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Abstract

We consider dynamic group services, where outputs based on small samples of privacy-sensitive user inputs are
repetitively computed. The leakage of user input data is analysed, caused by producing multiple outputs, resulting
from inputs of frequently changing sets of users. A cryptographic technique, known as random user selection, is
investigated. We show the effect of random user selection, given different types of output functions, thereby
disproving earlier work. A new security measure is introduced, which provably improves the privacy-preserving effect
of random user selection, irrespective of the output function. We show how this new security measure can be
implemented in existing cryptographic protocols. To investigate the effectiveness of our security measure, we
conducted a couple of statistical simulations with large user populations, which show that it forms a key ingredient, at
least for the output function addition. Without it, an adversary is able to determine a user input, with increasing
accuracy when more outputs become available. When the security measure is implemented, an adversary remains
oblivious of user inputs, even when thousands of outputs are collected. Therefore, our new security measure assures
that random user selection is an effective way of protecting the privacy of dynamic group services.
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1 Introduction
Privacy enhancing technologies are increasingly being
deployed [1], as they provide secure solutions that limit
information leakage of sensitive data. Among others,
cryptography-based solutions have been applied in several
domains, such as biometric data matching [2, 3], smart
grids [4], recommendation systems [5], and genomic pri-
vacy [6].
The main idea in this line of research is to obfuscate

the privacy-sensitive data prior to processing, which is
supposed to be performed in an untrustworthy environ-
ment. A typical approach is to provide homomorphically
encrypted versions of the original data and let the ser-
vice provider process encrypted data to offer the service.
This approach protects the privacy-sensitive data, and
possibly also the algorithm being performed by the ser-
vice provider, at the cost of increased computation and
communication: the cryptographic privacy-preserving
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protocols require more computationally intensive opera-
tions on the encrypted data and more interaction with the
holder of the decryption key.
In a typical privacy-sensitive system, for example, a

recommendation system, inputs from several users are
being aggregated and processed for a certain goal, in
this example, generating recommendations for a particu-
lar user. The cryptographic protocol designed for such a
system can be proven secure assuming a security model:
semi-honest, covert, or malicious, meaning that to a well-
defined extent, the inputs from the users are protected
from the service provider and any malicious attacker in
an execution, thus providing trustworthiness. However,
in [7], Kononchuk et al. addressed a practical aspect
of privacy-preserving protocols: repeating the protocol
for a number of times with a different set of partici-
pating users reveals information on the private data of
the users. Preserving data privacy of users, who repeat-
edly join the execution of a service with different groups,
had not been considered until then. This trust problem
is a valid scenario, seen for example in recommendation
systems [5], aggregating data in smart grids, reputation
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systems [8], unsupervised machine learning [9], collec-
tive decision-making [10], data clustering [11], and social
classification [12].
To cope with leaking information after several service

executions with different sets of inputs, Kononchuk et al.
[7] propose the idea of selecting a random subset of users
for the computation of an output function, for example,
for computing suggestions in a recommendation system.
To randomly select users, a random bit vector is gener-
ated, where each element indicates whether a particular
user is selected or not for computing the current group
service. This selection vector is kept hidden from all par-
ties, including the server. We call this the random user
selection approach, see Section 3.1 for a possible imple-
mentation. It is argued in [7] that this random user selec-
tion approach protects the private data of the users better,
when the group service is executed several times.

1.1 Problem description
In this paper, we investigate the information leakage after
a number of executions and improve the random user
selection approach. We consider a server, or a group of
servers, which repeatedly provide services to many users.
The inputs of the users are considered sensitive, personal
information, and the server computes a function F from
these inputs. The output of the function is made public or
is given to a particular user. The server, or any adversary,
is not allowed to learn or infer the inputs.
More precisely, let N be the number of users, with

each user u, 1 ≤ u ≤ N , having an input xu. To sim-
plify the problem, we assume that the inputs of the users
are independently and identically distributed according
to some random distribution X . We consider a number,
say k, of consecutive executions of the group service F ,
leading to outputs y1, . . . , yk . In each execution, the users
that are involved in the group service may change, possi-
bly because it is a service provided through Internet and
not all users are continuously online. We assume the user
inputs xu do not change during the k executions.
Just as in [7], we distinguish two sets of users. The set

US is the set of static users that are involved in all k com-
putations of F . The users that participate at least once,
but not each time, form the set of dynamic users UD.
We assume that each user participates at least once, so
US ∪UD = {1, 2, . . . ,N}. LetUr be the set of users that are
available for execution r, 1 ≤ r ≤ k. Since static users are
always available, US ⊆ Ur , for each r, 1 ≤ r ≤ k.
We also assume that function F is symmetric, so the

order of the inputs is not relevant and also that F can
take any number of inputs. This is a valid assumption for
most examples of group services mentioned earlier. We
summarize our notation in Table 1.
We are concerned about the privacy leakage of user data

to an adversary, given the k outputs of F . The amount of

leakage naturally depends on the function F . We assume
the adversary knows the function F , the user sets Ur ,
1 ≤ r ≤ k, as well as all the outputs yr . This assumption
seems fair in an Internet-like setting where the server can
observe the connections with the users, so he knows who
is currently online or not.
The random user selection approach consists of choos-

ing for each execution r a random subset Tr of Ur , con-
taining M user indices, and having the server compute
yr = F({xu | u ∈ Tr}), which we also denote as yr = F(Tr).
We will use cryptographic tools, as shown in Section 3.1,
to assure that neither the server, nor the users, will learn
these subsets Tr . The idea is that by hiding Tr , which is the
set of users whose data is actually used as an input, the k
outputs will reveal less about the personal user data. The
adversary is allowed to know the cardinality M, but not
the elements of the sets Tr . We define the privacy of user
u as the conditional entropy, which can be calculated by
H(X | Y ) = −E log Pr(X | Y ), of the user input given all
outputs and user sets:

Privacyu = H(xu | y1, . . . , yk ,U1, . . .Uk) . (1)

In this definition, we consider the sets Ur as ran-
dom variables and assume Tr is uniformly drawn from
Ur . Since the random user selection approach possibly
decreases the number of inputs (from |Ur| to |Tr|), this
could lead to a reduced accuracy of the output, e.g. the
result of the recommendation. Therefore, our approach
is most suited for the class of functions with low sam-
ple complexity [13], where the output can be accurately
approximated by looking only at a small fraction of the
database.

1.2 Related work
To overcome the privacy problem, mentioned in the pre-
vious subsection, different measures including laws and
organizational means have been deployed. These mea-
sures are also supported by scientific solutions, which aim
to guarantee the privacy of user data, like data perturba-
tion [12] and data anonymization [14]. A recent idea in the
field is to employ secure multiparty computations tech-
niques [15], which allow service providers to process user
data through interactive protocols without disclosing their
content.
Unfortunately, the existing solutions only consider a

static environment, where the set of users involved in
the group service does not change in time. Even though
these solutions provide provable privacy protection in
static settings, their sequential invocation with chang-
ing users leaks information, damaging the purpose of the
privacy-preserving protocol. As almost all of the popu-
lar online services have a dynamic setting with constantly
joining and leaving users, we consider privacy-preserving
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Table 1 Notation summary

Symbol Definition Symbol Definition

N Number of users H(·) Binary entropy function

xu Input of user u F(·) Output function

k Number of runs (or rounds) X Random input distribution

yr Output at run r US Set of static users

UD Set of dynamic users Ur Set of users available at run r

Tr Random subset of Ur M Cardinality of Tr

A The service party h(·) Hash function

protocols that are able to reduce the effect of informa-
tion leakage caused by repetitively executing some group
service.
Related problems exist in data publishing [16], where

different anonymized data sets can be combined by
an adversary. Here, the output function is a list of
(anonymized) inputs, whereas we consider arithmetic
computations leading to relatively small outputs. In model
inversion [17], machine-learning algorithms are used to
deduce sensitive personal information from various out-
puts. This is different from finding personal inputs to a
specific output function.
Privacy of dynamic group services is also linked to dif-

ferential privacy [13], where information is queried from
statistical databases without identifying users. Their goal
is to obfuscate the input of the user, by adding some noise
to it. The main difference with our setting is that they
assume the database is fixed, whereas we consider the set
Ur as a random variable. Instead of adding noise to the
user inputs, we randomize and hide the random sample T
which is used for computing the query.

1.3 Outline
The rest of the paper is organized as follows: Section 2
provides a privacy analysis of the random user selection
approach. Section 2.1 shows that the effect of the random
user selection approach strongly depends on the type of
output function. A new security measure is introduced
in Section 2.2, which improves the privacy-preserving
effect of the random user selection approach, regardless
of the output function. This, and some basic properties
of the random user selection approach, are proven in
Section 2.3. In Section 3, we show how to incorporate our
new security measure into existing random user selection
protocols. The effect of this security measure on the level
of privacy protection is demonstrated in Section 4. And
finally, in Section 5, we summarize our contributions.

2 Analysis of random user selection approach
In this section, we analyse the security properties of the
random user selection approach from [7]. In particular,
we show the relation between privacy of different users,

following the privacy definition, as depicted in Eq. 1 from
the previous section. The small examples in the first sub-
section show that the actual choice of function F greatly
influences the privacy aspects. In the second subsection,
we introduce a way of reducing the information leakage
of privacy-sensitive user inputs. This is formally shown
in the final subsection, together with a number of basic
propositions for randomuser selection, which are valid for
any symmetric function F .
Let us continue by considering the privacy claims of

Kononchuk et al. [7], who use the same definition of pri-
vacy by means of entropy. Their main claim is that the
random user selection approach assures that the privacy
of static users is protected better than the privacy of
dynamic users, as long as there are at least as many static
users as dynamic ones, i.e. |US| ≥ |UD|. The informal
argument for this claim is that the differences between
consecutive outputs will reveal less about static inputs
because they are always incorporated. Only for dynamic
inputs, it makes sense to look at the differences between
outputs. Quite surprisingly, although all their examples
use an addition function, Kononchuk et al. only assume
the function F is symmetric.
Their formal argument for this claim contains two steps:

1. First, they show that if the majority of users is static,
then the intersections Tr1 ∩ Tr2 and symmetric
differences Tr1�Tr2 of any two (or more) drawn
subsets Tr1 and Tr2 also have a majority of static
users on average.

2. Second, they state (without proof) that if all these
intersections and symmetric differences contain an
average majority of static users, then the privacy of
static users will be better than the privacy of dynamic
users.

In their proof of the first step, they erroneously omitted
the restriction that at most half of the available users are
drawn. For example, if T = U , then Tr1�Tr2 will not con-
tain any static user. More importantly, a simple counter
example of the second step is the case where only single-
tons are drawn, i.e. |Tr| = 1 and F(x) = x. Since static



Veugen et al. EURASIP Journal on Information Security  (2017) 2017:3 Page 4 of 9

users are more likely to be chosen, their inputs are more
likely revealed, and their privacy is protected less. The first
example of the next subsection illustrates this.

2.1 Different types of output functions
We investigated a couple of cases with different output
functions, showing that the type of function is of great
importance. It even shows that the main claim of [7]
certainly does not hold for all symmetric functions.
In our examples, we only have N = 4 users, of which

the first two are static (US = {1, 2}) and the second two
are dynamic (UD = {3, 4}). We consider only k = 2 con-
secutive computations of the function F . During the first
run, the usersU1 = {1, 2, 3} are online, and during the sec-
ond run, the users U2 = {1, 2, 4} are online. We assume
the input xi of user i, 1 ≤ i ≤ 4, is a uniformly randomly
chosen bit.
In the first example, the system uniformly randomly

chooses one of the three online users and outputs its
input. In other words, |T1| = |T2| = 1 and yj = F(Tj) = xi
such that Tj = {i}, j = 1, 2. Computing the entropies,
by considering all possible outcomes, shows that in this
example, H(x3 | y1, y2) ≈ 0.91 bits and H(x1 | y1, y2) ≈
0.86 bits. This means that the input of user 3, a dynamic
user, is protected better than the input of user 1, a static
user. Intuitively, this can be explained: since static users
are online more often, their input will be selected and
revealed more often. This may be different when more
user inputs are combined in the output function F .
In the second example, the system adds up the inputs

of all three online users. In other words, Tj = Uj and
yj = F(Tj) = ∑

i∈Tj xi, j = 1, 2. Computing the entropies,
by considering all possible outcomes, shows that in this
example, H(x3 | y1, y2) ≈ 0.34 bits and H(x1 | y1, y2) ≈
0.59 bits. This means that the input of user 3, a dynamic
user, is protected worse than the input of user 1, a static
user. Although formally, the random user selection part is
missing (Tj = Uj), this example is in line with [7].
Instead of adding, we can also multiply all inputs. This

is done in the third example. Computing the entropies
again leads to H(x3 | y1, y2) ≈ 0.81 bits and H(x1 |
y1, y2) ≈ 0.78 bits. Somewhat surprising, there is a dif-
ference with the previous addition function because this
time, the inputs of dynamic users are protected better
than the inputs of the static users. An informal analysis
show that all inputs must be one, in case the output is one,
so this instance reveals a lot of information. Since static
users are involved more often, their privacy is protected
worse.
As a final example, we choose an exclusive-or of the

input bits. In this case, it can be easily argued that the val-
ues of y1 and y2 do not reveal any knowledge on each of the
individual user bits, i.e. H(xi | y1, y2) = 1 for all i. Hence,
static and dynamic users are equally well protected.

We conclude from these examples that in the compar-
ison of the privacy of dynamic users versus the privacy
of static users, all options are possible, depending on the
function F .

2.2 Reducing information leakage
To analyse the amount of information leakage, we con-
sider as an example the addition function F and the user
sets US = {1, 2, 4, 5} and UD = {3}, with inputs xi = i. Set
the sizeM of the sets T to 2. Given sufficient output runs,
an adversary (who knows the online user sets) learns two
groups of answers: if user 3 is offline, the six possible out-
comes for F are 3, 5, 6, 6, 7, and 9. If user 3 is online, the ten
possible outcomes are 3, 4, 5, 5, 6, 6, 7, 7, 8, and 9. Simple
linear algebra will reveal that {x1, x2, x4, x5} = {1, 2, 4, 5}
and x3 = 3. Although the adversary will not be able to
distinguish between inputs of different static users, he will
learn the values of all user inputs.
Fortunately, we are able to reduce the amount of infor-

mation that an adversary can derive. In order to achieve
this, we are going to fix the random choice of Tr , given
the same online user setUr . To illustrate its effect, we take
the same example, where the online user set U is either
{1, 2, 4, 5} or {1, 2, 3, 4, 5}. For both options, a random
subset will be generated the first time the online user set
appear, say {2, 5} and {1, 3}. The next time the same online
user set appears, we will not generate a new random sub-
set, but simply pick the one from the previous run. When
the subset T = {2, 5} is chosen, the output will be fixed to
x2 + x5 = 7, and when the subset T equals {1, 3}, the out-
put will always be x1 + x3 = 4. Given these two possible
output values, the adversary will not be able to deter-
mine all user inputs. Since the adversary knows U , but
not T , he will only learn that two inputs from x1, x2, x4, x5
sum up to 7, and two inputs from x1, x2, x3, x4, x5 sum up
to 4.
The effects of this new security measure are formally

proven in Theorem 1 of the next subsection and are
independent of the output function.

2.3 Function independent analysis
In this subsection, we prove the effect of our new secu-
rity measure and show two basic properties of the random
user selection approach, which are independent of the
output function. Static users are selected equally likely
each round, so intuitively their privacy is equally well
protected. This is shown in Proposition 1.

Proposition 1 Let u1,u2 ∈ US, then Privacyu1 =
Privacyu2 .

Proof For clarity, we first show the proof for a sin-
gle round, so k = 1, U = U1, T = T1, and y =
F({xu | u ∈ T}). All user inputs are drawn independently
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from the same distribution, so Pr(xu1 ,U) = Pr(xu2 ,U).
Furthermore, since u1 and u2 are both inU , Pr(u1 ∈ T) =
Pr(u2 ∈ T), and Pr(y | xu1 ,U) = Pr(y | xu2 ,U).
Combining these shows that the two joint distributions
Pr(xu1 , y,U) and Pr(xu2 , y,U) are equal. It follows that
Privacyu1 = H(xu1 | y,U) = H(xu2 | y,U) = Privacyu2 .
This can be easily generalized to arbitrary number

of rounds, since the random distributions are iden-
tical and independent over the rounds. In particular,
Pr(xu1 , y1, . . . , yk ,U1, . . . ,Uk) = Pr(xu2 , y1, . . . , yk ,U1, . . . ,
Uk), and therefore Privacyu1 = H(xu1 | y1, . . . , yk ,U1, . . . ,
Uk) = H(xu2 | y1, . . . , yk ,U1, . . . ,Uk) = Privacyu2 .

This proof does not extend to dynamic users as they
are not always jointly online. However, we have a similar
proposition about the privacy of dynamic users.

Proposition 2 Let u1,u2 ∈ UD be two dynamic users,
participating in the exact same rounds: u1 ∈ Ur, if and
only if, u2 ∈ Ur, for all r, 1 ≤ r ≤ k. Then Privacyu1 =
Privacyu2 .

Proof The proof is similar to Proposition 1.We still have
Pr(u1 ∈ Tr) = Pr(u2 ∈ Tr) for all r. In particular, when
u1,u2 /∈ Ur , this probability equals 0. The rest of the proof
is identical.

In Section 2.2, a new security measure was introduced,
which consisted of fixing the random subset, given the
same online user set. In Theorem 1, this idea is shown to
be effective for any type of output function.

Theorem 1 Let Privacy′
u be the privacy of user u, when

fixing the choice of T, given U. Then, Privacy′
u ≥ Privacyu.

Proof We have Privacy′
u = H(xu | y′

1, . . . , y′
k ,U1, . . .Uk),

where the outputs y′
r are the result of the modified out-

put computation, which includes fixing the random choice
of Tr . Let R be the set of rounds r, where the choice of
Tr has been fixed, because Ur = Ur′ (and thus y′

r = y′
r′ )

for some r′, 1 ≤ r′ < r. Since the values of y′
r and Ur ,

for r ∈ R, do not give any additional information, we
have Privacy′

u = H(xu | (y′
r ,Ur), r /∈ R). For the rounds

r /∈ R, we have y′
r = yr because the choice of Tr has not

been fixed. By increasing the conditional information, we
decrease the entropy, so Privacy′

u ≥ H(xu | (yr ,Ur), 1 ≤
r ≤ k) = Privacyu.

3 Improved random user selection
The basic group service, without using random user
selection, is just adding the private inputs of all users
and outputting the sum. This can be securely imple-
mented by means of an additively homomorphic thresh-
old decryption scheme like [18], which we denote by [.].

The additively homomorphic property of the scheme
enables computing with encrypted values: [a] ·[b]=
[ a + b], where we ignore the modulus operator for
convenience.

1. Each available user u ∈ Ur encrypts his private input
xu and sends [xu] to the server.

2. The server computes the output [y]= [∑
u∈Ur xu

]

= ∏
u∈Ur [xu].

3. The available users jointly decrypt [y] and open it to
the querying user.

Since only outputs are decrypted, the server or any
adversary will not learn the inputs. Although Kononchuk
et al. did not use an implicit client-server model, a couple
of users were assigned as service party, one of these par-
ties in particular denoted byA. The service partyA could
be seen as a server. For simplicity, we use the semi-honest
security model to describe the protocols in this paper, but
they could be extended to the malicious model [7].
In this paper, we do not describe how the basic group

service could be extended to a complete privacy-friendly
service, by means of homomorphic encryption. Interested
readers are, as an example, referred to [5], where a secure
recommender system and all its cryptographic protocols
are given.

3.1 Previous work
In [7], a number of protocols have been described for ran-
domly choosing subset Tr from the online users Ur . The
challenge is to generate the subset, without revealing its
elements. This is done by jointly generating |Ur| random
bits, each bit indicating the selection (yes or no) of a par-
ticular user. To include random user selection in the basic
protocol, we need the available users to generate random
bits. We illustrate a simple form of random user selection.

1. Each available user u ∈ Ur generates a vector βu,
containing |Ur| random bits βu

u′ , u′ ∈ Ur .
2. The available users jointly compute, for example, by

an unbounded fan-in XOR protocol [7], the
encrypted random bits [bu′ ]=[⊕u∈Urβ

u
u′ ], for each

u′ ∈ Ur .
3. Each available user u ∈ Ur includes his private input

xu, by computing [bu · xu]=[bu]xu , and sends the
result to the server.

4. The server computes the output
[y]= [∑

u∈Ur bu · xu
] = ∏

u∈Ur [bu · xu].
5. The available users jointly decrypt [ y] and open it to

the querying user.

In this random user selection protocol, the online users
Ur jointly generated a random subset Tr = {u ∈ Ur |
bu = 1}, without revealing Tr . Furthermore, the server
was able to compute y = ∑

u∈Tr xu. In step 1, each user
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had to generate random bits, which is commonly done by
means of a random number generator and a random seed
to initialize the generator.

3.2 Improvement
As shown in Theorem 1 (see Section 2.3), we introduced
a new measure to improve user privacy. Therefore, we
would like to modify these random bit generating proto-
cols, such that the generated bit vector does not change
when for a new execution the same users happen to be
online. A straightforward way of assuring this is to jointly
store the pair (Ur , yr) for each run r. When an old value of
Ur recurs, the corresponding stored output can be reused.
An alternative way to accomplish this, which avoids

storing information from all previous runs, is to fix the
seed of the random number generators, used by each user
to locally generate random numbers. Let h be a proper
hash function, then the following subprotocol is needed to
fix these random seeds.

1. Initially, each user u generates a secret key Ku, which
is kept private.

2. In the beginning of execution r, the server, partyA,
learns the set Ur of online users.

3. Using Ur , the server generates a random value sU , by
computing h(Ur ,KA), where the ordered elements of
the set Ur are concatenated, together with the secret
key of service partyA.

4. The server sends sU to all online users, who are
represented by the elements of Ur .

5. Each online user u ∈ Ur generates a random seed
h(sU ,Ku), which he uses to generate his local random
numbers.

This subprotocol is secure in the semi-honestmodel and
requires all parties to follow the subprotocol. Although the
random value sU is revealed, an adversary will not be able
to learn the random seed values because of the private
user keys, which are privately generated random numbers.
On the other hand, the random seeds are guaranteed to
be the same, given the same set Ur of online users. In step
3, the key KA of the service party is not strictly necessary
because an adversary is allowed to learn Ur .
The paper by Kononchuk et al. [7] describes various

protocols from the field of secure multiparty computation
to jointly generate random bits. As in any secure multi-
party protocol, all parties need to locally generate random
bits and integers. Our subprotocol described above illus-
trates a way of securely fixing the seed of the local random
number generators, given a certain set of online users.
Therefore, when this subprotocol is used in any of the
secure multiparty computation solutions from [7], all par-
ties will locally generate the same sequence of random
numbers, given a certain set of online users, thereby
guaranteeing the same joint function output.

4 Simulations
In Section 2.2, we introduced a new measure to increase
the effectiveness of random user selection by fixing the
selection for each different online user set. We would like
to investigate to what extent this newmeasure contributes
to the protection of user input values.
Our approach is most suited for the class of functions

with low sample complexity [13], where the output can
be accurately approximated by looking only at a small
fraction of the database. Typical examples are linear alge-
braic functions, with bounded inputs, and histograms
[13]. Therefore, we assume the user inputs are presented
by small integers and focus on the most common oper-
ation: addition. More precisely, we consider the output
function that adds up all inputs of the sample.
To analyse the effectiveness of our new measure for

large numbers of users and queries, we set up two types
of simulations to statistically estimate its effectiveness.
The first type does not fix the random selection for each
different online set, the second one does.

4.1 Threat model
We have a server that computes an output function F ,
using the inputs from the available usersUr . As illustrated
in Section 3.1, we use cryptographic techniques to draw
a random subset Tr of Ur , so the server can compute
yr = F(Tr). A query can be initiated by a user, who also
obtains the output yr .
The goal of an adversary is to learn user inputs, by

collecting many outputs. The adversary can be a user, pos-
sibly colluding with the server or an external malicious
party observing the outputs. We assume the adversary is
able to initiate a query any time he likes and will always
obtain the output. We also assume the adversary knows
Ur (since an adverary can easily observe the online con-
nections), the function F , and the size M of Tr , but not
the elements of Tr . We investigate the obtained amount of
information on the inputs, as revealed by the outputs.
When the random choice of Tr is not fixed, the adver-

sary will initiate many queries for the same Ur , giving him
highly correlated outputs. When we use our security mea-
sure, which fixes the choice of Tr , given Ur , the adversary
will not learn anything by repeatedly querying the same
Ur , so he will look for slightly changed online user sets,
which force different choices of Tr .

4.2 Simulation setup
Inspired by a typical recommender system, we simulate
in our experiments a group of one million users (N =
1,000,000), which run a group service many times. Each
run, ten thousand users are online (|Ur| = 10,000), and
a few thousands (M=1,000, 5,000, or 9,000) of them are
uniformly randomly chosen to actually participate in the
computation of the output function.
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The input of each user (xu) is randomly generated by
uniformly drawing an integer from the set {1, 2, . . . , 16}.
The output function F(Tr) = ∑

u∈Tr xu adds up all inputs.
The adversary will try to deduce information on the input
of a particular user, say user 1. In particular, he will try to
infer whether this input is high, x1 > 8, or low, x1 ≤ 8.
Let q be the query parameter. Then, the simulation sys-

tem will start generating outputs many times, until user 1
has been online at least q times and offline at least another
q times, at least k = 2q runs in total. If the output sum for
the online q runs exceeds the sum of outputs for the offline
q runs, the adversary will guess that x1 > 8; otherwise, his
guess will be x1 ≤ 8. This is repeated 100 times, and the
number of times that the adversary guessed correctly is
called the accuracy, presented as a fraction between 0 and
1. Each time after the adversary made his guess, all user
inputs are randomly generated anew.
We consider two ways of choosing the set Ur of online

users. For each approach, we compare the accuracy of
the adversary with the query parameter. The higher the
query parameter, the more information is revealed on
the inputs, giving the adversary the opportunity to fur-
ther increase the accuracy of his estimates. Therefore,
in our experiments, we generated thousands of different
queries and investigated the course of the accuracy of the
adversary’s estimates. We compare the runs where a par-
ticular user was online, with the runs where this user was
offline.
Each graph depicts the course of the accuracy of the

adversary’s estimates (vertical axis) for an increasing
query parameter (horizontal axis). The query parame-
ter is increased by steps of 100, and the resulting data
points (small crosses) are connected. Each data point is
the result of 100 · 2q computations of the output function.
The straight red line shows the average progress of the
adversary’s accuracy.

4.3 No fixing of random choice
In case the random subset choice (given the same online
user set) is not fixed, the adversary will try to collect
many outputs resulting from the same online user set
(see Section 4.1). This will give him the best estimate
of x1, with minimal noise from other inputs. Therefore,
in this first type of experiments, we randomly chose U1
once, and fixed Ur = U1 during all 2q runs. We per-
formed this type of experiment with three different sam-
ple sizes, namelyM = 1000, 5000, and 9000, as depicted in
Fig. 1.
The experiments show that an adversary can produce

a fair estimate of user input x1. Of course, the more
outputs from different runs are available (larger k), the
better the estimate. Also, the more user inputs are sam-
pled (increasing sample size M), the more information is
revealed on x1. This is due to the fact that the samplemean

Fig. 1 Sum function. aM = 1000, bM = 5000 and cM = 9000

is an estimate of the population mean, and its variance
decreases inM. We estimate the mean of xu for all u ∈ Ur ,
with a variance of σ 2

X
M .

4.4 With fixing of random choice
If the random user selection is fixed, each time the same
online user set appears, an output resulting from the same
online user set will give an adversary no additional infor-
mation (see Section 4.1). Accordingly, the adversary will
be forced to collect outputs from different online user
sets. To minimize the noise from other user inputs, he
will try to maximize the overlap between online user sets.
Therefore, in our second type of experiments, the set Ur
is chosen by slightly changing the previous setUr−1. More
precisely, either one randomly chosen user, which was
online in run r − 1, is removed from the online user set
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Ur−1, or one previously offline user is added. We per-
formed this experiment with three different sample sizes,
namelyM=1000, 5000 and 9000, as depicted in Fig. 2.
It shows that an adversary is no longer able to esti-

mate the value of x1. His probability of guessing correctly
that x1 > 8 is close to 0.5, irrespective of the number
of runs, or the sample size M. The extra noise pro-
duced by changing the online user set with only one
user, apparently caused a sufficient impediment for the
adversary to guessing x1.

4.5 Highly skewed data
During our experiments, user inputs were drawn uni-
formly from the set {1, 2, . . . , 16}. To investigate whether
our results also hold for other distributions, we conducted

Fig. 2 Sum function, incremental changes in online users. aM = 1000,
bM = 5000 and cM = 9000

the same experiments for highly skewed data, where user
inputs were drawn by a power law distribution: Pr(xu =
x) = C/x2, x ∈ {1, 2, . . . , 16}, for some positive constant
C. In a power law distribution, low-valued inputs are more
likely to occur than high ones. An adversary will try to
guess whether a particular user input is below or above the
average user input E(xu).
The results of those experiments were very similar.

When the random subset choice is not fixed, the adversary
is likely to guess whether the user input was high or low.
On the other hand, when this random choice is fixed,
his accuracy remains close to 0.5. We conclude that for
guessing whether a user input is high or low, it does not
matter much how frequent certain user values occur.

4.6 Applications
The experiments show that fixing the random user selec-
tion sufficiently hides input data because the adversary is
forced to collect data samples from different online user
sets. Of course, within the given simulation setting (ran-
domly selecting 10,000 users from a set of one million),
running into the same online user set is unlikely. How-
ever, if user inputs can be revealed within a set of 10,000
users (see Fig. 1), then this will also be possible when fewer
users are online. And on the other hand, if changing the
online user set with only one person out of 10,000 is suf-
ficient (see Fig. 2), then this will certainly be sufficient for
smaller online user sets. Therefore, fixing the random user
selection will be a proper solution for most group services
in practice, especially when the same online user set is
likely to return.
As mentioned before, we consider output functions

with low sample complexity. These include unsuper-
vised machine learning [9] and recommender systems [5],
where sensitive user inputs need to be protected. For these
kind of group services, users tend to return at regular
moments in time. For example, people start watching tele-
vision when their favourite show starts (and they receive
recommendations for other interesting programmes) or
they join an online game when coming home from work
(which initiates a machine-learning-based face recogni-
tion algorithm). Therefore, the same online user set is
likely to return for these services.

5 Conclusions
In this paper, we had a closer look at the random user
selection approach from [7]. We were able to formally
prove a number of basic properties of the random selec-
tion approach, assuming a symmetric output function.
Kononchuk et al. [7] argued that, given a symmetric out-
put function, the privacy of static users is at least as well
protected as the privacy of dynamic users, provided the
static users form a majority. We disproved this statement,
and by investigating four different cases, we showed that
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the effectiveness of the random user selection approach
strongly depends on the type of output function.
We introduced a new security measure, by fixing the

randomly chosen subset, given the same online user set,
which was proven to lead to an improved protection
of privacy-sensitive user inputs, irrespective of the out-
put function. We developed a cryptographic subprotocol,
which can be used to implement our new security mea-
sure, given an arbitrary random user selection protocol.
Finally, we performed a couple of statistical simula-

tion experiments to investigate the effectiveness of our
measure for the addition output function. Without the
measure, an adversary was able to infer information on
specific user inputs. The accuracy of the adversary’s esti-
mate increased significantly, when more outputs were
revealed, or more inputs were sampled. On the other
hand, when the randomly chosen subset was fixed, given
the same online user set, the adversary remained ignorant
of the user inputs, even when thousands of outputs were
revealed, and many inputs were sampled. Therefore, our
measure seems to be the key ingredient for making the
random user selection approach an effective way of pro-
tecting user privacy in dynamic group services with low
sample complexity.
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