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Abstract

Memory forensics plays an important role in security and forensic investigations. Hence, numerous studies have
investigated Windows memory forensics, and considerable progress has been made. In contrast, research on Linux
memory forensics is relatively sparse, and the current knowledge does not meet the requirements of forensic
investigators. Existing solutions are not especially sophisticated, and their complicated operation and limited
treatment range are unsatisfactory. This paper describes an adaptive approach for Linux memory analysis that can
automatically identify the kernel version and recovery symbol information from an image. In particular, given a
memory image or a memory snapshot without any additional information, the proposed technique can automatically
reconstruct the kernel code, identify the kernel version, recover symbol table files, and extract live system information.
Experimental results indicate that our method runs satisfactorily across a wide range of operating system versions.
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1 Introduction
The physical memory of a computer is highly useful but
can be a challenging resource for the collection of digital
evidence. Physical memory may first appear to be a large,
amorphous, and unstructured collection of data. In fact,
by examining a memory image, we can extract details of
volatile data, such as running processes, logged-in users,
current network connections, users’ sessions, drivers, and
open files. Although criminals tend to avoid leaving any
evidence in a computer’s persistent storage, it is extremely
hard for them to completely remove their footprints from
the memory. In some cases, physical memory is the only
place where evidence can be found. In a computer oper-
ating system (OS) that boots and runs completely from
CD-ROM, nearly all of the valuable information exists in
the physical memory of the computer. Therefore, memory
forensics is becoming increasingly important.
Before 2005, the physical memory of a computer

was mainly captured to retrieve strings, e.g., passwords,
credit card numbers, fragments of chat conversations, IP
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addresses, or email addresses. In 2005, the Digital Foren-
sics Research Workshop (DFRWS) organized a memory
analysis challenge [1]. Since then, the capture and anal-
ysis of the content of physical memory, known as mem-
ory forensics, has become an area of intense research
and experimentation [2]. Numerous studies have analyzed
Windows memory images. The MemParser tool enables
an examiner to load a physical memory dump of certain
Windows systems, reconstruct process information, and
extract data relating to specific processes [3]. PTFinder
is a proof-of-concept implementation with the ability to
reveal hidden and terminated processes and threads [4].
A method based on the Kernel Processor Control Region
(KPCR) structure inWindows was proposed to determine
the OS version and realize the translation from virtual
address to physical address [5].Moreover, technical details
related to memory analysis have been discussed, including
address translation [6, 7], pool allocation [8], swap integra-
tion [6], carving out memory [9, 10], sensitive information
extraction [11, 12], and malicious code detection [13]. In
short, memory analysis has been used in the wider con-
text of digital forensics, virtual machine introspection, and
malware detection [14].
Compared with Windows memory forensics, mem-

ory analysis of Linux systems presents some practical
challenges. Current Linux memory analysis technologies
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require precise knowledge of the OS edition and ker-
nel symbol information, which is generated at compile
time. Kernel symbol information varies with the differ-
ent OS editions. Furthermore, the Linux kernel is highly
configurable. During the kernel build process, users may
specify a large number of different options through the
kernel’s configuration system. These options affect the
kernel symbol information, resulting in distinct key struc-
tures for the same OS version. To obtain kernel symbol
information, onemust configure an environment in which
the OS version and configuration options are exactly the
same as those in the target system. For incident response
applications, obtaining precise and relevant information is
currently a slow, manual process, which limits its useful-
ness in rapid triaging.
To overcome these problems, this paper describes tech-

niques that allow for the automatic adaptation of memory
analysis tools for a wide range of kernel versions. Using
dynamic reconstruction of the kernel code, it is possible
to identify the OS version, disassemble correlative func-
tions, and acquire kernel symbol information. Some other
memory analysis systems rely on information that may not
be available, whereas the proposed system only needs the
analyzed memory dump. The main contributions of this
paper are as follows:

• We present a multi-aspect approach to automatically
identify the precise kernel version when provided
with only a physical memory dump. The approach is
universal, and does not rely on any prior knowledge
for particular OSs.

• We devise a set of novel techniques to obtain kernel
symbols from the physical memory dump instead of
obtaining symbol information from the target kernel’s
“System.map” file. Each time a new kernel is compiled,
various symbols are assigned different addresses.
New kernel versions of Linux are released frequently,
and it is inconvenient to find all System.map files.

• As the symbols in the System.map file are important,
and symbols exported from modules are critical for
investigators, a method of parsing symbols exported
from modules is presented. To recover and analyze
loaded kernel module information, it is essential to
understand the relevant data structures used by the
target OS. As the inclusion or exclusion of a kernel
configuration option can cause the insertion or
removal of several members of key structures, analysis
methods that rely on a stable key structure layout are
inadvisable. A method to accurately and dynamically
build representative data structures is also presented.

Based on the above techniques, we develop a new Linux
memory analysis system named RAMAnalyzer that can
identify the OS version and acquire symbol information
automatically. Live system information can subsequently

be retrieved. We examine the performance of RAMAn-
alyzer on various recent Linux kernels, and show that it
is an adaptive solution for the Linux memory analysis
problem.
The remainder of this paper is organized as follows.

Section 2 introduces some background information. The
proposed techniques based on dynamic reconstruction
are described thoroughly in Sections 3 and 4. In Section 5,
we evaluate the proposed forensics tool in terms of effec-
tiveness and performance. The final section summarizes
this study and states our conclusions and indicates some
opportunities for future research in this area.

2 Background and related work
2.1 Problem statement
The main problem encountered by memory analysis tools
when parsing the Linux kernel memory is the need for
prior knowledge of the precise kernel version and symbol
information. In an incident response and live analysis con-
text, this prior knowledge may not always be obtainable.
We assume the following scenarios:

• The specific target kernel version is unknown.
• The kernel version is known but neither the

System.map file nor /proc/kallsyms information of
the target system is available.

Under these scenarios, our system has threemajor goals:
precision, efficiency, and generality.

• Precision. The OS family and precise version are both
required. For instance, given a Linux kernel, we need
to know not only its major version (e.g., 2.6 or 3.10),
but also its minor version because the symbol’s
information and data structures of various Linux
kernels are different.

• Efficiency. It is necessary to automatically obtain
information for the OS version and symbols within a
short period of time.

• Generality. The system should be adaptive and
analyze the mainstream Linux kernel memory image,
rather than support only certain versions of Linux.

2.2 Kernel symbols
In the Linux kernel 2.6.×, kallsyms is used to extract all
the non-stack symbols from a kernel and build a data blob.
CONFIG_KALLSYMS should be configured as follows:

make menuconfig
General setup —>

[*] Configure standard kernel features (for small
systems) —>

[*] Load all symbols for debugging/ksymoops
[*] Include all symbols in kallsyms
[*] Do an extra kallsyms pass
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In the last stage of the kernel compile, the following
command is executed:
nm -n vmlinux|scripts/kallsyms
Therefore, all the kernel symbols are generated and

sorted according to their addresses. This list is used to
create the “kallsyms.S” file, which includes several spe-
cial symbols: kallsyms_addresses, kallsyms_num_syms,
kallsyms_names, kallsyms_makers, kallsyms_token_table,
and kallsyms_token_index. Among these symbols, kall-
syms_addresses points to the addresses of all kernel
symbols in order, kallsyms_num_syms points to the
“num” value of kernel symbols, and kallsyms_names
corresponds to the symbols’ name arrays. For conve-
nience, kallsyms_markers, kallsyms_token_table, and kall-
syms_token_index are used for the offset index and
high-frequency string compression.
The acquisition of kernel symbols is essential for analyz-

ing the information contained within a physical memory
dump. For example, if system calls are needed during an
investigation, their addresses are stored in a kernel struc-
ture called the system call table. The sys_call_table symbol
stores an address for this table, and may be used to enu-
merate the addresses of system calls. There are several
ways to obtain the symbols:

• Copy /proc/kallsyms or System.map and analyze the
file [15, 16]. Care should be taken when copying the
System.map file because systems with multiple
kernels have multiple System.map files. Unlike
/boot/System.map, /proc/kallsyms is a “proc file” that
is created when a kernel boots up. This is not actually
a disk file and is always correct for the kernel that is
currently running. Furthermore, /proc/kallsyms
contains not only kernel symbols but also symbols
exported from modules.

• Additionally, the kernel build system puts the
System.map inside the kernel’s executable and
linkable format (ELF) executable. Symbols can be
extracted using the following commands:

$ ./scripts/extract-vmlinux
/tmp/vmlinuz-3.13.0-63-generic >

/tmp/vmlinuz-3.13.0-63-generic.elf
$ readelf -Wa /tmp/vmlinuz-3.13.0-63-generic.elf
$ objcopy -j ksymtab_strings -O binary
/tmp/vmlinuz-3.13.0-63-generic.elf
vmlinux.bin- ksymtab_strings

Even a simple recompile of the same kernel is sufficient
to change the symbol addresses. In previous solutions for
obtaining symbol tables, methods that select symbol table
profiles according to the kernel versions are obviously
inaccurate. Furthermore, there is a strong need to reli-
ably determine the correct profile for unknown kernels,

which are often encountered during incident response
situations [17].

2.3 Linux memory analysis
In this section, we survey some related studies on Linux
memory analysis. Assuming that the kernel data struc-
tures are known, a modular, extensible framework named
FATKit can realize general virtual address space recon-
struction and visualization [18]. The open source volatility
framework has been adapted to work with Linux mem-
ory dumps, including Android, but it must be config-
ured for the specific version of Linux being examined
[15]. SecondLook is a commercial application with a GUI
and command-line interface that can extract and display
memory structures including processes, loaded kernel
modules, and system call tables [19]. RAMPARSER was
designed to reconstruct kernel data structures such as
task_struct,mm_struct, File, Dentry, Qstr, inet_sock, Sock,
and Socket [20]. Linux kernel versions from 2.6.9 to 2.6.27
were tested to verify its feasibility.
Each memory forensics solution has different fea-

tures along with several limitations: first, the accurate
OS version of a memory image must be known in
advance, which means that Linux memory images with-
out precise OS version information cannot be parsed
correctly. Second, the analyzed system’s System.map file
and kernel information are needed. These data may not
be immediately available, or may have been modified
by attackers to thwart forensic analysis. For example,
the Kernel Debugger Block can be easily overwritten
by malware [21]. Furthermore, some tools only work
on specific versions and require substantial manual
intervention.

3 Linuxmemory analysis framework based on
kernel code reconstruction

In this paper, based on kernel code reconstruction, we
propose a new Linuxmemory analysis framework that can
automatically detect the kernel version and recover the
symbol table file from the memory image. As shown in
Fig. 1, there are five key components in our framework:

• Kernel version identification (KVI): this component
allows the OS version to be detected in two ways:
linux_banner content identification and
vmcoreinfo_data content identification.

• kallsyms location symbol values recovery (KLSR): the
symbol table file can be recovered from memory
using kallsyms location symbols such as
kallsyms_addresses, kallsyms_num_syms,
kallsyms_names, kallsyms_token_table, and
kallsyms_token_index. Based on kernel code
reconstruction, this component provides a method
for discovering the above symbol values.
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Fig. 1 Overview of RAMAnalyzer

• Symbol table file recovery (STFR): using the kallsyms
location symbol values obtained from KLSR, the
symbol table file content and kernel symbol
information can be recovered.

• Live system information extraction (LSIE): several
key kernel symbols are selected to extract live system
information, such as process information and module
information. Furthermore, the symbols exported
from modules can be parsed.

• Database information extension: the addresses of the
symbols are identical for identical kernel versions and
compile configurations. To improve system
efficiency, a database records symbol information for
known kernel versions. When the kallsyms location
symbol values of new versions are recovered from
KLSR, these values are saved in the database.

The detailed flow of our algorithm is described as
follows:

Step I: given a physical memory image, identify the
precise kernel version of the target system. Using the
KVI module, the kernel version and the values of
_stext and swapper_pg_dir can be obtained.
Step II: check the database for preexisting symbol
information. If the processed kernel version exists,
extract the symbol addresses from the database and
go to step IV; otherwise, go to step III.
Step III: recover kallsyms location symbol values
using the KLSR module. New acquisition data are
recorded in the database.
Step IV: after the acquisition of kallsyms location
symbol values, the symbol table file is recovered using
the STFR module.
Step V: extract the _stext symbol from the symbol
table file and compare its value with that obtained
from step I. If these two values are equal, the kallsyms
location symbol values are correct; go to step VI.
Otherwise, go to step III, adjust the kallsyms_address
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candidate value and retrieve the kallsyms location
symbol value again.
Step VI: using the kernel symbols in the symbol table
file, live system information can be extracted. In
particular, symbols exported by loaded kernel
modules are analyzed.
From the above description, we can see that our
solution has an adaptive ability to cope with different
kernel versions. More details are introduced in the
next section.

4 Researchmethodology
In this section, we describe the detailed processes of ker-
nel version identification, kallsyms location symbol values
recovery, symbol table file recovery, and live system infor-
mation extraction.

4.1 Kernel version identification
There are two ways to obtain kernel version informa-
tion from the memory image: vmcoreinfo_data content
identification and linux_banner content identification.

4.1.1 linux_banner content identification
The start_kernel() function, which is called by the
startup_32() function, initializes all of the data struc-
tures needed by the kernel, enables interrupts, and cre-
ates another kernel thread named process 1. Finally,
linux_banner information is printed in the following for-
mat:
const char linux_banner[] =

“Linux version ” UTS_RELEASE “ (" LINUX_
COMPILE_BY “@”

LINUX_COMPILE_HOST “) (”LINUX_COMPILER “)
”UTS_VERSION “\n”;
By searching for the characteristic character “Linux ver-

sion”, kernel version information can be obtained.

4.1.2 vmcoreinfo_data Content Identification
In the system initialization phase, the crash_
save_vmcoreinfo_init() function is triggered to initialize
the content of vmcoreinfo_data, which includes general
crash kernel information such as the kernel version, page
size, and symbol information. vmcoreinfo_data starts with
the character string “OSRELEASE=”; the character strings
“SYMBOL(swapper_pg_dir)=” and “SYMBOL(_stext)=”
are also included. By searching for these three strings, the
address of vmcoreinfo_data can be located. The partial
content of vmcoreinfo_data in the memory image is
shown in Fig. 2.
The kernel version in linux_banner and vmcore-

info_data content should be the same. The latter contains
information about the _stext, swapper_pg_dir, vmlist,
mem_map, and init_uts_ns symbols, which are also stored
in the symbol table files. The values of these symbols

are virtual addresses. Generally, if swapper_pg_dir has
a length value of 8, the OS is 32 bit and the physical
address of swapper_pg_dir is its virtual address minus
0×c0000000. If swapper_pg_dir has a length value of 16,
the OS is 64 bit and its physical address is its virtual
address minus 0×ffffffff80000000. swapper_pg_dir is the
page global directory (pdg) for a process named “swap-
per” and can be used to translate between the virtual
address and the physical address in the kernel address
space. This symbol name differs between architectures
in the symbol table file, being called swapper_pg_dir on
both ×86 and PPC64, but it is named init_level4_pgt
on ×86_64.

4.2 Kallsyms location symbol values recovery
The algorithm for the kallsyms location symbol values
recovery has four main steps:
Step I: Kallsyms_address candidate value scanning.

Because _stext is one of the kernel symbols, the values
obtained from the procedure described in Section 4.1.2
can be used to locate the kallsyms_addresses. During the
search procedure, the value of _stextmay be found inmul-
tiple places. To enhance the efficiency of the algorithm, we
impose some restrictions. For 32-bit systems, for exam-
ple, the content before and after the found address are
the addresses of kernel symbols, and so the values should
be greater than 0xc0000000. Tracing back from the found
address, we can obtain the value of the startup_32 sym-
bol, which can be calculated from _stext&0×ffff0000. The
first symbol in /proc/kallsyms is generally startup_32,
and this is where the address of the startup_32 sym-
bol resides. This provides a candidate physical address
for kallsyms_addresses. However, in 64-bit systems,
there are several symbols before the startup_64 sym-
bol, and so the test times are higher than for 32-bit
systems.
Step II: The kernel code disassembly. To obtain the

other four symbol values, the kernel code in memory
must be disassembled correctly. Unfortunately, because
the instructions for different systems and architectures are
of various lengths, starting from the wrong instruction
location will disassemble a completely different instruc-
tion sequence. To address this challenge, we decompile the
smallest amount of kernel code, instead of the whole block
of required function calls.
Analyzing the source code of a Linux kernel, it is clear

that operations related to the kernel symbols are mainly
present in Linux/kernel/kallsyms.c. The symbols that will
be re-linked against their real values during the second
link stage are defined below:

extern const unsigned long kallsyms_addresses[] weak;
extern const u8 kallsyms_names[] weak;
extern const unsigned long kallsyms_num_syms;
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Fig. 2 Partial content of vmcoreinfo_data

extern const u8 kallsyms_token_table[] weak;
extern const u16 kallsyms_token_index[] weak;
The call relationship of the update_iter function

is described in Fig. 3. In the update_iter func-
tion, the get_ksymbol_core function is called
using kallsyms_addresses. Next to the instruc-
tion “iter->value = kallsyms_addresses[iter->pos],”
the kallsyms_get_symbol_type function is called
using kallsyms_token_table, kallsyms_token_index,
and kallsyms_names[off + 1].
Once the principle of the update_iter function is fully

understood, we can use the candidate value of kall-
syms_addresses obtained from step I to obtain the values
of the other four symbols.
An image from the 3.6.10-4.fc18.i686.PAE system is

used to illustrate the method. The value of the kall-
syms_addresses symbol is found at offset 0xc4 for
the update_iter function’s binary code in the image.
Therefore, we step back three bytes and disassemble

the binary code. As mentioned above, our principle is
to reduce the amount of disassembled code by as much
as possible and improve the precision of our method.
Approximately 0×2a bytes are chosen to be decompiled,
and the results are as follows:

4aadc1: 8b 04 95 0c 8c 9e c0 mov 0xc09e8c0c
(%edx, 4), %eax

4aadc8: 8d 56 11 lea 0x11(%esi), %edx
4aadcb: C6 86 91 00 00 00 00 movb $0x0, 0x91 (%esi)
4aadd2: 89 46 08 mov %eax, 0x8(%esi)
4aadd5: 0f b6 83 b5 47 a2 c0 movzbl 0xc0a247b5

(%ebx), %eax
4aaddc: 0f b7 84 00 a0 95 ad c0 movzwl 0xc0ad95a0,

%eax
4aade4: 0f b6 80 10 92 ad c0 movzbl 0xc0ad9210

(%eax), %eax

Fig. 3 Call relationship of update_iter function
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Fig. 4 Partial content of kallsyms_address

Fig. 5 Partial content of kallsyms_names

Fig. 6Main members of module structure

Fig. 7 Initialization result
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Through a combined analysis of the disassembled
output and the update_iter function’s source code, the
values of kallsyms_names, kallsyms_token_index, and
kallsyms_token_table can be obtained. In 32-bit systems,
the value of kallsyms_num_syms is the value of kall-
syms_namesminus 4.
There are some differences in 64-bit systems. Bits

0–31 of the symbol addresses are used, and the value of
kallsyms_num_syms is the value of kallsyms_namesminus
8. Although some changes take place in the binary code of
the update_iter function for different Linux systems, the
differences in the code segment used here are minimal.

4.3 Symbol table file recovery
After acquiring the kallsyms location symbols, the STFR
method proceeds as follows:
The kallsyms_num_syms symbol points to the kernel

symbol “num” in /proc/kallsyms. The kallsyms_addresses
symbol points to the addresses of all kernel symbols in
order. Each symbol address has a length of 4 in 32-bit sys-
tems and 8 in 64-bit systems. To obtain the correspond-
ing name, the kallsyms_names, kallsyms_token_table, and
kallsyms_token_index symbols are needed. The kall-
syms_names symbol points to a list of length-prefixed byte
arrays that encode indexes into the token table. Accord-
ing to the length, the bytes of each array are acquired and
used to construct a substring. Finally, the substrings are
joined together to form the type and name of the required
symbol.
We again use an image from the 3.6.10-4.fc18.i686.PAE

system to describe the above method.
The addresses of the required symbols are determined

from the database:
c09e8c0c R kallsyms_addresses
c0a247b0 R kallsyms_num_syms
c0a247b4 R kallsyms_names
c0ad9210 R kallsyms_token_table
c0ad95a0 R kallsyms_token_index
First, translate the virtual address of the kall-

syms_num_syms symbol to a physical address and obtain
the num of kernel symbols in /proc/kallsyms. Likewise,
convert the virtual address of the kallsyms_addresses
address and read the addresses of all kernel symbols
in order. The partial content of kallsyms_addresses is
displayed in Fig. 4.
In the next step, the content pointed to by the kall-

syms_names symbol is read and split into substrings
according to its format. As shown in Fig. 5, the first
byte of each substring is the length of the compression
bytes. Each compression byte corresponds to several char-
acters through conversion with the kallsyms_token_table
and kallsyms_token_index symbols. Connecting all of the
characters together, we obtain the type and name of
the symbol. By dealing with the bytes marked in Fig. 5,

the type for the first symbol is determined to be T, which
means that the symbol is in the text (code) section and
the name of the first symbol is startup_32. In combination
with the result from the kallsyms_address symbol, the
address of the startup_32 symbol is 0×c0400000.
To verify the correctness of the symbol values, the value

of _stext obtained from the process described in this
section is compared with that obtained in Section 4.1.2.
If the two values are the same, the obtained symbols
are available. If not, we recover the symbols using the
algorithm described in Section 4.2.

4.4 Live system information extraction
After determining the kernel symbols, several key symbols
are selected to obtain the live system information.

4.4.1 Gathering offsets of structuremembers
The structure layouts vary greatly depending upon the
configuration parameters. For example, the layout of the
module structure depends on the values of optional con-
figuration parameters such as CONFIG_MODULE_SIG,
CONFIG_SYSFS, and CONFIG_UNUSED_SYMBOLS.
Thus, to properly analyze a Linux image, the offsets
of important structure members must be identified. As
shown in Fig. 6, the module structure plays a significant
role in the extraction of module information.
Code fragments 1–3 show how equivalent statements

can be compiled to form radically different instruc-
tion sequences. The C source code in code fragment
1 is from the module_get_kallsym() function within
/kernel/module.c of the Linux kernel source base.
This function was used to help find the offset of the
num_symtab, symtab, and strtab members of the struct
module.
CODE FRAGMENT #1 (C):
if (symnum < mod->num_symtab)
CODE FRAGMENT #2 (3.1.0-7.fc16.i686.PAE):
00 00 00 1E 8B 93 14 01 00 00 mov edx, dword ptr

[ebx+0x00000114]
00 00 00 24 39 D0 cmp eax, edx
CODE FRAGMENT #3 (3.6.10-4.fc18.i686.PAE):
00 00 00 38 8B 93 14 01 00 00 mov edx, dword ptr

[ebx+0x00000114]
00 00 00 3E 39 C2 cmp edx, eax

In the above code fragments, the constant 0×114 within
the indexed instructions is the offset for the num_symtab
member. As the methods used by compilers can be very
different, all possible instruction formats for various
architectures must be clarified. Code fragment 4 is again
from the module_get_kallsym() function, and fragments
5–8 illustrate the disassembly of the instruction that
accesses the strtab and symtab members of the module
for different architectures.
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CODE FRAGMENT #4(C):
strlcpy(name, mod->strtab + mod->symtab[symnum].
st_name,
KSYM_NAME_LEN);
CODE FRAGMENT #5(2.6.32-504.el6.i686)
00 00 00 6C 8B 8B F0 00 00 00 mov ecx, dword ptr

[ebx+0x000000F0]
00 00 00 72 8B 93 00 01 00 00 mov edx, dword ptr

[ebx+0x00000100]
00 00 00 78 03 14 01 add edx, dword ptr

[ecx+eax]
CODE FRAGMENT #6 (3.1.0-7.fc16.i686.PAE)
00 00 00 47 8B 8B 0C 01 00 00 mov ecx, dword ptr

[ebx+0x0000010C]
00 00 00 4D 8B 93 1C 01 00 00 mov edx, dword ptr

[ebx+0x0000011C]
00 00 00 53 03 14 01 add edx, dword ptr

[ecx+eax]
CODE FRAGMENT #7 (3.6.10-4.fc18.i686.PAE)
00 00 00 84 8B 8E 10 01 00 00 mov ecx, dword ptr

[esi+0x00000110]
00 00 00 8A 8B 96 20 01 00 00 mov edx, dword ptr

[esi+0x00000120]
00 00 00 90 03 14 01 add edx, dword ptr

[ecx+eax]
CODE FRAGMENT #8 (3.10.0-123.el7.x86_64)
00 00 00 C0 8B 93 78 01 00 00 mov edx, dword ptr

[ebx+0x00000178]
00 00 00 C6 8B 34 02 mov esi, dword ptr

[edx+eax]
00 00 00 C9 BA 80 00 00 00 mov edx, 00000080
00 00 00 CE 48 dec eax
00 00 00 CF 03 B3 90 01 00 00 add esi, dword ptr

[ebx+00000190]

The module_get_kallsym function is exported as
a symbol to /proc/kallsyms, and its address can be
obtained from the process described in Section 4.3.
In this way, the state, name, module_core, and
source_list members of module structures can be ana-
lyzed based on the kdb_lsmod function defined in
/kernel/debug/kdb/kdb_main.c.

4.4.2 Process information extraction
Every process is represented by a structure named
task_struct, which is defined in the /usr/src/linxu-
2.4/include/linux/sched.h file. The init_task symbol cor-
responds to the task_struct structure address of the swap-
per, where the PID is zero. The task_struct structures of
all active processes are doubly linked to each other. By
traversing the double-linked list, all of the running pro-
cesses can be identified. Moreover, the task_struct struc-
ture includes some objects that correspond to information
regarding the current state of a process, such as struct
mm_struct *mm, struct fs_struct *fs, struct files_struct
*files, and struct thread_struct thread. Using these objects,
we can obtain information on the memory management,
file, and thread of the processes.

4.4.3 Module information extraction
Similar to the process information, all module structures
are doubly linked to each other. By acquiring a mod-
ule using the module symbol, the other modules can be
identified from this doubly linked list.
To link a module, the sys_init_module() service initial-

izes the syms and gpl_syms fields of the module object
so that they point to the in-memory tables of symbols

Fig. 8 Partial kernel symbols
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exported by the module. Some special kernel symbol
tables are used by the kernel to store the symbols that
can be accessed by modules with their corresponding
addresses. These are contained in three sections of the
kernel code segment: the _kstrtab section includes the
names of the symbols, the _ksymtab section includes the
addresses of the symbols, and the _ksymtab_gpl section
includes the addresses of the symbols that can be used
by the modules released under a GPL-compatible license.
Only the kernel symbols actually used by some existing
modules are included in the table. Linked modules can
also export their own symbols so that other modules can
access them. Although these symbols are critical during an
investigation, they have largely been neglected in previous
research. For instance, the vm_list symbol exported by the
kvm module can be used to analyze the virtual machine
information running on the current physical machine.

To obtain the exported symbols from the mem-
ory image, some objects of the module structure can
be used, such as const struct kernel_symbol *syms,
const struct kernel_symbol *gpl_syms, Elf_Sym *symtab,
and Char *strtab. Among these objects, the symtab
object is particularly important because it assists in
the recovery of the symbol and string tables for
kallsyms.
As for other system information, the rt_hash_mask,

rt_hash_table, and net_namespace_list symbols are
used to obtain information about the network con-
figuration and current network connections; the
boot_cpu_data symbol is used to obtain CPU informa-
tion; the log_buf symbol corresponds to system log and
debug information; and the iomem_resource symbol
reflects the available physical address space of the target
computer.

Fig. 9Modules list
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5 Evaluation
Based on the techniques described above, we developed
a Linux memory analysis system named RAMAnalyzer.
In this section, we present our experimental results. An
experiment to test the effectiveness of RAMAnalyzer
with 26 Linux kernels (from 2.6.18 to 4.2.0) is described
in Section 5.1, and the performance of the proposed
tool is reported in Section 5.2. All of our experiments
were performed on a host machine with an Intel Core
i5-4210U CPU, 4-GB memory, and a 64-bit Windows
7 OS.

5.1 Effectiveness
The following memory images were chosen: DFRWS 2008
forensics challenge, volatility memory samples, and mem-
ory snapshots from virtual machines running on the
VMwareWorkstation. The test flow and execution results
of RAMAnalyzer are described below.
Taking a memory image from the 3.1.0-7.fc16.i686.PAE

system as an example, the first step was to identify
the kernel version by searching for linux_banner con-
tent and vmcoreinfo_data content. The database was
then checked to identify any prior knowledge of this
kernel version. If the database returned no results,
the kallsyms location symbol values were restored
by disassembling the dynamically loaded code of the
update_iter function in the memory image. The initial-
ization result, including kernel version information and
kallsyms location symbol values, is displayed in Fig. 7.

Using the kallsyms location symbol values, the kernel
symbols were extracted. The partial result is shown in
Fig. 8.
Several symbols were selected to extract live system

information from the memory image, including process
information, module information, network connection
information, and system log information. The loaded ker-
nel modules information extracted from a memory image
of the 3.1.0-7.fc16.i686.PAE system are listed in Fig. 9, and
the symbols exported from the lockd module are listed in
Fig. 10.

5.2 Performance evaluation
To ensure that large changes in the kernel algorithms do
not affect the validity of our approach, memory images
from various kernel versions were used to test the perfor-
mance of RAMAnalyzer. Some of the kernels used in the
experiment are listed in Table 1.
We measured the execution speed of RAMAnalyzer

when only a memory image was provided. As illustrated
in Fig. 1, the key steps of our approach are kernel ver-
sion identification and symbol table file recovery, and
these are our evaluation targets. From Figs. 11 and 12,
we can see that 15–78 ms were required for kernel ver-
sion identification, and 347-15,693mswere needed for the
recovery of kallsyms location symbol values and kernel
symbols.
After obtaining the kernel symbols, themodules symbol

was used to find the loaded kernel modules and exported

Fig. 10 Symbols exported by lockd
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Table 1 Sample of kernel versions used for testing RAMAnalyzer

OS-kernels Linux version Architecture

2.6.18-8.1.15.el5 Centos 5 ×86

2.6.18-238.el5 Centos 5.6 ×86

2.6.24-26-generic Ubuntu-8.04.4 ×86_64

2.6.26-2-686 Debian 2.6.26-26 ×86

2.6.32-33-generic Ubuntu-10.04.3 ×86

2.6.32-279.el6.x86_64 Centos-6.3 ×86_64

2.6.32-300.10.1.el5uek Oracle Linux 5 ×86_64

2.6.32-504.el6.i686 Centos 6.6 ×86

2.6.38-generic Ubuntu-11.04 ×86

2.6.43.8-1.fc15.x86_64 Fedora 15 ×86_64

3.1.0-7.fc16.i686.PAE Fedora 16 ×86

3.2.0-23-generic Ubuntu-12.04 ×86_64

3.3.4-5.fc17.x86_64 Fedora 17 ×86_64

3.6.10-4.fc18.i686.PAE Fedora 18 ×86

3.6.11-4.fc16.i686.PAE Fedora 16 ×86

3.6.11-4.fc16.x86_64 Fedora 16 ×86_64

3.8.0-19-generic Ubuntu-13.04 ×86_64

3.9.5-301.fc19.i686.PAE Fedora 19 ×86

3.9.5-301.fc19.x86_64 Fedora 19 ×86_64

3.10.0-123.el7.x86_64 Centos 7 ×86_64

3.11.1-200.fc19.x86_64 Fedora 19 ×86_64

3.11.10-301.fc20.x86_64 Fedora 20 ×86_64

3.13.0-24-generic Ubuntu 14.04 ×86

3.16.0-30-generic Ubuntu-14.04.02 ×86_64

3.19.0-15-generic Ubuntu 15 ×86

4.2.0-1-686-pae Deepin 15 ×86

symbols. The time required for this process is shown in
Fig. 13.
The experimental results prove that RAMAnalyzer can

deal with memory images from a wide range of ker-
nel versions and demonstrate that its execution time is
acceptable.

6 Conclusions
Based on kernel code reconstruction, this paper has pro-
posed an adaptive approach for Linux memory analysis
that can address a Linux memory image without infor-
mation about the kernel version or System.map file. We
implemented a prototype named RAMAnalyzer that is
made up of five main components: kernel version iden-
tification, symbol table file recovery, kallsyms location
symbol value recovery, live system information extraction,
and database information extension. Our experimental
results with a number of Linux memory images show that

Fig. 11 KVI execution time

RAMAnalyzer can automatically identify the kernel ver-
sion and recovery kernel symbols. Based on the kernel
symbols, RAMAnalyzer then extracts live system infor-
mation about the target system at the time of memory
acquisition.
The primary advantages of RAMAnalyzer are:

• The ability to deal with memory images without
precise kernel version information and symbol
information.

• The ability to identify the precise kernel version and
recovery kernel symbols automatically, which means
it can deal with memory images from different kernel
versions. Furthermore, kernel symbol information
obtained in this way is more accurate because symbol
information from identical kernel versions can vary
under different configuration options.

• As well as kernel symbol information, RAMAnalyzer
can acquire the symbols exported from modules,
which play an important role in the investigation
procedure.

• Based on the above techniques, RAMAnalyzer has
adaptability to deal with mainstream Linux kernel
memory images and has high execution efficiency.

Fig. 12 KLSR and STFR execution time
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Fig. 13Modules symbol recovery execution time

From the advantages of RAMAnalyzer, we can see that
our solution can provide a solution for the challenge
described in Section 1 and meet the need of scenar-
ios described in Section 2.1. With the advent of mobile
cloud computing, the development of Linux is acceler-
ating and its security is becoming increasingly crucial.
The techniques proposed in this paper provide foren-
sics researchers with a starting point to delve into Linux
memory forensics, which plays an important role in secu-
rity and forensics investigations. Furthermore, these tech-
niques can be conveniently embedded into other forensics
frameworks.
To enhance the performance of RAMAnalyzer, the fol-

lowing research will be undertaken: first, owing to the
differences in the kallsyms configurations of Linux ker-
nel versions, there are various initial /proc/kallsyms. To
improve the processing speed, it is essential to scan the
kalsyms_address candidate values. Second, to improve the
adaptive capacity of cloud environments, RAMAnalyzer
was verified to be effective using memory images from
the KVMhost machine. However, further experiments are
required to verify its efficacy onmemory images fromXen
host machines.
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