
EURASIP Journal on
Information Security

Bai et al. EURASIP Journal on Information Security (2017) 2017:10
DOI 10.1186/s13635-017-0061-8

RESEARCH Open Access

Sensor Guardian: prevent privacy
inference on Android sensors
Xiaolong Bai* , Jie Yin and Yu-Ping Wang

Abstract

Privacy inference attacks based on sensor data is an emerging and severe threat on smart devices, in which malicious
applications leverage data from innocuous sensors to infer sensitive information of user, e.g., utilizing accelerometers
to infer user’s keystroke. In this paper, we present Sensor Guardian, a privacy protection system that mitigates this
threat on Android by hooking and controlling applications’ access to sensors. Sensor Guardian inserts hooks into
applications by statically instrumenting their APK (short for Android Package Kit) files and enforces control policies in
these hooks at runtime. Our evaluation shows that Sensor Guardian can effectively and efficiently mitigate the privacy
inference threat on Android sensors, with negligible overhead during both static instrumentation and runtime control.

Keywords: Android, Privacy, Protection, Sensor, Instrumentation

1 Introduction
With the proliferation of smartphones, users are requiring
various functionalities for different needs. Smartphones
now are not just used for calling and messaging, they are
utilized in multiple ways, such as entertainment, social
networking, finance, and traveling. With these multi-
purpose requirements, smartphones are designed with
additional features, in both hardware and software. In par-
ticular, current smartphones are equipped with various
sensors, like accelerometer and gyroscope, in the need
of sensing device movement and ambient environment
to make apps (short for applications) involved in user
activity. For example, a navigation app can use the orien-
tation sensor to suggest user about driving directions, and
accelerometer can be used by a game app for user to steer
a car by rotating the device.
Some sensors, like accelerometer and gyroscope, seem

less sensitive compared to other device features like GPS
location, device ID, and network access. Mainstream
mobile platforms, like Android, set no restrictions on
accessing these innocuous sensors. However, when a user
uses the device in regular patterns, things become more
complicated. For example, when the user touches the
screen to enter her screen lock password, the accelerom-
eter may reveal regular patterns [1]. Recent studies

*Correspondence: bxl12@mails.tsinghua.edu.cn
Department of Computer Science and Technology, Tsinghua University,
Beijing, China

[1–10] have shown that, by utilizing these innocuous sen-
sors, attackers are able to infer users’ behavior patterns
and launch severe privacy inference attacks, such as key-
logging [1, 2], inferring user activity [4], profiling [6], and
tracking [9]. For example, [4] demonstrates the feasibil-
ity for a malicious app to infer the smartphone user’s
transportation mode, i.e., whether the user is stationary,
walking, running, biking, or in motorized transport, by
utilizing the onboard accelerometer. Indeed, privacy infer-
ence attacks based on innocuous sensors is an emerging
and severe threat on smart devices.
More specifically, the problem of “privacy inference

based on sensors” (PIS) here refers to any malicious activ-
ities that involve collecting data from those sensors that
are not protected bymobile systems, in an attempt to infer
sensitive user information. We define those innocuous
sensors that are not protected by the Android permission
system as unrestricted sensors or unprivileged sensors. In
this paper, we present a privacy protection system, named
Sensor Guardian, to address the PIS problem on Android
by hooking apps’ sensor-related API (short for applica-
tion programming interface) calls and preventing apps
from arbitrarily accessing those unprivileged sensors. In
particular, Sensor Guardian uses static instrumentation
techniques to insert hooks into apps’ code and hook both
Java and native API calls since apps can access sensors
in both ways. At runtime, those inserted hooks con-
trol apps’ access to sensors depending on various control

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-017-0061-8&domain=pdf
http://orcid.org/0000-0002-7474-5908
mailto: bxl12@mails.tsinghua.edu.cn
http://creativecommons.org/licenses/by/4.0/

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 2 of 17

policies. We conducted several experiments to evaluate
Sensor Guardian’s effectiveness and performance. The
result shows that Sensor Guardian can effectively solve
the PIS problem with negligible overhead, which is quite
improved compared to prior protection techniques for the
PIS problem. The contributions of our paper are outlined
as follows:

1. We propose a new privacy protection system, Sensor
Guardian, to address the PIS problem. Sensor
Guardian uses static instrumentation techniques to
hook and control apps’ API calls of accessing
unprivileged sensors. To the best of our knowledge,
Sensor Guardian is the first to use static
instrumentation techniques to solve the PIS problem.

2. We evaluated Sensor Guardian’s performance. It
incurs negligible overhead during both static
instrumentation and runtime control. Compared to
prior protection techniques, its performance is quite
improved, especially in CPU, memory, and power
consumption. With the help of Sensor Guardian, we
also reviewed how and why sensors are used in apps.

Roadmap The rest of the paper is organized as follows:
Section 2 introduces the background information related
to our research; Section 3 presents our privacy protection
system Sensor Guardian; Section 4 reports the evaluation
of Sensor Guardian; Section 5 discusses Sensor Guardian’s
strengths, weaknesses, and future work; Section 6 reviews
related prior works; and Section 7 concludes the paper.

2 Background
In this section, we first introduce how an Android app
is built up. Then, we introduce the sensors supported in
different mobile operating systems and how apps access
sensors on Android, including some critical APIs that will
be hooked in Sensor Guardian. We will also introduce
basic procedures in static instrumentation techniques that
are adopted in Sensor Guardian. At last, we introduce the
adversary model that Sensor Guardian defends against.

2.1 Android app
Android apps are mostly written in Java. To build an
Android app, its source files are first compiled into Java
bytecode, which is then translated to a specific byte-
code format called Dalvik bytecode. All bytecode files
are then stored in a dex (short for Dalvik Executable)
file. Besides Java code, developers can also employ native
code, like C and C++, to Android apps, in order to per-
form self-contained and CPU-intensive operations. Those
C and C++ source files are eventually compiled into
shared libraries. In addition to the dex file and native
shared libraries, an Android app also requires a manifest
file, named AndroidManifest.xml, to describe its name,

components, required permissions, and other important
information. The manifest file, dex file, shared libraries,
and some other resources are further packaged into a sin-
gle zip-compatible archive file called Android Package Kit
(APK). After it is signed by the developer’s certificate, an
APK file can finally be deployed to Android devices to
install the Android app.

2.2 Sensors
Smart devices provide several sensors to enable apps
to monitor the motion, orientation, and various envi-
ronmental conditions of devices. All mobile platforms,
including Android, iOS, and Windows Phone, provide
APIs for developers to access data from these built-in sen-
sors. We studied the types of their supported unprivileged
sensors by reading these platforms’ official documents for
developers [11–13]. Table 1 shows the unprivileged sen-
sors that are available for developers in the latest versions
of these platforms (Android 7.1, iOS 10.0.2, Windows
Phone 10). Specifically, Android supports 25 sensors, iOS
supports 6, and Windows Phone supports 13. Given that
Android supportsmore kinds of unprivileged sensors than
other platforms and most of prior attacks [1, 2, 4, 7, 10]
are implemented on Android, in this paper, we focus on
the PIS problem on Android platform. Though the avail-
ability of some sensors may vary between different devices
and versions, most Android devices have some basic built-
in sensors like accelerometer and magnetometer. These
basic sensors are still enough to infer a lot of sensitive
information [1–4, 7, 8, 10].
Android provides a sensor framework [14] to help

developers access and manage data from supported
unprivileged sensors. To access a sensor with the Java
APIs in this framework, an app needs to first get an
instance of SensorManager and check whether
the sensor is available on the device. If available, the
app can get corresponding Sensor instance and
register a SensorEventListener for emerging

Table 1 Sensors supported by different mobile platforms

Android Accelerometer, magnetic field, orientation, pressure,
temperature, linear accelerometer, rotation vector,
relative humidity, ambient temperature, game
rotation vector, significant motion, step detector,
step counter, magnetic field uncalibrated,
proximity, geomagnetic rotation vector, gyroscope,
gravity, heart rate, heart beat, gyroscope uncalibrated,
motion detect, light, pose 6DOF, stationary detect

iOS Accelerometer, gyroscope, magnetometer, altimeter,
attitude, pedometer

Windows Phone Accelerometer, gyroscope, magnetometer,
altimeter, barometer, inclinometer, orientation,
pedometer, proximity, simple orientation, activity,
light, compass

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 3 of 17

sensor events by calling the listener registration
function registerListener() on this sensor
instance. By implementing the callback of the listener,
onSensorChanged(), the app can get incoming sensor
events and retrieve sensor data from the events in the
callback.
In addition to these Java APIs, this framework also

provides native APIs for apps to access sensors using
C or C++. Similar to the corresponding Java APIs, the
app using native APIs also needs to get the instance of
SensorManager, check availability of the desired sen-
sor, and register for events from the sensor. Instead of
implementing listener callbacks, when using native APIs,
the app needs to register for sensor events with a sensor
event queue and poll this queue by calling the function
ASensorEventQueue_getEvents() to retrieve new
events and read data.
On Android, sensors are managed by the SensorService

system service; apps in user mode need to communicate
with this service through inter-process communication
(IPC) to access sensors. Themain IPCmethod onAndroid
is Binder [15]. In fact, the aforementioned Java and native
APIs provided by the sensor framework abstract the IPC
details and manage several internal data structures for
developers. Specifically, during registration, the frame-
work keeps a mapping between the sensor type and the
registered listener or event queue, communicates with
SensorService through Binder to enable the sensor, and
waits for sensor events sent by SensorService. Apps do not
need to care about these details; they only need to call the
registration functions and concentrate on how to handle
the received sensor events.

2.3 Static instrumentation
Sensor Guardian employs static instrumentation tech-
niques to hook and control apps’ sensor-related API calls.
In general, these techniques modify apps’ APK files and
add new code into these files before their installation.
The new code replaces the original API calls with calls
to new functions, and these functions decide whether
the app is allowed to perform the original calls. At run-
time, the modified APK file is installed on the Android
device instead of the original one. Since Android apps
can have both Java and native code, static instrumenta-
tion techniques can be categorized into Java Instrumen-
tation [16, 17] and Native Instrumentation [18]. Sensor
Guardian combines these two types of instrumentation
techniques, given that Android provides both Java and
native APIs to access sensors. During implementation,
we further addressed several technical issues and made
some improvements to the existing static instrumenta-
tion techniques, to achieve complete protection with low
overhead.

2.4 Adversary model
We assume that the attackers are the third-party mali-
cious apps installed on users’ Android devices. These
apps attempt to stealthily collect data from unprivileged
sensors on the device without any permission, in order
to infer sensitive user information. We only focus on
those sensors that are not protected by permissions,
because malicious apps leveraging these sensors cannot
be detected or defended by the existing protection mech-
anisms on Android. We assume that the malicious apps
only run in the user mode without any system privi-
leges, as most real-world Android malwares do. With the
confinement of sandbox, the unprivileged malicious app
cannot directly read or write sensor device files to retrieve
sensor data. It can only collect sensor data through APIs
provided by the system. Given that the main threat of
the PIS problem is from these user-mode malicious apps,
we trust the Linux kernel, Android platform, Android’s
application sandbox mechanism.

3 Sensor Guardian
In this section, we first introduce Sensor Guardian’s
architecture. And then, we introduce the implementa-
tion details of Sensor Guardian’s static instrumentation
and runtime control. The control policies that Sensor
Guardian currently supports are also introduced in this
section, as well as how Sensor Guardian can be deployed.

3.1 Architecture
Sensor Guardian consists of two parts: Instrumentor and
Policy Manager. Instrumentor statically instruments an
app’s APK file and inserts hooks in its Java and native
code. Policy Manager is a standalone Android app in user
mode without any system privilege. Currently, we imple-
ment Instrumentor on a regular personal computer (PC).
When an app is instrumented and installed on an Android
device, it needs to communicate with Policy Manager on
the same device to get up-to-date control policies. Pol-
icyManager manages control policies for all instrumented
apps on the same device and helps them make control
decisions.

3.2 Implementation
To ensure its effectiveness, efficiency, and complete pro-
tection, Sensor Guardian overcomes several challenges
and makes some improvements to the existing techniques
both in static instrumentation and runtime control.
As illustrated in Fig. 1, we elaborate the implementation

details of Instrumentor and Policy Manager separately in
this section. For Instrumentor, the implementation details
of both Java and Native Instrumentation are explained. In
Java Instrumentation, we first explain how sensor-related
Java APIs are hooked and then explain how we han-
dle Java reflection, a mechanism for apps to dynamically

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 4 of 17

Fig. 1 Overview of Sensor Guardian’s implementation. The overview of Sensor Guardian’s implementation, including its Instrumentor and Policy
Manager

change their runtime behaviors. In Native Instrumenta-
tion, besides the sensor APIs that are hooked, we also
elaborate how we prevent apps from directly accessing
sensors, i.e., not using the system-provided APIs. For Pol-
icyManager, themain implementation detail that needs to
be explained is how Policy Manager communicates with
instrumented apps to enforce control policies.

Java Instrumentation Java Instrumentation (or bytecode
rewriting) techniques generally undergo three steps as dis-
assembling, modifying assembly code, and reassembling
[16, 17, 19]. They make modifications to the interme-
diate assembly code files (like smali [20]) generated by
disassembling tools (like apktool [21]) and reassemble the
modified code into a new dex file. In Sensor Guardian,
we do not rely on these disassembling tools. Instead, we
modify and use the Dalvik bytecode library dexlib2 [22] to
directly instrument Android apps at Dalvik bytecode level.
The modification to dexlib2 mainly addresses the prob-
lem that some internal data structures in dexlib2 cannot
be directly converted to raw Dalvik bytecode. Compared
to prior static instrumentation techniques, our Instru-
mentor does not need to generate intermediate assem-
bly code files, which saves both time and space during
instrumentation.
We take three steps to hook a specific API in an app as

follows:

1. Define a wrapper function that takes the same
parameters as the specific API.

2. Look for invoke instructions (in the app’s dex file)
whose invocation target is the specific API.

3. Replace the invocation target with the wrapper
function.

In terms of hooking apps’ access to sensors, we
hook those critical sensor-related APIs mentioned in

Section 2.2. In particular, we first hook the listener
registration function, regsiterListener() in
SensorManager. In the wrapper function (say
wrapperreg) of this registration function, we register a
proxy sensor event listener instead of the original one.
In the proxy listener, we implement the corresponding
callback function, onSensorChanged(), to intercept
incoming sensor events. When an event is intercepted,
this proxy’s callback decides whether and how to forward
the intercepted sensor events to the original listener’s
callback depending on current control policies.

Reflection Reflection is a Java mechanism for apps to
examine or modify their runtime behaviors. Apps can
use reflection to dynamically change their call targets,
which could help them bypass static analysis. To prevent
apps from retrieving sensor data in this implicit way, our
Instrumentor employs the same strategy in [16], that is, we
hook the critical reflection function invoke()1 in class
java.lang.reflect.Method (in short, Method)
[23, 24]. As stated above, when we hook a specific
API, we replace the API call with a call to its corre-
sponding wrapper function. We name the invoke()
API’s wrapper as wrapperinvoke. In wrapperinvoke, we
check whether the function being invoked by reflec-
tion is the critical sensor-related API, i.e., the lis-
tener registration function regsiterListener() in
SensorManager. In specific, when wrapperinvoke is
called, besides the invoke() API’s original param-
eters, a Method object (say objectmethod) is also
passed to wrapperinvoke, which represents the method
being invoked. From objectmethod, we can retrieve the
class name and method name of the method being
invoked (with APIs like getDeclaringClass() and
getName() [24]) and then check whether the class
name is SensorManager and the method name is

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 5 of 17

regsiterListener(). If they are, then we invoke
wrapperreg instead of the original registration function.

Native Instrumentation Besides Java APIs, Android also
provides native APIs for apps to access sensor data (see
Section 2.2). Instrumentor employs the method in Aura-
sium [18] to hook native API calls, which examines the
native shared libraries loaded by the app and replaces
function pointers in their global offset table (GOT). Aura-
sium examines shared libraries only at the start of an
app, but many third-party libraries using sensors, like
libunity [25], may be loaded dynamically at any time dur-
ing the app’s runtime. In Sensor Guardian, besides at an
app’s start, we examine a library at any time the library is
dynamically loaded. Android apps can load a native library
by calling either System.loadLibrary() in Java or
dlopen() in native code. We hook these loading func-
tions. Once an app is loading a library at runtime, we
know the library name and loaded address, and then, we
examine the GOT of the loaded library and replace the
function pointers of sensor-related APIs (in GOT) with
their corresponding wrapper functions’ addresses.
To retrieve sensor data using native APIs, an app needs

to register for sensor events with a sensor event queue
and call the function ASensorEventQueue_
getEvents() to poll this queue for new sensor events
(see Section 2.2). We hook these registration and polling
functions by replacing their function pointers (in the
GOTs of the app’s loaded shared libraries) with their
wrapper functions’ addresses. The registration func-
tion’s wrapper records the registered sensor type and
the queue to receive sensor events, while the polling
function’s wrapper intercepts incoming sensor events and
depends on current control policies to decide whether it
should forward the intercepted sensor events to the app’s
registered sensor event queue.
An app can also use dlopen() to open libandroid

in which the sensor-related APIs are defined and
use dlsym() to get the function pointer. We hook
both dlopen() and dlsym(), record the address
of libandroid returned by dlopen(), and check
whether the app is using dlsym() to resolve the address
of the sensor-related APIs (the abovementioned regis-
tration function and queue-polling function). Instead of
returning the original APIs’ addresses, we return the
addresses of these APIs’ wrappers.

Prevent direct access to sensors As mentioned in
Section 2.2, the sensor-related APIs eventually use Binder
IPC to communicate with the SensorService system ser-
vice and acquire sensor data. Hao et al. [19] showed the
possibility that Android apps can access system services
directly through IPC to evade API-level access control. To

prevent such an evasion, we hook the Binder IPC to pre-
vent apps from accessing sensors in such a direct way. We
hook the native function ioctl() in libc.so to intercept
the Binder IPC. On Android, all IPCs are sent through this
function. We reconstruct the high-level IPC communica-
tion in ioctl() using the same method in Aurasium.
When we observe an IPC of enabling a sensor, we examine
the current Java and native call stacks of the app to check
whether this IPC is from the public registration APIs pro-
vided by the sensor framework. If it is, we allow this IPC
because we have already hooked the registration APIs. If
not, we deny this IPC because we do not know the cus-
tomized way in which the app is retrieving and handling
sensor events. Denial of such attempts should not affect
benign apps’ access to sensors because it is abnormal, inef-
ficient, and error-prone to directly access system services
through IPC instead of using APIs provided by the system.

Policy Manager and runtime communication Policy
Manager is a standalone app running on the sameAndroid
device with the instrumented apps, which manages and
deploys control policies for all the instrumented apps.
At runtime, the wrappers in the instrumented apps need
to get the most up-to-date control policies from Policy
Manager to decide whether the app is allowed to access
sensors. Different from prior works [17, 18] that establish
IPC between the app and the manager every time an API
call is hooked, Policy Manager only establishes one IPC to
an instrumented app when there is a change in the app’s
control policy. This is a consideration of runtime overhead
because the frequency of sensor events is quite high (at
least 5 Hz). In Sensor Guardian, every app is instrumented
with an internal light-weight Policy Manager that handles
IPC with the external Policy Manager and caches current
policies only for this app. When a sensor event is hooked,
there is no need to ask the external Policy Manager for
control policies through IPC. The hooks only need to get
the cached policies from the internal Policy Manager in
the same process, which has lower overhead than IPC.
Though this strategy may delay the new control policy to
take effect, the latency is quite low, which is the time of
only one IPC process.

Glue together Figure 2 shows the whole process of Sen-
sor Guardian’s static instrumentation and runtime con-
trol. In preparation, we implemented aforementioned API
wrappers both in Java and native. The Java wrappers and
the internal Policy Manager, say managerint, are com-
piled into a dex file called dexprep. The native wrappers
and the code to hook native API calls are compiled into
a native shared library, say libprep. Note that dexprep

and libprep only need to be generated once for all apps
because these preparations do not depend on any details
about a specific app. As a result, the time to generate these

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 6 of 17

Fig. 2Whole process of Sensor Guardian. The whole process of Sensor Guardian’s static instrumentation and runtime control

two preparations is not included in the measurement of
instrumentation time in Section 4.1
Instrumentation starts when Instrumentor extracts

essential files from the original APK file, including the
manifest file (manifestorig) and dex file (dexorig).
Java Instrumentation takes dexprep, manifestorig, and
dexorig as its input and generates an instrumented dex
file (dexinstrumented) as output. In order to ensure
that managerint can get the available policies at the
start of an app, we implemented managerint as a
subclass of android.app.Application and modi-
fied the application tag in manifestorig to set
managerint as the first class to be instantiated. In
the case that manifestorig already sets an applica-
tion class, say classa, we change the superclass of
managerint to classa and instantiate the superclass
after managerint’s instantiation. We also load libprep

in managerint at the app’s start to establish Native
Instrumentation.
At last, we repackage dexinstrumented, libprep, and

themodifiedmanifest file into the original APK file to gen-
erate the instrumented APK file. And we sign the instru-
mented APK file with a new certificate. When an APK
file is modified and repackaged, its signature is inevitably
destroyed and we cannot recover its original signing key.
This is a problem in all static instrumentation techniques
[16–18]. We adopt the method in [18], in which we gen-
erate a new certificate for each app we have encountered
and keep the relationship between the certificate and the
app. For those apps developed by the same developer, we
use the same certificate. In this way, we maintain the func-
tionality of signature that works as a proof of authorship
in Android.

3.3 Control policy
We implement several simple yet effective control policies
in Sensor Guardian. All these policies take effect by mod-
ifying the data in the sensor events that Sensor Guardian

intercepts, instead of changing apps’ work flow. Here, we
elaborate the policies that we support. Note that the sup-
ported policies could be expanded by security experts in
the future.

Allow All or Deny All The Allow All policy does not set
restrictions on the app to access any sensor. In the oppo-
site, Deny All denies all the access attempts of an app on
all the sensors. When implementing the Deny All policy,
we replace the real data in the sensor events with fixed
and unreasonable data (e.g., set the value of step counter
as always −1).

Randomization Randomization here means randomiz-
ing sensor data for apps to make them unable to under-
stand and infer the real status and environment of the
phone. We enforce this policy by replacing the real sen-
sor data with random data generated by Java Random [26].
In this way, the sensor data retrieved by the app is deter-
mined by the randomization method instead of the real
hardware. As a result, it cannot reflect real device move-
ment or ambient environment, which cannot be used to
infer the user’s behavior pattern and privacy.

User Select User Select is not a specific policy that
decides the way for apps to access sensors. It is a man-
agement strategy that Sensor Guardian allows the user to
decide which app can access what sensors in what ways by
providing her an interactive interface for selection (Fig. 3).
This policy is combined with the above policies, that is,
the user can decide whether to allow, deny, or randomize
an app’s access to a specific sensor. For example, the user
can deny appa to access accelerometer while randomize
appb’s access to gyroscope.
The motivation for User Select policy is to provide users

with the capability of controlling apps’ behavior by their
own. This user-driven policy and the interactive interface

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 7 of 17

Fig. 3 Screenshot of Policy Manager. A screenshot of Policy
Manager’s interactive interface. Sensor Guardian allows the user to
decide which app can access what sensors in what ways by providing
her this interactive interface for selection

of Policy Manager are mostly learnt from similar func-
tionalities in the system settings of iOS and Android 6.0,
that is, users can decide whether apps’ access to system
resources are allowed by switching on or off in the sys-
tem settings. For example, after Android 6.0, users can
turn on or off the Contacts permission for an app in the
system Settings app. The main difference here is that sen-
sors are not as self-explained as other system resources,
e.g., Contacts capabilities allow apps to access contacts,
while gyroscope does not indicate what it can be used for.
In addition, the purposes for apps to use a specific sen-
sor are not obvious, e.g., apps can use gyroscope for both
shaking detection and keystroke inference. As a result,
users’ selection on the policies of controlling apps’ access
to sensors may affect their normal functionalities. In order

to reduce the effect on apps’ normal functionalities, Sen-
sor Guardian now shows a warning on the status bar
(or makes a toast for those apps running in fullscreen)
when an app requires access to the sensors that are being
controlled by Deny or Randomization policies. The
warning indicates what sensor access of this app is being
controlled. With such warnings, users are able to know
whether it is Sensor Guardian’s control that affects the
app’s normal functionalities and, if true, make changes to
the corresponding control policies in Policy Manager.
When there is a need to deploy a new kind of control

policy, it only requires the policy maker to extend the
internal Policy Manager before instrumentation, which
does not affect any other parts of Sensor Guardian.

3.4 Deployment strategy
Sensor Guardian can be used in several ways. First, it can
be used by a normal user who concerns about her pri-
vacy. The user can use Sensor Guardian to automatically
instrument the apps that may access her sensor data and
install the instrumented ones and Policy Manager. In Pol-
icyManager, she can use the interactive interface provided
by Policy Manager to control apps’ access on sensors.
Second, Sensor Guardian can be used by Android app

markets to provide privacy protection enhancement on
apps. In this way, apps can be instrumented by Instru-
mentor on the market server after they are submitted by
developers to the market and before the market publishes
them to users. Policy Manager can be published as a stan-
dalone app, which can be downloaded by users manually
or by the instrumented apps automatically.

4 Evaluation
In this section, we evaluate Sensor Guardian in several
aspects, including its static instrumentation overhead and
runtime control overhead. The Instrumentor runs on a
regular PC with eight processors of Intel Core i7-4770
CPU, 3.40 GHz, 16 GB memory, and Linux kernel 3.8.0.
We crawled 2200 top free apps from all 28 categories on
Google Play Store [27]. By disassembling them and grep-
ping sensor-related APIs in their Java and native assembly
code files, we find that 719 apps are using sensor-related
APIs and select these apps as our evaluation set. We
instrument them and run their instrumented versions
on a Samsung GT-I9260 smartphone with Android 5.1.1,
to examine the efficiency and effectiveness of Sensor
Guardian. Though the evaluation set is relatively small
compared to the total number of Android apps on Google
Play, this set covers all categories on Google Play and is
enough to evaluate Sensor Guardian’s performance.

4.1 Instrumentation overhead
Sensor Guardian can successfully instrument all the apps
in the evaluation set. Here, we examine the overhead of

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 8 of 17

Sensor Guardian’s instrumentation including its instru-
mentation time and impact on app size.

Instrumentation time During instrumentation, we
record the start time (in seconds) of instrumenting an
app and the end time when the instrumentation finishes.
The instrumentation starts when Instrumentor extracts
essential files (e.g. dexorig and manifestorig) from the app’s
APK file and ends when the instrumented APK is signed.
The instrumentation time is measured by calculating
the difference between the start and end time. Note that
the preparations of generating dexprep and libprep

are not included in the measurement of instrumentation
time since Instrumentor only needs to generate them for
once and these preparations are completed in a short
time before all apps’ instrumentation. Before each app’s
instrumentation, we clear the RAM and swap caches in
order to eliminate caching effects.
All apps are instrumented in 20 s. The average instru-

mentation time is 8 s. Figure 4 shows the number of apps
instrumented in different time, which reveals that most
apps are instrumented in 7, 8, and 9 s. As noted above,
the instrumentation time for an app includes the time of
extracting its APK file, modifying dex file and manifest
file, recompression and signing, but not the time for gen-
erating dexprep and libprep. The result indicates that
Sensor Guardian does not cost too much time during
static instrumentation.

Impact on app size We also measure the size increase of
apps to show the impact of Sensor Guardian’s instrumen-
tation. Sensor Guardian incurs size increase in both dex
file and native libraries. Dex file’s size increase is mainly
caused by the inserted hooks and internal Policy Man-
ager managerint. Native libraries’ size increase is caused
by adding the extra library libprep. The libprep has a
fixed size of 22 KiB, while the size increase of dex files
vary between apps. Figure 5a, b shows the cumulative dis-
tribution function (CDF) for the size increase of dex files
and APK files. In fact, the average size increase of dex

files and APK files are 0.5 and 0.6%, respectively. All these
results show that Sensor Guardian’s instrumentation has
negligible impact on apps’ size.

Summary Both the time and size overhead incurred by
Sensor Guardian’s instrumentation is negligible, especially
considering the fact that it instruments both the Java and
native code of apps.

4.2 Runtime overhead
After instrumentation, we manually run those instru-
mented apps on the experiment device. No app crashed
under all policies, i.e., Allow All, Deny All, and Random-
ization, which means that Sensor Guardian’s instrumen-
tation does not affect apps’ normal execution. In fact, as
suggested in Section 3.3, all these policies take effects by
modifying the data in intercepted sensor events, instead
of stopping apps from executing event listener callbacks
(for Java API) or polling the sensor event queue (for native
API). Even under Deny All and Randomization policies,
Sensor Guardian just replaces the data in sensor events
with fixed and unreasonable data (Deny All) or random-
ized data (Randomization). As a result, Sensor Guardian’s
control should not interrupt or stop apps’ execution.
At runtime, the instrumented apps’ access to sensors are

controlled by Sensor Guardian. This control may incur
overhead to these access attempts. Here, we examine the
runtime overhead incurred by Sensor Guardian’s protec-
tion. The third-party apps we crawled from app market
are not suitable for observing this overhead because they
do not always use sensors, most of them only rely on
sensor data occasionally. We need benchmark apps that
intensively retrieve sensor data to better observe the over-
head incurred by Sensor Guardian’s control.

Time overhead Each time a sensor event emerges, Sen-
sor Guardian checks the current control policy and
decides how to control the intercepted sensor events. This
check and control decision may incur extra time over-
head that delays the instrumented app to get sensor events

Fig. 4 Instrumentation time. The number of apps instrumented in different time. Most apps are instrumented in 7, 8, and 9 s

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 9 of 17

Fig. 5 a, b CDF for the size increase of dex and APK files. The cumulative distribution function (CDF) for the size increase of dex files and APK files
incurred by Sensor Guardian’s instrumentation

and data. With Sensor Guardian’s control, the time for
apps to receive sensor event is decided by its sampling
rate and the extra time overhead incurred by the check
and control. We developed a microbenchmark to measure
how long Sensor Guardian’s control delays the instru-
mented app to get sensor data. This microbenchmark
retrieves data from different sensors at different sampling
rates. In the microbechmark, we record the timestamp (in
nanoseconds) of receiving each sensor event and calcu-
late the time interval between each two continuous sensor
events’ timestamps.Wemeasure themean time interval of

30,000 sensor events for both the original and the instru-
mented microbenchmarks and name them as intorig and
intinst, respectively. Then, we measure the extra time over-
head incurred by Sensor Guardian’s control by calculating
intinst − intorig. We evaluate the time overhead for dif-
ferent sensor types at different sampling rates. Android
provides several sampling rates for accessing sensor data.
We choose the highest two, SENSOR_DELAY_FASTEST
(as fast as possible, accurate rate depends on devices)
and SENSOR_DELAY_GAME (50 Hz). Table 2 shows the
time overhead for different sensors at different sampling

Table 2 Time overhead for different sensors at different sampling rate and under different policies

Sensor type Sampling rates Original mean time
interval between events
(intorig, unit: μs)

Policies Absolute time overhead
(intinst − intorig, unit: μs)

Relative time overhead
((intinst − intorig)/intorig,
unit: 0/000)

Fastest 8392.208918

Allow All 0.07 0.08
Deny All 0.001 0.001

Accelerometer
Randomization 0.02 0.02

Game 20141.28197

Allow All 0.08 0.04
Deny All 0.03 0.01
Randomization 0.16 0.08

Fastest 16784.63194

Allow All 0.008 0.005
Deny All 0.009 0.005

Magnetic field
Randomization 0.002 0.001

Game 20141.59088

Allow All 0.02 0.009

Deny All 0.004 0.002
Randomization 0.04 0.02

Fastest 5035.314463

Allow All 0.003 0.001
Deny All 0.01 0.02

Gyroscope
Randomization 0.01 0.01

Game 20141.28592

Allow All 0.16 0.08
Deny All 0.12 0.06
Randomization 0.03 0.02

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 10 of 17

rates and under different policies. The absolute time
overhead is calculated by intinst − intorig (as mentioned
above), and the relative time overhead is calculated by
(intinst − intorig)/intorig. In fact, intorig is decided by the
sampling rate. Table 2 reveals that the highest absolute
time overhead is 0.16 μs, which is much less than 20 μs
in [6], while the highest relative time overhead is also
negligible as 0.08 0/000.

CPU andmemory overhead We use the benchmark app
Ambulation [4] to examine the CPU and memory over-
head of Sensor Guardian’s protection. Ambulation contin-
uously requests sensor data, which is suitable to examine
the CPU and memory overhead. It was also used in the
prior work ipShield [6] to evaluate performance. Differ-
ent from ipShield that sets Ambulation’s sampling rate at
1 Hz during evaluation, we set the sampling rate higher
than 1 Hz because the CPU usage cannot be observed
on our experiment device when the sampling rate is set
to 1 Hz. Instead, we choose SENSOR_DELAY_NORMAL
(5 Hz), SENSOR_DELAY_GAME (50 Hz), and SENSOR_
DELAY_FASTEST.
Table 3 shows the CPU and memory overhead of Sen-

sor Guardian’s protection at different sampling rates and
under different policies. It reveals that, maximally, Sensor
Guardian incurs 0.17% CPU overhead and 0.1 MB mem-
ory overhead, which are less than those (3% CPU and
0.5 MB memory) in ipShield [6].

Power consumption Low power consumption is essen-
tial for all mobile apps, especially for apps using sensor
data because frequently accessing sensors would drain the
battery. As a result, a protection system targeted at sen-
sors should not incur too much extra power consumption.
Wemeasure the power consumption overhead in the same
way as in [28] and [6], that is, we measure how long it
takes for the original and instrumented apps to consume
the same amount of power (percentage of battery). This

Table 3 CPU and memory overhead at different sampling rate
and under different policies

Sampling rates Policies CPU overhead (%) Mem overhead (MB)

Fastest Allow All 0.1 0.03

Deny All 0.16 0.005

Randomization 0.01 0.008

Game Allow All 0.06 0.07

Deny All 0.17 0.01

Randomization 0.02 0.04

Normal Allow All 0.13 0.05

Deny All 0.06 0.1

Randomization 0.17 0.07

measurement is based on the fact that the more power
an app consumes, the faster it drains the battery. We
still use Ambulation as the benchmark app and choose
the sampling rates as SENSOR_DELAY_FASTEST. Dur-
ing its execution, we turned off all network interfaces and
turned down the screen’s brightness to the lowest. We
measure how long it takes for the app to drain the bat-
tery from 100 to 90%. Table 4 shows the time cost under
different policies. By comparing the time to drain battery
for the original benchmark and the one under different
control policies, we can evaluate the power consumption
overhead incurred by Sensor Guardian. Table 4 illustrates
that the highest power consumption overhead incurred by
Sensor Guardian is 2.6%. This overhead is much less than
prior works as 7.6% [28] and 8.2% [6].
Summary Sensor Guardian has much improved perfor-

mance compared to prior works [6, 28] during runtime
control in all aspects as time, CPU, memory, and power
consumption. This performance improvement is mainly
because of its lazy strategy on runtime communication
that the instrumented app only needs to query the intra-
process managerint instead of establishing an expensive
IPC with the external Policy Manager (see Section 3.2).
The low runtime overhead makes Sensor Guardian prac-
tical to solve the PIS problem.

4.3 Protection effectiveness
Under Sensor Guardian’s control, all apps cannot arbitrar-
ily retrieve sensor data. We run the apps in our evaluation
set under Sensor Guardian’s Deny All and Randomiza-
tion control policies to evaluate the protection’s effective-
ness. All apps’ runtime behaviors are affected. We also
examine the effectiveness of Sensor Guardian’s control on
the apps that really infer the user’s sensitive information
based on sensor data, i.e., the malicious app that launches
PIS attack. In fact, the benchmark app Ambulation [4]
that we used in runtime overhead evaluation launches a
PIS attack, in which it continuously retrieves sensor data
from accelerometer to infer the user’s transportation state,
like still, walking, or running. We run Ambulation under
Sensor Guardian’s Deny All and Randomization control

Table 4 Time to drain the device battery from 100 to 90% under
different policies

Original Allow All Deny All Randomization

Time to drain
battery from 100
to 90% (T)

36’ 45” (TO) 35’ 57” 35’ 48” 35’ 48”

T − TO 0 48” 57” 57”

Power
consumption
overhead
(T − TO)/TO

0 2.1% 2.6% 2.6%

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 11 of 17

policies. It cannot infer the right transportation state. As
shown in Fig. 6, the phone is placed still on the desk. But
under the Randomization policy, Ambulation’s inferred
state is running.

4.4 Findings
Among all the 719 apps in our evaluation set, 648 (90%)
use only Java APIs to access sensors, 22 (3%) use only
native APIs, and 49 (7%) use both Java and native APIs.
During static instrumentation, we manually looked into

the assembly code of the apps that use sensor-related Java
APIs and checked the types of sensors passed to the regis-
tration methods, in order to understand what sensors may

Fig. 6 Ambulation infers wrong transportation mode under Sensor
Guardian’s control. Under the Randomization policy, Ambulation
infers the transportation mode to be running though the device is
placed still on the desk

be used in these apps. Though the collected results may
not be complete, we can have a rough understanding of
the usage of sensors in Android apps.
Figure 7 shows the number of apps categorized by the

number of sensors they are using. It reveals that 284
(39.5%) apps use only one sensor and 248 (34.5%) use two
sensors, which are themajority (74%) in the evaluation set.
The result suggests that most apps only require a small
number of sensors.
Besides the number of sensors being used by apps,

we also examine the types of sensors they use. Table 5
shows the popularity of different types of sensors among
apps, which reveals that accelerometer is the most pop-
ular sensor. It suggests that 610 (84.8%) apps are using
accelerometer, followed by magnetic field (31.6%), prox-
imity (28.1%), and gyroscope (14.9%). We believe that the
reason for accelerometer to be the most popular is that it
can be used to detect a lot of device status, like shaking,
rotation, and vibration. Actually, among the 284 apps that
only use one sensor, we find that 201 (70.8%) apps use and
only use accelerometer.
During evaluation, we manually examine the assembly

code of some apps that use accelerometer to understand
why it is so popular. We find that a common usage of
accelerometer in apps, like Booking and Tumblr, is to
detect whether the user is shaking the device. To detect
this high-level motion event, Android developers need to
implement the algorithm based on raw sensor data by
themselves. Unlike Android, iOS does not only provide
raw sensor data to developers but also supports APIs to
detect high-level motion events, like device shaking, in
order to lighten developers’ burden. This strategy also
reduces the risks of exposing users’ privacy because, for
apps that reply on accelerometer only for detecting device
shaking, they do not need to access raw data anymore.
Instead, they only need to ask the system whether the
device is shaking through the high-level APIs. We recom-
mend Android to provide such high-level motion event
APIs, which could also be applied to other sensors and
their high-level motion events. These high-level APIs can
also cooperate with the permission system, e.g., apps with
permission.accelerometer_fine could retrieve raw sensor
data while those with permission.accelerometer_coarse
can only use high-level APIs.
We also extract common combinations of some popu-

lar sensors, which is demonstrated in Table 6. It reveals
that the combination of magnetic field and accelerometer
is the most popular sensor combination among apps. We
further categorize the apps in the evaluation set based on
their descriptions on the app market and check whether
apps in the same category use the same sensors, in order to
characterize why apps are using sensors. Table 7 demon-
strates some category examples, for example, nearly all
Map apps need to use accelerometer during navigation.

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 12 of 17

Fig. 7 Number of apps using different number of sensors; 284 (39.5%) apps use only one sensor and 248 (34.5%) use two sensors, which are the
majority (74%) of the apps in the evaluation set

5 Discussion
In this section, we discuss Sensor Guardian’s advantages
and disadvantages, including the completeness of its API
hooking, the incurred attack surfaces to apps, Sensor
Guardian’s strengths and weaknesses, and recommenda-
tions for sensor management on Android.

5.1 Completeness of hooking
In this section, we elaborate the completeness of Sensor
Guardian’s hooking by examining all the possible ways in
which apps can access sensors on Android.

1. Android is based on the Linux kernel. Hardware
devices, including sensors, are managed by the Linux
kernel. The kernel does not provide corresponding
system calls to directly access sensors. It organizes
sensor devices as device files. Android restricts that
only the SensorService system service can access the
sensor device files by setting read-write permissions
and SEAndroid policies on these files. As a result, the
only way for user-mode apps to access sensors is to

Table 5 Popularity of different sensors

Sensor type Number of apps using
the sensor

Percentage of apps
using the sensor (%)

Accelerometer 610 84.8

Magnetic field 227 31.6

Proximity 202 28.1

Gyroscope 107 14.9

Orientation 96 13.4

Light 74 10.3

Rotation vector 60 8.3

Gravity 42 5.8

Linear accelerometer 41 5.7

Pressure 25 3.5

Other sensors 34 4.7

communicate with the SensorService through Binder
IPC.

2. In Sensor Guardian, we hook ioctl() in libc.so,
the main function through which all IPCs are sent,
and examine apps’ attempts on accessing sensors. In
this way, all access to sensors should be hooked and
controlled. But a malicious app can bypass such
hooks by implementing their own ioctl()
function instead of using the monitored one.
Actually, the ioctl() function is a wrapper of the
ioctl() system call. One possible solution that we
are working on is to examine the instructions of
calling this system call in all the native binaries
loaded by the app and replace them with calls to a
new wrapper of ioctl() system call.

3. We hook all the public Java and native APIs for
registering sensor events and examine the call stack
trace in ioctl(). The examination in ioctl()
makes sure that the allowed access to the
SensorService is from hooked public APIs. By this
means, apps cannot use internal or hidden APIs to
bypass Sensor Guardian’s hooking.

We make Sensor Guardian’s protection as complete as
possible by handling all the possible situations mentioned
above. But it may still miss some conditions in which

Table 6 Number of apps using different combinations of sensors

Sensor combination Number of apps

Magnetic field, accelerometer 94

Proximity, accelerometer 62

Magnetic field, proximity, accelerometer 28

Gravity, linear accelerometer, rotation vector, 21
Accelerometer, magnetic field, gyroscope

Orientation, accelerometer 20

Light, proximity 12

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 13 of 17

Table 7 Some apps in the same category use the same sensors

Category Same sensors used App example

Map Accelerometer BaiduMap, Maps.Me,
Minimap

Health Step detector,
accelerometer

Mi Fit, FitbitMobile

First-person game Linear accelerometer,
rotation vector,

3D Maze 2, Squadron,
Sniper SWAT

Accelerometer,
gyroscope

apps use some rare methods to retrieve sensor data in
customized ways (like the abovementioned implement-
ing their own ioctl()) or dynamically change their
behaviors. These unhandled situations are discussed in
Section 5.4.

5.2 Attack surfaces incurred by Sensor Guardian
After static instrumentation, Sensor Guardian adds new
code into the instrumented app. If the inserted code is not
handled properly, it may introduce new attack surfaces
and cause new security problems to the app. Here, we
discuss those potential attack surfaces and our mitigation.
The instrumentation does not modify the original con-

trol flow of an app. It only replaces the targets of those
calls to sensor-related API. The only potential attack sur-
face incurred by the inserted code is that it introduce a
new IPC channel to the original app. This IPC channel is
used by the internal PolicyManager to get up-to-date con-
trol policies from external Policy Manager. Without con-
sidering potential bugs in Android’s IPC mechanism, the
only possible way for a third-party app to attack the instru-
mented app through this IPC channel is to impersonate
the external Policy Manager to the internal Policy Man-
ager. But, with the help of Android IPC mechanism and
PackageManager, the internal Policy Manager can verify
the package name and signature of the connected external
Policy Manager, which prevents the impersonation attack.

5.3 Strengths of Sensor Guardian
Besides the completeness of hooking and the incurred
attack surfaces to Android apps, in this section and
Section 5.4, we also discuss the strengths and weaknesses
of Sensor Guardian, in order to have a full understand-
ing about Sensor Guardian’s protection. The strengths of
Sensor Guardian are listed as below.
First, Sensor Guardian has negligible overhead.

Section 4.2 shows that Sensor Guardian has negligible
overhead on time, CPU, memory, and power consump-
tion, during runtime control. All the overhead is much
improved compared to prior works [6, 28]. Also, Sensor
Guardian has low overhead during static instrumentation,
that is, it can instrument an app in a few seconds while

incurring small size increase to the app. The low overhead
in both static instrumentation and runtime control makes
Sensor Guardian practical.
Second, Sensor Guardian is not affected by the problem

of Android fragmentation [18, 29]. This problem arises
when a variety of customized Android versions are used
in different vendors’ devices. This problem makes it diffi-
cult to provide a universal patch to enforce new security
enhancement at the system level on all Android devices,
due to misaligned incentives from different parties includ-
ing Google, hardware vendors, and cell phone carriers
[18, 30, 31]. Sensor Guardian does not need to mod-
ify the system to deploy the security enforcement, thus
not affected by the Android fragmentation problem. As
long as the original app can run on a device, its instru-
mented version can also run on that device under Sensor
Guardian’s control. Thus, Sensor Guardian can be used to
handle the PIS problem before Android notices the prob-
lem and starts to enforce new access control on those
unprivileged sensors at the system level, such as extending
existing permission model or deploying other control sys-
tems like [6]. Even Sensor Guardian can be used now to
handle the new scenarios in the PIS problem, like inferring
user privacy by exploiting smartwatches [7, 10].

5.4 Weaknesses and limitations
Sensor Guardian employs the method of static instrumen-
tation. This method is not a silver bullet for all situations
and may face several problems that are inevitably difficult
to deal with. To the best of our knowledge, we have not
found existing work that completely solves these problems
in static instrumentation. Here, we elaborate the weak-
nesses of this method and our future work of mitigating
these weaknesses.

1. Apps can detect whether they are modified or
repackaged by examining the signature or signing
identity of their APK files. An app may refuse to run
to avoid being controlled when this repackaging is
detected. In the future, we will address this problem
by hooking apps’ checks on their signatures, in order
to hide the traces of instrumentation.

2. Apps may dynamically change their behavior at
runtime. We try to solve this weakness by hooking
critical reflection function and functions like
dlsym(), but a malicious app could change its
behavior in other ways, like through direct jumping.
The completeness of Sensor Guardian’s hooking is
affected when apps dynamically change their
behaviors with such unhandled APIs or instructions.
We are working to make a full list of all APIs that can
be used to dynamically change apps’ behaviors. And
in the future work, we will not only hook APIs but
also hook instructions that change control flow.

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 14 of 17

3. Apps may load code dynamically in several ways [32].
Though we handled dynamically loaded native shared
libraries, it is still not a complete solution. Apps may
download new dex files or binaries from network and
load code from these downloaded files. Such runtime
behaviors may affect the completeness of Sensor
Guardian’s hooking since static instrumentation
techniques cannot predict the files to be downloaded
and instrument the dynamically downloaded files at
runtime. In the future, we will address this problem
by analyzing and hooking apps’ dynamically loading
behaviors with both static and dynamic methods.

Basically, these weaknesses are all caused by apps’
dynamic behaviors at runtime. These runtime behaviors
are difficult to be analyzed statically from apps’ code (like
what Sensor Guardian does now). In the future work, we
are planning to combine static and dynamic analysis tech-
niques to make more complete control on these runtime
behaviors.
Another limitation in Sensor Guardian is that, currently,

we only implemented several simple control policies in
Sensor Guardian. Though these policies are effective, they
may be inflexible and unintelligent, which may incur false
positive when controlling some legitimate apps. In the
future, we are going to propose and support other flexible
and intelligent polices in Sensor Guardian. For example,
User Select policy is still simple and rough. Users may
not make correct and precise control on apps’ access to
sensors. We are working to give users correct recommen-
dations and guides on how to decide control policies for
protecting their privacy. Also, we are working to auto-
matically analyze how apps use sensors and distinguish
between malicious behaviors and normal functionalities.
All these works require analysis on the semantics of apps,
especially on the computation that sensor data takes part
in. In the future, we will add such semantics analysis to
Sensor Guardian.
Currently, Sensor Guardian’s instrumentation is imple-

mented on a regular PC. That means, if it is used by
a user, the user needs to install the instrumented app
from PC, which may be inconvenient for an ordinary
user. In the future work, we are planning to port Sensor
Guardian’s instrumentation to Android devices to avoid
such inconvenience.

5.5 Recommendations for Android
Sensor Guardian is not a complete solution for the PIS
problem on Android. It is a potential mitigation before
Android pays attention to and takes action to the PIS
problem. It is more complete and strict to enforce sensor
control policies at the system level. One possible solution
is to set permissions on those unprivileged sensors and
prevent apps from reading sensor data in the background.

Another possible solution is that the system can give the
user an obvious indication of what sensors are being used
and which app is using these sensors. And the system
can also enable users to revoke apps’s ability of using spe-
cific sensors when they are doing sensitive operations, like
entering PIN code.

6 Related work
Sensor Guardian is proposed to solve the aforementioned
PIS problem. Many techniques have been proposed to
solve this problem, while many others present new attacks
that use sensors to infer users’ privacy. To solve the PIS
problem, Sensor Guardian employs and improves static
instrumentation techniques. In this section, wewill review
prior works about the PIS problem and static instrumen-
tation techniques on Android.

PIS problem Several prior works focus on addressing
the PIS problem by hooking and controlling Android
apps’ access to sensors onboard. Cai et al. [33] explores
the vulnerability of attackers sniffing sensors on smart-
phones. TaintDroid [34] modifies the Android system
and framework to establish system-wide dynamic taint
tracking and analysis for sensitive data including data
from sensors. Based on TaintDroid, AppFence [35] sub-
stitutes sensitive data demanded by apps with innocuous
shadow data to protect users’ privacy, which inspired
Sensor Guardian’s Randomization policy. FlaskDroid [36]
modifies the Android system to enforce mandatory access
control on both Android’s middleware and kernel layers,
including on the sensor data. ipShield [6, 37] tries to solve
the PIS problem by modifying the Android system and
monitoring apps’ access to innocuous sensors. It then uses
the monitored information to provide the user with pri-
vacy risk assessment. SemaDroid [38] also modifies the
Android system to extend its sensor management frame-
work and enforces several fine-grained control policies.
Perceptual Assistant (PA) [28] follows ipShield to allow
users to customize control policies. It relies on Xposed
[39] on rooted Android devices to dynamically hook apps’
related API calls. SSG [40] hooks apps’ sensor-related
APIs by modifying the Android system, and it needs to
be installed with root privilege. Compared to these prior
works, Sensor Guardian has much improved performance
and incurs less overhead during runtime control. And
those methods relying on modifying the system may be
affected by the problem of Android fragmentation, while
Sensor Guardian is not.
Some other works focus on providing privacy protec-

tion when users share their sensor data with remote data
consumers. Mun et al. [41] proposes Personal Data Vaults
(PDVs) to help users control and filter their sensor data
shared with remote content-service providers. Choi et al.
[42] also proposes an architecture, called SensorSafe, for

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 15 of 17

users to share their sensor data with remote data con-
sumers in a privacy-preserving way. AnonySense [43]
helps users to anonymize their sensor data when shar-
ing among multiple users. Zhang et al. [44] proposes
a privacy-preserving technique for smartphone sensing
data aggregation. Different from these works, Sensor
Guardian directly controls local apps’ access on sensors
no matter whether they share the sensor data with remote
data consumers.
Many works try to infer different kinds of privacy or

information based on the innocuous sensors in a direct
way [4, 7, 10] or as a side channel [1–3, 8, 45, 46]. Kwapisz
et al. [45] uses built-in accelerometers to recognize users’
physical activity. Schlegel et al. [47] leverages microphone
to steal users’ sensitive privacy during phone call. Zhou
et al. [48] collects audio status from a GPS navigator to
fingerprint a driving route. Mylonas et al. [5] uses sen-
sors on smartphones in digital forensics as either direct
evidence or indirect evidence. Shen et al. [49] proposes a
sensing stack on Internet of Things (IoT) devices. Reddy
et al. [4] uses GPS and motion sensors on the smartphone
to infer the user’s transportation modes. Yang et al. [50]
infers sensors in a building to make undesired occupancy-
related inferences. Dey et al. [51] can identify each unique
smartphone by leveraging the imperfections of their built-
in accelerometers as fingerprints. Miluzzo et al. [52] uses
motion sensors to infer the location of users’ taps on the
screen. More stealthily, [9, 53–56] use unrestricted sen-
sors, including gyroscope, accelerometer, magnetometer,
and barometer to infer users’ location, driving patterns,
and traveled routes. Xu et al., Cai and Chen, Shen et al.,
Aviv et al., and Owusu et al. [1, 2, 8, 46, 57] use
motion sensors to infer users’ keystroke on the smart-
phone’s screen because typing on different locations on
the screen may cause changes on the device’s motion sta-
tus, which is reflected on the motion sensors. Similarly,
[3] uses accelerometer to infer users’ keystroke. How-
ever, the keystroke is not on the smartphone’s screen, it
is on another physical keyboard that is placed near the
smartphone on the same desk. Hussain et al. [58] con-
ducts a survey of existing attacks that use motion sensors
for keylogging on smartphones. Inspired by these keylog-
ging techniques, [59] conducted a study to understand
users’ concerns on data collected by wearable sensors.
Song et al. [60] suggests that these keylogging attacks
can be addressed by reducing sensor data accuracy and
generating random keyboard layout. Liu et al. [7] and
Wang et al. [10] look into a new situation that users
may type on a keypad or keyboard with a smartwatch
worn on her wrist. As the motion sensor on the smart-
watch can track the movement of the device, it can also
track the movement of the user’s hand, which makes it
possible to infer the keys she strokes on the keypad or
keyboard.

Static instrumentation on Android Static instrumenta-
tion on Android apps can be divided into two categories
as Java and Native Instrumentation. Java Instrumenta-
tion is also called bytecode rewriting, which instruments
on apps’ Dalvik bytecode. It uses static analysis to iden-
tify sensitive API calls and modifies the APK file to hook
these calls. Jeon et al. [17] uses bytecode rewriting to
enforce finer-grained permissions as an improvement to
Android’s coarse-grained permission system. RetroSkele-
ton [16] is a rewriting framework for customizing Android
apps’ behaviors, which supports several policies. These
bytecode rewriting techniques do not handle native code
in Android apps. Differently, Sensor Guardian does not
only rewrite bytecode but also instruments native code.
Another difference is that Sensor Guardian does not
rely on disassembling tools, instead it directly instru-
ment at Dalvik bytecode level. Hao et al. [19] system-
atically evaluates the effectiveness of API-level access
control using bytecode rewriting and gives recommen-
dations on engineering secure bytecode rewriting tools.
In Sensor Guardian, we try to overcome some weak-
nesses mentioned in that work, for example, we hook
reflection APIs and prevent apps from accessing sys-
tem service directly. When instrumenting native code,
Sensor Guardian employs the method in Aurasium [18].
Aurasium monitors and controls apps’ attempts to access
sensitive information and system resources by hooking
low-level system APIs at the start of the app. Differently,
Sensor Guardian hooks high-level APIs each time a new
library is loaded.

7 Conclusions
In this paper, we propose Sensor Guardian, a new sys-
tem to prevent the problem of privacy inference based on
sensors (PIS). Sensor Guardian hooks and controls apps’
Java and native API calls of accessing sensors by statically
instrumenting their APK files. The evaluation shows that
Sensor Guardian can effectively control apps’ access to
sensors and incur negligible overhead in several aspects.
Specifically, for static instrumentation, the average instru-
mentation time is 8 s, and the average size increase on
APK files is only 0.6%. At runtime, the maximum extra
time, CPU, memory, and power consumption overhead
incurred by Sensor Guardian are 0.16μs, 0.17%, 0.1 MB,
and 2.6%, respectively. All these results show that Sensor
Guardian has improved performance compared to prior
works.

Endnote
1Note that this invoke() function is different from

theinvoke instruction stated in the steps of hooking Java
APIs: this invoke() function is a reflection API, while
the invoke instruction is a Dalvik bytecode instruction.

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 16 of 17

Acknowledgements
This work was supported by Tsinghua University Initiative Scientific Research
Program (2014z09102).

Authors’ contributions
XB developed the Sensor Guardian, conducted the experiments for the
evaluation, and drafted the manuscript. JY participated in the Sensor
Guardian’s design and revised the manuscript. YW analyzed the experiment
results and wrote the final version of the manuscript. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 21 November 2016 Accepted: 15 May 2017

References
1. Z Xu, K Bai, S Zhu, in Proceedings of the Fifth ACM Conference on Security

and Privacy inWireless andMobile Networks. Taplogger: inferring user
inputs on smartphone touchscreens using on-board motion sensors
(ACM, New York, 2012), pp. 113–124

2. L Cai, H Chen, in HotSec. Touchlogger: inferring keystrokes on touch
screen from smartphone motion (USENIX Association, Berkeley, San
Francisco, 2011)

3. P Marquardt, A Verma, H Carter, P Traynor, in Proceedings of the 18th ACM
Conference on Computer and Communications Security. (sp) iphone:
decoding vibrations from nearby keyboards using mobile phone
accelerometers (ACM, New York, 2011), pp. 551–562

4. S Reddy, M Mun, J Burke, D Estrin, M Hansen, M Srivastava, Using mobile
phones to determine transportation modes. ACM Trans. Sens. Netw.
(TOSN). 6(2), 13 (2010)

5. A Mylonas, V Meletiadis, L Mitrou, D Gritzalis, Smartphone sensor data as
digital evidence. Comput. Secur. 38, 51–75 (2013)

6. S Chakraborty, C Shen, KR Raghavan, Y Shoukry, M Millar, M Srivastava, in
11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14). ipshield: a framework for enforcing context-aware privacy
(USENIX Association, Seattle, 2014), pp. 143–156

7. X Liu, Z Zhou, W Diao, Z Li, K Zhang, in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. When good
becomes evil: keystroke inference with smartwatch (ACM, New York,
2015), pp. 1273–1285

8. C Shen, S Pei, Z Yang, X Guan, Input extraction via motion-sensor
behavior analysis on smartphones. Comput. Secur. 53, 143–155 (2015)

9. S Narain, TD Vo-Huu, K Block, G Noubir, in IEEE Symposium on Security and
Privacy. Inferring user routes and locations using zero-permission mobile
sensors. (IEEE, 2016)

10. C Wang, X Guo, Y Wang, Y Chen, B Liu, in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security. Friend or foe?:
your wearable devices reveal your personal pin. (ACM, 2016), pp. 189–200

11. Android Sensor. https://developer.android.com/reference/android/
hardware/Sensor.html. Accessed 18 Nov 2016

12. iOS Sensor. https://developer.apple.com/reference/coremotion.
Accessed 18 Nov 2016

13. Windows Sensor. https://msdn.microsoft.com/windows/uwp/devices-
sensors/sensors. Accessed 18 Nov 2016

14. Sensors Overview. http://developer.android.com/guide/topics/sensors/
sensors_overview.html. Accessed 18 Nov 2016

15. Android Binder. https://developer.android.com/reference/android/os/
Binder.html. Accessed 18 Nov 2016

16. B Davis, H Chen, in Proceeding of the 11th Annual International Conference
onMobile Systems, Applications, and Services. Retroskeleton: retrofitting
Android apps. (ACM, New York, 2013), pp. 181–192

17. J Jeon, KK Micinski, JA Vaughan, A Fogel, N Reddy, JS Foster, T Millstein, in
Proceedings of the Second ACMWorkshop on Security and Privacy in
Smartphones andMobile Devices. Dr. Android and Mr. Hide: fine-grained
permissions in android applications. (ACM, New York, 2012), pp. 3–14

18. R Xu, H Saïdi, R Anderson, in USENIX Security Symposium. Aurasium:
practical policy enforcement for android applications, (Bellevue, 2012),
pp. 539–552

19. H Hao, V Singh, W Du, in Proceedings of the 8th ACM SIGSAC Symposium on
Information, Computer and Communications Security. On the effectiveness
of api-level access control using bytecode rewriting in android. (ACM,
New York, 2013), pp. 25–36

20. smali. https://github.com/JesusFreke/smali. Accessed 18 Nov 2016
21. apktool. http://ibotpeaches.github.io/Apktool/. Accessed 18 Nov 2016
22. dexlib2. https://github.com/JesusFreke/smali/tree/master/dexlib2.

Accessed 18 Nov 2016
23. Java Reflection. https://docs.oracle.com/javase/tutorial/reflect/member/

methodInvocation.html. Accessed 18 Nov 2016
24. Class Method. https://docs.oracle.com/javase/7/docs/api/java/lang/

reflect/Method.html. Accessed 18 Nov 2016
25. libunity. http://docs.unity3d.com/Manual/android-GettingStarted.html.

Accessed 18 Nov 2016
26. Java Random. https://docs.oracle.com/javase/7/docs/api/java/util/

Random.html. Accessed 18 Nov 2016
27. Google Play App Store. https://play.google.com/store. Accessed 18 Nov

2016
28. K Zhao, D Zou, H Jin, Z Tian, W Qiang, W Dai, inMobile Services (MS), 2015

IEEE International Conference On. Privacy protection for perceptual
applications on smartphones. (IEEE, 2015), pp. 174–181

29. Fragmentation. https://en.wikipedia.org/wiki/Fragmentation_(programming
). Accessed 18 Nov 2016

30. X Zhou, Y Lee, N Zhang, M Naveed, X Wang, in Security and Privacy (SP),
2014 IEEE SymposiumOn. The peril of fragmentation: security hazards in
android device driver customizations. (IEEE, 2014), pp. 409–423

31. L Xing, X Pan, R Wang, K Yuan, X Wang, in 2014 IEEE Symposium on Security
and Privacy. Upgrading your android, elevating my malware: privilege
escalation through mobile os updating. (IEEE, 2014), pp. 393–408

32. S Poeplau, Y Fratantonio, A Bianchi, C Kruegel, G Vigna, in NDSS. Execute
this! Analyzing unsafe and malicious dynamic code loading in android
applications, vol. 14, (2014), pp. 23–26

33. L Cai, S Machiraju, H Chen, in Proceedings of the 1st ACMWorkshop on
Networking, Systems, and Applications for Mobile Handhelds. Defending
against sensor-sniffing attacks on mobile phones MobiHeld ’09. (ACM,
New York, 2009), pp. 31–36. doi:10.1145/1592606.1592614. http://doi.
acm.org/10.1145/1592606.1592614

34. W Enck, P Gilbert, S Han, V Tendulkar, B-G Chun, LP Cox, J Jung, P
McDaniel, AN Sheth, Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst.
(TOCS). 32(2), 5 (2014)

35. P Hornyack, S Han, J Jung, S Schechter, D Wetherall, in Proceedings of the
18th ACM Conference on Computer and Communications Security. These
aren’t the droids you’re looking for: retrofitting android to protect data
from imperious applications (ACM, 2011), pp. 639–652

36. S Bugiel, S Heuser, A-R Sadeghi, in Presented as Part of the 22nd USENIX
Security Symposium (USENIX Security 13). Flexible and fine-grained
mandatory access control on android for diverse security and privacy
policies (USENIX, Washington, 2013), pp. 131–146

37. S Chakraborty, KR Raghavan, MP Johnson, MB Srivastava, in Proceedings of
the 14thWorkshop onMobile Computing Systems and Applications. A
framework for context-aware privacy of sensor data on mobile systems
(ACM, New York, 2013), p. 11

38. Z Xu, S Zhu, in Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy. Semadroid: a privacy-aware sensor
management framework for smartphones. (ACM, New York, 2015),
pp. 61–72

39. Xposed. http://repo.xposed.info/module/de.robv.android.xposed.
installer. Accessed 18 Nov 2016

40. B Li, Y Zhang, C Lyu, J Li, D Gu, in International Conference on Collaborative
Computing: Networking, Applications andWorksharing. Ssg: sensor security
guard for android smartphones (Springer, 2015), pp. 221–233

41. MMun, S Hao, N Mishra, K Shilton, J Burke, D Estrin, M Hansen, R Govindan,
in Proceedings of the 6th International COnference. Personal data vaults: a
locus of control for personal data streams. (ACM, New York, 2010), p. 17

42. H Choi, S Chakraborty, ZM Charbiwala, MB Srivastava, inWorkshop on
Secure DataManagement. Sensorsafe: a framework for privacy-preserving
management of personal sensory information. (Springer, Berlin, 2011),
pp. 85–100

https://developer.android.com/reference/android/hardware/Sensor.html
https://developer.android.com/reference/android/hardware/Sensor.html
https://developer.apple.com/reference/coremotion
https://msdn.microsoft.com/windows/uwp/devices-sensors/sensors
https://msdn.microsoft.com/windows/uwp/devices-sensors/sensors
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/reference/android/os/Binder.html
https://developer.android.com/reference/android/os/Binder.html
https://github.com/JesusFreke/smali
http://ibotpeaches.github.io/Apktool/
https://github.com/JesusFreke/smali/tree/master/dexlib2
https://docs.oracle.com/javase/tutorial/reflect/member/methodInvocation.html
https://docs.oracle.com/javase/tutorial/reflect/member/methodInvocation.html
https://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Method.html
https://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Method.html
http://docs.unity3d.com/Manual/android-GettingStarted.html
https://docs.oracle.com/javase/7/docs/api/java/util/Random.html
https://docs.oracle.com/javase/7/docs/api/java/util/Random.html
https://play.google.com/store
https://en.wikipedia.org/wiki/Fragmentation_(programming)
http://dx.doi.org/10.1145/1592606.1592614
http://doi.acm.org/10.1145/1592606.1592614
http://doi.acm.org/10.1145/1592606.1592614
http://repo.xposed.info/module/de.robv.android.xposed.installer
http://repo.xposed.info/module/de.robv.android.xposed.installer

Bai et al. EURASIP Journal on Information Security (2017) 2017:10 Page 17 of 17

43. C Cornelius, A Kapadia, D Kotz, D Peebles, M Shin, N Triandopoulos, in
Proceedings of the 6th International Conference onMobile Systems,
Applications, and Services. Anonysense: privacy-aware people-centric
sensing (ACM, New York, 2008), pp. 211–224

44. Y Zhang, Q Chen, S Zhong, Privacy-preserving data aggregation in mobile
phone sensing. IEEE Trans Inf. Forensic Secur. 11(5), 980–992 (2016)

45. JR Kwapisz, GM Weiss, SA Moore, Activity recognition using cell phone
accelerometers. SIGKDD Explor. Newsl. 12(2), 74–82 (2011).
doi:10.1145/1964897.1964918

46. AJ Aviv, B Sapp, M Blaze, JM Smith, in Proceedings of the 28th Annual
Computer Security Applications Conference. Practicality of accelerometer
side channels on smartphones. (ACM, 2012), pp. 41–50

47. R Schlegel, K Zhang, X-y Zhou, M Intwala, A Kapadia, X Wang, in NDSS.
Soundcomber: a stealthy and context-aware sound trojan for
smartphones, vol. 11, (2011), pp. 17–33

48. X Zhou, S Demetriou, D He, M Naveed, X Pan, X Wang, CA Gunter,
K Nahrstedt, in Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security. Identity, location, disease and more:
inferring your secrets from android public resources (ACM, New York,
2013), pp. 1017–1028

49. C Shen, H Choi, S Chakraborty, M Srivastava, in 2014 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). Towards a rich
sensing stack for IoT devices. (IEEE, 2014), pp. 424–427

50. L Yang, K Ting, MB Srivastava, in Pervasive Computing and Communications
(PerCom), 2014 IEEE International Conference On. Inferring occupancy from
opportunistically available sensor data (IEEE, 2014), pp. 60–68

51. S Dey, N Roy, W Xu, RR Choudhury, S Nelakuditi, in NDSS. Accelprint:
imperfections of accelerometers make smartphones trackable, (2014)

52. E Miluzzo, A Varshavsky, S Balakrishnan, RR Choudhury, in Proceedings of
the 10th International Conference onMobile Systems, Applications, and
Services. Tapprints: your finger taps have fingerprints (ACM, New York,
2012), pp. 323–336

53. J Han, E Owusu, LT Nguyen, A Perrig, J Zhang, in Communication Systems
and Networks (COMSNETS), 2012 Fourth International Conference On.
Accomplice: location inference using accelerometers on smartphones
(IEEE, 2012), pp. 1–9

54. S Nawaz, C Mascolo, in Proceedings of the 12th ACM Conference on
Embedded Network Sensor Systems. Mining users’ significant driving routes
with low-power sensors. (ACM, New York, 2014), pp. 236–250

55. T Watanabe, M Akiyama, T Mori, in Proceedings of the 9th USENIX
Conference on Offensive Technologies. Routedetector: sensor-based
positioning system that exploits spatio-temporal regularity of human
mobilty. WOOT’15. (USENIX Association, Berkeley, 2015), pp. 6–6. http://dl.
acm.org/citation.cfm?id=2831211.2831217

56. B-J Ho, P Martin, P Swaminathan, M Srivastava, in Proceedings of the 2nd
ACM International Conference on Embedded Systems for Energy-Efficient
Built Environments. From pressure to path: barometer-based vehicle
tracking. (ACM, New York, 2015), pp. 65–74

57. E Owusu, J Han, S Das, A Perrig, J Zhang, in Proceedings of the Twelfth
Workshop onMobile Computing Systems & Applications. Accessory:
password inference using accelerometers on smartphones (ACM,
New York, 2012), p. 9

58. M Hussain, A Al-Haiqi, A Zaidan, B Zaidan, MM Kiah, NB Anuar, M
Abdulnabi, The rise of keyloggers on smartphones: a survey and insight
into motion-based tap inference attacks. Pervasive Mob. Comput. 25,
1–25 (2016)

59. A Raij, A Ghosh, S Kumar, M Srivastava, in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. Privacy risks
emerging from the adoption of innocuous wearable sensors in the
mobile environment (ACM, New York, 2011), pp. 11–20

60. Y Song, M Kukreti, R Rawat, U Hengartner, Two novel defenses against
motion-based keystroke inference attacks. arXiv preprint arXiv:1410.7746
(2014)

http://dx.doi.org/10.1145/1964897.1964918
http://dl.acm.org/citation.cfm?id=2831211.2831217
http://dl.acm.org/citation.cfm?id=2831211.2831217

	Abstract
	Keywords

	Introduction
	Roadmap

	Background
	Android app
	Sensors
	Static instrumentation
	Adversary model

	Sensor Guardian
	Architecture
	Implementation
	Java Instrumentation
	Reflection
	Native Instrumentation
	Prevent direct access to sensors
	Policy Manager and runtime communication
	Glue together

	Control policy
	Allow All or Deny All
	Randomization
	User Select

	Deployment strategy

	Evaluation
	Instrumentation overhead
	Instrumentation time
	Impact on app size
	Summary

	Runtime overhead
	Time overhead
	CPU and memory overhead
	Power consumption

	Protection effectiveness
	Findings

	Discussion
	Completeness of hooking
	Attack surfaces incurred by Sensor Guardian
	Strengths of Sensor Guardian
	Weaknesses and limitations
	Recommendations for Android

	Related work
	PIS problem
	Static instrumentation on Android

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	References

