California State University, San
Bernardino, 2008)

35.

36.

37.

Page 11 of 11

JTalbot, RM Yoo, C Kozyrakis, in Proceedings of the second international
workshop on MapReduce and its applications (MapReduce '11). Phoenix++:
modular MapReduce for shared-memory systems (ACM, New York, 2011),
pp. 9-16. doi:10.1145/1996092.1996095. http://dl.acm.org/citation.cfm?
doid=1996092.1996095

M Aldwairi, D Alansari, in 2011 7th International Conference on Next
Generation Web Services Practices. Exscind: Fast pattern matching for
intrusion detection using exclusion and inclusion filters (Salamanca, Spain,
2011), pp. 24-30. doi:10.1109/NWeSP.2011.6088148. http://ieeexplore.
jeee.org/stamp/stamp.jsp?tp=&arnumber=6088148&isnumber=6088142
A Orebaugh, G Ramirez, J Beale, J Wright. 1st, in Syngress Media Inc.
Wireshark & Ethereal Network Protocol Analyzer Toolkit, (2007). https://
www.elsevier.com/books/wireshark-andampamp-ethereal-network-
protocol-analyzer-toolkit/orebaugh/978-1-59749-073-3

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://www.mi.fu-berlin.de/en/inf/groups/abi/theses/master_dipl/langner_bitvector/dipl_thesis_langner.pdf
http://www.mi.fu-berlin.de/en/inf/groups/abi/theses/master_dipl/langner_bitvector/dipl_thesis_langner.pdf
http://www.mi.fu-berlin.de/en/inf/groups/abi/theses/master_dipl/langner_bitvector/dipl_thesis_langner.pdf
http://en.wikipedia.org/wiki/Edit_distance
http://garfield.library.upenn.edu/classics1982/A1982NY35700001.pdf
http://garfield.library.upenn.edu/classics1982/A1982NY35700001.pdf
http://dx.doi.org/10.1145/2627692.2627706
http://dl.acm.org/citation.cfm?id=2627706
http://dl.acm.org/citation.cfm?id=2627706
https://pypi.python.org/pypi/bitarray/0.8.1
http://www.mcs.anl.gov/research/projects/mpi/www/www1/mpicc.html
http://www.mcs.anl.gov/research/projects/mpi/www/www1/mpicc.html
http://www.openmp.org/
https://computing.llnl.gov/tutorials/openMP/
http://dx.doi.org/10.1145/1327452.1327492
http://dl.acm.org/citation.cfm?id=1327492
http://dl.acm.org/citation.cfm?id=1327492
http://dx.doi.org/10.1109/HPCA.2007.346181
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4147644&isnumber=4147636
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4147644&isnumber=4147636
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4147644&isnumber=4147636
http://dx.doi.org/10.1145/1723112.1723129
http://dl.acm.org/citation.cfm?id=1723129
http://dl.acm.org/citation.cfm?id=1723129
http://dx.doi.org/10.1145/1854273.1854303
http://dl.acm.org/citation.cfm?id=1854303
http://dx.doi.org/10.1109/PCI.2009.47
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5298766&isnumber=5298190
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5298766&isnumber=5298190
http://dx.doi.org/10.1002/spe.4380100608
http://onlinelibrary.wiley.com/doi/10.1002/spe.4380100608/full
http://onlinelibrary.wiley.com/doi/10.1002/spe.4380100608/full
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://dl.acm.org/citation.cfm?id=1433016
http://dl.acm.org/citation.cfm?id=1433016
http://dx.doi.org/10.1145/1996092.1996095
http://dl.acm.org/citation.cfm?doid=1996092.1996095
http://dl.acm.org/citation.cfm?doid=1996092.1996095
http://dx.doi.org/10.1109/NWeSP.2011.6088148
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6088148&isnumber=6088142
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6088148&isnumber=6088142
https://www.elsevier.com/books/wireshark-andampamp-ethereal-network-protocol-analyzer-toolkit/orebaugh/978-1-59749-073-3
https://www.elsevier.com/books/wireshark-andampamp-ethereal-network-protocol-analyzer-toolkit/orebaugh/978-1-59749-073-3
https://www.elsevier.com/books/wireshark-andampamp-ethereal-network-protocol-analyzer-toolkit/orebaugh/978-1-59749-073-3

	Abstract
	Keywords

	Introduction
	Background
	Intrusion detection systems
	Pattern matching
	Myers algorithm
	Parallel programming
	MPI
	Open multi-processing (OpenMP)

	MapReduce
	MapReduce basic programming model
	Phoenix MapReduce
	MAPCG MapReduce

	Related work
	Parallel implementations of Myers algorithm
	MPI implementation
	Phoenix++ implementation
	MAPCG implementation

	Evaluation and analysis
	Experiments' environment
	Traffic and signature extraction
	Execution time
	Speedup
	Memory usage
	Complexity analysis

	Conclusions and future work
	Acknowledgements
	Funding
	Availability of data and material
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher's Note
	References

