
Cho et al. EURASIP Journal on Information Security (2016) 2016:2
DOI 10.1186/s13635-015-0027-7

RESEARCH Open Access

Combating online fraud attacks in
mobile-based advertising
Geumhwan Cho1, Junsung Cho1, Youngbae Song1, Donghyun Choi2 and Hyoungshick Kim1*

Abstract

Smartphone advertisement is increasingly used among many applications and allows developers to obtain revenue
through in-app advertising. Our study aims at identifying potential security risks of mobile-based advertising services
where advertisers are charged for their advertisements on mobile applications. In the Android platform, we
particularly implement bot programs that can massively generate click events on advertisements on mobile
applications and test their feasibility with eight popular advertising networks. Our experimental results show that six
advertising networks (75%) out of eight are vulnerable to our attacks. To mitigate click fraud attacks, we suggest three
possible defense mechanisms: (1) filtering out program-generated touch events; (2) identifying click fraud attacks with
faked advertisement banners; and (3) detecting anomalous behaviors generated by click fraud attacks. We also discuss
why few companies were only willing to deploy such defense mechanisms by examining economic misincentives on
the mobile advertising industry.

Keywords: Advertising network, Click fraud, Android

1 Introduction
As smartphones become more popular, the mobile adver-
tisement market is also growing rapidly [1]. Mobile adver-
tisement is a primary business model that offers the
financial incentives for developers to distribute free appli-
cations. In the mobile advertisement market, advertising
networks serve as a single vendor for advertisers and
pay a developer according to the numbers of impres-
sions (the number of times an advertisement has been
served) and/or clicks generated by users [2]; application
developers expect users to “pay” for their applications by
viewing (i.e., impressions) or clicking advertisements (i.e.,
generating clicks) as many as possible.
In those business models, the most important secu-

rity problem is to detect and prevent (artificially created)
fraudulent events, which have no intention of generat-
ing value for advertising [3]. Although this security issue
has been extensively studied, most studies have focused
on preventing click fraud attempts housed on web pages
rather than mobile platforms [4, 5].

*Correspondence: hyoung@skku.edu
1Department of Computer Science and Engineering, Sungkyunkwan
University, Seobu-ro 2066, 16419 Suwon, Republic of Korea
Full list of author information is available at the end of the article

Recently, there have been a few attempts to analyze
the security risks of smartphone advertisement. Crussell
et al. [6] particularly analyzed the prevalence of fraudulent
advertisement behaviors generated by real Android apps.
In this paper, we extend their work by implement-

ing independent bot programs to generate fraudulent
click events in an automatic manner. Unlike the previ-
ous study [6], which is based on emulation results, we
applied our bot programs to the eight real advertising
networks (AdMob, Millennial Media, AppLovin,
AdFit, MdotM, LeadBolt, RevMob, and Cauly Ads)
and found that artificially generated click events were suc-
cessfully approved in the six advertising networks (out of
eight networks). We highlight our key contributions as
follows:

• We design and develop bot programs capable of
automatically generating fraud events to mimic users’
activities on advertisements.

• We particularly show the feasibility of automatic click
generation attacks on eight popular mobile
advertising networks to evaluate their security risks.
Seventy-five percent of the systems that we
experimented (Millennial Media, AppLovin,

© 2016 Cho et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-015-0027-7-x&domain=pdf
http://orcid.org/0000-0002-1605-3866
mailto: hyoung@skku.edu
http://creativecommons.org/licenses/by/4.0/

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 2 of 9

AdFit, MdotM, RevMob, and Cauly Ads) did not
detect our anomalous click attempts.

• We suggest three possible defense mechanisms: (1)
filtering out program-generated touch events (at
client side); (2) identifying click fraud attacks with
faked advertisement banners (at client side); and (3)
detecting anomalous behaviors generated by click
fraud attacks (at server side).

• We discuss the issue of economic misincentives on
the mobile advertising industry to discover an
inherent problem in using countermeasures against
click fraud attacks.

The rest of this paper is organized as follows. The
related work is reviewed in Section 2. In Section 3, we
provide some background on the mobile advertisement
(particularly for the Android platform). In Section 4, we
present how bot programs can be implemented for online
fraud in mobile-based advertising. Then, we evaluate the
feasibility of bot programs against click-based advertise-
ments through intensive experiments with real adver-
tisement services in Section 5. In Section 6, we discuss
three practical defense mechanisms to detect and pre-
vent automated fraudulent clicks. In Section 7, we explore
the misincentive problem that can inherently corrupt ad
networks through false clicking. Our conclusions are in
Section 8.

2 Related work
Over the last few years, online advertisement has been
widely studied because it has become a significant source
of revenue for web-based businesses. However, it also
introduces a new type of cyber criminal activities called
“click fraud”. Click fraud is the practice of deceptively
clicking on advertisements with the intention of either
increasing third-party website revenues or exhausting an
advertiser’s budget [7]. Kshetri [8] examined the mecha-
nisms and processes associated with the click fraud indus-
try from an economics viewpoint.Miller et al. [9] analyzed
the characteristics of real-world click fraud by examining
the operations and underlying economic models of two
modern malware families, Fiesta and 7cy, which are
typically used for click fraud.
To prevent those click frauds, several defense tech-

niques have been introduced. The simplest solution is
to use threshold-based detection. If a website is receiv-
ing a high number of click events with the same device
identifier (e.g., IP address) in a short time interval, those
events can be considered as fraud. However, click fraud
detection is not trivial—clicks can sophisticatedly be gen-
erated to bypass such naive defense schemes. For example,
attackers are behind proxies or globally distributed [10].
Also, device identifiers such as IP address can easily be
modified.

To mitigate such sophisticated attacks, Kitts et al. [11]
discussed how to design a data mining system to detect
large-scale click fraud attacks. Metwally et al. [12] devel-
oped a technique based on the traffic similarity analysis
to discover a type of fraud called coalitions performed by
multiple fraudsters. Another interesting approach is to use
bait advertisements [10, 13]. Xu et al. [14] proposed a sys-
tematic approach by introducing additional tests to check
whether visiting clients are clickbots.
Only a few studies have analyzed the security of mobile

advertising networks although many applications use one
or more advertising services as a source of revenue for the
Android developers. Those studies were mainly focused
on discussing the security concerns about unnecessary
permissions required by advertisement libraries. Pearce
et al. [15] showed that 49 % of Android applications con-
tain at least one advertisement library, and these libraries
overprivilege 46 % of advertising-supported applications.
Shekhar et al. [16] proposed an approach called AdSplit to
separate applications from its advertisement libraries that
might request permissions for sensitive privileges.
When it comes to click fraud in mobile platforms,

Crussell et al. [6] raised the issue about click fraud in
the context of mobile advertising. However, their study
results may not be sufficient to show the real impacts of
click fraud attacks in mobile platforms because their study
mainly focused on analyzing existing mobile applications’
fraudulent behaviors that could be used for advertise-
ment fraud. In contrast, we studied how vulnerable real
mobile advertising networks are to click fraud attacks
by implementing bot programs and testing their feasi-
bility with real advertisement networks. We particularly
extend our preliminary work [17] to generalize click fraud
attacks with various revenuemodels and develop practical
defense mechanisms for mitigating click fraud attacks on
mobile devices. We also discuss the economic aspects of
security failure that might be an inherent problem of click
fraud in mobile advertising.

3 Background
In this section, we explain definitions of the terminologies
used in the remaining of the paper. To provide a bet-
ter understanding of click fraud attacks, we present how
ad networks typically work between entities and explore
business models popularly used for mobile advertising
networks.

3.1 Terminology
We define the following definitions.

• Publisher is an entity which deploys a mobile
application with advertisements.

• Advertiser is an entity which pays the advertising
networks for their advertisements being displayed on
applications.

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 3 of 9

• Advertising network (Ad network) is an entity which
manages publishers and advertisers. They can buy
and sell advertisement traffic through trusted partner
networks.

• Impressions are a metric on counting the number of
times an advertisement has been deployed.

• Clicks are another metric on counting the number of
events that are generated when users click on an
advertisement.

• Advertisement request (Ad request) is the form of
HTTP traffic that is generated from impressions or
clicks. Whenever a valid request message is generated
(i.e., advertisement is shown to a user or clicked by a
user), advertisers have to pay the ad network and a
percentage of amount is also paid to the publisher.

3.2 How ad networks work
Aswe have already explained in Section 3.1, an ad network
acts as a moderator between publishers and advertisers.
In Android, a jar file acts as a moderator, which should
be included in an application to embed advertisements
into the publisher’s applications. When a publisher wants
to display advertisements as a part of its application, she
must sign up with the ad network and download the
advertisement library. That library typically provides an
API for embedding advertisements into the UI of the pub-
lisher’s application and fetching, rendering, and tracking
advertisements. The device identifier is generally used to
uniquely identify the publisher, who wanted to embed
those advertisements.
As shown in Fig. 1, we illustrate how ad networks man-

age publishers, applications, and advertisers with adver-
tisement library. Since an advertiser A wishes to send
advertisements to many Android users, she requests to

distribute her advertisement via an ad network N. After
receiving the request, the ad network adds the advertiser’s
advertisement to the ad network’s software development
kit (SDK) library. Imagine that there is a publisher P who
wants to make money with mobile advertising services.
When the publisher signs up with the ad network, she
downloads the latest ad network’s SDK library and release
her application App with this library.
When a user clicks on the advertisement related to the

advertiser A, the application App delivers the ad request
message containing the user device’s identifier to the ad
network N. The ad network N then sends the response to
the application App running on the user’s device. For that
click-on-the-advertisement banner, the advertiser A pays
the ad network N and the publisher P.

3.3 Revenue models
Mobile advertisement services are dramatically growing
up as the number of smartphone users is also increasing.
In particular, the Android market offers the opportunity
for advertisers and publishers who are interested in the
mobile advertisement business. A publisher (i.e., applica-
tion developer) releases a (free) mobile application with
advertisements so that she canmakemoney through those
advertisements where revenue is typically determined by
the amounts of impressions and/or clicks. The following
revenue models are generally used:

- Cost per click (CPC) is that advertisers charge per
click which is generated by users. It is used for the
number of times a website visitor or a user for an
application clicks on a banner. This measurement is
also popularly used since it can be implemented in a
simple manner.

Fig. 1 How ad networks work to manage publishers, applications, and advertisers with advertisement library

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 4 of 9

- Cost per mile (CPM) is that advertisers charge per a
thousand impressions to publishers with ad networks.
It is also referred as the cost per thousand (CPT)
since it has estimated the cost per thousand views of
the advertisements. This measurement is widely
available for advertisements for Android developers.

- Cost per action (CPA) is that advertisers charge per
specific action such as filling a form, signing up for an
offer, completing a survey, or downloading software.
This model seems advantageous to advertisers since
they only pay for specific actions which are directly
related to their advertisements. However, it is not
easy to implement when it comes to complex actions.

4 Implementation of online fraud attacks
In this paper, we particularly focus on the implementa-
tion of bot programs against the CPC revenue model in
order to test their feasibility with real ad networks (see
Section 4.1). The test results were presented in Section 5.
However, similar automatic attacks can also be imple-
mented for the other revenue models. We will briefly
introduce such attack designs in Section 4.2 and 4.3.

4.1 Attack against CPC
As we can see in Section 3, in the CPC revenue model,
a publisher makes money whenever a user clicks on
the advertisement. Therefore, a malicious publisher may
involve in the act of generating such click events on the
advertisement with the publisher’s profit. In theory, those
events can be simply generated. However, it is still ques-
tionable whether real advertisement networks are vul-
nerable to those attacks since they may provide some
countermeasures to defeat such attacks.
To analyze the risk of real mobile ad networks, we imple-

mented an independent Android app that can automat-
ically generate click events for advertisements displayed

on Android apps. We note that a malicious publisher can
implement such an app (i.e., bot program), and the pub-
lisher can also install the app on his (or her) own device
to generate fake click events within a short time interval
in order to make its own profit. This is a very effective
economic activity for attackers. For example, in the case
of Cauly, a publisher receives only US$0.02 per click
event—if an attack sequence is generated within 7 s on
average, the attacker can earn US$1480.72 in a week by
running a bot program on the attacker’s device.
For simplicity, we used Android Debug Bridge

(ADB) which is a debug support tool to communicate
between a host and an Android device. In other words,
with ADB, we can control an Android device without
any restrictions. To generate a click event on an adver-
tisement embedded in our prototype with a victim ad
network’s SDK library, we send a sendevent command
to the Android app via ADB. Finally, a virtual click event
is generated on an advertisement in the Android app.
Surely, such a bot program can also be implemented as a
stand-alone Android app without ADB support.
However, the generation of click events alone is

not enough. We empirically found that some ad net-
works (e.g., Cauly Ads) have checked the requesting
device’s identifiers such as international mobile equip-
ment identity (IMEI) and/or “Device ID” (also known
as android_id) to limit the number of possible ad
requests from a device during a specific period (e.g., a
day). In our empirical experiments, Cauly Ads limited
the number of click events to 19 per day for a device
(based on the “Device ID” information). If a device gen-
erates click events more than the threshold number (e.g.,
19 per day in Cauly Ads), the device might be black-
listed by an ad network. Therefore, we tried to generate
click events which resembles events generated by multiple
devices associated with multiple users. Figure 2 illustrates

(a) Normal situation with multiple devices (b) Pretending to be normal by a bot program
Fig. 2 Bot programs can generate click events with different device identifiers, respectively, such that those look like click events generated by
multiple devices

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 5 of 9

how a bot program pretends to be a normal one with mul-
tiple devices. Bot programs can generate not only click
events but also (faked) device identifiers to disable device
detection for limiting the number of ad requests from a
single device.

4.1.1 Generation of device IDs
In Android, Device ID (or android_id) is a 64-bit
number (as a hex string) that is randomly generated when
the user first sets up the device and should remain con-
stant for the lifetime of the Android device.1 This infor-
mation can be used for identifying or tracking a device
(particularly for tablet devices that do not have IMEI).
However, we can observe that Device ID is indepen-
dently (and randomly) created from an Android device
itself. Therefore, we can generate new Device IDs for
an Android device without any restrictions.
Our main concern here is how to replace the exist-

ing Device ID with newly generated ones. The simplest
solution is to perform the “factory” reset which is a pro-
cedure that securely erases all user data on the Android
device and returns the device to its initial state. However,
the whole process is time consuming; an Android app with
the victim’s SDK library should be installed again even
when the Android device is successfully initialized.
Alternatively, we can update the Device ID value

without performing the factory reset. Android saves
all device settings including Device ID in a SQLite
database file.2 This database file can be managed by a
program named sqlite3 at runtime. We assume that
sqlite3 is already installed on the Android device. A bot
program can open the settings.db file and modify the
Device ID value via ADB (see Fig. 3) before generating
ad requests.

4.1.2 Generation of ad requests
In order to successfully send ad requests to an ad net-
work, a bot program sequentially generates a series of
pre-defined click events via ADB: (1) the bot program first
starts to run an Android app with the victim’s SDK library,
(2) generates a series of click events on the advertisement
in the app, and then (3) updates Device ID with a new
random 64-bit number. Whenever Device ID is suc-
cessfully changed, the bot program repeats this procedure
from (2). The reason we use a new Device ID for every

request is to avoid detection by the ad network. That is,
when the ad network monitors ad request traffic to detect
click fraud by counting the number of ad requests from
the same device, the bot program can trick the ad net-
work with new Device IDs into believing as if those
requests came from different users (or Android devices)
individually.

4.2 Attack against CPM
To automatically increase the number of impressions on a
mobile application, the most straightforward approach is
to view new advertisements as many as possible.
A typical ad network’s SDK library updates its advertise-

ments periodically (e.g., every 30 s). To reduce this delay
time for updating advertisements, an attacker can make a
targeted app with ad library terminate and restart in an
automatic manner. In fact, a similar technique can also
be needed for attacking CPC when multiple clicks are not
allowed on the same advertisement.
However, since advertisers generally charge per thou-

sand impressions, the effectiveness of such attacks is not
comparable with the attacks against CPC in terms of effi-
ciency. For example, in the case of Cauly, a publisher
receives only $0.09 per thousand impressions.

4.3 Attack against CPA
The CPA model is a generalization of CPC; advertisers
can consider various activities (e.g., watching a video clip,
installing another app, signing up for a website) including
click events.
In general, it is necessary to learn prior knowledge

about specific event sequences for CPA activities in order
to automatically generate those sequences against CPA.
Surely, it seems to be trickier than implementing the
attacks for CPC consisting of touch events with fixed
screen positions.

5 Experiments
We implemented several independent Android apps with
real ad networks’ SDK library for evaluating their poten-
tial security risk against click fraud attacks. We performed
click generation attacks described in Section 4 on eight
popular ad networks (AdMob, Millennial Media,
AppLovin, AdFit, MdotM, LeadBolt, RevMob, and
Cauly Ads), respectively. Those ad networks were

Fig. 3 Example of SQLite commands to update Device ID (also known as android_id)

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 6 of 9

selected by “AppBrain” website that offers the lists of top
500 most installed ad networks.3 We selected those ad
networks which are suitable for testing the CPC revenue
model with a banner. For each ad network, we created
a user account to receive payments and implemented an
Android app with the SDK library for advertisements
of the ad network. We note that a malicious publisher
(as also the app developer) uses his (or her) own device
in order to use those apps on the device without any
restriction.
In our threat model, the attacker’s (i.e., publisher’s) goal

is to successfully deliver ad request messages to a victim
ad network to receive payments for those messages from
the ad network. Therefore, we tested whether ad request
messages can be successfully delivered without any trou-
ble whenever we had attempted to generate a click event
(with a different Device ID) on the victim’s advertise-
ments. Specifically, we assume that the attack is successful
if our bot program generates over 100 ad request mes-
sages without any disruption to receive payments for the
generated clicks.
In our experiments, 75% (Millennial Media,

AppLovin, AdFit, MdotM, RevMob, and Cauly Ads)
of the ad networks that we analyzed failed to prevent
the automated click generation attacks conducted by bot
programs. Probably, this implies that many real-world
ad networks seem to be significantly dangerous due to
click fraud. In this paper, our attack attempts are not
sophisticated but straightforward. However, 75% of the ad
networks are vulnerable to those attempts.
Fortunately, the other two mobile ad networks (AdMob

and LeadBolt) are secure against automated click gen-
eration attacks. When we generate click events even with
uniquely different Device IDs, those networks detect
our attacks only with a small number of attack attempts

and then finally blocked our accounts. For example, our
account used in the experiments for LeadBolt was tem-
porarily paused due to traffic abnormality (see Fig. 4). We
surmise that those networks might have their own defense
mechanisms to detect such abnormal request patterns.
We will discuss such defense mechanisms in detail in the
next section.
The main motivation of our experiments is to analyze

potential risks of mobile advertisement services and sug-
gest reasonable countermeasures to mitigate such risks.
Therefore, we only checked ad networks’ responses for
our click fraud attempts; however, actual money is not
withdrawn from our bank accounts. We also reported
the discovered design flaws to the ad networks, which
acknowledged them. Another ethical concern is related
to Device ID. When we replace Device ID, the used
Device ID may belong to some legitimate user that
might be potentially blamed for our attack experiments.
However, we note that this possibility is very unlikely
because the used Device IDs are randomly generated
ones rather than real Android devices’ Device ID.

6 Countermeasures
In this section, we describe several defense mechanisms
for preventing click fraud (i.e., automatic click generation
on Android’s banner advertisements) attacks.
We extend our previous work [17] with more detailed

implementation designs by fixing incorrect representation
and clarifying some ambiguous parts in the previously
suggested models.

6.1 Distinguishing human-generated touch events from
program-generated touch events

To prevent touch events generated by bot programs
for click fraud attacks, the most straightforward defense

Fig. 4 Our LeadBolt account was temporarily paused due to traffic abnormality

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 7 of 9

mechanism is to effectively distinguish such events from
human-generated touch events and filter out them. To
achieve this goal, we first analyze how Android handles
with touch events and then suggest a possible reference
implementation to filter out program-generated touch
events according to security policies.
We propose a modification of the existing Android

architecture to trace physically generated touch events on
the device screen (see Fig. 5). Android is built on the top
of a Linux kernel and includes a middleware framework
and an application layer. Touch events are gathered at the
/dev/input/event# node called Device Input
Event files regardless of either human-generated or
program-generated events. Next, the InputReader
framework reads those events from Device Input
Event files and the collected events are dispatched by
InputDispatcher to a proper app.
Before touch events are recorded at the Device

Input Event files, human-generated touch events
are processed through Input Driver while program-
generated touch events are handled with the evdev_
write function in the evdev.c file. We can develop a
filter for program-generated events with this difference—
the evdev_write function should be modified. We can
accept or reject program-generated touch events before
writing them on Device Input Event files depend-
ing on the target program’s security policy defined in
its Security Policy files. For example, program-
generated touch events on a specific rectangle region (for
displaying advertisements) can be ignored during the tar-
get program is actively running. We suggest that those
files can be included in the ad network’s SDK library and
installed with the program itself together. We expect that

the existing architecture can be slightly modified to fil-
ter out automatically generated touch events by programs
without significant loss in efficiency.
For using this filtering mechanism at the kernel level,

however, the integrity of the evdev_write function
and security policy files should be protected. In the
legacy Android architecture, if a bot program with root
privileges can be installed, it is not possible to satisfy this
requirement because those files might be easily tampered
by the bot program. Therefore, secure environments
for the suggested technique should also be provided to
protect those files from a malicious root. Hardware-
assisted solutions (e.g., TrustZone-based Real-time
Kernel Protection [18]) might be used to achieve this
security goal.
We implemented a prototype of our defense framework

to filter out program-generated touch events and tested
its effectiveness against click fraud attacks on real mobile
devices. We modified the Android operating system 5.1.1
(i.e., the evdev_write function). To simplify imple-
mentation, we used a naive security policy to ignore all
touch events generated by programs. We tested its feasi-
bility with a Nexus 5 smartphone running the modified
operating system against our own CPC bot implementa-
tion and a popular automatic click event generation tool
called DummySprite (http://www.dummysprite.com) on
Android. Our prototype implementation successfully pre-
vented their attack attempts without incurring significant
performance degradation.

6.2 Honey advertisement
“Honey” is the traditional term used to indicate a “decoy”
or “bait” for attackers in the field of security. For example,

Fig. 5 Physical touch distinguishing model

http://www.dummysprite.com

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 8 of 9

a honeypot is a security resource, which is intended to
be attacked and compromised to gain more information
about an attacker and his attack techniques [19].
To mitigate click fraud, we suggest an advertising sys-

tem for automatic click generation software. We call
this approach “honey advertisement”. Unlike the existing
advertisement systems, ad networks’ SDKs often display
transparent advertisement banners (in a random man-
ner) to deceive malicious bot programs that automatically
generate click events on those banners. A human can-
not see those banners while a machine cannot distinguish
transparent banners from normal banners. Therefore, if
an ad request for a transparent banner was generated, this
request might be triggered by automatic click generation
software rather than a human user and can finally be used
to set off an alarm of an automatic click fraud attack on the
advertising infrastructure. A similar idea was introduced
in the previous work [10].
We implemented a proof-of-concept app to show the

feasibility of honey advertisement (see on Fig. 6). As
shown in this figure, some advertisement banners can be
transparently displayed in a random manner. In a nor-
mal situation, a visible banner image file with a link to
the advertiser’s server is displayed while a transparent
image file is used with a link to the ad network’s server in
honey advertisement. When a transparent advertisement
is clicked, the ad request is delivered to the ad network’s
server. Basically, such events are likely to be triggered by
a bot program rather than a human user because human
users cannot see transparent advertisements. Therefore,
we may detect the bot program’s existence with a low
chance of false alarms.

6.3 Detecting anomalous behaviors
We can see that ad requests generated by bot programs
have significantly different patterns compared with those
generated by human users—for example, the automati-
cally generated requests would be periodically repeated
during a relatively short time. Oentaryo et al. [20] and

Kitts et al. [11] introduced systems, respectively, to
detect click fraud patterns in online advertisement using
server-side event models. Since the existing Android plat-
form can be used without modifications to support this
approach, we highly recommend deploying similar sys-
tems at the server side.
As presented in Section 5, we believe that some of ad

networks (e.g., AdMob and LeadBolt) might already use
such systems to detect abnormal request patterns for click
fraud in mobile platforms.

7 Economic aspects of security failure
In this section, we discuss why a small number of ad net-
works have only detected our straightforward click fraud
attacks.
This might be explained from the economic aspects of

security failure. When we examine the incentives of mar-
ket players for mobile advertising, we might discover an
inherent problem of click fraud.
As discussed in Section 6, several defense mechanisms

fighting against online click fraud can be deployed. But,
who should pay for those mechanisms? We note that click
fraud may directly incur significant losses in advertisers
instead of ad networks.
In theory, those solutions could be deployed by ad

networks who are running mobile advertising platforms.
However, we claim that many ad networks might not
actually be interested in mitigating click fraud.
In the mobile advertising industry, ad networks manage

publishers and advertisers as a moderator (see Section 3).
In general, advertisers paymoney to both ad networks and
publishers for their advertisements. For example, in the
CPC revenue model, whenever advertisements on mobile
applications are clicked, publishers receives money; ad
networks also earn money. That is, ad networks would
rather profit from click fraud attacks than from defenses
to mitigate such attacks.
With those misincentives between players, ad networks

are not motivated enough to detect online fraud attacks.

Fig. 6 Our proof-of-concept implementation for honey advertisement

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 9 of 9

Perhaps this is another example of “negative externality”
[21] in the field of information security, which is an
economic activity that imposes a negative effect on an
unrelated third party.

8 Conclusions
This paper evaluates the potential risk of automated
online fraud attacks in mobile advertising. Our exper-
imental results show that 75 % of those networks
(Millennial Media, AppLovin, AdFit, MdotM,
RevMob, and Cauly Ads) are vulnerable to click fraud
attacks.
To mitigate such automated attacks, we suggest three

possible defense mechanisms: (1) filtering out program-
generated touch events; (2) identifying click fraud attacks
with faked advertisement banners; and (3) detecting
anomalous behaviors generated by click fraud attacks.
We also discuss why few companies were only willing
to deploy such defense mechanisms with the economic
aspects of security failure in the mobile advertising indus-
try.
However, our current results are not enough to gener-

alize our observations because of the limited number of
tested ad networks. As an extension to this paper, we need
to consider performing our tests on a large sample of ad
networks.
In this paper, we only considered the simplest attack pat-

tern where click events were successively generated within
a fixed time interval and finally failed to successfully attack
two ad networks. Therefore, as another extension to this
work, we also plan to test other attack sequences patterns
against secure ad networks.

Endnotes
1http://developer.android.com/reference/android/

provider/Settings.Secure.html;
2/data/data/com.android.providers.settings/databases/

settings.db
3http://www.appbrain.com/stats/libraries/ad?list=

top500

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (No. 2014R1A1A1003707), ITRC
(IITP-2015-H8501-15-1008) studentships, and ICT R&D program
(2014-044-072-003, “Development of Cyber Quarantine System using SDN
Techniques”) of MSIP/IITP.

Author details
1Department of Computer Science and Engineering, Sungkyunkwan
University, Seobu-ro 2066, 16419 Suwon, Republic of Korea. 2Samsung
Electronics, Samsung-ro 129, 16677 Suwon, Republic of Korea.

Received: 26 October 2015 Accepted: 20 December 2015

References
1. S Dhar, U Varshney, Challenges and business models for mobile

location-based services and advertising. Commun. ACM. 54(5), 121–128
(2011)

2. I Leontiadis, C Efstratiou, M Picone, C Mascolo, in Proceedings of the
Twelfth Workshop onMobile Computing Systems & Applications. Don’t kill
my ads!: balancing privacy in an ad-supported mobile application market
(ACM, 2012)

3. N Immorlica, K Jain, M Mahdian, K Talwar, in Proceedings of TheWorkshop
on Internet and Network Economics. Click fraud resistant methods for
learning click-through rates (Springer Berlin Heidelberg, 2005)

4. N Daswani, C Mysen, V Rao, S Weis, K Gharachorloo, S Ghosemajumder,
Online advertising fraud. Crimeware Underst. New Attacks Defenses.
40(2), 1–28 (2008)

5. B Stone-Gross, R Stevens, A Zarras, R Kemmerer, C Kruegel, G Vigna, in
Proceedings of the 2011 Conference on Internet Measurement Conference.
Understanding fraudulent activities in online ad exchanges (ACM, 2011)

6. J Crussell, R Stevens, H Chen, in Proceedings of the 12th Annual
International Conference onMobile Systems, Applications, and Services.
MAdFraud: investigating ad fraud in android applications (ACM, 2014)

7. KC Wilbur, Y Zhu, Click fraud. Mark. Sci. 28(2), 293–308 (2009)
8. N Kshetri, The economics of click fraud. IEEE Secur. Priv. 8(3), 45–53 (2010)
9. B Miller, P Pearce, C Grier, C Kreibich, V Paxson, in Proceedings of Detection

of Intrusions andMalware, and Vulnerability Assessment. What’s clicking
what? Techniques and innovations of today’s clickbots (Springer Berlin
Heidelberg, 2011)

10. H Haddadi, Fighting online click-fraud using bluff ads. ACM SIGCOMM
Comput. Commun. Rev. 40(2), 21–25 (2010)

11. B Kitts, JY Zhang, G Wu, W Brandi, J Beasley, K Morrill, J Ettedgui, S
Siddhartha, H Yuan, F Gao, et al., Click fraud detection: adversarial pattern
recognition over 5 years at Microsoft. Real World Data Min. Appl. 17(1),
181–201 (2015)

12. A Metwally, D Agrawal, A El Abbadi, in Proceedings of the 16th International
Conference onWorldWideWeb. Detectives: detecting coalition hit inflation
attacks in advertising networks streams (ACM, 2007)

13. V Dave, S Guha, Y Zhang, Measuring and fingerprinting click-spam in ad
networks. ACM SIGCOMM Comput. Commun. Rev. 42(4), 175–186 (2012)

14. H Xu, D Liu, A Koehl, H Wang, A Stavrou, in Proceedings of 19th European
Sysposium on Reseach in Computer Security. Click fraud detection on the
advertiser side (Springer International Publishing, 2014)

15. P Pearce, AP Felt, G Nunez, D Wagner, in Proceedings of the 7th Symposium
on Information, Computer and Communications Security. AdDroid: privilege
separation for applications and advertisers in android (ACM, 2012)

16. S Shekhar, M Dietz, DS Wallach, in Proceedings of USENIX Security
Symposium. AdSplit: separating smartphone advertising from
applications (USENIX, 2012)

17. G Cho, J Cho, Y Song, H Kim, in Proceedings of the International Workshop
on Cyber Crime. An empirical study of click fraud in mobile advertising
networks (IEEE, 2015)

18. AM Azab, P Ning, J Shah, Q Chen, R Bhutkar, G Ganesh, J Ma, W Shen, in
Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security. Hypervision across worlds: real-time kernel
protection from the ARM trustzone secure world (ACM, 2014)

19. L Spitzner, Honeypots: Tracking Hackers. (Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002)

20. R Oentaryo, E-P Lim, M Finegold, D Lo, F Zhu, C Phua, E-Y Cheu, G-E Yap, K
Sim, MN Nguyen, et al., Detecting click fraud in online advertising: a data
mining approach. J. Mach. Learn. Res. 15(1), 99–140 (2014)

21. T Moore, R Clayton, R Anderson, The economics of online crime. J. Econ.
Perspect. 23(3), 3–20 (2009)

http://developer.android.com/reference/android/provider/Settings.Secure.html
http://developer.android.com/reference/android/provider/Settings.Secure.html
/data/data/com.android.providers.settings/databases/settings.db
/data/data/com.android.providers.settings/databases/settings.db
http://www.appbrain.com/stats/libraries/ad?list=top500
http://www.appbrain.com/stats/libraries/ad?list=top500

	Abstract
	Keywords

	1 Introduction
	2 Related work
	3 Background
	3.1 Terminology
	3.2 How ad networks work
	3.3 Revenue models

	4 Implementation of online fraud attacks
	4.1 Attack against CPC
	4.1.1 Generation of device IDs
	4.1.2 Generation of ad requests

	4.2 Attack against CPM
	4.3 Attack against CPA

	5 Experiments
	6 Countermeasures
	6.1 Distinguishing human-generated touch events from program-generated touch events
	6.2 Honey advertisement
	6.3 Detecting anomalous behaviors

	7 Economic aspects of security failure
	8 Conclusions
	Endnotes
	Competing interests
	Acknowledgements
	Author details
	References

