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Abstract

The availability of individual load profiles per household in the smart grid end-user domain combined with
non-intrusive load monitoring to infer personal data from these load curves has led to privacy concerns.
Privacy-enhancing technologies have been proposed to address these concerns. In this paper, the extension of
privacy-enhancing technologies by wavelet-based multi-resolution analysis (MRA) is proposed to enhance the
options available on the user side. For three types of privacy methods (secure aggregation, masking and differential
privacy), we show that MRA not only enhances privacy, but also adds additional flexibility and control for the end-user.
The combination of MRA and PETs is evaluated in terms of privacy, computational demands, and real-world feasibility
for each of the three method types.
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1 Introduction
Intelligent energy systems and so-called smart grids,
change the way electricity is generated, distributed, and
used. The widespread roll-out of smart meters is one
of the consequences. Such smart meters record energy
consumption in a specified granularity (usually the time
between readings is between 1 and 15 min, cf. Table
10 in [1]) and have the ability to transmit these load
curves in a specified interval (e.g., once a day). Therefore,
this involves a considerable amount of information that
needs to be processed and analyzed. Smart grids further
demand accurate and fine-grained data on network status,
as well as a detailed analysis of load profiles from cus-
tomers [2]. This is crucial for applications such as billing
with dynamic pricing, demand response, and network
monitoring.
However, it has been shown that personal information

on the end-user can be inferred from fine-grained load
curves [3, 4], and this has led to privacy concerns (e.g.,
[5]). This also implies some severe privacy threats such
as the identification of customer presence at home, cus-
tomer habits, and even the customer position when using
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electric vehicles [6]. In [7, 8], the authors show the impact
of resolutions on privacy and that information can be
deduced even at comparably low frequencies.
The accuracy of the inferred information is directly con-

nected to the available resolution of the load data. A
number of methods have been proposed to balance the
need for privacy with the information needed for cor-
rect operation of smart grids. Two types of approaches
show high potential to resolve this issue: (i) privacy-aware
aggregation of encrypted load curves; and (ii) representa-
tion of load curves inmultiple resolutions, each associated
with different access levels.

1.1 Privacy-aware aggregation
Approaches for privacy-aware aggregation can again be
divided into three categories: protocols using masking
[9, 10], protocols using secure aggregation by homomor-
phic encryption [11, 12], and protocols using differential
privacy [13, 14]. In this paper, the focus is put on the
application of multi-resolution load curve representation
in combination with secure aggregation protocols.
Privacy-enabling encryption for smart meter data by

the use of homomorphic encryption is suggested by,
[11, 12, 15, 16], allowing the aggregation of encrypted
signals, also termed “secure signal processing”. A recent
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overview of secure signal processing, covering four pro-
posals for privacy-preserving smart metering aggregation
is given in [17]. Protocols that are usingmasking for aggre-
gating data have been proposed by [9, 10, 18]. Masking
approaches aim to hide individual contributions by addi-
tive noise, but still produce a valid aggregate. Differential
privacy follows a similar approach, where contributions
are hidden in a noisy aggregate that fulfills some statistical
properties. Differential privacy is adapted for applications
in the smart grid by, e.g., [13, 19–21].

1.2 Multiple resolutions
Approaches of this type suggest to represent load curve
data in multiple resolutions, where each resolution can
be used for a different purpose — e.g., low resolution
for billing — and is therefore disclosed to selected par-
ties only, e.g., [22]. Using the wavelet transform in order
to produce an integrated bitstream supporting multiple
resolutions has been proposed by [23]. Combined with
conditional access, i.e., different encryption keys for each
resolution [24], this wavelet-based representation allows
user-centric privacy management: access can be granted
or revoked for each resolution. Access to high resolu-
tions, which are privacy-sensitive, may be reserved to a
small number of trusted entities only, whereas resolutions
of medium granularity may be provided more freely, e.g.,
to contribute to network stability (in exchange for lower
energy prices or other incentives). An approach combin-
ing multiple resolutions and direct user control for smart
metering is shown in [25]. The combination of MRA with
homomorphic encryption, which is also one of the topics
in this paper, has been discussed in [26].

1.3 Contribution
In this paper, a set of three privacy-preserving smart
metering data aggregation methods that combine the
two types of approaches, namely, multi-resolution repre-
sentation and (i) homomorphic encryption; (ii) masking;
and (iii) differential privacy, is proposed. This improves
the capabilities for managing privacy requirements, as
the combination of “traditional” privacy-enhancing meth-
ods with multi-resolution representation significantly
increases the choices available for both system opera-
tor and end-user. We further contribute the sketch of a
protocol for distributing keys and for providing distinct
resolutions to different parties. Access control does not
relate to the aggregated signal as a whole anymore, but
access can be granted on the aggregate on each resolu-
tion individually. This is an important feature, as it allows
to grant access to participants in the smart grid system,
based on their roles and the functions they have to ful-
fill. Each role can be assigned access to the aggregate on
the minimum resolution necessary to fulfill the functions
associated with this role.

The combination of MRA with homomorphic encryp-
tion has previously been proposed in [26]. This paper
extends the previous work by applying multi-resolution
techniques to masking and differential privacy. A compre-
hensive presentation, discussion, and evaluation of multi-
resolution representation in combination with widely
used PETs is given.
The rest of this paper is structured as follows: in

section Multi-resolution PETs the application scenario
and common definitions are introduced. In section
Background, background is presented on wavelets for
the multi-resolution representation of load curves as
well as on the three privacy-enhancing technologies
(PETs) homomorphic encryption, masking, and differen-
tial privacy. Sections Multi-resolution secure aggregation,
Multi-resolution masking, and Multi-resolution differ-
ential privacy describe each of these PETs individually
and propose the combination of these approaches with
wavelets. In section Evaluation, the security features of
the proposed protocols, as well as cost and complexity
are discussed, and further, the system is evaluated with
respect to real-world applicability on the basis of a proto-
typical implementation. Section Conclusions summarizes
this paper and gives an outlook to future work.

2 Multi-resolution PETs
While homomorphic encryption, simple masking, and
differential privacy are efficient methods for the spatial
reduction of resolution, temporal aggregation is not suf-
ficiently covered with any of these approaches. Temporal
resolution of time series can be reduced by subsequently
applying a number of filters. When —for instance —
applying an appropriate low-pass filter to a time series,
all frequencies above the cutoff frequency are omitted,
which results in a signal with less information. This is
effectively performed by applying the wavelet transform,
in particular the Haar wavelet, to a series of values.

2.1 Application scenario
Smart meter data has a wide range of applications, such
as in-house monitoring, billing, network monitoring, and
demand response. As pointed out in [2, 8], data resolution
depends on the use case and has an impact on the privacy,
i.e., the information the recipient can gain from that data.
In the following, we introduce three typical application
scenarios andmotivate the need for multi-resolution PETs
and their flexibility with respect to spatial and temporal
resolution.

1. Settlement and profiling. In the energy market
electricity generators and electricity suppliers trade
at a wholesale marketplace. The arrangement of
payments among these parties is called settlement [2,
9]. Profiling is used for determining forecasts and
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training models, e.g., in the UK this is based on
half-hourly meter data from a representative sample
of households [2]. Both applications thus require data
in a comparably low resolution, but spatially
aggregated over a number of households.

2. Network monitoring. Network monitoring is used
for detecting outages and peaks and thus maintaining
the stability of the power grid. A detailed monitoring
of power consumption, voltage levels and phase
shifts is an important feature for network operators.
For monitoring purposes, data at a high temporal
resolution but with little spatial resolution is required.

3. Billing. Billing requires meter data in a low temporal
resolution (e.g., one value per month or year),
however, on a per household or on a per meter basis,
hence not spatially aggregated at all. In future
applications, dynamic pricing might also require
more fine-grained data [27]. Multi-resolution PETs
enable the provision of load profiles in certain
resolutions depending on the particular use case.

2.2 Topology
For data aggregation in the smart grid, a number of dif-
ferent topologies are proposed, such as star topologies
(e.g., [20, 28]), ring topologies (e.g., [10]), and tree topolo-
gies (e.g., [16]). In any case, the smart meters generate
a time series of values that is either sent to a dedicated
collector node or to a data concentrator, which is respon-
sible for aggregating these measurements. Or the smart
meters aggregate in a hop-by-hop manner, i.e., a smart
meter sends its measurement to its successor or parent
node where this measurement is combined with its own
value. The data concentrator and the last smart meter,
respectively, forward the aggregatedmeasurements to one
or more recipients (in the following referred to as aggre-
gators). Each aggregator receives data in a different spatio-
temporal resolution depending on the role of the recipient
and the needed granularity. Figure 1 shows examples for

Fig. 1 Examples of two different topologies (star, left and tree, right). In
the star topology, the data concentrator (DC) collects measurement
values from the smart meters (SM) and forwards the aggregated
values to the aggregators (A). In the tree topology measuring values
are aggregated in a hop-by-hop manner by the smart meters

star and tree topologies. For the protocols presented in
this paper, the aggregation method (direct or hop-by-
hop) is not restricted and either of these approaches can
be used.

2.3 Problem statement and definitions
Given a number of smart meters SMi, for i = 1 . . .N , one
or more aggregators Ak , for k = 1 . . .M, and a trusted
third party (TTP), each meter i measures a time series of
values, i.e., at time t it measuresmi,t . In this paper, a series
of values measured by a meter i is denoted asmi. In order
to protect customer privacy, the sum of the energy con-
sumption for all smart meters should be provided to the
aggregator. The following restrictions and requirements
apply (aggregator oblivious): (i) no aggregator can gain
any information about individual contributions; (ii) each
aggregator can only unmask a valid sum up to the time
resolution r ≤ R (with R as the maximum resolution)
that is intended to be revealed for this aggregator. Hence,
the aggregator is considered to be untrusted. In prac-
tice, the smart meters can be considered to be physically
arranged in either a tree or a ring topology. Logic topolo-
gies may defer and may depend on the concrete protocol.
For homomorphic encryption and masking, the TTP is
needed to provide the keys (pkr , skr) and the key shares
(keyr), respectively, to the smart meters and aggregators.
For this paper, we assume that there is a sufficient

underlying secure communication infrastructure, i.e., the
bidirectional and reliable exchange of information and the
secure distribution of keys is given as well as authenticated
communication among participants is guaranteed by, e.g.,
AES [29] and X.509 certificates [30]. We further assume
all devices to be tamper-proof, i.e., the meter value itself
cannot be manipulated.

3 Background
In this section, we briefly review the existing work on
multi-resolution representation, homomorphic encryp-
tion, masking, and differential privacy.

3.1 Wavelet-based representation
A wavelet transform starts with the original load curve
m = (m1,m2, . . . ,mT ), which denotes a series of val-
ues. Each step splits the original load curve into a high-
pass component h and a low-pass components l. If the
wavelet transform is performed recursively in d steps, this
is denoted as Wd(m). In each step q, for q = 1, . . . d,
half of the data (the highpass data) hq are stored as the
wavelet coefficients (subband) of scale q, and the next step
is performed for the low-pass data. At the end of the trans-
formation, the final subband hd consists of a fraction of
2−d samples compared to the original load curve. The
higher the scale q, the lower the time resolution r := d−q.
Reindexing, and introducing the notation hr = hd−q, at
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the end of the transformation one obtains a sequence h =
(l0, h1, . . . , hd).
The synthesis step of the inverse wavelet transformW−1

starts with the lowest resolution r = 0. To get the next
higher resolution of the signal, the next higher resolution
subband is needed, so that in a series of d steps one finally
obtains the original load curve (since we only consider
lossless transformations). In order to provide a signal mr

withmaximum resolution r, only r synthesis steps must be
performed and only the subbands with resolution r ≤ R,
i.e., mr = (l0, h1, . . . , hr), are needed. Denoting the selec-
tion of the r highest resolutions as a function Tr , this can
be written as

mr = W−1 (Tr(W (m))) . (1)

This selection can be realized in practice by replac-
ing the high-pass subbands with zeros, i.e., applying
Tr (·) to a sequence W (m) = (l0, h1, . . . , hr , . . . , hd−1, hd)
yields a sequence Tr(W (m)) = (l0, h1, . . . , hr , 0, . . . , 0).
This limits, after applying the inverse wavelet transform,
the resolution of the signal. Making the signal available
at the needed resolution instead of the full resolution
increases privacy because less (personal) information can
be deduced [8].
In [23], a variety of wavelet filters regarding their util-

ity for the multi-resolution representation of load curves
was evaluated. Only lossless transformations are useful
in the context of smart metering. The Haar wavelet fil-
ter preserves the average over all resolutions, which is an
important property for many use cases. Using the lifting
implementation of the Haar wavelet, the transformation
can be realized efficiently.
The lifting steps for the forward transformwith theHaar

wavelet have been formulated by [31]. As the original Haar
wavelet uses real coeffcients, it is ill-suited for use with
homomorphic encryption. Therefore, for the combination
of PETs, a modified version of the Haar wavelet is used
that only produces integer values for the transformed load
curve. While this is generally not an issue for masking and
differential privacy, we still use the modified version for
all PETs. A detailed description of the Haar wavelet lifting
scheme can be found in [23]. Note that the average of the
original series is still preserved over all resolutions for the
modified Haar filter:

∀r :
T∑

t=0
mt = 2−r

T∑

t=0
mr

t . (2)

3.2 Additive homomorphic encryption
Following previous proposals [11, 12, 15] for this work,
the Paillier cryptosystem [32] is employed. This additive
homomorphic cryptosystem has the following important

property, which is called the additive property:

D
(
E(m1)E(m2) mod n2

) = (m1 + m2) mod n. (3)

This property means that the decryption of the prod-
uct of the ciphertexts is the sum of the original plaintext
messages.
In a practical setting, the network is assumed to have

tree-like connections. Each smart meter sends its mea-
sured load in encrypted form to its parent node. The
parent smart meter multiplies the obtained encrypted sig-
nals with its own encrypted signal and in turn sends this
product to its parent node. Finally, the aggregator multi-
plies the obtained signals and decrypts the product. Due
to the additive homomorphic property, the result is the
sum of the measurements. With E and D denoting Pailler
encryption and decryption, this can be stated as

D
(

∏

i
E(mi) mod n2

)
=

∑

i
mi mod n. (4)

Privacy is preserved because of the distributed way of
processing. Smart meters only have the plaintext informa-
tion of their own messages, because they cannot decrypt
the messages they get. The aggregator can decrypt mes-
sages, but, as it receives the product of the individual
ciphertexts, it can only decrypt the sum of the load curves.

3.3 Masking
Masking refers to the obfuscation of individual contri-
butions, such that the summation of load profiles over
a number of households yields the correct sum, but no
individual contribution is traceable. This is achieved by
adding for each SMi at time t a random share si in the
range 1, . . . , κ − 1 to the meter value mi. This results in
a masked meter value m̃i = mi + si mod κ . The set of
random shares is constructed in such a way that

∑

i
m̃i =

∑

i
(mi + si) =

∑

i
mi (all mod κ), (5)

hence, the shares cancel each other out upon summation.
Principally, smart meters calculate the masked value m̃i

and submit this value to an aggregator. Once the aggre-
gator has received all masked values, it can calculate the
unmasked sum. If a single value is missing, the secret
shares will not cancel each other out, and neither the
aggregate nor any individual contribution can be recon-
structed.
Kursawe et al. [9] present a number of methods for

constructing such shares that meet the requirement for
untraceability of individual contributions: (i) aggregation
protocols for determining the sum as described above;
and (ii) comparison protocols that require the aggrega-
tor already knows an (at least) approximate sum. For our
purpose, we focus on the low-overhead protocol from the
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first group which has already been used in practical imple-
mentations [33]. For the low-overhead protocol, all smart
meters hold a public key pki = gXi with Xi as a secret key
and g ∈ G as a generator of a group satisfying the com-
putational Diffie-Hellman assumption [34]. Each SMi is
given the set of all public keys and computes a set ofN −1
shared keys by Ki,j = H(pkXi

j ) with j = 1 . . .N .
As described in [9], for each meter value at time t each

SMi creates a random share by

si =
∑

k �=i
(−1)b(i,j)H(Ki,j||t), (6)

where b(i, j) returns 1 if j < i and 0 otherwise, and H :
{0, 1}∗ → G is a hash function mapping its input to an
element of G. This term in Eq. 6 results in +H(Ki,j||t) for
b(j, i) = 0 and −H(Ki,j||t) for b(j, i) = 1. Summing up
this values assures that all si cancel each other out pairwise
since Ki,j = Kj,i because of gXiXj = gXjXi . This is shown for
N smart meters at one point in time t in Table 1, where the
rows represent k, and the columns represent i for values
from 1 to N. Summing up the resulting terms in each row
yields the random share si,t .

3.4 Differential privacy
Differential privacy is a privacy definition that defines pri-
vacy of a function f by an indistinguishability property
of the function result. In this paper, the function is the
time series of the sum of different smart meter measure-
ments f (t) = ∑N

i=1 Tr (W (mi)). However, note that here
the noise is added to the selected resolutions (operator
Tr) in the wavelet domain and not in the original domain.
The aim is that by examining a perturbed result f̃ (t),
one cannot distinguish whether a single person’s entry is
contained or not. Since the noise is only added to the
needed resolutions ≤ r, only a small amount of noise is
added. More formally, two neighboring datasets D and
D′ that differ in the entries of a single person/household
only are considered. The function mechanism f̃ is then
ε-differentially private, if for a small privacy parameter
ε > 0

Table 1 In the method proposed by [9], shares cancel each other
out pairwise, since si + sN−i = 0

j/i 1 2 3 . . . N

1 −H(K2,1||t) −H(K3,1||t) . . . −H(KN,1||t)
2 +H(K1,2||t) −H(K3,2||t) . . . −H(KN,2||t)
3 +H(K1,3||t) +H(K2,3||t) . . . −H(KN,3||t)
...

...
...

...
. . .

...

N +H(K1,N||t) +H(K2,N||t) +H(K3,N||t) . . .

∑
j s1,t s2,t s3,t . . . sN,t

The columns correspond to N smart meters, the last row is the share created for
each smart meter for one point in time t

Pr[ f̃ (D) = y]≤ exp(ε)Pr[ f̃ (D′) = y] . (7)

While differential privacy is a theoretically appealing
definition with nice properties (e.g., a function is differ-
entially private under postprocessing), it is achieved by
perturbing the function result with Laplacian noise f̃ (t) =
f (t) + nt [19], where each noise value nt is independently
and identically sampled from a Laplacian distribution
nt ∼ Lapλ (the parameter λ must be set using the sensi-
tivity of the function f [19]). As a drawback, the function
result is not exact and can be useless if the number of
entries in the dataset is too small.
More specifically, according to the Theorem of Dwork

[19], the Lp sensitivity of a function f : Dn → R
d is

the smallest number Sp(f ) such that for two neighboring
datasets x and x′

Sp(f ) = argmax
x,x′

‖f (x) − f (x′)‖p. (8)

Themost commonmechanism that achieves differential
privacy is the Laplace mechanism ML that perturbs the
output of f by adding noise from a Laplace distribution
having the density

Lapλ(x) = 1
2λ

exp
(

−|x|
λ

)
, (9)

in a non-interactive way, yielding

ML(x, f (·), ε) = f (x)+(Y1, . . . ,Yk), with Yl
i.i.d.∼ Lapλ.

(10)

An important theorem states that the Laplace mech-
anism is ε-differentially private if the parameter λ is
chosen by

λ = S1(f )
ε

. (11)

The resulting noise does not need to be added directly
to the function result. It can also be added in a distributed
manner [20, 35] when each contributing party i adds i.i.d.
noise Gλ,N defined by

Pr[Gλ,N = x]= G1
1/N ,λ(x) − G2

1/N ,λ(x), (12)

where G1 and G2 are two i.i.d. gamma distributions with
identical shape parameter 1/N and scale parameter λ.
Then

Pr[nt = x]=
N∑

i=1
Gλ,N (x) = Lapλ(x). (13)

4 Multi-resolution secure aggregation
In this section, the combination of the wavelet transform
with homomorphic encryption is presented. The principal
scheme is shown in Fig. 2. First, the basic approach with
only one aggregator is presented, and second, it is shown
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Fig. 2MRA aggregation scheme for secure aggregation with homomorphic encryption and multiple aggregators. The component DP representing
the addition of Gamma distributed noise is only needed if additionally differential privacy wants to be achieved. In this figure wi := W(mi) denotes
the wavelet transform ofmi

that this approach can easily be extended to multiple
aggregators.

4.1 Principal secure aggregation scheme
Homomorphic encryption is applied to each resolution
separately with a different pair of keys (pkr , skr) for each
resolution r. The resulting signal m is the sum of all sig-
nalsmi (each of which has a maximum resolution of R) at
resolution r ≤ R, whereby, W (·) denotes a wavelet trans-
formation. The collector node can perform aggregation
(i.e., multiply) in the encrypted domain, i.e., it does not
have any keys. This ensures that the aggregating node can-
not get information about the loads of its children, e.g.,
by divisions.

4.2 Basic approach
The basic approach covers a number of smart meters
and a single aggregator. Writing the principal scheme
mathematically yields the following calculation of the
ciphertext c

c =
∏

i
E (Tr (W (mi))) mod n2. (14)

The ciphertext c is decrypted by the aggregator by

m = W−1 (D (c) mod n) . (15)

Using this procedure, the wavelet transformation is
compatible with homomorphic encryption, i.e., the prop-
erty that the messagem equals the sum of the messages is
preserved (choosing r = R). Even more, choosing r ≤ R,
the decrypted message m equals the sum of the messages
of resolution r:

m=W−1
(
D

(
∏

i
E (Tr (W (mi))) mod n

))
=

∑

i
mr

imod n.

(16)

The aggregator gets the product of the encrypted mes-
sages and can therefore not extract any information about
the individual messages. However, it can calculate the
sum of the messages which is the information needed,

e.g., for load forecasting. Note again that the product of
the ciphertexts is calculated in either a distributed way
by the smart meters or by a data concentrator and not
by the aggregator (see section Topology). The number n
must be chosen depending on the desired security level.
It further determines the aggregation group size, since∏

i E (Tr (W (mi))) < n2 and D
(∏

i E (Tr (W (mi)))
)

< n.
In section Space considerations, the issue of aggregation
group sizes is discussed in detail. For the sake of readabil-
ity themodulus parts of the calculations are omitted in the
following proof.

Proof Without loss of generality, two messages are con-
sidered. To simplify the analysis the notation yi :=
Tr (W (mi)) is used, so E (Tr (W (mi))) = E(yi). The
aggregator calculates the signal W−1(D(c)). Using the
fact that the ciphertext c is the product of the individual
ciphertexts and the homomorphic encryption property
leads to

W−1 (D (c)) = W−1 (D (c1c2))
= W−1 (D (E (y1)E (y1))) (17)
= W−1(y1 + y2)

Substituting the yi using the linearity of the wavelet
transform and the definition ofmr yields

W−1 (D (c)) = W−1 (Tr (W (m1)) + Tr (W (m2))) (18)
= W−1 (Tr (W (m1))) + W−1 (Tr (W (m2)))

= mr
1 + mr

2

So in general for N different messages and ciphertext
c = ∏

i ci, the desired property (16)

W−1 (D (c)) =
N∑

i=1
mr

i . (19)

is obtained.
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4.3 Multiple aggregators
An example use-case scenario is the use of aggregated load
information for energy monitoring by the network oper-
ator as, e.g., suggested by [17]. The approach proposed
here adds an additional layer of flexibility by making the
aggregates available at different resolutions and only grant
access to parties on the resolutions they need to fulfill
a specific task. In combination with suitable key man-
agement, this approach implements the “need-to-know”
principle of access for aggregated signals. The secure
aggregation scheme presented above can be extended to
support multiple aggregators. Each aggregator receives
data in a certain resolution. This is easily achieved by
encrypting with different keys at the collector node.

5 Multi-resolutionmasking
In this section, the multi-resolution masking approach is
presented. The principal scheme is shown in Fig. 3. After
briefly recapitulating the principal masking scheme, first,
the basic approach for one aggregator is presented and
second, this approach is extended to multiple aggregators
receiving data in different resolutions. The latter is espe-
cially useful for application scenarios such as settlement
and profiling, where different parties should be provided
information in different resolutions.

5.1 Principal masking scheme
Each smart meter SMi calculates at each time t = 0 . . .T
a masked value m̃i,t by adding a random share si,t to its
measured value mi,t . Upon spatial aggregation, the shares
si cancel each other out and the aggregator receives an
unmasked sum. Note that in the following, operations
involving masking of type a + b mod κ are written as
a + b, i.e., the modulo parts are omitted for the sake of
brevity and readability.
This approach can be enhanced by allowing to reduce

the temporal resolution of the signal. Even more, a num-
ber of different resolutions can be provided within the
same bitstream, and the key for a certain resolution is
only given to the aggregator. This is achieved by apply-
ing a wavelet transform to the signal. Hence, even if the

aggregator is given the full load curve data, it can only
unmask the bitstream up to the resolution for which it
holds the key share.

5.2 Basic approach
The basic approach describes spatio-temporal masking
with one aggregator.

5.2.1 Initialization
TTP agrees with all smart meters in the group G =
{SM1, . . . , SMN } on providing a resolution r of a total of T
values to an aggregator A.

5.2.2 Masking
Simultaneously, all SMi and TTP calculate a random share
si,t for t = 0 . . .T , as described for the principal masking
above. Each smart meter now holds a set of shares si and
TTP holds a key share key.
All SMi now calculate a series of masked values m̃i =

W (mi) + si and submit this series to A. TTP calculates
the key share keyr for the resolution r of its key share
by Tr(key) and submits this to A. Note that the wavelet
transform is only applied to the metered value and before
adding the random share.

5.2.3 Aggregation
After receiving both, the shares from all smart meters and
the key share A can calculate the aggregated sum over all
smart meters at a time resolution r by

∑

i
mr

i = W−1
(
Tr

(
∑

i
m̃i

)
+ keyr

)
. (20)

If the aggregator attempts to retrieve any resolution
r+ > r, the result will be noisy and useless. However, the
aggregator may reconstruct arbitrary resolutions r− ≤ r
from the data.

Proof Proof that reconstructing a resolution r+ for a key
with resolution r will be noisy. The aggregator receives an
aggregation of the masked meter values

Fig. 3MRA aggregation scheme for masking and multiple aggregators. In this figure, wi := W(mi) denotes the wavelet transform ofmi , and
w̃i := W(mi) + si denotes the masked values of wi
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∑

i
m̃i =

∑

i
(W (mi) + si) , (21)

and a key share keyr = Tr(key) for some resolution r.
Applying this function Tr(·) to a series of values replaces
the high-pass components by zeros. The key share and the
random shares for masking have the property that

∑

i
si + key = 0, (22)

but that the key share for a particular resolution r yields
∑

i
si + keyr �= 0, (23)

since the high-pass components are set to zero in the key
share and do not cancel out the corresponding compo-
nents in the sum of the shares. Therefore,

W−1
(

∑

i
(W (mi) + si) + key

)
=

∑

i
mi, (24)

and

W−1
(

∑

i
(W (mi) + si) + keyr

)
�=

∑

i
mi. (25)

However, after applying the functionTr(·)with the same
parameter r to the equation, this yields Eq. 20 which is the
correct result for this particular resolution r. Note that the
wavelet transform is recursively applied to the resulting
low-pass band, i.e., any resolution r− < r can be retrieved,
since applying Tr(·) to the key share only replaces the
high-pass components by zero, and only the low-pass
components remain for reconstructing the signal.

Note that this scheme fulfills both of our initial require-
ments: (i) individual contributions are masked, and the
aggregator cannot gain any information without having all
the values from all SMi ∈ G; and (ii) the highest resolu-
tion that is accessible for the aggregator is determined by
the resolution of the key share.

5.3 Multiple aggregators
The scheme we present in the following extends the basic
approach with multiple aggregators that receive data in
different resolutions. Extending the scheme requires more
overhead and communication than for the secure aggre-
gation. A simple approach would be to have multiple
bitstreams in multiple resolutions for each aggregator.
The advantage of the MRA approach is, however, to have
all the information for different resolutions in a single
bitstream where no data expansion occurs. Therefore, a
different key share for every recipient is created with the
tradeoff of distributing an aggregate of M − 1 key shares
in addition to the actual key share.

5.3.1 Initialization
For the enhanced scheme supportingmultiple aggregators
L = {A1, . . . ,AM}, a TTP agrees with all smart meters in
the group G = {SM1, . . . , SMN } on providing a resolution
rk of a total of T values to each aggregator Ak ∈ L.

5.3.2 Masking
As in the basic scheme, all smart meters SMi calculate a
random share si,t for t = 0 . . .T . Again, each smart meter
now holds a set of shares si, calculates the series of masked
values m̃i = W (mi) + si. and submits this series to all
aggregators Ak ∈ L. TTP calculates a total of M (number
of aggregators) key shares key1, . . . , keyM. For each key
share k = 1 . . .M, TTP further calculates the resolution
rk by key

rk
k = Trk (keyk) and submits this to Ak . It further

submits the sum of all other key shares
∑

i�=k keyi to Ak .

5.3.3 Aggregation
After receiving both, the shares from all smart meters and
the set of key shares, each Ak ∈ L can calculate the aggre-
gated sum over all smart meters at a time resolution rk by

∑

i
mrk

i = W−1

⎛

⎝Tr

(
∑

i
m̃i

)
+ keyrkk +Tr

⎛

⎝
∑

i�=k
keyi

⎞

⎠

⎞

⎠.

(26)

As for the basic approach, both of our initial require-
ments are fulfilled: (i) individual contributions are
masked, and none of the aggregators can gain any infor-
mation without having all the values from all SMi ∈ G
and the sum of all other key shares

∑
i�=k keyi; and (ii) the

highest resolution that is accessible for each aggregator is
determined by the resolution of the individual key share.
These requirements are fulfilled due to the properties of
the masking approach as introduced in section Masking
and formally shown in section Basic approach.

5.4 Proof of correctness
In the following, it is shown that applying the wavelet
transform to a meter value and masking can be combined
in order to provide a certain resolution only. This proof
is — for simplicity and without loss of generality — for a
single smart meter and a single aggregator. The proof also
applies tomultiple smart meters andmultiple aggregators.
The only difference is that instead of a single meter value,
share and key, respectively, a (spatially) aggregated sum
of values is used. For multiple aggregators, the sum of all
other key shares is also required as shown in the previous
section.
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Proof Proof for a single aggregator that it is receivingmr
i

at the end of the above masking scheme. Starting from

W (mi) + si︸ ︷︷ ︸
SMi

+ key︸︷︷︸
TTP

= W
(
m̂i

)
︸ ︷︷ ︸

A

, (27)

where the braces indicate what the smart meter and the
TTP calculate and what the aggregator receives at the end
of the protocol, Tr ◦ W−1 is applied on both sides of the
equation:

W−1 (
Tr

(
W (mi) + si + key

)) = W−1 (
Tr

(
W

(
m̂i

)))
.

(28)

Due to the linearity of both, the wavelet transform and
the function Tr(·) this is equivalent to

W−1 (Tr (W (mi))) + W−1 (
Tr (si) + Tr

(
key

)) = m̂r
i .

(29)

Substituting mr
i = W−1 (Tr (W (mi))), sri = Tr (si) and

keyri = Tr
(
key

)
results in

mr
i + W−1 (

sri + keyrt
) = m̂r

i . (30)

Given the property of masking, shares cancel each other
out by sri + keyr = 0, and thereforemr

i + W−1 (0) = m̂r
i .

This is obviously equivalent to mr
i = m̂r

i , i.e., the aggre-
gator only receives a certain resolution mr

i of the original
meter valuemi.

6 Multi-resolution differential privacy
In this section, it is shown that the wavelet approach
can be combined with an additional differential privacy
method. The benefit of this approach is an additional
ε-differential privacy guarantee (Eq. 7) for the resulting
aggregated signal.

6.1 Combining wavelets and differential privacy
Combining differential privacy in a distributed way with
wavelets, only guarantees differential privacy for the sum,
but not for the individual signals. Therefore, combin-
ing differential privacy with wavelets alone, would not
enhance privacy so that the combination with homomor-
phic secure aggregation is needed. Similar to the masking
approach, the combination with the differential privacy
method requires a distributed addition and later summa-
tion of random values. The scheme is described in Fig. 2
and leads, using the additive homomorphic property of
the encryption, to the following intermediate result.

f̃ = W−1
(
D

( N∏

i=1
crii

))
= W−1

( N∑

i=1
wri
i

)

= W−1
( N∑

i=1

(
Tri (W (mi))+Gλ,N

)
)
.

(31)

The additional use of homomorphic encryption is not
the only difference to masking. In contrast to masking,
the random values are drawn independently from each
other from a non-uniform probability distribution Gλ,N ,
denoted as block DP in Fig. 2. Due to Eq. 13, these dis-
tributedly generated probability distributions sum up to
the Laplacian distribution which is needed for differential
privacy of the aggregate profile

f̃ = W−1
( N∑

i=1
Tri (W (mi)) + Lapλ

)
. (32)

Thus, if the noise parameter λ is chosen such that∑N
i=1 Tri (W (mi)) is ε-differentially private, due to the

postprocessing property of differential privacy, also f̃ =
W−1

(∑N
i=1 Tri (W (mi)) + Lapλ

)
is ε-differentially pri-

vate. Finally, using the linearity ofW,

f̃ =
N∑

i=1
mri

i + W−1(Lapλ), (33)

is shown to be a perturbed function of the smoothed
consumption sum. This smoothed consumption sum is ε-
differentially private, if the Laplacian noise is set in the
right manner. Therefore, in principle, the wavelet decom-
position is compatible with differential privacy.
Another difference to the presented masking scheme is

that the noise is added to the restricted wavelet values
instead of the unrestricted values W (mi) (Eq. 32). How-
ever, since several different resolutions occur, setting the
right amount of noise λ is not trivial and remains a task
for future research. First preliminary steps in that direc-
tion show that it is possible to derive a choice for λ which,
however, only provides differential privacy for a single
resolution r. With such a noise differential privacy can
only be provided for a single resolution r and, due to the
post-processing property, all coarser solutions.

6.2 Choice of parameter λ

In this subsection, we show how the parameter λ must be
chosen by proving the following theorem.
Theorem (choice of λ): the presented algorithm is ε-

differentially private, if (i) W is a tight frame; and (ii)
parameter λ is chosen as

λ =
√
R
ε

argmax
mi,·

∥∥mi,·
∥∥
2 , (34)

whereR denotes the number of coefficients up to resolu-
tion r = d − q.
Note that R consists of a fraction of 2−q samples com-

pared to the original load curve. The smaller the resolu-
tion r, the smaller the λ, and therefore the added noise is
chosen.
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Proof First, the situation of this algorithmmust be prop-
erly mapped into the differential privacy setting. Note that
the term w̃r of the algorithm can be rewritten as

w̃r =
N∑

i=1

(
Tr (W (mi)) + G1

1/n,λε
(x) − G2

1/n,λε

)
. (35)

Due to the divisibility property, the sum of the Gamma-
distributions yield the Laplace distribution. Thus, we have

m̃r = W−1(w̃r) = W−1 (
ML(m, f (·), ε))

= W−1 (
f (m) + Lapλε

)
.

(36)

If we manage to prove differential privacy for our choice
of f, the proof is finished since a function applied to a
differentially private mechanism can not destroy the dif-
ferential privacy property (closure under post-processing
property of differential privacy). Therefore, if w̃r is ε-
differentially private this also holds for m̃r = W−1(w̃r).
In order to prove differential privacy for our choice of f,

we will show that the choice of λ ensures that it is at least
as big as the one of theorem Differential privacy, whose
application then proves differential privacy. Since m and
m′ differ in a single household’s entry, we can write with-
out loss of generality that m = (m1,·, . . . ,mN ,·,mN+1,·) =
(m′,mN+1,·). Since in theorem Differential privacy, a 1-
norm is needed instead of a 2-norm, first the transition is
done using the inequality

‖x‖2 ≥ ‖x‖1/
√
R.

Note that this inequality can itself be proven by applying
the Cauchy-Schwarz inequality to 〈�, |x|〉. Together with
the linearity of Tr andW , this yields

‖f (m) − f (m′)‖1 ≤ √
R‖f (m) − f (m′)‖2

= √
R

∥∥∥∥∥

N+1∑

i=1
Tr

(
W (mi,·)

)−
N∑

i=1
Tr

(
W (mi,·)

)
∥∥∥∥∥
2

= √
R

∥∥∥∥∥Tr

(
W

(N+1∑

i=1
mi,· −

N∑

i=1
mi,·

))∥∥∥∥∥
2

= √
R‖Tr

(
W

(
mN+1,·

)) ‖2
(37)

The restriction to a smaller resolution is equivalent
to setting the higher resolutions to zero. Therefore, the
restriction Tr decreases the norm while the wavelet trans-
formation does not change it due to our restriction of
using only transformations with the tightness property

‖f (m) − f (m′)‖1 ≤ √
R‖W (

mN+1,·
) ‖2 (38)

= √
R‖mN+1,·‖2. (39)

Finally, this equation directly yields

λ =
√
R
ε

argmax
mN+1,·

‖mN+1,·‖2 (40)

≥ 1
ε
argmax
m,m′

‖f (m) − f (m′)‖1 (41)

= S1(f )
ε

. (42)

Thus, theorem Differential privacy can be applied and
proves differential privacy for f.

7 Evaluation
In this section, we evaluate the proposed PETs in com-
bination with MRA with respect to the security features,
cost and complexity, and real-world applicability.

7.1 Applications
In this paper, multi-resolution secure aggregation has
been introduced for both single aggregator and multi-
ple aggregators. Given the building blocks of the additive
homomorphic Paillier cryptosystem, masking, and differ-
ential privacy in combination with the wavelet transform,
a scheme can be constructed that allows to encrypt dif-
ferent resolutions with different keys while maintaining
a single bitstream. In section Application scenario, three
typical application scenarios for smart grid have been
introduced: (i) settlement and profiling; (ii) network mon-
itoring; and (iii) billing.
Settlement and profiling require data in a comparably

low resolution, but spatially aggregated over a number of
households for determining forecasts and training mod-
els. Network monitoring, by contrast, still works with the
aggregate, but requires a much higher temporal resolu-
tion. Both homomorphic encryption and masking can be
used for aggregating over a number of smart meters, e.g.,
from households connected to the same substation or
participants belonging to the same consumption group
(residential/industrial). By adding the ability to selectively
decrypt a subset of multiple resolutions, the same aggre-
gated bitstream, but with different keys, can be provided
to both the utility provider for forecasts and model train-
ing and the network operator for network monitoring.
This reduces the overhead for managing and transferring
various bitstreams simultaneously to distinct recipients.
While network monitoring might require very high accu-
racy (e.g., voltage levels must remain in a narrow band),
for settlement and profiling, customer privacy can be even
enhanced by adding differential privacy in order to pre-
vent the detection of the presence of a single household in
the aggregate, while at the same time providing a certain
guaranteed ε-differential privacy level. While differential
privacy is a compelling approach due to this property,
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it is not suitable for applications that require the exact
aggregate.
Billing and dynamic pricing will require data at high res-

olutions and generally not aggregated. Further, differential
privacy is not a desired property for billing. However, if in
a dynamic pricing scenario, data in different granularity is
needed over the day (e.g., a stable night tariff and more
dynamic tariffs at noon), the multi-resolution approach
allows to dynamically adjust the level of granularity of the
provided meter data.

7.2 Security analysis
In this section, a security analysis of the proposed PETs is
conducted. We consider an honest-but-curious adversar-
ial model, meaning the adversary follows the protocols but
tries to gain additional information.
Secure signal processing: for MRA with secure sig-

nal processing, an honest-but-curious aggregator will not
learn any information. Due to the additive homomorphic
property of the cryptosystem, even at collector nodes, all
operations are performed in the encrypted domain, and
the aggregator can only decrypt the sum.
Masking with single aggregator: for a total number of

smart meters N > 1 and a single aggregator M = 1, the
masking scheme preserves full privacy in terms of spa-
tial resolution, and it preserves full privacy with respect
to temporal resolution. Given exactly one aggregatorM =
1, the basic approach for multi-resolution masking is
applied. A receives a set of N masked values and a single
key share. By combining both, A can calculate the sum at
a particular resolution. For spatial aggregation, privacy is
preserved by the scheme proposed by Kursawe et al. [9],
i.e., the individual measurements are masked, and the ran-
dom shares cancel each other out upon summation. The
temporal resolution is limited by the resolution of the key
share. The privacy preserving feature of this approach has
been discussed in detail in section Basic approach. Section
Proof of correctness includes the proof of correctness for
the masking approach in combination with wavelets.
Masking with multiple aggregators: for a total num-

ber of smart meters N > 1 and a total number of
aggregators M = 2, the multiple aggregators approach
for multi-resolution masking is applied. Each aggrega-
tor Ak , k = {1, 2} receives a set of N masked values, an
individual key share keyr1 and keyr2, respectively and the
sum of the keys of all other aggregators

∑
i�=1 key

r
i =

keyr2 and
∑

i�=2 key
r
i = keyr1, respectively. Therefore, each

aggregator additionally holds the other aggregators share
in full resolution and thus privacy in terms of temporal
aggregation is not given anymore.
For a setting with M > 2 privacy is preserved, as the

key shares of all other aggregators are hidden in the sum.
Therefore, the above limitation for M = 2 does not
apply, since

∑
i�=k key

r
i �= keyri for any i, k ∈ {1 . . .M}.

This means that holding all keys except for one does not
yield a valid key. This assures that the aggregator cannot
learn anything beyond the resolution of the key, which is
formally shown in section Multiple aggregators.
Differential privacy: it is a proven property of dif-

ferential privacy, that the aggregator has no means to
decrease privacy of the aggregated signal by any kind
of postprocessing. If differential privacy would be com-
bined with wavelets only, the aggregator could, however,
inspect a single smart meter’s consumption profile. A sin-
gle profile is only protected by Gamma-distributed noise
which does not provide differential privacy. Therefore, the
mechanism achieving differential privacy must include
a way to protect the summation operation by using a
secure aggregation scheme, e.g., as described in section
Multi-resolution secure aggregation.

7.3 Space considerations
When using homomorphic encryption for aggregation,
the modulus n determines the amount of data that can
be stored within one encrypted packet. Let us denote the
number of bits needed to represent a wavelet coefficient
by m̄, and the number of values used for the wavelet trans-
form by T. The sum of two coefficients will take up m̄ + 1
bits of space. More generally, the sum of u coefficients
requires

⌈
log2(u) + m̄

⌉
bits. If encrypting each wavelet

coefficient individually, i.e., usingT encryptions, themod-
ulus of n bits allows to sum up a total of u ≤ 2n−m̄ wavelet
coefficients, since n = ⌈

log2(u) + m̄
⌉
, i.e., u represents

the total number of wavelet coefficients from household
measurement values that can be aggregated for a given
modulus.
Setting T = 256, n = 1024 and m̄ = 16, this allows

for the aggregation of more than 2 · 10303 households but
requires 256 encryptions. However, in practice such large
aggregation groups are not needed. Instead of encrypting
each coefficient individually, the available space of n bits
can be exploited better when using data packing [36]. Val-
ues are shifted to a certain bit range, such that a number
of values can be packed within a single encryption. The
available space is therefore split into p packets of fixed size
n′, i.e., p = n

n′ . This allows for n′ = ⌈
log2(u′) + m̄

⌉
a num-

ber of u′ ≤ 2n′−m̄ wavelet coefficients per packet, and a
total of u′ · p wavelet coefficients of household measure-
ment values per encryption. This results in only T ′ = T

p
encryptions.
Setting n = 1024, m̄ = 16 and n′ = 32, this results

in p = 32 packets and still allows to aggregate up to
65536 households, but with only a fraction (T ′ = 8)
of the number of encryption operations compared to
the above approach where each coefficient is encrypted
separately. In practice, these values have to be chosen
with respect to the number of households that will be
aggregated.
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7.4 Cost and complexity
Both methods secure signal processing with the Pail-
lier cryptosystem1 and masking have been implemented
together with the wavelet transform. The proof of con-
cept implementation is built on Oracle Java 1.8 and is
tested on a HP Z230 workstation with 8 GB RAM and
an Intel Xeon CPU (3.4 GHz). Results are shown in
Table 2: each value represents the execution time for a
single load curve consisting of 96 values for the wavelet
transform combined with different encryption settings
and masking, averaged over 400 load curves with 100
encryptions/additions for masking each (acquisition of
the load curve and key generation as well as precalculat-
ing the masking shares are not considered in the timing
results). WAV denotes the wavelet transform only, with-
out any encryption or masking applied. AES denotes
the wavelet transform followed by encryption with the
symmetric AES cipher with a 256 bit key for each sub-
band. HYB denotes hybrid encryption, which adds RSA
2048 bit public key encryption of the AES keys with
a different public key for each subband. PAI-n denotes
Pailler encryption with a module of n bits and a dif-
ferent key for each subband. For practical applications
and according to [37], a module of at least 2048 bits
should be chosen. Finally, MA denotes the masking of
values.
It can be seen that by using a lifting implementation,

the computational overhead of the wavelet transformation
is negligible compared to the encryption step. Homo-
morphic encryption comes at the cost of a significant
increase in computational overhead compared to that of
conventional encryption. The results show that the com-
putational demands grow exponentially with the mod-
ule size. Although the used implementation of Paillier
is not optimized and could be improved considerably in
terms of efficiency, it is clear that running homomorphic
encryption on smart meter hardware will provide a chal-
lenge: while AES encryption only takes 1.25 ms, for the
used (non-optimized) implementation, Paillier encryp-
tion with a 2048 bit module of a load curve with 96
values takes approximately 52 s. Further, it can be seen
that masking is highly efficient in terms of computa-
tion time when compared to encryption, however, at the
cost of losing the entire aggregate when a single smart
meter fails.

Table 2 Execution time t in milliseconds and standard deviation
σ for transforming/encrypting/masking a single load curve
(average over 400 load curves with 100 encryptions each)

WAV AES HYB PAI-2048 PAI-4096 MA

t < 0.001 0.07 0.7 5,219 38,700 < 0.001

σ < 0.001 0.02 0.01 25.4 51 < 0.001

8 Conclusions
The approaches proposed in this paper allow to get
both temporal and spatial aggregation by combining
the wavelet transform with homomorphic encryption,
masking, and differential privacy. In this paper, it has
been shown that it is possible to combine homomor-
phic encryption, masking, and differential privacy with
the Haar wavelet transform. Furthermore, a protocol has
been sketched for addressing different aggregators with
different resolutions of themeasured time series while still
maintaining a certain level of privacy. For masking, future
work will focus on a scheme that is more error-resilient
and still yields the correct result even if a subset of smart
meters fail.

Endnote
1 Building on the implementation by Kun Liu http://

www.csee.umbc.edu/~kunliu1/research/Paillier.html
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