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Abstract

Double JPEG compression detection has received considerable attention in blind image forensics. However, only few
techniques can provide automatic localization. To address this challenge, this paper proposes a double JPEG
compression detection algorithm based on a convolutional neural network (CNN). The CNN is designed to classify
histograms of discrete cosine transform (DCT) coefficients, which differ between single-compressed areas (tampered
areas) and double-compressed areas (untampered areas). The localization result is obtained according to the
classification results. Experimental results show that the proposed algorithm performs well in double JPEG compression
detection and forgery localization, especially when the first compression quality factor is higher than the second.
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1 Introduction
Generally, blind forensics techniques utilize statistical
and geometrical features, interpolation effects, or feature
inconsistencies to verify the authenticity of image/videos
when no prior knowledge of the original sources is avail-
able. Because JPEG compression may cover certain
traces of digital tampering, many techniques are effective
only on uncompressed images. However, most multi-
media capture devices and post-processing software
suites such as Photoshop, output images in the JPEG
format, and most digital images on the internet are also
JPEG images. Hence, developing blind forensics tech-
niques that are robust to JPEG compression is vital.
Tampering with JPEG images often involves recompres-
sion, i.e., resaving the forged image in the JPEG format
with a different compression quality factor after digital
tampering, which may introduce evidence of double
JPEG compression. Recently, many successful double
JPEG compression detection algorithms have been pro-
posed. Lukáš and Fridrich [1] and Popescu and Farid [2]
have performed some pioneering work. They analyzed
the double quantization (DQ) effect before and after
tampering and found that the discrete cosine transform
(DCT) coefficient’s histograms for an image region that

has been quantized twice generally show a periodicity,
differing from the DCT coefficient’s histograms for a
single-quantized region. Chen and Hsu [3] identified
periodic compression artifacts in DCT coefficients in ei-
ther the spatial or Fourier domain, which can detect
both block-aligned and nonaligned double JPEG com-
pression. Fu et al. [4] and Li et al. [5] reported that DCT
coefficients of single-compressed images generally follow
Benford’s law, whereas those of double-compressed im-
ages violate it. In [5], they detect double-compressed
JPEG images by using mode-based first digit features
combined with Fisher linear discriminant (FLD) analysis.
Fridrich et al. [6] applied double JPEG compression in
steganography. The feature they used is derived from the
statistics of low-frequency DCT coefficients, and it is ef-
fective not only for normal forged images but also for
images processed using steganographic algorithms.
However, a commonality among all algorithms dis-

cussed above is that they estimate only the compression
history of an image, which cannot indicate exactly which
region has been manipulated. In fact, the localization of
tampered regions is a basic necessity for meaningful
image forgery detection. Nevertheless, to the best of our
knowledge, only few forensics algorithms can achieve it.
Lin et al.’s algorithm [7] was the first to automatically lo-
cate local tampered areas by analyzing the DQ effects
hidden among the DCT coefficient’s histograms. The
authors applied the Bayesian approach to estimate the
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probabilities of individual 8 × 8 block being untampered.
In this way, the obtained block posterior probability map
(BPPM) would show a visual difference between tam-
pered (single-compressed) regions and unchanged
(double-compressed) regions. To locate the tampered re-
gions more accurately, Wang et al. [8] utilized the prior
knowledge that a tampered region should be smooth
and clustered and minimized a defined energy function
using the graph cut algorithm to locate the tampered re-
gions. Verdoliva et al. [9] explored a new feature-based
technique using a conditional joint distribution of resid-
uals for localization, which is computationally efficient
and is not affected by the scene content. Bianchi et al.
[10] proposed more reasonable probability models based
on [7]. The algorithm computes a likelihood of each
8 × 8 block being doubly compressed, combined with a
useful method of estimating the primary quantization
QF1. This method exhibits a better performance than that
proposed in [7]. Based on an improved statistical model,
the method presented in [11] can detect either block-
aligned or block-nonaligned compressed tampered re-
gions. Amerini et al. [12] localized the results of image
splicing attacks based on the first digit features of DCT
coefficients and employed a support vector machine
(SVM) for classification. However, these methods function
poorly when QF1 >QF2.
As it is well known, deep learning methods are able to

learn features and perform classification automatically.
Deep learning using convolutional neural networks
(CNNs) has achieved considerable success in many fields,
such as speech recognition, image classification or rec-
ognition, document analysis, and scene categorization.
For steganalysis, Qian et al. [13] and Pibre et al. [14]
applied a CNN to learn features automatically and capture
the complex dependencies that are useful for steganalysis,
and the results are inspiring. Indeed, hierarchical feature
learning using CNNs can learn specific feature representa-
tion. We consider that CNNs with deep model can also be
effective for blind image forensics.
In this paper, we propose to distinguish double JPEG

compression forgeries and achieve localization by employ-
ing a training/testing procedure using a CNN. To enhance

the effect of the CNN, we perform preprocessing on the
DCT coefficients. The histograms of the DCT coefficients
were extracted as the input, and then, a one-dimensional
CNN is designed to learn features automatically from
these histograms and perform classification. Finally, the
tampered regions are located based on the classification
results. The proposed technique is also compared with the
schemes presented in [5, 6, 11] and the localization tech-
nique proposed in [12].
The organization of the rest of the paper is as follows. In

Section 2, we introduce some background regarding
double JPEG compression. Then, we propose our CNN-
based double JPEG compression detection and localization
algorithm in Section 3. Experimental results and a per-
formance analysis are presented in Section 4. Finally, we
conclude in Section 5.

2 Background on double JPEG compression
Lukáš and Fridrich [1] first identified the statistical prop-
erties of double peaks that appear in DCT histograms as
a result of double compression. Popescu and Farid [2]
presented periodic artifacts in DCT histograms and ana-
lyzed the DQ effect in detail, and Lin et al. [7] explored
the use of the DQ effect for image forgery detection. In
this section, we simply review the model of double JPEG
compression. JPEG compression is an 8 × 8 block-based
scheme. The DCT is applied to 8 × 8 blocks of the input
image; then, the DCT coefficients are quantized, and a
rounding function is applied to them. The quantized co-
efficients are further encoded via entropy encoding. The
quantization of the DCT coefficients is the main cause
of information loss in the compressed image. The
quantization table corresponds to each specific compres-
sion quality factor (QF), which is an integer ranging
from 0 to 100; a lower QF indicates that more informa-
tion is lost.
Double JPEG compression often occurs during digital

manipulation. Here, we consider image splicing as an ex-
ample; see Fig. 1:

(1) Cut and copy a region A1 from image A (of any
format).

A
A1

B C

A1

B1

a b c
Fig. 1 Example of image splicing. a Source image A. b Original image B. c Composite image C
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(2) Decompress a JPEG image B, whose quality factor is
QF1, and insert A1 into B. Let B1 denote the
unchanged background region of B.

(3) Resave the new composite image C in the JPEG
format, with a JPEG quality factor QF2.

The new composite image C consists of two parts: the
inserted region A1 and the background region B1. B is
unquestionably doubly compressed, and we consider A1
to be singly compressed for the following reasons: (1) If
A is an image in a non-JPEG format, such as BMP or
TIFF, A1 is certainly singly compressed. (2) If A is a
JPEG image, then the DCT grids of A1 may not match
those of B or B1, and thus, this region will violate the
rules of double compression. Hence, the new image C
will exhibit a mixture of two characteristics: A1 is singly
compressed, and B1 is doubly compressed. There is a
small probability (1/64) that the tampered blocks will be
exactly aligned with the unchanged blocks; however, this
probability is small enough to be ignored.
Double-quantized DCT coefficient histograms have

certain unique properties. Figure 2 shows several exam-
ples: Fig. 2a, b shows the DCT coefficient histograms for
a single-compressed JPEG image at the (0,1) position
in zigzag order for quality factors of QF1 = 60 and

QF1 = 90, respectively, and Fig. 2c, d shows the DCT
coefficient histograms for the same image after double
compression with QF1 = 90, QF2 = 60 and with QF1 = 60,
QF2 = 90, respectively. We observe that the histograms
after single compression at each frequency approximately
follow a generalized Gaussian distribution, whereas
double JPEG compression changes this distribution: when
QF2 >QF1, the histogram after double compression
exhibits periodically missing values, whereas when
QF2 < QF1, the histogram exhibits a periodic pattern
of peaks and valleys. In both cases, the histogram can
be regarded as exhibiting periodic peaks and valleys.
We use the histograms of DCT coefficients as the in-

put to the CNN that is designed to automatically learn
the features of these histograms and perform classifica-
tion for single and double JPEG compression.

3 Proposed model
In Section 2, we analyzed how recompression affects the
distribution of the DCT coefficients. In this section, we
exploit this knowledge to define a set of significant fea-
tures that should be insensitive to recompression and
design a one-dimensional CNN to learn and classify
these features.

Fig. 2 DCT coefficient histograms corresponding to the (0,1) position. a, b DCT coefficient histograms of a single-compressed image
with a QF1 = 60 and b QF1 = 90. c, d DCT coefficient histograms of the same double-compressed image with c QF1 = 90, QF2 = 60, and
d QF1 = 60, QF2 = 90
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Preprocessing for a given JPEG image, we first extract
its quantized DCT coefficients and the last quality factor
from the JPEG header. In our experiment, we use only
the Y component of color images. Then, we construct a
histogram for each DCT frequency.
In this paper, we consider only the AC coefficients. We

strongly believe that our method could also work for the
DC term, as well, whereas the distribution of the DC coef-
ficient’s histogram is different from that of the AC ones,
which may bring difficulty of feature design. Therefore,
only AC coefficients are taken into account. Besides, it is
difficult to operate if the whole histograms are fed to the
CNN classifier directly, for the following reasons: (1) The
input feature dimensions of the CNN must be consistent,
while histograms always have variable sizes. (2) An exces-
sively high computational cost for training may be in-
curred. To reduce the dimensionality of the feature vector
without losing significant information, a specified interval
near the peak of each histogram (which may contain most
of the significant information) is chosen to represent the
whole histogram. We use the following method to extract
feature sets at the low frequencies: first, the 2nd–10th co-
efficients arranged in zigzag order are chosen to construct
the feature sets, and only the values corresponding to the
positions at {−5, − 4,...4, 5} are considered as useful fea-
tures. The details are illustrated below:
Let B denote a block with a size of W ×W, and let

hi(u) denote the histogram of DCT coefficients with the
value u at the ith frequency in zigzag order in B. Then,
the feature set consists of the following values:

XB ¼ fhi −5ð Þ; hi −4ð Þ; hi −3ð Þ; hi −2ð Þ; hi −1ð Þ; hi 0ð Þ;
hi 1ð Þ; hi 2ð Þ; hi 3ð Þ; hi 4ð Þ; hi 5ð Þ i∈2; 3…; 9; 10j g

In this way, we obtain a 9 × 11 feature for each block.
In Section 4.5, we discuss the detection accuracy using
different feature vector sizes.

3.1 The CNN architecture
A CNN relies on three concepts: local receptive fields,
shared weights, and spatial subsampling [15]. In each
convolutional layer, the output feature map generally
represents convolution with multiple inputs, which can
capture local dependencies among neighboring ele-
ments. Each convolutional connection is followed by a
pooling layer that performs subsampling in the form of
local maximization or averaging; such subsampling can
reduce the dimensionality of the feature map and, fur-
thermore, the sensitivity of the output. After these alter-
nating convolutional and pooling layers, the output
feature maps pass through several full connections and
then are fed into the final classification layer. This classi-
fication layer uses a softmax connection to calculate the
distribution of all classes.
The architecture of our network is shown in Fig. 3. It

contains two convolutional connections followed by two
pooling connections and three full connections. The size
of the input data is 9 × 11, and the output is a distribu-
tion of two classes.
For the convolutional connections, we set the kernel

size (m × n) to 3 × 1, the number of kernels (k) to 100,
and the stride (s) to 1. Here, we consider the first convo-
lutional layer as an example: the size of the input data is
99 × 1, and the first convolutional layer convolves these
data with 100 3 × 1 kernels, with a stride (step size) of 1.
The size of the output is 97 × 1 × 100, which means that
the number of feature maps is 100 and the output fea-
ture maps have dimensions of “97 × 1”.
For the pooling connections, we set the pooling size

(m × n) to 3 × 1, and the pooling stride (s) to 2, and we
select max pooling as the pooling function. We observe
that such overlapping pooling prevent overfitting during
training.
Each full connection has 1000 neurons, and the output

of the last one is sent to a two-way softmax connection,
which produces the probability that each sample should

Convolution
kernel:3×1

stride:1

data
99×1

conv-2
46×1×100

pool-2
23×1×100

full1-full2-full3
1000-1000-2

Pooling
kernel:3×1

stride:2

Convolution
kernel:3×1

stride:1

Pooling
kernel:3×1

stride:2

Fully 
Connected

conv-1
97×1×100 pool-1

48×1×100

Fig. 3 The architecture of our CNN
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be classified into each class. In the context of blind image
forgery detection, there are only two classes: authentic
(doubly compressed) and forged (singly compressed).
In our network, rectified linear units (ReLUs), with an

activation function of f(x) = max(0, x), are used for each
connection. In [16], it was proven that deep learning
networks with ReLUs converge several times faster than
tanh and also exert considerable influence on the
training performance for a large database. In both fully
connected layers, the recently introduced “dropout”
technique [17] is used. The key idea is to randomly drop
units from the neural network during training, which
provides a means of efficiently combining different net-
work architectures. With the dropout technique, overfit-
ting can be effectively alleviated.
The choice of the CNN structure and the selection of

the model parameters will be discussed in Section 4.5.

3.2 Locating tampered regions
To achieve localization, the image of interest, I, with a
resolution of M ×N, is divided into overlapping blocks
with a dimension of W ×W, and an overlapping stride of
8 pixels, the size of the blocks on which DCT is per-
formed during JPEG compression. Thus, we obtain a
total of () (⌈(M −W)/8⌉ + 1) × (⌈(N −W)/8⌉ + 1) blocks
from one image. For each block, a 9 × 11 feature vector,
as described in detail in Section 3.1, is computed and fed
to the designed CNN. The output of the CNN is a prob-
ability pair [a, b], where a is the probability that the
block is singly compressed and b is the probability that
the block is doubly compressed. To achieve localization,
we use the a values to obtain a classification result for
each block, and the center 8 × 8 part of each block will

be set to the same value equal to a. Thus, a detection re-
sult map with the same resolution of the original inter-
ested image and the tampering mask is obtained (the
(W − 8)/2 pixels at the edge of the image will be padded
to zeros). Higher values in this map indicate higher
probabilities that the corresponding blocks are singly
compressed, which are shown visually as whiter regions
in the result map.

4 Experimental results and performance analysis
In this section, we test the ability of our algorithm to de-
tect double JPEG compression and composite JPEG im-
ages. To demonstrate the superiority of our method, we
first compare the accuracy of double JPEG compression
detection for different block sizes with the method
proposed in [5], which detects double-compressed JPEG
images by using mode-based first digit features, and the
method proposed in [6], which uses the statistics of low-
frequency DCT coefficients. For composite JPEG image
detection, we compare our localization results with the
method proposed in [11], which achieves localization
based on the DQ effects combined with Bayes’s theorem,
and also with the technique proposed in [12] based on
Benford’s law using SVM.

4.1 The database
For the experimental validation, we built an image
database consisting of training, validation and testing
datasets.

(1) Training and validation datasets. The uncompressed
images in UCID [18], consisting of 1338 TIFF
images with a resolution of 512 × 384 (or 384 × 512),
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Fig. 4 Accuracy of the proposed method for different quality factors QF2 and different image sizes
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were chosen for training and validation purposes.
We randomly selected 800 images to serve as
training data for the neural network and 200 images
to serve as validation data. To create single-
compressed images, these images were compressed
with QF2∈ {60, 65,...90.95}, respectively. To create
double-compressed images, these TIFF images
were compressed with QF1∈ {60, 70, 80, 90, 95},
respectively, followed by recompression with
QF2∈ {60, 65,...90, 95}. For both training and
validation process, we performed overlapping
cropping to crop them to dimensions of 64 × 64

with a stride of 32 pixels, leading to a total
amount of 132,000 elements for each positive set
and negative set.

(2) Testing dataset. For better experimental validation
of the proposed work, we applied two databases
with different resolutions which are commonly used
in image forensics literature for testing process. The
low-resolution repository is from the rest images in
UCID with a resolution of 512 × 384, and the high-
resolution repository is from the Dresden Image
Database [19], which contains 736 uncompressed
RAW images of 3039 × 2014 pixels using a Nikon
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Fig. 5 Accuracy of [5] for different quality factors QF2 and different image sizes
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D70 camera and 752 uncompressed RAW images of
3900 × 2616 pixels acquired with a Nikon D200
camera. To obtain composite tampered JPEG
images, 100 images were randomly selected from
both of the two databases, compressed with quality
factors of QF1∈ {60, 70, 80, 90, 95}, respectively,
and then been spliced with a rectangular block
randomly selected from either JPEG images or
non-JPEG images using the Photoshop software.
The rectangular block is randomly put on the
background image. Finally, each composite image
was compressed with quality factors of QF2∈ {60,
65,...90, 95}, respectively. The authentic image sets
consist of images compressed only once with
QF2∈ {60, 65,...90, 95}. Furthermore, all the
tampered regions in both of the two databases
cover approximately the 2 % of the total surface,
namely a size of 384 × 384 in high-resolution
datasets and a size of 64 × 64 in low-resolution
datasets. It is worth mentioning that each image in
our database is associated with a tampering mask,
providing a convenient shortcut for validating the
performance of the algorithm. Both of the two
databases are accessible online [1].

It should be noted that we have to construct a classi-
fier for each secondary quality factor QF2 because of the
unknown primary quality factor QF1. Thus, we obtained
eight different two-class classifiers corresponding to each
value of QF2 (QF2 ∈ {60, 65,...90, 95}) in our experiment.
For most machine learning techniques employing a
training/testing procedure, there are difficulties in cor-
rectly classifying images as double-compressed when

QF1 is different from the ones used in the training set.
As no priori information on the previous history is
generally available to the analyst in actual forensics
situation, for an actual training/testing procedure, it is
best to make all the possible QF1 (range from 50 to 100)
be traversed in the training sets to make the classifiers
work well. In this paper, we only select some representa-
tive QF1 and QF2 for experiment to show the effective-
ness of the CNN classifiers.

Fig. 7 Detection results. a, e Images manipulated with Photoshop compressed with QF1 = 70, QF2 = 90 and QF1 = 60, QF2 = 95. b, f The original
authentic images corresponding to a and e. c, g The classification result maps obtained using the proposed algorithm. d, h The tampering masks

Table 1 AUC values achieved on the Dresden Image Database
by the proposed algorithm and the algorithms presented in
[11] and [12]

QF2 60 65 70 75 80 85 90 95

QF1

60 Proposed 0.68 0.88 0.95 0.96 0.99 0.99 1.00 0.99

Bayesian approach 0.50 0.83 0.97 0.99 0.99 0.99 0.99 0.99

SVM 0.50 0.81 0.90 0.75 0.74 0.74 0.94 0.96

70 Proposed 0.95 0.86 0.67 0.85 1.00 1.00 1.00 0.99

Bayesian approach 0.85 0.70 0.48 0.83 1.00 1.00 1.00 0.99

SVM 0.72 0.71 0.68 0.70 0.75 0.75 0.97 0.98

80 Proposed 0.98 0.94 0.99 0.94 0.44 0.99 1.00 0.99

Bayesian approach 0.90 0.88 0.93 0.85 0.44 1.00 1.00 0.99

SVM 0.50 0.71 0.88 0.81 0.40 0.87 0.85 0.97

90 Proposed 0.89 0.78 0.91 0.81 0.97 0.97 0.45 1.00

Bayesian approach 0.68 0.65 0.67 0.72 0.82 0.92 0.50 1.00

SVM 0.54 0.65 0.71 0.64 0.71 0.72 0.65 0.99

95 Proposed 0.71 0.66 0.63 0.57 0.51 0.67 0.93 0.46

Bayesian approach 0.50 0.53 0.57 0.55 0.48 0.76 0.93 0.50

SVM 0.49 0.57 0.62 0.45 0.51 0.57 0.64 0.44

Wang and Zhang EURASIP Journal on Information Security  (2016) 2016:23 Page 7 of 12



4.2 Detecting double JPEG compression
For this experiment, we used only the pure doubly and
singly JPEG compressed images from our high-
resolution datasets. We performed the experiment for
five image sizes: W ×W = 64 × 64; 128 × 128; 256 × 256;
512 × 512, and 1024 × 1024. Figure 4 shows the accuracy
of our proposed CNN for the different quality factors
QF2 averaged over all QF1 and for the different image
sizes. Figures 5 and 6 show the results of [5] and [6]

for comparison. It is obvious that our classifier ex-
hibits a better performance in most cases especially
when QF2 < 90. Moreover, a larger training image size
leads to higher accuracy for all of the detectors. For [6],
the classifiers even do not work when the image size is as
small as 64 × 64, while our CNN approach can work well
in this situation.
Meanwhile, we also compared our proposed architec-

ture to other machine learning techniques in the same
experimental settings: The designed 9 × 11 feature vec-
tors were fed into SVM classifiers and Fisher linear dis-
criminant (FLD) analysis which was mentioned in [5] to
perform classification. But it turns out to be a failure,
and neither SVM classifiers nor FLD classifiers can dif-
ferentiate the designed features obtained from single-
compressed images and double-compressed images,
which indicates that it is hard to perform classification
on these designed features using these traditional ma-
chine learning techniques. The reason we consider is
that traditional machine learning techniques are limited
in their ability to process data in their raw form.
They usually require carefully designed feature extrac-

tors to transform the raw data into a suitable representa-
tion, from which the machine can classify patterns in its
input. Deep learning methods are representation learn-
ing methods [20], which allow a machine to be fed with
raw data and to automatically learn the representations
needed for classification. Indeed, hierarchical feature
learning using the CNN deep models can learn specific
feature representation automatically, which is difficult
for most traditional machine learning techniques. For
double-compression detection in blind forensics, the
histograms of doubly compressed images contain DQ

Table 2 AUC values achieved on the UCID database by the
proposed algorithm and the algorithms presented in [11] and
[12]

QF2 60 65 70 75 80 85 90 95

QF1

60 Proposed 0.64 0.93 0.95 0.97 0.98 0.98 0.94 0.91

Bayesian approach 0.53 0.88 0.95 0.97 0.97 0.96 0.95 0.95

SVM 0.43 0.73 0.84 0.80 0.81 0.78 0.78 0.88

70 Proposed 0.88 0.87 0.52 0.79 0.96 0.96 0.98 0.94

Bayesian approach 0.82 0.82 0.54 0.86 0.95 0.95 0.95 0.93

SVM 0.70 0.66 0.57 0.75 0.80 0.80 0.84 0.85

80 Proposed 0.93 0.89 0.89 0.88 0.52 0.97 0.98 0.96

Bayesian approach 0.69 0.76 0.84 0.87 0.54 0.96 0.96 0.95

SVM 0.50 0.59 0.74 0.74 0.44 0.74 0.73 0.89

90 Proposed 0.74 0.81 0.73 0.57 0.79 0.82 0.48 0.95

Bayesian approach 0.57 0.55 0.73 0.77 0.75 0.89 0.60 0.97

SVM 0.45 0.44 0.54 0.60 0.74 0.73 0.52 0.91

95 Proposed 0.67 0.73 0.66 0.66 0.65 0.70 0.71 0.50

Bayesian approach 0.61 0.61 0.53 0.62 0.60 0.83 0.91 0.50

SVM 0.56 0.57 0.61 0.56 0.55 0.48 0.67 0.54
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Fig. 8 AUC comparison of the proposed method, the method of [11], and the method of [12] on the Dresden Image Database
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Fig. 9 AUC comparison of the proposed method, the method of [11], and the method of [12] on the UCID database

Fig. 10 Detection results. a Tampered images coming from the Dresden Image Database compressed with QF1 = 60, QF2 = 70 and QF1 = 80, QF2 = 95
(two at the top) and from the UCID database compressed with the same quality factors (two at the bottom). b The classification result maps obtained
using the proposed algorithm. c The results of the method proposed in [11]. d The results of the method proposed in [12]. e The tampering masks
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effects which are quite different from the singly ones,
and our proposed feature is the specified interval of
these histograms. The traditional machine learning tech-
niques can hardly learn these features if the histograms
(raw data) are used directly for classification without any
handcrafted feature extraction; however, the designed
CNN can achieve representation learning automatically,
which can easily capture the proposed signal that is im-
portant for double JPEG compression detection. This
would give insights on the actual benefits of the CNN
approach.

4.3 Detecting composite JPEG images
In this experiment, we detected composite JPEG images.
There is one thing worth to mention: it is a trade-off be-
tween the need for sufficient statistics and the precision
of manipulation detection. We tested many block sizes
and ultimately chose to set W to 64.

Figure 7 shows several successful detection results of
our algorithm. Figure 7a, e is tampered through a copy-
paste operation using Photoshop. The second column
shows the original images, the third column shows the
classification result maps obtained using our proposed
algorithm, and the rightmost column shows the masks
used for comparison. It is clear that the classification
result maps generally locate the tampered regions cor-
rectly. Additional results, compared with those ob-
tained using the methods of [11] and [12], are shown in
Figs. 10 and 11 for different combinations of quality
factors.

4.4 Performance analysis
In [11], the author introduced a method of measuring
the performance of a forgery detector based on the area
under the receiver operating characteristic (ROC) curve
(AUC). The ROC curve is obtained from the false alarm

Fig. 11 Detection results. a Tampered images coming from the Dresden Image Database compressed with QF1 = 70, QF2 = 60 and QF1 = 80, QF2 = 70
(two at the top) and from the UCID database compressed with the same quality factors (two at the bottom). b The classification result maps obtained
using the proposed algorithm. c The results of the method proposed in [11]. d The results of the method proposed in [12]. e The tampering masks

Table 3 The accuracy of double JPEG compression detection
using different numbers of connections

QF2/kernel size 1 conv 2 convs 3 convs

60 0.718 0.728 0.701

80 0.788 0.796 0.781

Table 4 The accuracy of double JPEG compression detection
using different kernel sizes

QF2/kernel size 3 × 1 5 × 1 10 × 1

60 0.728 0.725 0.710

80 0.796 0.791 0.776
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probability Pf and the correct detection probability Pc,
which are given by Pf =Na/(Ni −Nt) and Pc = 1 −Nb/Nt
where Na is the number of blocks identified as forged
that have not actually been tampered with, Nb is the
number of blocks that have been tampered with but not
identified as forged, Ni is the number of blocks in the
entire image, and Nt is the total number of tampered
blocks. The area under the ROC curve is the AUC value,
which is a number between 0 and 1, and a larger AUC
value indicates better detector performance.
Table 1 shows the AUC values achieved on the

Dresden Image Database (high-resolution) using our
proposed method. For comparison, the AUC values for
the methods proposed in [11] (Bayesian approach) and
[12] (SVM) are also shown in Table 1. Table 2 shows the
AUC values achieved on the UCID database (low-reso-
lution) of all the three methods. The best results in each
case are highlighted in italics (if all algorithms perform
the same in a given case, none is highlighted). It is evi-
dent that our method outperforms those of [11] and
[12], especially for lower QF2 values: when QF2 > QF1,
all methods have high AUC values of nearly 0.99,
whereas when QF2 < QF1, our method has a better
performance.
Figures 8 and 9 show the AUC comparisons averaged

over all QF1 on both of the two datasets. It is important
to note that we did not consider the case of QF2 = QF1
because double JPEG compression is generally defined
as QF2 ≠QF1 (Tables 1 and 2 also illustrate that it is
very difficult for either method to detect tampering when
QF2 =QF1). It can be appreciated that our method per-
forms much better than those of [11] and [12], especially
when QF2 <QF1, for which our method achieves AUC
values of nearly 0.86 on both high-resolution datasets and
nearly 0.84 on low-resolution datasets.
We also present several further example results of

detection obtained from both the high-resolution and
low-resolution datasets, for our method compared with
the methods of [11] and [12]. Figure 10 shows detection
results corresponding to the case of QF2 > QF1, and
Fig. 11 shows results corresponding to the case of
QF2 < QF1. When QF2 > QF1, all methods clearly lo-
cate the tampered regions. When QF2 <QF1, the results
of the method presented in [11] and [12] contain large
false alarm areas and the locations of the tampered re-
gions are not as clearly visible, whereas our method
performs better.

The computation complexity of the CNN is huge. The
long learning times are due to the fact that the back-
propagation process during the training of network has
to be scanned many times until convergence, and these
operations have to be done on a big database. Those
computations can be accelerated through the use of
GPU, and our experiments of the CNN are performed
on a NVIDIA GTX 960 GPU. It takes 12 min to train an
epoch and 60 min for the results to converge.

4.5 Selection of model parameters
We tested many CNN architectures. In this section,
we present several experiments designed to reveal the
accuracy of double JPEG compression detection using
different model parameters and different CNN archi-
tectures. (Note that we performed these tests only for
QF2 = 60 and QF2 = 80.)
Tables 3, 4, and 5 present the accuracy of double JPEG

compression detection achieved using different network
connections, kernel sizes, and numbers of kernels. We
can make the following observations: in terms of the
network connections, an architecture with two sets of
convolutional layers followed by pooling layers performs
best. Generally, CNNs with more convolutional connec-
tions deliver better results. Nonetheless, the deeper the
CNN architecture is, the more information of high-layer
semantic loses, probably due to the impact of the sub-
sampling step such as pooling and convolution. There-
fore, we use two convolutional layers in this paper; in
terms of the kernel size, the results for a 3 × 1 kernel size
are nearly identical to those for a 5 × 1 kernel size. In
this paper, we set the kernel size to 3 × 1, and in terms
of the number of kernels, a CNN with more kernels
yields better results. However, there is a trade-off be-
tween the precision of manipulation detection and the
time cost. The use of more kernels requires more time
for training: when 384 kernels are used, nearly 2 h is
needed for training, whereas only 1 h is required when
using 100 kernels. Therefore, we set the number of ker-
nels to 100. Table 6 shows the relationship between the

Table 5 The accuracy of double JPEG compression detection
using different numbers of kernels

QF2/number of
kernels

40 100 384

60 0.716 (51 min) 0.728 (60 min) 0.730 (120 min)

80 0.793 (52 min) 0.796 (60 min) 0.796 (120 min)

Table 6 The accuracy of double JPEG compression detection
using different training set sizes

QF2/total number
of blocks

33,000 66,000 132,000 264,000 396,000

60 0.500 0.695 0.702 0.728 0.729

80 0.500 0.773 0.780 0.791 0.791

Table 7 The accuracy of double JPEG compression detection
using different feature dimensions

QF2/feature
dimensions

7[−3,3] 11[−5,5] 21[−10,10]

60 0.710 0.728 0.722

80 0.787 0.796 0.794
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size of the training set (total number of blocks) and the
performance of the classifier. The results show that
fewer training images result in worse performance of the
CNN. Moreover, when the number of training images is
only one eighth of our recommended value, the CNN
does not function at all. Whereas when the number of
training images is 1.5 times with respect to the recom-
mended value, the accuracy remains nearly unchanged.
Table 7 shows the accuracy achieved using different
feature vector sizes. In this paper, we used only the
histogram values in the range of [−5, 5].

5 Conclusions
In this paper, a novel forensics methodology for detect-
ing and localizing double JPEG compression in images is
proposed. We propose to identify and locate double
JPEG compression forgeries using DCT coefficient’s his-
tograms combined with a CNN deep model. Our
method works well on small blocks, achieves localization
automatically, and has a better performance especially
when QF2 < QF1.
Although our proposed method produces encouraging

results, it has some limitations: (1) the computational
complexity of the CNN is considerably high, thus gener-
ating a trade-off between the localization accuracy cap-
ability and the computational effort required; (2) this
method only constructs classifiers for different QF2,
which will lead to lower detection accuracy due to the
fact that the nature of the DCT coefficient histogram is
quite different for different QF1. Further efforts are still
needed: we consider that a CNN can be used to estimate
QF1, and our future work will focus on the automatic
estimation of QF1.
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