Husék et al. EURASIP Journal on Information Security (2016) 2016:6
DOI 10.1186/513635-016-0030-7

® EURASIP Journal on
Information Security

a SpringerOpen Journal

RESEARCH Open Access

HTTPS traffic analysis and client identification L
using passive SSL/TLS fingerprinting

Martin Husak, Milan Cerméak, TomaRJirsik” and Pavel Celeda

Abstract

The encryption of network traffic complicates legitimate network monitoring, traffic analysis, and network forensics.
In this paper, we present real-time lightweight identification of HTTPS clients based on network monitoring and
SSL/TLS fingerprinting. Our experiment shows that it is possible to estimate the User-Agent of a client in HTTPS

communication via the analysis of the SSL/TLS handshake. The fingerprints of SSL/TLS handshakes, including a list of
supported cipher suites, differ among clients and correlate to User-Agent values from a HTTP header. We built up

a dictionary of SSL/TLS cipher suite lists and HTTP User-Agents and assigned the User-Agents to the observed SSL/TLS
connections to identify communicating clients. The dictionary was used to classify live HTTPS network traffic. We were

able to retrieve client types from 95.4 % of HTTPS network traffic. Further, we discussed host-based and
network-based methods of dictionary retrieval and estimated the quality of the data.

Keywords: Network monitoring, HTTPS, User-Agent, SSL, TLS, Fingerprinting

1 Introduction

The rising popularity of encrypted network traffic is
a double-edged sword. On the one hand, it provides
secure data transmission, protects against eavesdrop-
ping, and improves the trustworthiness of communicating
hosts. On the other hand, it complicates the legitimate
monitoring of network traffic, including traffic classifi-
cation and host identification. Nowadays, we are able to
monitor, identify, and classify plain-text network traffic,
such as HTTP, but it is hard to analyze encrypted com-
munication. The more secure the connection is, from the
point of view of communicating partners, the harder it is
to understand the network traffic and identify anomalous
and malicious activity. Furthermore, malicious network
behavior can be hidden in encrypted connections, where
it is invisible to detection mechanisms.

In this paper, we shall discuss HTTPS-HTTP over
SSL/TLS, the most common encrypted network traffic
protocols. In a communication encrypted by SSL/TLS, the
hosts have to first agree on encryption methods and their
parameters. Therefore, the initial packets contain unen-
crypted messages with information about the client and
server. This information varies among different clients

*Correspondence: jirsik@ics.muni.cz
Institute of Computer Science, Masaryk University, Brno, Czech Republic

@ Springer

and their versions. The similar client identifier is a User-
Agent value in a HTTP header, which is commonly used
for identifying the client and classifying traffic. However,
only the SSL/TLS handshake can be observed in a HTTPS
connection without decrypting the payload. Therefore, we
approach the problem of identifying the SSL/TLS client
and classifying HTTPS traffic by building up a dictionary
of SSL/TLS handshake fingerprints and their correspond-
ing User-Agents.

1.1 Research questions

We set up an experiment, which will answer three
research questions. The fourth question addresses appli-
cability of results. To sum up our goals, the research
questions are:

(i) Which parameters of a SSL/TLS handshake can be
used for client identification?

(ii) Can we pair selected SSL/TLS handshake parameters
and HTTP header fields?

(iii) How much information, i.e., number of known
SSL/TLS parameters and pairings to HTTP headers,
do we need to analyze a significant portion of
network traffic?

(iv) Can we utilize the SSL/TLS fingerprinting in network
security monitoring and intrusion detection?

© 2016 Husak et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-016-0030-7-x&domain=pdf
mailto: jirsik@ics.muni.cz
http://creativecommons.org/licenses/by/4.0/

Husék et al. EURASIP Journal on Information Security (2016) 2016:6

First, we aim to observe real network traffic to gain
insight into contemporary SSL/TLS handshakes. We shall
deploy network traffic monitoring, filter HTTPS con-
nections, and create a list of the SSL/TLS handshakes
and their fingerprints. We focus on analyzing informa-
tion provided during the handshake by the client, i.e., the
ClientHello message containing the protocol version, list
of supported cipher suites, and other data. Apart from
the usable information for identifying the client, we are
particularly interested in the share of old and vulnerable
protocol versions. Recent discoveries of severe vulnera-
bilities, such as POODLE [1], might have significantly
changed the proportion of protocol versions in use.

Second, we shall correlate selected parts of SSL/TLS
handshakes and HTTP headers. We suppose that the list
of supported cipher suites (declared by the client in the
ClientHello message) can be used as an identifier simi-
larly to a User-Agent in a HT TP header. However, it is not
possible to get the User-Agent from the HTTPS request
without decryption. We use two approaches to obtain
pairs of cipher suite lists and corresponding User-Agents.
The host-based approach is based on advanced logging
on the server side. The novel network-based method is
based on simultaneous monitoring of HTTP and HTTPS
connections. We assume that clients mostly communi-
cate on both protocols. Therefore, we look for HTTP and
HTTPS connections from the same client over a short
time period and pair cipher suites and User-Agents from
such connections.

Third, we shall use the pairs of SSL/TLS fingerprints and
User-Agents as a dictionary to assign User-Agents to the
HTTPS connections observed during the measurement.
We shall discuss the quality of the obtained pairs with
respect to the dictionary size and accuracy of the User-
Agent estimation. The goal of this part is to estimate the
size and accuracy of a dictionary which could be used for
identifying clients on a large scale and classifying network
traffic.

Fourth, we are interested in application of the results
in the area of network security monitoring and intrusion
detection. Network hosts exhibiting suspicious or even
malicious intentions appear on a daily basis. Assuming
that the malicious applications are designed for a spe-
cific purpose, their fingerprints may be different from
legitimate clients. Utilizing fingerprinting as a detection
method of malicious clients may prove itself suitable in
a situation when even the botnets are switching their
communication to HTTPS.

1.2 Paper organization

This paper is divided into eight sections. Motivation
for this work is stated in Section 2. Section 3 presents
related work and a brief introduction into SSL/TLS pro-
tocols. The experiment design, measurement tools, and

Page 2 of 14

measurement environment are described in Section 4.
The results are presented in Section 5 and evaluated in
Section 6. The applicability of the results, with respect to
the proposed examples, is discussed in Section 7. Finally,
Section 8 concludes the paper.

2 Motivation

The motivation for our work came from three main areas
of interest. Firstly, it is the analysis of encrypted network
traffic in general, including identification and character-
ization of encrypted network traffic and classification of
communicating clients. From this point of view, we are not
interested in individual clients but rather overall charac-
teristics of network traffic. The second area of interest is
the client identification, which aims to obtaining informa-
tion on an individual client. This applies mostly on a web
browser fingerprinting. The third area is network security
and forensics, where we typically want to detect activity
of a specific network host, detect malicious clients, and
evaluate the activity of unknown or unusual clients.

2.1 Analysis of encrypted network traffic

We have to understand the network traffic before we can
proceed to client identification and detection of suspi-
cious or even malicious activity. Therefore, we have to
observe network traffic to get insight into typical pat-
terns. Specifically, in this case, we have to retrieve record
of encrypted network traffic containing as much dif-
ferent patterns as possible. To motivate our work, we
decided to analyze real network traffic in a campus net-
work instead of generating the traffic patterns in labora-
tory environment. Therefore, we can get more interesting
results which are not necessarily related to the proposed
experiment. These results can later be useful for net-
work administrators, security practitioners, and scientific
community.

For the purpose of this paper, we have to identify what
are the options of establishing the SSL/TLS communica-
tion and which options are used in real traffic. We have to
use methods from a survey by Velan et al. [2] as the basis
and a real network data to identify these options. Then, we
have to find which of the options are varying the most and
if the variability of these options indicates different traffic
patterns, e.g., different communicating partners or type of
traffic.

2.2 Clientidentification and browser fingerprinting

Having insight into the network traffic, we can proceed
to the client identification and browser fingerprinting.
The client identification and browser fingerprinting con-
tribute largely to network security and detection of mali-
cious activities, e.g., by outdated system identification
or unusual behavior detection. Identification and finger-
printing are moreover useful for commercial purposes

Husék et al. EURASIP Journal on Information Security (2016) 2016:6

(targeting ads, price discrimination, assessing financial
credibility), network accounting, and client behavior
monitoring [3].

Assuming the clients have unique fingerprints, the fin-
gerprinting can be used for advanced traffic analysis. For
example, we can enumerate unique client fingerprints that
share the same IP address as depicted in Fig. 1. This
approach can help in enumerating the number of users
of a specific machine, presence of a NAT mechanism and
number of clients behind a NAT, etc.

A problem of client identification based on HTTP
User-Agent is that the User-Agent string can be easily
manipulated. For example, illegitimate web crawlers and
bots typically spoof the User-Agent string as to be mis-
taken for legitimate ones such as Googlebot [4]. Manip-
ulation with User-Agent string does not apply only to
malicious clients but also to legitimate clients. Histori-
cally, the web browsers were adding identifiers of each
other to their User-Agent to resolve compatibility issues
with certain web pages. Therefore, the Internet Explorer
includes “Mozilla” in its User-Agent string and Android
browsers claim themselves to be Safari web browser. Many
browsers also offer user-friendly option to completely
replace a User-Agent with arbitrary string or identifier
of a different browser. To sum it up, there is a constant
risk that the User-Agent string is forged and the results of
any work based on User-Agent string analysis cannot be
trusted.

2.3 Network security and forensics

Network security and forensics have their unique prefer-
ences and points of view in comparison to network traf-
fic analysis and client fingerprinting. Common network
traffic is not a primary interest of network security mon-
itoring. Instead, the abnormal and previously unknown
traffic patterns are in question. Of course, we have to

Page 3 of 14

first understand the network traffic to recognize common
traffic patterns. Then, it is possible to focus on unusual
events and, in our case, fingerprints to detect suspicious
or straightly malicious clients and their activity.

The case studies in network security and forensics
are dealing with malware and vulnerability exploitation.
For example, Win32/Hotbar is a malware, whose activ-
ity can be detected by searching for HTTP requests with
a specific User-Agent [5]. Another example is related to
Shellshock, Bash vulnerability disclosed in 2014. Shell-
shock can be exploited via HTTP requests containing
strings starting with “() { ;; };” in values of vari-
ous headers, which could be processed by some script
at a server side. The attack can be detected by check-
ing the characteristic sequence in HTTP request headers.
In both cases, we face the problem of malware detection
method that is easily performed over HTTP but is hard to
accomplish over HTTPS traffic.

The overall trends in network communication affect
almost all the communicating hosts, including the mali-
cious ones. The prime examples are botnets which use
HTTP(S) for communication between bots and command
and control centers (C&C). Modern botnets are switch-
ing to HTTPS for similar reasons as legitimate clients. For
example, the bots are likely to accept commands only from
trusted C&C centers. HTTPS provides certain level of
trust and, in addition, prevents eavesdropping of the com-
munication, on which the detection mechanisms typically
rely [6].

Keeping in mind that almost everything is switching
to encrypted communication protocols, we may expect
a demand for methods of encrypted traffic analysis for
security purposes. Client fingerprinting seems to be a suit-
able option as it does not interfere with the encrypted
content of communication and thus cannot be consid-
ered as a violation of privacy. The question, however, is

User-Agent A

1P,

User-Agent A
User-Agent B

1P,

User-Agent C

Fig. 1 Identification and enumeration of HTTPS clients behind NAT

I —

User-Agent A
User-Agent B
User-Agent C

IPyar

Husék et al. EURASIP Journal on Information Security (2016) 2016:6

if the the fingerprinting can distinguish legitimate and
suspicious clients. For example, malicious actions exe-
cuted using common a web browser are not any different
from legitimate traffic from the fingerprinting perspec-
tive. However, the malicious clients are often created for
a specific purpose and their implementation complies to
this. Therefore, we may assume that certain malicious
clients are having unique fingerprints. This applies namely
to self-propagating malware and bots communicating
within a botnet.

3 State-of-the-art

In this section, we shall first present an introduction
to SSL/TLS protocols and a survey of network-based
SSL/TLS analysis. Then, we shall present a short survey of
case studies in network forensics and related fields.

3.1 Introduction to SSL/TLS

Transport Layer Security (TLS) [7] is a new version of the
Secure Sockets Layer version 3 (SSLv3) protocol [8], which
is no longer recommended for use due to its security
vulnerabilities. It provides confidentiality, data integrity,
non-repudiation, replay protection, and authentication
through digital certificates directly on top of the TCP
protocol. The TLS protocol is currently used for secur-
ing the most common network protocols, such as HTTP,
FTP, and SMTP, and is part of Voice over Internet Proto-
col (VoIP) and Virtual Private Network (VPN) protocols.
In this paper, we shall focus on SSL/TLS’s use within the
HTTP protocol, known as HTTPS [9], which is the most
common use of the TLS.

The TLS connection can be divided into two phases:
an initial handshake and application data transfer, both
depicted in detail in Fig. 2. The initial handshake begins
with a ClientHello message identifying which protocol
version is used, the cipher suite list, and extensions. The
full list of these identifiers is available on the IANA web

Client Server

ClientHe)jo

Sef\’CTHC“() + Cer tificate + Done

Plaintext
—_—

Encrypted

———————— >

Fig. 2 A SSL/TLS handshake

Page 4 of 14

page [10]. The following messages of the initial hand-
shake are used for peer authentication using X.509 cer-
tificates [11] and shared secret establishment based on
agreed parameters. All TLS messages exchanged during
the initial handshake are not encrypted until shared keys
are established and confirmed by Finished messages. The
TLS protocol consists of configurable cryptographic algo-
rithms and different sub-protocols which form a layered
design [12]. The main part of this design is the Record Pro-
tocol [7], which is used as an envelope for all TLS messages
and encrypted application data.

3.2 Related work

The long-term SSL/TLS traffic monitoring and measure-
ment in the Internet was presented by Levillain et al.
[13] for the period 2010-2011. They observed a lot of
servers which were intolerant to some cipher suite lists
and detected certificate chains which did not comply with
the standard. Another study of SSL traffic was conducted
by Holz et al. [14], who focused on SSL/TLS certificate
properties. They revealed a great number of invalid cer-
tificates and certificates shared among a large number of
hosts. The work of Holz et al. was followed by the work of
Durumeric et al. [15] which focused on an assessment of
certification authorities.

The SSL/TLS protocol and its applications are con-
tinuously analyzed by Qualys SSL Lab [16]. Apart from
SSL/TLS application testing, they presented the idea
of HTTP client fingerprinting using an analysis of the
SSL/TLS handshake. The idea was implemented in the
SSLhaf [17] proof-of-concept tool for a simultaneous
host-based analysis of HTTP and SSL/TLS connections.
A brief analysis of fingerprints of common web browsers
based on the tool was published at Internet Storm Cen-
ter [18]. The idea was also implemented by Majkovski [19]
as the pOf tool module used for fingerprinting operat-
ing systems. Another idea was presented by Bernaille and
Teixeira [20], who identified underlying applications in
a SSL-encrypted connection by the first SSL/TLS packet
size.

A survey of web tracking and its mechanisms was pro-
posed by Bujlow et al. [3]. The authors placed a special
focus on fingerprinting as it is rich in various methods.
The survey proposed a taxonomy of tracking mechanisms
including a category of fingerprinting. The approaches
relevant to our work are device fingerprinting, operating
System instance fingerprinting, and browser instance fin-
gerprinting. The methods are mostly focused on analysis
of HTTP headers. However, TCP/IP headers can also be
used, e.g., for OS fingerprinting. OS can be detected using
information from network flows (TTL, SYN packet size,
TCP window size, User-Agent) [21], DNS traffic analy-
sis [22], or using combination of previous and prebuilt
dictionary such as in pOf tool [23]. Regarding the client

Husék et al. EURASIP Journal on Information Security (2016) 2016:6

identification, remote psychical client fingerprinting using
clock skews was described by Kohno et al. [24]. Graph-
based structures for client profiling were introduced by
Karagiannis et al. [25]. Manual labeling of fingerprints,
a drawback of fingerprint-based methods, was tackled
by Abdelnur et al. [26]. The authors intended to solve
the problem by an automation of fingerprint signature
creation.

Regarding the browser fingerprinting, detection using a
User-Agent field is considered not to be reliable, since the
field is set by a browser and can be easily forged. Instead,
fingerprinting methods based on CSS and HTMLS5 fin-
gerprinting were introduced by Unger et al. [27]. The
JavaScript engine was used for browser identification by
Mulazzani et al. [28]. Panopticlick project [29] uses active
approach in collecting fingerprints of your browser. Col-
lected features are browser plugin details, system fonts,
cookie settings, screen size, and others. Nevertheless, all
of these techniques can be overcome by using a web proxy
[30] or TOR [31]. In these cases, detectable fingerprints
are removed or replaced by custom ones.

The case studies of network forensic analysis, including
analysis based on User-Agent identification, were pre-
sented by Raftopoulos and Dimitropoulos [5]. They cited
Win32/Hotbar as an example of malware, whose activ-
ity can be detected by searching for HT TP requests with
a specific User-Agent. One related problem is the iden-
tification of network address translation (NAT) in the
network. Traffic flow-based methods were proposed by
Gokecen et al. [32] and Krmicek et al. [33].

4 Experiment design

We designed a three-phase experiment to answer our
research questions and verify the idea of using HTTPS
client identification with SSL/TLS fingerprinting. In the
first phase, we set up the measurement of live network
traffic in the campus network of Masaryk University. The
monitoring was primarily focused on SSL/TLS connec-
tions. In the second phase, we created a dictionary of
SSL/TLS fingerprints and HTTP User-Agents, based on
an analysis of the captured network traffic. In the third
phase, we applied this dictionary to assign User-Agents
to the measured traffic and verified the capabilities of
HTTPS client identification.

4.1 SSL/TLS traffic measurement

We measured live network traffic in the campus net-
work of Masaryk University. The network has more than
40,000 users and 15,000 active IP addresses on average
per day. We used a flow-based network probe deployed in
a 10-Gbps link that connects the university and the net-
work of CESNET, Czech National Research and Education
Network (NREN).

Page 5 of 14

The measured network flow represents one-way net-
work communications. It is defined as a set of all packets
sharing the same values of chosen packet characteris-
tics called flow keys [34]. The flow keys of a standard
flow consists of following L3/L4 parameters: protocol, IP
addresses, and port numbers. Each flow is represented by
a flow record:

f = (proto, srclIP, dstIP, srcPort, dstPort, tSt),

where proto, srcIP, dstIP, srcPort, and dstPort are the
shared values of flow keys and tSt is the timestamp of the
flow.

Since the standard flow does not contain detailed infor-
mation about HTTP and HTTPS traffic, we used two
extensions for flow measurement, which add new ele-
ments to the flow record. The first extension adds a User-
Agent (ua) element to a HT'TP flow based on the analysis
of the HTTP traffic [35]. Only HTTP flows with desti-
nation port 80 were considered. The set of all extended
HTTP flows with assigned User-Agent will be denoted

Fyttp.

Furre = { (f, ua) | f.dstPort = 80
A ua # null}

The second flow measurement extension adds elements
from the ClientHello message exchanged during the ini-
tial SSL/TLS handshake of the HTTPS connection. We
measured only those elements which do not change with
each client connection, namely the SSL/TLS protocol ver-
sion (vr), cipher suite list (cs), compression (cm), and TLS
extensions (ex). The set of all extended HTTPS flows will
be denoted FyrTps.

Hello = (vr, cs, cm, ex)
Fyurtps = { (f, Hello) | f.dstPort = 443
A Hello # null }

The aim of the measurement was to get the base data
for the subsequent phases of the experiment. In the next
phase, we created a dictionary which allowed us to trans-
form elements of the SSL/TLS fingerprint into HTTP
User-Agents. This dictionary was then applied to all the
measured data to verify its usability and gain more infor-
mation about HTTPS clients. The secondary aim of the
measurement was to get a closer look at SSL/TLS con-
nections and to obtain basic statistics about the network
traffic, primarily focusing on SSL/TLS traffic.

4.2 Pairing cipher suite lists and User-Agents

To identify HTTPS clients, it is necessary to create a dic-
tionary containing pairs of SSL/TLS handshake elements
and User-Agents. This represents the second phase of our
experiment. We decided to use only a cipher suite list from
the ClientHello message to build up a dictionary. Cipher

Husék et al. EURASIP Journal on Information Security (2016) 2016:6

suite lists are the most varied elements of the SSL/TLS
handshake, and we supposed that they are sufficient for
identifying clients. Other elements of the handshake only
have a few different values, therefore we did not plan to
include them in the dictionary. However, we assumed they
could clarify ambiguous results.

We took two approaches, host-based and flow-based, to
pair a cipher suite list to a User-Agent. The host-based
method uses the information from a single HTTPS con-
nection on the server side, where the unencrypted data,
including the HTTP header, are available. This method
is very accurate, but it requires clients to visit the server
where the monitoring is deployed. We set up a HTTPS
server running Apache web server and SSLhaf plugin
[17]. SSLhaf enabled us to log the SSL/TLS parameters of
a HTTPS connection. We logged the SSL/TLS connection
parameters, including the cipher suite list in a ClientHello
message, and the User-Agent from the HTTP header for
each incoming connection. The dictionary was created
by a simple combination of the cipher suite list and the
User-Agent from a single connection.

The flow-based method is based on network monitor-
ing, the extraction of cipher suite lists and User-Agents,
and the correlation of HTTP and HTTPS connections
from a single client, see Fig. 3. We assumed that web
clients commonly communicate via both HTTP and
HTTPS protocols. SSL/TLS connection monitoring, as
well as HT TP monitoring, was utilized in this phase of the
experiment. The method of pairing cipher suite lists and
User-Agents can be described as follows: let CS denote the
set of all possible cipher suite lists and UA the set of all
User-Agents, then

Dict = {(cs, ua) € CS x UA |
3fs € Furrpes, 3f € FurTp *
fs.cs =cs Af.ua=ua
A fs.srcIP = f.srcIP
A Vf' € Fyrre, Vfs € FarTs :
| f/tSt — f5.tSt] > | f.tSt — fs.tSt|
A |f St — fo.tSt| > | f.tSt — f5.tSt| }

We searched for HTTP and HTTPS connections with
the same source IP address. We selected a cipher suite
list from the HTTPS connections and paired it to the
User-Agent from the HTTP connection which was the
closest in time. We assumed that the flow-based approach
would better reflect the structure of live network traffic

Fig. 3 A flow-based cipher suite list and User-Agent pairing

Page 6 of 14

and allow us to cover more cipher suite lists observed in
the network.

We did not expect that the dictionary would provide
an unambiguous translation of one cipher suite list to
one User-Agent, but there would be one cipher suite list
with more corresponding User-Agents and vice versa.
However, we assumed that User-Agents assigned to one
cipher suite list have only slight differences, such as the
software version. Therefore, it does not affect the identi-
fication of general properties, e.g., the operating system
or web browser. We also expected there to be some sig-
nificant deviations caused by ambiguity in the flow-based
approach or, for example, by forged connections by a mali-
cious crawler pretending to be a legitimate search engine.
In this case, we took only the most similar User-Agent
substrings.

4.3 Assigning User-Agents to measured HTTPS flows

The third phase of our experiment was a conjunction of
the results from the previous phases as depicted in Fig. 4.
We combined both types of pairs of cipher suite lists and
User-Agents which were generated in the second phase.
Then, we applied them to the measured data from the first
phase. The results contained HTTPS flows extended by
information about the corresponding User-Agent or list of
User-Agents:

Lrres = { (frua) € Fyrrps x UA |
(f.cs,ua) € Dict }

We planned to validate the results of the assignment
and verify our idea of HTTPS client identification using
SSL/TLS fingerprinting. We were interested in the share
of SSL/TLS traffic for which we were able to assign a cor-
relating User-Agent. The connections containing cipher
suite lists for which we failed to assign a User-Agent
are potentially relevant from a security perspective. We
expected most of the traffic to be initiated by common
web browsers, for which we were able to easily get the
pair of a cipher suite list and User-Agent using the host-
based method. However, we expected that a combination
of host-based and flow-based dictionaries was needed to
cover the majority of the traffic.

If multiple User-Agents corresponding to a single cipher
suite list were found, we planned to evaluate what is
the minimal set of information provided by the set of
User-Agents. For example, when multiple User-Agents

uay

____________ > ua,
p F Ucs xua e
- > v
CS (ua
NN

Fig. 4 Assigning User-Agents to cipher suite lists

Husék et al. EURASIP Journal on Information Security (2016) 2016:6

corresponding to the same cipher suite list point to differ-
ent versions of a client application. Similarities in grouped
User-Agents can indicate at least if the client is a web
browser, what is its operating system, or if it is a mobile
device. Major differences would otherwise indicate an
error in the pairing method.

5 Experiment results

In this section, we shall present the results of the exper-
iment. First, we shall sum up the results of measuring
SSL/TLS connections in the campus network. Second, we
shall describe the set of User-Agents and cipher suite list
pairs obtained via the host-based and flow-based meth-
ods. The section closes with the results of assigning User-
Agents to the SSL/TLS connection obtained in the first
phase of the experiment.

5.1 Measurement

We conducted measurements over a 7-day period in Jan-
uary 2015. The network bandwidth utilization on the
monitored network link ranged from 3 to 5 Gbps. We
filtered the HTTPS connections, processed the SSL/TLS
handshakes, and saved the content of ClientHello mes-
sages. The SSL/TLS version, cipher suite list, compres-
sion, and extensions were recorded for each connection.
In total, we processed 85,250,090 HTTPS connections.

The observed versions are listed in Table 1. Over 57 %
of connections used the TLS 1.2 protocol followed by
almost 40 % for TLS 1.0. Only 1.6 % of connections used
the older and more vulnerable SSL 3.0 protocol. TLS 1.1
represented around 1% of connections. The remaining
connections were unrecognised. However, the number of
such connections is insignificant.

We can confirm that only a small number of cipher
suites and cipher suite lists cover the majority of live net-
work traffic. As we can see in Fig. 5, the top 10 cipher suite
lists represented 68.5 % of live network traffic and top 31
(out of 1598) cipher suite lists were enough to cover 90 %
of the traffic.

5.2 Pairing cipher suite lists and User-Agents

First, we created a base set of pairs using the host-based
method and SSLhaf. We manually contacted the moni-
toring server with common available clients, such as web

Table 1 Distribution of SSL/TLS versions

Version Number of connections
TLS 1.2 49,140,929

TLS1.0 33,827,182

SSL3.0 1,365,409

TLS 1.1 913,014

Other 3556

Page 7 of 14

browsers and tools such as curl [36], to create an ini-
tial dataset. Therefore, most of the traffic incoming to
the monitoring server was artificial. We then made the
server publicly accessible and spread the links to lure
more clients, such as web crawlers. In total, we obtained
72 unique cipher suite lists and 293 unique User-Agents,
forming 307 pairs. Multiple User-Agents, with the same
cipher suite list, were similar in most cases. The differ-
ences were usually in the version of the client in the
User-Agent.

Then, we moved on to the flow-based method, i.e., com-
bined monitoring of cipher suite lists from SSL/TLS hand-
shakes in HTTPS connections and the User-Agents from
HTTP connections. We analyzed a 1-h sample of peak
network traffic from our campus network and selected
the hosts which initiated both HTTP and HTTPS connec-
tions. User-Agents from HTTP connections and cipher
suite lists (from HTTPS connections) from the same client
created a new pair. We observed 10,890 clients commu-
nicating on both protocols in a short period of time,
305 unique cipher suite lists, and 5043 unique User-
Agents. In total, we derived 12,832 unique pairs during the
measurement.

Following this, we investigated the relationship between
cipher suite lists and User-Agents by determining the car-
dinality of the relationship. Both methods provided more
User-Agents which correspond to one cipher suite list, i.e.,
a 1:n relation. After a manual inspection, we discovered
that these User-Agents differ mostly in the system ver-
sions while the information about the client, e.g., browser
type, stays more or less constant. Therefore, it is possi-
ble to identify a client with high accuracy. The flow-based
method also generated a single User-Agent which corre-
sponds to more cipher suite lists. However, this is most
likely caused by inaccuracy in the method which can-
not distinguish more clients communicating at the same
time.

5.3 Assigning User-Agents to measured HTTPS flows

We first used the dictionary provided by the host-based
method and then filled in the supplemented results with
a dictionary provided by the flow-based method. The
host-based dictionary contained only 72 unique cipher
suite lists, which represented 4.5 % of all cipher suite lists
measured during the first phase. However, we observed
that those unique cipher suite lists covered 78.0 % of
all the measured HTTPS flows. When we combined
the host-based and flow-based dictionaries, we obtained
316 unique cipher suite lists (19.8 % of all), covering
99.6 % of the measured HTTPS connections. Therefore,
we assigned a User-Agent to almost all observed HTTPS
connections using a combined dictionary based on the
data from a single server and the correlations from a 1-h
sample of network traffic.

Husék et al. EURASIP Journal on Information Security (2016) 2016:6

Page 8 of 14

100% T T T
90% |-
80%
60% I

40%

Portion of traffic

20%

0% I ! !

Fig. 5 Network traffic represented by top 10 cipher suite lists

0 10 20 40 60
Top X cipher suite lists

80 100 120 140

As we already mentioned, multiple User-Agents were
assigned to one cipher suite list, which caused ambigu-
ity in the translation. Even hundreds of different User-
Agents were found to correspond to a single cipher suite
list. However, we discovered that multiple User-Agents
assigned to a single cipher suite list differed in details,
such as the version of the used software. Figure 6 shows
the results of the User-Agent assignment to the measured
HTTPS connections according to the level of certainty.
Certainty represents the number of User-Agents per one
cipher suite list.

The results show that in the event of unambiguous pair-
ing, ie., one User-Agent per one cipher suite list, the
dictionary contained 104 unique pairs and covered only
6.3 % of all the measured HTTPS flows. If we gradually
decreased the level of certainty, we were able to cover
more cipher suite lists and a greater proportion of HTTPS
flows. If we used up to 10 User-Agents per one cipher suite
list, we were able to cover 66.0 % of all HTTP flows using
704 unique pairs with 253 unique cipher suite lists. In this
case, User-Agents were relatively different; nevertheless,
we were able to derive a general identification from the
client, e.g., if it was a web browser, mobile device, or a web
crawler.

6 Experiment evaluation

In this section, we shall discuss the experiment’s circum-
stances and results. First, we shall evaluate the measure-
ment phase and shares of protocol versions and cipher
suite lists in the observed network traffic. Second, the
quality of dictionaries used for client identification is dis-
cussed. Methods are proposed which can be used to
increase the accuracy of the dictionary. Finally, we shall
evaluate the structure of the network traffic according to
the estimated User-Agents and compare our results to the
related work to estimate the credibility of our results.

6.1 Measurement
The plain measurement results were similar to our expec-
tations. We analyzed the shares of SSL/TLS versions and
cipher suite lists in the monitored connections. It is not
surprising that the majority of the HTTPS connections
used the latest TLS 1.2 protocol. However, high share of
TLS 1.0 should not remain unnoticed. We further con-
firmed that the majority of SSL/TLS connections was
represented only by a small number of cipher suites and
cipher suite lists.

The interesting figure was the 1.6 % share of SSL 3.0 in
the observed HTTPS connections. The SSL 3.0 protocol

800 T T T T T T 100% ko]
5]
2
00 F e 1 4=
e 180% -5
g o0 1 2
2 500 f 7 . g
& 160% =
E e Qa
S 400 . =
© S
q!; 300 F P] 40% é
2 200 f 1 209 2
100 - Portion of traffic identified 1777 =2
Number of unique pairs --------- 5
0 1 Il 1 1 1 1 1 1 Il 1 O% U
0 1 2 3 4 5 6 7 8 9 10 ALL
Number of User-Agents per cipher suite list
Fig. 6 Relation of dictionary size and covered portion of network traffic

Husék et al. EURASIP Journal on Information Security (2016) 2016:6

is no longer considered safe due to serious vulnerabili-
ties discovered in 2014, such as the POODLE attack [1].
We naturally wondered if the discovery of serious vulner-
ability in a protocol leads to a decrease in its usage. In
comparison to earlier results, the share of connections ini-
tiated over SSL is decreasing. For example, Levillain et al.
[13] reported a 5 % share of SSL 3.0 in 2011.

6.2 Pairing cipher suite lists and User-Agents

The host-based and flow-based method of pairing cipher
suite lists and User-Agents provided diverse, but com-
plementary, results. The host-based method was more
precise and feasible in a controlled environment. How-
ever, the quantity of data depends on the popularity of
the server where the monitoring is deployed. It could be
interesting to perform host-based monitoring on a pop-
ular web server with a variety of clients. However, even
the high attractiveness of a server does not guarantee
capturing traffic from all the common clients in the
network. Client applications like Spotify and Instagram,
which communicate only to specific servers, are typical
examples.

The flow-based method, focusing directly on clients,
provided more pairs than the host-based method but at
the cost of uncertainty. However, clients like web crawlers,
uncommon clients, and even suspicious ones are hard to
capture without access to a live network. The 1-h sample
of network traffic was sufficient to capture connections
from almost all the different clients observed over a longer
period of time.

The combination of both methods provided a usable
dictionary which was sufficient for the needs of our exper-
iment. The pairs obtained via the host-based method
were also obtained via the flow-based method, which sug-
gests that the flow-based method can provide acceptable
results.

6.3 Assigning User-Agents to the measurement results
The assignment of User-Agents to the observed HTTPS
connections was successful. The size of the dictionary
was sufficient to describe almost every cipher suite list
observed during the measurement. The number of con-
nections with an unknown cipher suite list was negligible.
The accuracy of the assignment can be disputed because
more User-Agents corresponded to a single cipher suite
list. However, multiple User-Agents with the same cipher
suite list were typically similar. For example, similar User-
Agents corresponding to a single cipher suite list are
presented in Table 2.

To improve the quality and accuracy of the assignment,
we have to improve the dictionary. We do not expect
to gain more results from the host-based method with-
out distributing the measurement among more attractive
HTTPS servers. However, we can improve the quality

Page 9 of 14

of results in the flow-based method. We identified three
approaches to enrich the dictionary and give precision to
the data. The options are selecting the most suitable pair
to put in the dictionary by manually inspecting the User-
Agents or selecting statistically most significant values
from repeated measurements and correlation of results to
data from other sources.

First, we can manually check the results to find most
suitable pairs to put in the dictionary. This approach can
significantly reduce the number of User-Agents assigned
to a single cipher suite list which differ only in software
version or other detail. It can also improve the quality of
client type grouping. For example, User-Agents of mobile
devices often include type of hardware. However, this is
laborious and error-prone.

A more convenient way to improve the quality of the
results is to repeat the experiment to get statistically
significant data. Our assumption was that the clients com-
municate on both HTTP and HTTPS protocols in near
time. However, the two connections from the same client
may be initiated by a different software client. Repeat-
ing the experiment in different time windows or even
different network settings would provide slightly differ-
ent results due to random errors and inconsistencies. The
resulting dictionary would not be based on a single mea-
surement nor union of all of them. Instead, only the pairs
which appear in results of multiple experiments would be
added to the resulting dictionary.

Another approach to improving the results is a corre-
lation to additional data. Considering only the network-
based method, we can extend the fingerprinting to
TCP/IP. Operating system of a client can be estimated
by TTL value, TCP SYN packet size, and TCP Window
Size [21]. The User-Agent strings often include identi-
fiers of operating systems, which may be correlated to
the operating systems estimated by the TCP/IP finger-
printing. In addition, web crawlers can be identified by
their hostname or WHOIS record. For example, reverse
DNS query may validate User-Agent of clients such as
Googlebot.

7 Discussion

In this section, we shall discuss the data which can be
derived from a cipher suite list (and its corresponding
User-Agent) and their application. First, we shall present
a breakdown of the dictionary according to identifiers
found in User-Agents, e.g., types of a client applica-
tion or a device. Second, we shall focus on the most
interesting type of clients, web browsers, and operating
systems, which can be analyzed in more details. Applica-
bility of our results is discussed in the context of browser
fingerprinting, network security, and network forensics.
We shall also discuss possible defences against SSL/TLS
fingerprinting.

Husék et al. EURASIP Journal on Information Security (2016) 2016:6

Table 2 User-Agents corresponding to a single cipher suite list

Page 10 of 14

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.125 Safari/537.36

Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/34.0.1847.132 Safari/537.36 OPR/21.0.1432.67

Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36 OPR/22.0.1471.70

Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.125 Safari/537.36

Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143 Safari/537.36 OPR/23.0.1522.77

Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/37.0.2062.94 Safari/537.36 OPR/24.0.1558.53

Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2050.0 Iron/38.0.2150.0 Safari/537.36

Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537.36 Sleipnir/6.1.2

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537.36

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.65 Safari/537.36

7.1 Classification of network traffic

As our experiment shows, we can assign a User-Agent
to a known cipher suite list. However, the assignment
is not exact as there are typically multiple User-Agents
which correspond to a single cipher suite list. The multiple
User-Agents are typically similar per one cipher suite list.
Thus, we can extract common information, e.g., a type of
application, from them.

We used HTTP::BrowserDetect tool [37] to mark and
classify the User-Agent strings. The tool extracts gen-
eral information on a given client, e.g., browser name,
version, vendor, and operating system. Although the tool
was designed to analyze User-Agents of web browsers,
it can recognize web crawlers as well. The interesting
option is the detection of a mobile device, its type, and
vendor.

We extracted four pieces of information from the User-
Agents: device type, operating system, application type,
and type of a web browser. If the cipher suite list corre-
sponded to more than one User-Agent, we selected the
most frequent values. For example, if the cipher suite list
corresponded to Chrome four times and to Firefox one
time, we assigned the Chrome browser. This method is
not the most accurate but provides the most probable
value. In case of wide variability of values or inability to
parse User-Agent, the unknown value is used. The result
is a dictionary with concatenated values corresponding to
the client fingerprint for every cipher suite list.

The share of client types in the dictionary is presented in
Fig. 7. This figure represents only the structure of a dictio-
nary, not the relevance of particular client types. However,
we can see significant shares of client types which are
hard to detect using a host-based pairing method. Nev-
ertheless, we were at least able to detect the application
types using unknown device type records from the dictio-
nary. Over one fifth of the client types remained unknown
both for device and application type, though. Desktop
and mobile applications typically communicate only to

specific servers with a specific service. This demonstrates
the contribution of the flow-based pairing method.

7.2 Client identification and browser fingerprinting

The grouping presented in Section 7.1 reflects the struc-
ture of clients in the dictionary. To discover the structure
of clients in the HTTPS traffic, we assigned dictionary
records to the real traffic. Moreover, we performed fur-
ther analysis on the shares of operating systems in HTTPS
traffic and on shares of web browsers in HT'TPS traffic in
order to gain deeper insight into the encrypted traffic.

The shares of client types in the live network HTTPS
traffic are presented in Fig. 8. We observed that a majority
of connections were initiated by browsers. This approves
the fact that we analyzed HTTPS connections primar-
ily designed for web communication. About a third of
the connection were initiated by desktop browsers. One
interesting figure is the relatively high amount of traffic
initiated by mobile devices. We were also able to capture
machine-generated HTTPS connections by identification
of traffic belonging to crawlers and updates. Only 4.6 % of
the HTTPS traffic remained completely unknown.

The group of browsers, desktop and mobile, still dom-
inated in both categories. Therefore, we picked the
browser’s part of analyzed HTTPS traffic to perform fur-
ther analysis in more detail. The results of the analysis are
presented in Fig. 9. Nearly one half of the total connec-
tions were represented by Chrome web browser, followed
by Firefox with one fourth and Internet Explorer with
14.6 % of browser’s encrypted traffic.

Described distribution of browsers in HTTPS traffic
strongly correlates with the distribution of browsers in
national browser usage statistics showed in Table 3 [38].
Even though the dictionary did not provide exact trans-
lation, the table shows that our browser fingerprinting
method gave accurate results.

In the last analysis of HTTPS traffic, we were not
interested in client’s application type, but rather in its

Husék et al. EURASIP Journal on Information Security (2016) 2016:6

Page 11 of 14

unknown: update

unknown: unknown

unknown: comman line

unknown: browser

unknown: application

Fig. 7 Shares of HTTPS client types in the dictionary

unknown: crawler y
._w desktop: update

desktop: application

desktop: browser

_——desktop: comman line

desktop: unknown

device: application
mobile: application
mobile: browser

mobile: unknown

implementation, i.e., operating system. The results of the
analysis are presented in Fig. 10. We used our dictionary to
assign an User-Agent to the cipher suite list of encrypted
connection. The User-Agent was then further analyzed
to retrieve operating system information. The majority of
the operating system represents the Windows platform.
Unfortunately, there was a high share of the traffic for
which we were not able to determine the client’s operat-
ing system due to missing or contradictory information in
the User-Agent string. The shares of other operating sys-
tems were evenly distributed. To obtain a more precise
operating system identification, we could use additional
information, such as TCP window size or SYN packet size.

7.3 Network security and forensics

The next step following the classification of the network
traffic and identification of the clients was the detection
of specific or unusual clients in the network traffic. The
problem arises in the fields of network security and foren-
sics. Network forensics use cases which typically focus
on tracing an activity of a specific host in the network.

If a client is known to be malicious, e.g., it is a malware,
then it is also relevant for network security. Monitor-
ing the activity of clients, which are known or suspected
of being malicious, helps in detection and prevention of
attacks or malware spreading. However, recognizing mali-
cious activity and marking a client as malicious is a hard
problem.

One of the most interesting pairs, from the network
security perspective, included characteristic sequence of
a Bash vulnerability Shellshock in the User-Agent string.
The sequence “() { ;; };” appeared in other HTTP
headers as well in this case. The string clearly is not a User-
Agent, which also implies that we have no other identifier
of the client. The fingerprint was obtained via host-based
method and is trustworthy. We searched for the corre-
sponding cipher suite list in the network monitoring data
but did not find any other match. Therefore, we may
assume there is a unique fingerprint of malicious client.
Although we do not know more about the client, we can
use the knowledge to detect suspicious cipher suite lists in
the network traffic. Detection of malicious clients, which

unknown: update

desktop: update

unknown: unknown

mobile: unknown

desktop: unknown
unknown: crawler
unknown: command line
desktop: command line

unknown: browser

Fig. 8 Shares of HTTPS client types in live network traffic

desktop: application
mobile: application
unknown: application

desktop: browser

mobile: browser

Husék et al. EURASIP Journal on Information Security (2016) 2016:6

Page 12 of 14

Fig. 9 Shares of web browsers

unknown

Safari
Opera
Internet Explorer: \

Blackberry
Firefox

Chrome

are known to exploit a vulnerability, is another use case of
fingerprinting in network security.

7.4 Defense against fingerprinting

Bujlow et al. [3] surveyed defense strategies against cur-
rently known tracking mechanisms, e.g., browser finger-
printing. We are not aware of any method which would
prevent SSL/TLS fingerprinting apart from using a proxy
or manually changing the cipher suite list.

Using a proxy, for example, mitmproxy [39], causes the
fingerprinting method to detect cipher suite list of the
proxy instead of cipher suite list of a client. On the other
hand, the cipher suite list of a proxy can be recognized
and the corresponding network traffic can be marked
accordingly.

The second option of defense is manually changing the
cipher suite list of a client. This can be done by forced for-
bidding of certain cipher suites. Then, a client is commu-
nicating with reduced cipher suite list. The fingerprinting
method cannot recognize the reduced cipher suite list and
thus fails at finding a corresponding User-Agent. On the
other hand, it is not easy to reduce a cipher suite list to
forge cipher suite list of a different client.

Table 3 Shares of used web browsers for Czech Republic [38]

Browser Traffic share [%]
Chrome 41.94
Firefox 2639
Internet explorer 17.27
Safari 552
Opera 4.59

Other 4.29

8 Conclusions

In this paper, we have shown that it is possible to estimate
the User-Agent of a client in HTTPS communication. This
was done for further identifying the client using network
monitoring and fingerprinting the SSL/TLS handshake,
which is the main contribution of this paper. We designed
an experiment in which we measured HTTPS traffic in
a campus network. We processed only the initial SSL/TLS
handshake in which the client and server negotiate the
parameters of the encryption. Therefore, our approach
was lightweight and avoided decrypting traffic.

First, we investigated the parameters of the SSL/TLS
handshake, which could be used to identify the client. The
client identifies itself in a ClientHello message during the
handshake. The most varied part of the ClientHello was
the list of cipher suites supported by the client. The cipher
suite list differed among various client applications and

Android

Van Blackberry
i0S

: . 5.8%
Windows g Linux

/Mac o

unknown

Fig. 10 Shares of operating systems

Husék et al. EURASIP Journal on Information Security (2016) 2016:6

their versions, which made it suitable for further iden-
tification. In total, we observed 305 unique cipher suite
lists during our measurement. The other parts of the
ClientHello message, such as the SSL/TLS version, com-
pression, and supported extensions, were interesting for
analysis but unusable for client identification due to the
limited number of distinct values.

Second, we studied the relationship between cipher
suite lists and HTTP User-Agents. The User-Agent is
a common client identifier in HTTP. However, in HTTPS,
it is not directly accessible without decrypting the trans-
ferred data. We deployed two methods for monitoring
SSL/TLS handshakes and HTTP headers simultaneously
in order to pair cipher suite lists and User-Agents. The
host-based method, i.e., measurement on the server side,
provided accurate results. However, this method was lim-
ited by the set of clients accessing the monitoring server
and we obtained a smaller number of pairs. The flow-
based method used network monitoring and was not
limited to a single server. We were looking for clients
communicating on HTTP and HTTPS protocols over
a short period of time and paired the observed cipher suite
lists and User-Agents from both connections. We gained
a large dictionary of more than 12,000 pairs. However,
this method was less accurate compared to the host-based
method.

Third, we assigned the corresponding User-Agents from
the dictionary to the results from monitoring the SSL/TLS
connections and discussed the required size and accuracy
of the dictionary. We found that we need a dictionary of
about 300 cipher suite lists with assigned User-Agents.
Therefore, the dictionary which was created using the
host-based method was not sufficient to cover all the dis-
tinct cipher suite lists which appeared in network traffic.
On the other hand, only a 1-h sample of the HTTPS
traffic contained almost all the cipher suite lists which
were observed over the week-long measurement. There-
fore, we used the dictionary obtained using the flow-based
method. However, many cipher suite lists were paired
with more than one User-Agent. We were able to assign
a User-Agent to almost every observed cipher suite list
with a certain level of probability. Fortunately, in many
cases, a lot of User-Agents which corresponded to a sin-
gle cipher suite list shared the same client identifier and
differed only in their version or a similarly attainable value.

The fourth research question regarded application of
SSL/TLS fingerprinting in network security. We discussed
an example security incident which could be detected
using network monitoring and SSL/TLS fingerprinting.
A client, which tried to exploit a Shellshock vulnerability,
exhibited a unique cipher suite list among other clients.
Therefore, we could claim certain clients as suspicious and
detect their activity in the network traffic to protect hosts
in monitored network.

Page 13 of 14

In conclusion, our work enhanced the capabilities of
network forensics by introducing the network-based iden-
tification of HTTPS clients. Our network-based approach
is lightweight, is not limited to a single server, and does
not approach the encrypted data. Therefore, we can iden-
tify clients while preserving the communication’s privacy.
Our results are applicable for identifying clients in the
network, detecting the activity of a specific client, and
breaking down the structure of HT'TPS traffic in a whole
network.

Competing interests
The authors declare that they have no competing interests.

AuthorsEcontributions

MH contributed to the experiment design, performed the data collection, and
has been involved in drafting the manuscript. MC mainly contributed on
dictionary creation and experiment evaluation. TJ participated in network data
analysis and manuscript revision. PC participated in the design of the
detection method and has been involved in manuscript critical revision. All
authors read and approved the final manuscript.

Acknowledgements

The dataset, containing the dictionary and aggregated measurement data, is
publicly available at https://is.muni.cz/repo/1321931/dataset-https_client_
identification.zip.

Received: 20 October 2015 Accepted: 11 January 2016

References

1. B Mdller, T Duong, K Kotowicz, This POODLE bites: exploiting the SSL 3.0
fallback. PDF online. (2014). https://poodlebleed.com/ssl-poodle.pdf.
Accessed 12 Jan 2015

2. PVelan, M Cermak, P Celeda, M Dralar, A survey of methods for encrypted
traffic classification and analysis. Int J Netw Manag. 25(5), 355-374 (2015)

3. TBujlow, V Carela-Espafol, J Solé-Pareta, P Barlet-Ros, Web tracking:
mechanisms, implications, and defenses. CoRR. abs/1507.07872 (2015).
http://arxiv.org/abs/1507.07872

4. | Zeifman, Was that really a Google bot crawling my site? (2012). https://
www.incapsula.com/blog/was-that-really-a-google-bot-crawling-my-
site.html. Accessed 15 October 2015

5. ERaftopoulos, X Dimitropoulos, in Security and Privacy Workshops (SPW),
2013 IEEE. Understanding network forensics analysis in an operational
environment (IEEE, New York, 2013), pp. 111-118

6. P Wang, S Sparks, CC Zou, An advanced hybrid peer-to-peer botnet. IEEE
Trans Dependable Secure Comput. 7(2), 113-127 (2010)

7. T Dierks, E Rescorla, The Transport Layer Security (TLS) Protocol Version
1.2. IETF. Updated by RFCs 5746, 5878, 6176 (2008). http://www.ietf.org/
rfc/rfc5246.txt

8. AFreier, P Karlton, P Kocher, The Secure Sockets Layer (SSL) Protocol
Version 3.0. [ETF (2011). http://www.ietf.org/rfc/rfc6101.txt

9. ERescorla, HTTP Over TLS. IETF. Updated by RFCs 5785, 7230 (2000).
http://www.ietf.org/rfc/rfc2818.txt

10. IANA —Internet Assigned Numbers Authority, protocol registries (2014).
Web page. http://www.iana.org/protocols. Accessed 28 Jan 2015

11. P Yee, Updates to the Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. [ETF (2013). http://www.ietf.
org/rfc/rfc6818.txt

12. CMeyer, 20 Years of SSL/TLS Research: An analysis of the Internet's security
foundation. PhD thesis (2014). http://www-brs.ub.ruhr-uni-bochum.de/
netahtml/HSS/Diss/MeyerChristopher/diss.pdf. Accessed 15 Jan 2015

13. O Levillain, A Ebalard, B Morin, H Debar, in Proceedings of the 28th Annual
Computer Security Applications Conference. ACSAC '12. One year of SSL
Internet measurement (ACM, New York, NY, USA, 2012), pp. 11-20

14. R Holz, L Braun, N Kammenhuber, G Carle, in Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference. IMC '11. The SSL

https://is.muni.cz/repo/1321931/dataset-https_client_identification.zip
https://is.muni.cz/repo/1321931/dataset-https_client_identification.zip
https://poodlebleed.com/ssl-poodle.pdf
http://arxiv.org/abs/1507.07872
https://www.incapsula.com/blog/was-that-really-a-google-bot-crawling-my-site.html
https://www.incapsula.com/blog/was-that-really-a-google-bot-crawling-my-site.html
https://www.incapsula.com/blog/was-that-really-a-google-bot-crawling-my-site.html
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc6101.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.iana.org/protocols
http://www.ietf.org/rfc/rfc6818.txt
http://www.ietf.org/rfc/rfc6818.txt
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/MeyerChristopher/diss.pdf
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/MeyerChristopher/diss.pdf

Husék et al. EURASIP Journal on Information Security (2016) 2016:6

landscape: a thorough analysis of the x.509 PKI using active and passive
measurements (ACM, New York, NY, USA, 2011), pp. 427-444

15. Z Durumeric, J Kasten, M Bailey, JA Halderman, in Proceedings of the 2013
Conference on Internet Measurement Conference. IMC '13. Analysis of the
HTTPS Certificate Ecosystem (ACM, New York, NY, USA, 2013), pp. 291-304

16. Qualys SSL Lab, HTTP client fingerprinting using SSL handshake analysis
(2014). Web page: https://www.ssllabs.com/projects/client-
fingerprinting/. Accessed 23 Jan 2015

17. Risti¢, Passive SSL client fingerprinting using handshake analysis (2014).
https://github.com/ssllabs/sslhaf. Accessed 30 Jan 2015

18. JB Ullrich, Browser fingerprinting via SSL Client Hello messages (2014).
https://isc.sans.edu/forums/diary/Browser+Fingerprinting+via+SSL+
Client+Hello+Messages/17210. Accessed 15 Sept 2015

19. M Majkowski, SSL fingerprinting for pOf (2012). Web page: https://idea.
popcount.org/2012-06-17-ssl-fingerprinting-for-pOf. Accessed 28 Jan
2015

20. L Bernaille, R Teixeira, in Passive and Active Network Measurement, ed. by S
Uhlig, K Papagiannaki, and O Bonaventure. Early recognition of encrypted
applications. Lecture notes in computer science, vol. 4427 (Springer,
Heidelberg, 2007), pp. 165-175

21. Tlirsik, P Celeda, in Advances in Communication Networking, ed. by Y
Kermarrec. Identifying operating system using flow-based traffic
fingerprinting. Lecture notes in computer science, vol. 8846 (Springer,
Cham, 2014), pp. 70-73

22. T Matsunaka, A Yamada, A Kubota, in Advanced Information Networking
and Applications (AINA), 2013 IEEE 27th International Conference On. Passive
OS fingerprinting by DNS traffic analysis (IEEE, New York, 2013),
pp. 243-250

23. M Zalewski, pOf v3 (2014). http://lcamtuf.coredump.cx/p0f3/. Accessed
25 Jan 2015

24. T Kohno, A Broido, K Claffy, in 2005 IEEE Symposium On Security and Privacy.
Remote physical device fingerprinting (IEEE, New York, 2005), pp. 211-225

25. T Karagiannis, K Papagiannaki, N Taft, M Faloutsos, in Passive and Active
Network Measurement, ed. by S Uhlig, K Papagiannaki, and O Bonaventure.
Profiling the end host. Lecture notes in computer Science, vol. 4427
(Springer, Berlin, Heidelberg, 2007), pp. 186-196

26. HJ Abdelnur, R State, O Festor, in Recent Advances in Intrusion Detection,
ed. by R Lippmann, E Kirda, and A Trachtenberg. Advanced network
fingerprinting. Lecture notes in computer Science, vol. 5230 (Springer,
Berlin, Heidelberg, 2008), pp. 372-389

27. T Unger, M Mulazzani, D Fruhwirt, M Huber, S Schrittwieser, E Weippl, in
Availability, Reliability and Security (ARES), 2013 Eighth International
Conference On. SHPF: Enhancing HTTP(S) session security with browser
fingerprinting (IEEE, New York, 2013), pp. 255-261

28. M Mulazzani, P Reschl, M Huber, M Leithner, S Schrittwieser, E Weippl, in
Web 2.0 Workshop on Security and Privacy (W2SP). Fast and reliable browser
identification with JavaScript engine fingerprinting, (2013). http://
w2spconf.com/2013/papers/s2p1.pdf. Accessed 19 October 2015

29. P Eckersley, in Proceedings of the 10th International Conference on Privacy
Enhancing Technologies. How unique is your web browser? PETS'10
(Springer, Berlin, Heidelberg, 2010), pp. 1-18

30. Proxy4Free.com, Free proxy servers—protect your online privacy with our
proxy list (2015). Web page http://www.proxy4free.com/. Accessed
19 October 2015

31. RDingledine, N Mathewson, P Syverson, in Proceedings of the 13th
Conference on USENIX Security Symposium - Volume 13. TOR: the
second-generation onion router. SSYM'04 (USENIX Association, Berkeley,
CA, USA, 2004), pp. 21-21

32. Y Gokcen, VA Foroushani, A Heywood, in Security and Privacy Workshops
(SPW), 2014 IEEE. Can we identify NAT behavior by analyzing Traffic flows?
(IEEE, New York, 2014), pp. 132-139

33. VKrmicek, J Vykopal, Krejci, in Proceedings of the 5th International Student
Workshop on Emerging Networking Experiments and Technologies. Netflow
based system for NAT detection. Co-Next Student Workshop ‘09 (ACM,
New York, NY, USA, 2009), pp. 23-24

34. RHofstede, P Celeda, B Trammell, | Drago, R Sadre, A Sperotto, A Pras,
Flow monitoring explained: from packet capture to data analysis with
NetFlow and IPFIX. IEEE Commun Surv Tutorials. 16(4), 2037-2064 (2014)

35. P Velan, T Jirsik, P Celeda, in Advances in Communication Networking, ed.
by T Bauschert. Design and evaluation of HTTP protocol parsers for IPFIX
measurement. vol. 8115 (Springer, Heidelberg, 2013), pp. 136-147

36.

37.

39.

Page 14 of 14

cURL Contributors, cURL - command line tool and library for transferring
data with URL syntax (2015). http://curl.haxx.se/. Accessed 25 Jan 2015

O Alders, HTTP:BrowserDetect (2015). https://github.com/oalders/http-
browserdetect. Accessed 15 Sept 2015

StatCounter, StatCounter Global Stats (2015). http://gs.statcounter.com/#
all-browser-ww-monthly-201506-201506-map. Accessed 01 October
2015

A Cortesi, mitmproxy (2014). https://mitmproxy.org/. Accessed 15 Sept
2015

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://www.ssllabs.com/projects/client-fingerprinting/
https://www.ssllabs.com/projects/client-fingerprinting/
https://github.com/ssllabs/sslhaf
https://isc.sans.edu/forums/diary/Browser+Fingerprinting+via+SSL+Client+Hello+Messages/17210
https://isc.sans.edu/forums/diary/Browser+Fingerprinting+via+SSL+Client+Hello+Messages/17210
https://idea.popcount.org/2012-06-17-ssl-fingerprinting-for-p0f
https://idea.popcount.org/2012-06-17-ssl-fingerprinting-for-p0f
http://lcamtuf.coredump.cx/p0f3/
http://w2spconf.com/2013/papers/s2p1.pdf
http://w2spconf.com/2013/papers/s2p1.pdf
http://www.proxy4free.com/
http://curl.haxx.se/
https://github.com/oalders/http-browserdetect
https://github.com/oalders/http-browserdetect
http://gs.statcounter.com/#all-browser-ww-monthly-201506-201506-map
http://gs.statcounter.com/#all-browser-ww-monthly-201506-201506-map
https://mitmproxy.org/

	Abstract
	Keywords

	Introduction
	Research questions
	Paper organization

	Motivation
	Analysis of encrypted network traffic
	Client identification and browser fingerprinting
	Network security and forensics

	State-of-the-art
	Introduction to SSL/TLS
	Related work

	Experiment design
	SSL/TLS traffic measurement
	Pairing cipher suite lists and User-Agents
	Assigning User-Agents to measured HTTPS flows

	Experiment results
	Measurement
	Pairing cipher suite lists and User-Agents
	Assigning User-Agents to measured HTTPS flows

	Experiment evaluation
	Measurement
	Pairing cipher suite lists and User-Agents
	Assigning User-Agents to the measurement results

	Discussion
	Classification of network traffic
	Client identification and browser fingerprinting
	Network security and forensics
	Defense against fingerprinting

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References

