
Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1
DOI 10.1186/s13635-014-0018-0

RESEARCH Open Access

Laribus: privacy-preserving detection of fake
SSL certificates with a social P2P notary
network
Karl-Peter Fuchs*, Dominik Herrmann, Andrea Micheloni and Hannes Federrath

Abstract

In this paper we present Laribus, a peer-to-peer network designed to detect local man-in-the-middle attacks against
secure socket layer/transport layer security (SSL/TLS). With Laribus, clients can validate the authenticity of a certificate
presented to them by retrieving it from different vantage points on the network. Unlike previous solutions, clients do
not have to trust a central notary service nor do they have to rely on the cooperation of website owners. The Laribus
network is based on a social network graph, which allows users to form notary groups that improve both privacy and
availability. It integrates several well-known techniques, such as secret sharing, ring signatures, layered encryption,
range queries, and a distributed hash table (DHT), to achieve privacy-aware queries, scalability, and decentralization.
We present the design and core components of Laribus, discuss its security properties, and also provide results from a
simulation-based feasibility study.

Keywords: Privacy; Anonymity; Man-in-the-middle attacks; SSL; P2P

1 Introduction
The Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocol suite [1,2] provides basic secu-
ritymechanisms such as confidentiality, data integrity, and
especially authentication (cf. [3] for a detailed treatment
of SSL and its successor TLS). There have been vari-
ous attempts to attack these protocols, i. e., to eavesdrop
on a connection. Attacks on the security of SSL can be
categorized into two classes: attacks from the first cate-
gory exploit security flaws in the protocols, weaknesses
in the construction of the cryptographic primitives used
or implementation errors (e. g., the BEAST [4], CRIME,
BREACH [5], and Lucky Thirteen [6] attacks; cf. [7,8]
for a comprehensive overview). The second category of
attacks, which we are interested in, attacks weaknesses in
the authentication model.
SSL relies on a X.509 PKI [9] for the purpose of authenti-

cating a remote entity’s key. This protects clients from dis-
closing data to adversaries that impersonate a designated
destination. Authentication is delegated to certification

*Correspondence: fuchs@informatik.uni-hamburg.de
Department of Informatics, University of Hamburg, Vogt-Kölln-Str. 30, 22527
Hamburg, Germany

authorities (CAs) that issue certificates by cryptographi-
cally signing the public key of website owners, guarantee-
ing the authenticity of the association

〈
public key, website

〉
or, in some cases,

〈
public key, website, organization

〉
.

In a 2010 study, the Electronic Frontier Foundation
found that browsers from Microsoft and Mozilla are (in-
)directly trusting more than 650 CAs [10]. Unfortunately,
the X.509 model allows any CA to certify any domain
[11]. It only takes a single CA to misbehave (by being
hacked, tricked, bribed, or legally forced) to generate a
seemingly valid fake certificate. Having obtained a fake
certificate, an adversary can mount a man-in-the-middle
(MitM) attack impersonating any website of his choice.
The MitM attack goes undetected because the fake cer-
tificate contains a genuine signature and thus appears
legitimate. MitM attacks typically affect only users in a
confined part of the Internet (cf. Figure 1). The severity of
this risk is demonstrated by security incidents involving
the two CAs Comodo and DigiNotar. The attackers cre-
ated fake certificates for high-profile sites (among them
Google and Paypal) to intercept the SSL traffic of Internet
users in Iran [12]. Solely relying on CAs for authenticating
remote servers has shown to be fragile and insecure.

© 2015 Fuchs et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: fuchs@informatik.uni-hamburg.de
http://creativecommons.org/licenses/by/4.0

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 2 of 17

Figure 1 An attacker presents a fake certificate to user Alice during a MitM attack.

Previous proposals aim to fix the CA-based authenti-
cation approach either by relying on other hierarchical
structures (e. g., the DNS tree) or by introducing notary
servers that validate certificates on the user’s behalf. Both
approaches are subject to considerable limitations (cf.
Section 2). In contrast, with Laribus (referring to guardian
deities in ancient Roman religion), we propose that web
clients should collaborate to validate certificates in a dis-
tributed manner. Our contribution consists of integrating
well-known techniques to organize the clients in a fully
distributed peer-to-peer (P2P) network that meets secu-
rity, privacy, and availability expectations of web clients.
Laribus provides users with the ability tomodel trust rela-
tionships that reflect their social relationships, i. e., users
can choose to trust their friends, and not unknown orga-
nizations, with certificate validation. The P2P architecture
of Laribus improves scalability and provides blocking-
resistance. Privacy-preserving query techniques protect
the user’s surfing behavior. A distributed storage mech-
anism offers resilience to client churn and increased per-
formance via caching. This paper extends our previously
published work in [13], providing a more comprehensive
survey of related efforts that aim to improve the secu-
rity of certificate validation as well as a more detailed
description of the privacy-preserving mechanisms of
Laribus.
The rest of this paper is structured as follows. In

Section 2, we review related work and motivate our
design choices. We outline the architecture of Laribus in
Section 3 and focus on the details of the cryptographic
mechanisms involved in Section 4. We present results
of an initial feasibility study in Section 5 and discuss
limitations in Section 6. We conclude in Section 7.

2 Related work
The issues with SSL and the CA trust model have been
known for years, and various proposals have appeared in
the literature, suggesting to replace, amend, or comple-
ment the current system. Laribus is a combination and
extension of techniques selected from the current state

of the art. It does not replace the existing PKI infrastruc-
ture but serves as an additional source of trust during
certificate validation.
This section provides an overview of the most impor-

tant research directions, outlining their benefits and limi-
tations. A comprehensive discussion of previous work can
be found in [14,15].
In Sections 2.1 and 2.2, we describe approaches that

advocate to restrict the domains a CA may issue certifi-
cates for. In Section 2.3, we describe the trust on first use
model. We proceed with proposals that rely on out-of-
band information for certificate validation in Section 2.4.
Another avenue of research focuses on the application
of append-only data structures (cf. Section 2.5). Finally,
in Section 2.6, we discuss existing work that relies on
notaries that provide clients with a third-party perspective
of a certificate.

2.1 Limiting the scope of CAs
One of the main limitations of the X.509 PKI is the fact
that any CA can issue a certificate for any domain name.
The large number of CAs that are trusted by default by
common browsers constitutes a significant attack surface.
In order to decrease the risk, CAs could be restricted to
specific top-level domains. Karsten et al. [16] show that in
practice most CAs provide online certificates for a small
number of top-level domains and that the domains in
most top-level domains use certificates from a small set
of CAs only. Moreover, some CAs appear to operate for a
single organization in a single country only. Browser ven-
dors could incorporate this kind of information into their
software in order to warn the user when a certificate for a
domain is issued from a CA that has not issued certificates
for the corresponding top-level domain so far.
Recent findings from Perl et al. indicate that the num-

ber of trusted CAs could be reduced considerably: based
on scans of all publicly reachable web servers listening on
port 443, they observed that 34% of the trusted CAs have
not issued a single certificate yet [17]. They suggest to
remove the root certificates of these CAs from the browser

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 3 of 17

trust stores. However, this approachmay have undesirable
consequences for closed user groups that use non-public
HTTPS sites that use a certificate of one of the deleted
CAs. These users will see a warning message when they
access their secure sites, which weakens the effectiveness
of such warnings [18].
These twomeasures, limiting the scope of CAs as well as

removing unnecessary certificates from the browser trust
store, may help to decrease the likelihood of an adver-
sary obtaining a fake certificate in practice. However, they
cannot prevent MitM attacks reliably and have not been
integrated into Laribus. Laribus is supposed to be a com-
plementary certificate validation service that provides an
additional layer of security. Therefore, it should be oblivi-
ous of the trust relationships within the existing PKI trust
model.

2.2 Certificate pinning
A complementary solution to limiting the scope of CAs
(i. e., limiting the domain names for which a CAmay issue
certificates) is certificate pinning, which approaches the
problem from the perspective of domain name owners.
Certificate pinning allows them to limit the CAs that are
authorized to issue a certificate for a given domain.
Certificate pinning has been introduced by Google in its

Chrome browser for a small set of Google domain names.
As a predefined whitelist embedded in the browser soft-
ware scales rather poorly, there are several ongoing efforts
that try to provide operators of web servers with a means
to publish certificate pins, either via HTTP headers [19]
or via TLS extensions [20]. As these proposals require
changes to the server as well as the client software, it will
take time until they are widely adopted.
Domain name system (DNS)-based Authentication of

Named Entities (DANE) [21] is an IETF standard that
proposes to utilize the DNS infrastructure to store the
pinning information. The operator of a web server can
include DANE resource records for his domain that indi-
cate the CAs that have issued its certificates or the finger-
print of the certificate itself.
DANE relies on an existing decentralized hierarchy, the

DNS namespace, to authenticate website certificates. The
security of this approach depends on the integrity of the
data supplied via DNS, i. e., DNSSEC [22] is a manda-
tory prerequisite in DANE. As pointed out in [23], DANE
would significantly reduce the risk of an MitM attack
remaining undetected, since an adversary would have to
compromise both, a CA and the respective authoritative
DNS server. However, leveraging DNS has some limita-
tions in practice: Firstly, only few DNS servers make use
of DNSSEC so far and its widespread deployment has
proven to be challenging [24]. Moreover, DANE requires
changes to the resolver library on client machines as well
as adoption by server operators. Finally, parts of the DNS

hierarchy are connected to the X.509 PKI infrastructure:
A prominent example is Verisign itself, which maintains
a certificate authority providing hundreds of thousands of
SSL certificates [25]. At the same time, Verisign acts as a
DNS registry for several top-level domains, among them
.com and .net, which makes it a particularly weak spot.
DNS Certification Authority Authorization (CAA) [26]

is a complementary proposal. CAA allows a server oper-
ator to include DNS records in a domain that specify the
CAs that are allowed to issue certificates for that domain.
CAA-compliant CAs are required to look up the respec-
tive CAA records and issue a certificate for the domain
only if the CAA records indicate that they are authorized
to proceed. A conceptual limitation of the CAA concept is
that it assumes that all trusted CAs are implementing this
policy. However, CAA cannot prevent an adversary that
has gained access of the signing key of a CA from issuing
fake certificates.
Certificate pinning may be an effective measure to

detect MitM attacks. However, the aforementioned pro-
posals may scale quite poorly: They have to be imple-
mented by the administrators of each and every website
(or CA). In contrast, one of the central design goals for
Laribus consists in providing a client-only solution that
enables clients to validate the certificate of any website
without involving its operator.

2.3 Trust on first use
Advocates of the trust on first use method (TOFU) reject
the idea of having to rely on a third-party-issuing certifi-
cates that have to be renewed periodically. Instead users
are supposed to make a leap of faith, trusting and pinning
the certificate that has been presented by a remote host
during the very first connection attempt. This approach is
familiar from its use in SSH and it also has been proposed
for encrypted e-mails [27]. The application of the TOFU
approach for SSL certificate validation has been proposed
in [28]. An implementation of the concept is the certificate
patrol browser extension [29].
However, certificate renewal is handled poorly in the

TOFU trust model. It may be difficult for users to dis-
tinguish between the case of a certificate having been
changed deliberately and legitimately by the operator of a
remote host and the case of an MITM attack. Therefore,
Laribus does not rely on the TOFU principle.

2.4 Incorporating out-of-band information
The following approaches try to establish secure connec-
tions without a set of fixed, potentially untrusted third
parties.
Direct Validation of Certificates (DVCert) [30] allows

a client to validate the authenticity of a server certifi-
cate without having to rely on third parties at all. DVCert
leverages the fact that many websites can be personalized,

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 4 of 17

i. e., users have to log in with application-level creden-
tials (username and password). In DVcert, the fact that
client and server know the user’s credentials is exploited
by the web server to prove to a connecting client that it
is in fact talking to the desired web server and not to a
man-in-the-middle.
However, first-time users that do not have an account at

a web site yet cannot benefit from DVCert during regis-
tration. Moreover, DVCert is not suitable to secure sites
that are available without any authentication at all. Finally,
as with certificate pinning, DVCert has to be implemented
in each and every website, which conflicts with our design
goal to build a system that does not rely on any coopera-
tion on the server side.
MonkeySphere [31] builds upon the PGP Web of Trust

(WoT) concepts of a network of people who trust other
people: Users who never met before can safely authenti-
cate their identities due to the presence of a trust path
in the network between them, established by friends who
trust their friends, respectively. Whenever the Monkey-
Sphere daemon encounters a self-signed or invalid cer-
tificate, it searches public key servers for a PGP key
associated with that website’s name. The certificate is
trusted only if the daemon can construct a trust path from
the user’s key to the server’s key. This approach could
effectively abolish the need for CAs and allow users to
trust self-signed certificates, also providing a theoretically
sound way of trusting remote certificates and detecting
MitM attacks.
However, MonkeySphere relies on the cooperation of

the administrators of the webservers, which conflicts with
our design goals: Clients can only validate the certificates
of those servers, whose administrators have signed their
certificates and uploaded them to a key server. Moreover,
administrators have to ensure that their certificates are
extensively connected with other users within the PGP
Web of Trust to ensure that as many users as possible will
be able to find a trust path to the server.
Strictly relying on trust paths between users and target

servers may lead to bootstrapping issues: Users will only
be able to validate server certificates with high probabil-
ity, if PGP and MonkeySphere are widely adopted and all
users actively contribute to the Web of Trust. However, so
far, PGP suffers from poor adoption due to usability issues
resulting from its intrinsic complexity.
In contrast, Laribus users can validate the certificate

of any server at any time, even when the server is
completely oblivious of Laribus. Moreover, bootstrap-
ping Laribus may be easier because users do not have
to establish trust paths from them to individual desti-
nation servers. In Laribus certificate validation is possi-
ble even if only a few small user groups (cliques based
on real-world social relationships) participate in the
system.

2.5 Append-only timelines
The following proposals advocate a publicly available log
file containing all certificate transactions.
Sovereign keys [32] proposes to maintain a verifiable

append-only data structure, which contains the history
of all SSL-enabled domains. Server operators are sup-
posed to push their authentication data (newly deployed
certificates as well as blacklisted old certificates) to one
of 20 redundant Timeline Servers. Clients interact with
them to validate previously unseen certificates. The basic
concept has been extended by the proposals Certificate
Transparency [33] and Transparent Key Integrity [34].
Append-only data structure could indeed be the defini-

tive answer to the trust problems in SSL, since attackers
would have to publicly insert fake certificates into the data
structure to be successful. However, append-only time-
lines have to be provided via a set of dedicated servers,
they require the cooperation of web server administra-
tors or CAs, and querying timeline servers may infringe
the privacy of users, who provide the domain names they
want to validate. Therefore, Laribus does not contain a
permanent global timeline. Instead Laribus incorporates a
distributed cache that contains recently validated certifi-
cates to improve its performance and availability.

2.6 Relying on notaries and peers
The following proposals advocate to validate certificates
by relying on dedicated notary servers or on peers.
Perspectives [35] and its follow-up Convergence [36]

employ a set of network servers (so-called notary servers)
that fetch and store SSL certificates from Internet hosts.
In order to validate a server certificate, users connect to
one or more of the notary servers and ask them for the
certificates they see from their vantage point. An attacker
close to the client could then be easily detected by com-
paring the certificates provided by the notaries with the
certificate the client received from the server (cf. Figure 2).
The notary model is based on the assumption that an

attacker cannot interfere with both the connection of the
users as well as the connection of (all the) queried network
notaries. In the original design of Perspectives and Con-
vergence, notaries are full-blown dedicated servers, which
have to be maintained by their operators to be always up
and running. As a result, there is only a limited number of
them, i. e., more powerful man-in-the-middle adversaries
may be able to attack a user as well as all queried notaries.
In order to reduce the risk of such attacks, notaries can
be spread over multiple autonomous systems (AS) as
proposed in [37].
Moreover, users must put considerable trust into

notaries. From a security perspective, users have to trust
them not to lie (or collaborate with an adversary). From a
privacy perspective, notaries have to be trusted to operate
responsibly. Without any additional means, they learn all

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 5 of 17

Figure 2 User Alice relies on notaries to detect an MitM attack.

of a user’s visited SSL domains. Privacy can be increased
by forwarding queries to notaries via the Tor network [38],
which requires additional software on clients, though.
These privacy concerns are embraced by DoubleCheck

[39], which suggests that whenever a client connects to a
SSL web server it should retrieve its certificate addition-
ally via the Tor network for comparison. An extension of
this design is DetecTor [40], which suggests to retrieve
each certificate over multiple Tor circuits using different
exit nodes for increased trust. It also provides a prototyp-
ical implementation. However, using the Tor network for
certificate validation may be problematic as users have to
trust exit nodes, whose trustworthiness has proven to be
questionable in the past [41,42].
While the ICSI Notary service [43] is similar in spirit

to Perspectives and Convergence, it differs in two impor-
tant aspects. Firstly, while other approaches either actively
scan the Internet [10,44] to obtain certificates or request
them from servers upon request, the ICSI Notary col-
lects certificates passively by monitoring upstream traffic
of various Internet sites. Secondly, the ICSI Notary ser-
vice can be queried via DNS, which helps to protect the
privacy of its users: The notary servers do not see the IP
address of a client but only the IP address of their recur-
sive name server. The authors suggest to use a third-party
DNS resolver, such as Google Public DNS (8.8.8.8) so
that no information about the location of a user is leaked
to the notary. While this suggestion succeeds in provid-
ing sender anonymity against the notary service, it does
not protect the privacy against the recursive name server,
which can eavesdrop on the users’ queries and thus learn
which certificates a user wants to validate.
The concept of notaries has also been used in applica-

tion areas other than SSL certificate validation. We are
aware of notary- and peer-based proposals for HTTP
queries as well as DNS queries. Senser [37] proposes to
retrieve websites over multiple proxies in order to validate

that the content is not tampered with. However, the con-
cept does not account for privacy, i. e., the selected proxies
can observe the IP addresses of the clients as well as
the URLs and the content of the websites a user vis-
its. Regarding DNS queries, DepenDNS [45] suggests that
DNS clients should send their lookup queries to multi-
ple resolvers in order to detect cache poisoning attacks.
DepenDNS is based on the cooperative name lookup sys-
tems CoDNS [46] and ConfiDNS [47], which advocate
that DNS clients should send queries to each other in
order to improve integrity, availability, and lookup perfor-
mance. This peer-to-peer approach is embraced by DoX
[48], which suggests that DNS resolvers should form a
peer-to-peer network to cross-check the responses they
obtain. However, all the aforementioned proposals neglect
the issue of user privacy.Moreover, they do not implement
mechanisms that allow users to express to what degree
they are willing to trust any given peer or notary server.
The design of Laribus is derived from the concept of

notaries. However, as one of our design goals is to provide
a scalable fully-distributed solution that does not require
fixed entities, we cannot rely on a constrained set of ded-
icated notary servers. In contrast, in Laribus, multiple
clients collaborate to provide notary services.

3 The Laribus proposal
In this section, we will present an overview of the archi-
tecture of Laribus and the interactions of the involved
components. We will start out with a naïve approach for
client-based certificate validation in order to explain the
issues that must be overcome. After that, we will explain
how the design of Laribus addresses these challenges.

3.1 Shortcomings of a naïve approach
Given the initial scenario in Figure 1, Alice could ask one
of the unaffected users, e. g., Carlos, to retrieve the cer-
tificate for the server she wants to connect to (Bob). If

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 6 of 17

Alice receives different certificates from Carlos and Bob,
she can detect the MitM attack.
This naïve approach, however, has several shortcom-

ings. First of all, it does not meet users’ security expec-
tations. Alice wants to be sure that Carlos is neither
cooperating with Mallory and therefore not telling her the
truth (Problem 1: intentionally false testimonies), nor that
Carlos is unknowingly also affected by Mallory’s attack
(Problem 2: unintentionally false testimonies). Alice can
solve the first problem by asking only friends she trusts to
validate certificates. The second problem can be solved by
asking users that are dispersed throughout the world, e. g.,
friends living in different countries.
Secondly, the naïve approach does not meet users’ pri-

vacy expectations. If Alice asks her friends to retrieve
certificates on her behalf, her friends will know which
servers she connects to. While it is a reasonable assump-
tion that her friends will honestly answer requests for
certificates, they must be considered to be curious; spying
on an acquaintance may be more attractive than snooping
on a stranger. Security and privacy seem to be conflict-
ing goals in this respect. Solutions for this dilemma do
however exist: Alice could ask a client she trusts, but she
doesn’t know personally, e. g., a client run by a university.
Alternatively, she could use a suitable privacy-enhancing
technique to hide her identity, e. g., Tor [38].
Thirdly, the naïve approach does not meet users’ avail-

ability expectations. Alice cannot assume that a friend is
online every time she wants to validate a certificate. Typ-
ically, Alice will also not be willing to wait until a friend
comes online again. This availability issue can either be
resolved by caching recently obtained validation results
or by resorting to delegate certificate validation to less
trustworthy clients.
Finally, certificate validation must be scalable. Asking

one’s friends to validate certificates scales well under
three assumptions. Firstly, users that consume validation

services, i. e., requesting other clients to perform certifi-
cate validation on their behalf, do also offer validation
services to others, i. e., there is no free-riding. Secondly,
friends trust each other mutually, i. e., they are willing
to consume and offer validation services among them-
selves. Thirdly, the available resources offered by a group
of friends are sufficient to handle the aggregate query vol-
ume issued by all of its members. However, in reality,
it is difficult to force users to honor these assumptions.
Therefore, a practical system should be able to cope with
unbalanced trust relationships as well as uneven resources
and loads.

3.2 Layered network structure
Laribus is a decentralized, distributed peer-to-peer sys-
tem comprised of clients that collaborate for certificate
validation. Each client offers validation on behalf of others
and each client can request validation by other clients.
The Laribus P2P network is structured intomultiple lay-

ers of abstraction (cf. Figure 3). Clients are requested to
explicitly point out their friends from the real world, to
limit the influence of adversaries. These social relation-
ships are captured in the social network layer, a directed
graph that reflects the friendship relations expressed by
the clients. The set of close friends of a user (also referred
to as his clique), makes up his trusted core in Laribus.
The resulting friendship graph is typically not fully con-
nected. In fact, some parts of the graph may be isolated
from the rest, e. g., in case of cliques that do not point out
any friends apart from members of their trusted core. We
assume that adversaries will be unable to enter the trusted
core, because this typically involves establishing a close
social relationship with users in the real world.
Apart from pointing out their friends, clients organize

themselves into notary groups. Group memberships are
reflected in the notary group layer. Clients within a group
collaboratively act as a notary. The members of a notary

Figure 3 Laribus consists of three independent layers. A social network layer, a notary groups layer, and a storage layer.

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 7 of 17

group are not supposed to be fully congruent with the set
of clients within a trusted core.
Finally, clients are expected to contribute resources for

distributed storage of validation data. The storage layer
consists of a global distributed hash table (DHT) based
on Kademlia [49], in which Laribus stores all information
regarding group memberships and trust relationships.
Apart from providing decentralized storage, this layer
serves as a cache to provide cheap access to the results
obtained from previous certificate validations. Data stored
in the DHT is cryptographically signed (cf. Section 4.4).

3.3 Interactions during certificate validation
Figure 4 extends the initial scenario by the components of
Laribus. Alice connects to Bob’s HTTPS website (Step A
in Figure 4). We assume that Alice is subject to an MitM
attack perpetrated by Mallory. Other Laribus users, such
as members of notary groups 1, 2, and 3 are supposed to
be unaffected by the MitM attack. Formally, Alice tries to
connect to a server SRV and is presented with a fake cer-
tificate certM. Some unaffected clients are able to fetch the
authentic certificate certB. In the following, we will only
briefly sketch the relevant interactions. For conciseness,
we will defer the treatment of the involved security and
privacy techniques to Sections 3.5 and 3.7.
The straightforward way to validate certificates in

Laribus is via the direct queries technique. A requestor,

Alice, sends a direct query to a notary group of her choice
(Step B in Figure 4). She may choose a random group for
this purpose, or a group containing one of her friends, ask-
ing members of the selected notary group to retrieve the
certificate of SRV from their respective vantage points.
The notary group exchanges the obtained certificates in
order to reach a consensus about the certificate ofSRV by
means of a majority vote: The winning certificate is signed
by the group’s notary signature and returned to Alice (not
shown). Alice validates the certificate presented to her by
Bob by comparing it with the result obtained from the
notary group.
Issuing direct queries for every certificate validation is

inefficient. An alternative way for a client to validate cer-
tificates consists of retrieving certificates that have been
obtained by other clients via direct queries with the DHT
Lookup technique. Every time a notary group obtains a
consensus about a server’s certificate, it signs and stores
it in the DHT (Step F in Figure 4, further discussed in
Section 4.4). Instead of issuing a direct query, clients can
look up both the unknown certificate’s hash or hostname
of SRV in the DHT (Step E). Summing up, in Laribus, a
client performs the following steps to validate a certificate:

1. Alice performs a DHT lookup to determine whether
certM has been seen previously. If there are entries
for certM, she retrieves them and (depending on how

Figure 4 Components of Laribus and their interactions.

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 8 of 17

much she trusts the notary groups that stored the
entries into the DHT) validates the certificate
presented to her. If no trusted notary group has seen
that particular certificate before, she proceeds with a
direct query.

2. Alice contacts a number of notary groups with a
direct query asking them to report what certificate
server SRV is offering. The queried group’s
members connect to SRV and get certB, and then
sign with a notary signature the fact of having seen
certB at the moment of fetching.

3. The queried notary groups store the obtained
certificates in the DHT.

3.4 User-defined trust
Laribus bases its security upon the social network of its
users. Like in the PGPWeb of Trust, users are required to
define social relationships, i. e., determine to which extent
they trust particular users (user trust level).
Alice can assign the following user trust levels to a friend

(Charlie):
Connection: Alice receives and processes Charlie’s

messages. The consequence is that Charlie gets to know
Alice’s IP address and connection times.
Direct query: Alice includes Charlie in the list of users

she will (try to) send direct queries to. As a result, Charlie
may learn about Alice’s (group’s) surfing habits.
Transitive trust: Alice trusts Charlie’s friends to some

extent and would receive and forward their messages.
In consequence, if Charlie authenticates untrustworthy
users, both Alice and Charlie are affected.
Group trust: Alice vouches for Charlie’s inclusion into

her group (however, Charlie cannot join the group until all
members vote for his inclusion). If Charlie is an attacker,
he can perform denial-of-service attacks against Alice’s
group, i. e., by not forwarding messages or not participat-
ing in creating notary signatures.

3.5 Security measures
In order to prevent outsiders from forging messages or
launching impersonation attacks, Laribus clients make
use of public-key cryptography for message authenti-
cation and identification purposes. Before connecting
to the Laribus network for the first time, each client
ni creates a key pair (Si,Pi, IDi), where IDi is a self-
signed pseudonym, (IDi,Pi) is the public key and Si is
the secret key. IDi does not necessarily have to reveal
the actual identity of a user, but friends should be
able to discover each other based on these pseudo-
nyms.
As direct queries are quite expensive, they could be

used to mount denial of service attacks. Therefore, they
cannot be issued anonymously but have to be authen-
ticated by the requestor by a digital signature. This

allows notary groups to reject queries received from
misbehaving clients or to only accept queries from trusted
groups. However, if clients sign direct queries them-
selves, validation requests can be linked and tracked
back to their pseudonym. We will discuss ways to over-
come this privacy issue in Section 3.7.1. Moreover,
the certificate records stored within the DHT are also
signed by the notary groups in order to guarantee their
authenticity.

3.6 Availability measures
Given the P2P approach of Laribus, clients cannot be
expected to be online at all times.We address this problem
with three mechanisms: a ring signature scheme, a thresh-
old signature scheme, and a DHT (i. e., the storage layer,
cf. Section 3.2).
The ring signature scheme allows Alice to sign a direct

query, i. e., to ask another notary group to retrieve a cer-
tificate even if Alice is the only (online) member of her
group (cf. Section 4.1). With this scheme Alice can prove
that she is a member of her group without disclosing her
identity (cf. Section 3.7).
The purpose of the threshold signature scheme, called

notary signatures in this paper (cf. Section 4.2.3), is to
allow groups to sign replies to direct queries when only
a subset of the group members is online. We propose to
employ an efficient threshold scheme by Lesueur et al.
[50].
The most important availability feature of Laribus is

the DHT, which serves as a distributed cache. It con-
tains a public timeline of the certificates seen by different
groups at different locations. Since the DHT is distributed
among all clients (i. e., independent from the social net-
work and notary group structures), it assures availability
of the signed records (i. e., the past validations) of a notary
group, even if not a single member of that group is online
(cf. Section 4.4). As every record is signed by a notary
group before it is put into the DHT, relying on cached
information does not introduce additional security issues.
As Laribus is meant to complement the existing PKI
infrastructure, checking for certificate revocation is out
of the scope of the system. Clients have to rely on exist-
ing techniques such as certificate revocation lists or OCSP
to ensure that they are not relying on stale validation
information.

3.7 Privacy-preserving certificate validation
To meet the users’ privacy expectations, i. e., to pre-
vent that network nodes will get to know who wants
to validate which certificates, we use well-known and
approved techniques from the privacy-enhancing tech-
nologies research community. Laribus contains privacy-
preserving mechanisms for both direct queries and DHT
lookups.

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 9 of 17

3.7.1 Preserving privacy for direct queries
If Alice asked a notary group to validate a certificate
directly (Step B in Figure 4), she could be easily identified
by her IP address or by her signature of the direct query.
To prevent identification via signatures, we use ring sig-
natures, i. e., other notary groups can validate that some
member of a certain group has signed a request, but not
which member exactly (details follow in Section 4.1).
To obfuscate IP addresses, simple solutions like

Convergence’s approach to route requests via a low-
latency anonymity system (Tor) could be employed. This
approach however conflicts with our design goal of a
decentralized solution and would be subject to perfor-
mance problems of such anonymity systems [51]. To this
end, we have designed a scheme that utilizes the group
structure of our network to build anonymity sets. Before
a request is sent to another notary group, it is passed
around between the members of Alice’s group (cf. Step C
in Figure 4). As a result, members of other groups will not
be able to get to know whether a request was initiated by
the requesting host itself or whether the request was sent
on behalf of another member of the group.
This mechanism offers privacy towards other groups

(e. g., Group 2 in Figure 4), but it cannot protect Alice
from the members of her own group. To this end, we use
a layered encryption scheme (cf. [52]). With the layered
encryption scheme, Alice chooses r hops (i. e., friends) to
forward her request (source routing). The layered encryp-
tion scheme hides the routing information required by her
friends to relay the request. Each hop removes one layer
of encryption and, if it is an intermediate node, receives
the address of the next hop (i. e., the next group member),
or the destination address (i. e., the address of the destina-
tion group) if it is the final hop. Details about the layered
encryption scheme used in Laribus follow in Section 4.3.

3.7.2 Preserving privacy of DHT lookups
Tomeet the users’ privacy requirements for DHT lookups,
we use a range query approach [53]: Alice will not request
a specific entry using its key, but instead a set of results by
querying for a prefix that refers to a certain subtree within
the DHT (cf. Figure 5).
As a result, an attacker that is able to observe this pro-

cess will only get to know that Alice is interested in one of
the records of the subtree, but not in which exactly. The
security parameter k determines the size of the result set,
which allows to balance performance and privacy (cf. [49]
and Section 4.4).

4 Laribus cryptographymechanisms
In this section we will present details about the crypto-
graphic mechanisms of Laribus, especially ring signatures,
notary signatures and the layered encryption scheme. We
describe how notary group key pairs are generated and

(dynamically) shared as well as the structure and data
format of the DHT.

4.1 Ring signatures
In Laribus, direct queries have to be signed as notary
groups are not required to answer direct queries from any
other group (cf. Section 3.5). However, we also want to
provide privacy for direct queries (cf. Section 3.7.1). We
use ring signatures to solve this problem [54,55]. Ring sig-
natures allow a single member of a group to sign data (m)
on behalf of all group members. The signer requires only
his own private key (Ss) and the public keys of the other
ring members (Pr) as input to create a signature.
To this end, given a signing scheme based on trapdoor

one-way permutations (e. g., RSA), the signer constructs
a verification equation Ck,v(g1(x1), g2(x2), . . . , gr(xr)) =
z combining a hash of the data to be signed and the
ring’s public keys functions with trapdoor g1, g2, . . . , gr .
The equation is infeasible to solve for all inputs without
inverting any trapdoor function gi (i. e., not possessing the
relative secret key to a key in the ring), therefore, the sig-
nature proves the signer’s membership in the ring. Only
the signer can provide the solution to the equation as the
trapdoor is available only to him [54].

4.2 Notary signatures
When Alice asks a notary group to retrieve a certificate
on her behalf (direct query), the notary group has to sign
its answer (notary signature) to guarantee authenticity (cf.
Section 3.3). In contrast to the case of ring signatures, a
majority of the notary group must participate to perform
the signature. On the other hand, to meet the availability
requirements of Laribus, we must ensure that notary sig-
natures can be obtained even if some group members are
offline. A suitable solution for this problem is threshold
cryptography [56].
With threshold cryptography, a public/private key pair

(P, S) can be jointly generated by n parties. After key gen-
eration, each party knows P and holds a share si of S,
but no party knows S entirely. Signatures can be obtained
as long as a threshold t of shares is available, i. e., t par-
ties participate. However, t and n must be chosen before
the distributed key generation is initialized, and cannot be
changed afterwards. As a result, using a standard (t − n)-
threshold scheme directly would require to generate a new
key pair every time n changes, i. e., whenever a notary
group is resized. Furthermore, the overhead for generating
keys increases drastically with the number of nodes [57]
and would thus be impractical for our case as we assume
that groups may consist of up to about 15 (and at least 3)
members.
To overcome this problem, we propose to use a dynamic

scheme by Lesueur et al. [50] that allows share merging
and splitting. After an initial key generation process (e. g.,

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 10 of 17

Figure 5 Issuing a range query for the DHT key prefix 1* obfuscates the desired key (110) within the set {100, 110, 111}.

to generate three shares) the number of shares can be
adjusted to match the actual number of nodes. Further-
more, its performance is sufficient for larger group sizes,
in fact even much larger than required for Laribus [50].
In the following, we will explain details about key gener-
ation, dynamic share handling, signing and notary group
protection measures against Sybil attackers.

4.2.1 Key generation
To create a key pair for a notary group, we employ Boneh
et al.’s efficient method of distributed RSA key pair gener-
ation [57]. The protocol allows a set of parties to construct
an RSAmodulusN = pq = ∑

pi
∑

qi whereN is publicly
known, and each member Ni only knows about pi and qi,
not about the factorization of N. To enable sharing of the
secret key, they then calculate shares of d = e−1modϕ(N)

for any given RSA encryption exponent e. Once each of
the n group founders has obtained an initial share ei of the
secret d, to which we’ll refer as SG, the following holds:∑n

i=1 ei = SG [57]. In Laribus, we parameterize Boneh et
al.’s method as a (3 − 3)-threshold scheme, i. e., a group
will create three shares and all three shares are required
to obtain a signature. To meet the security and availability
requirements, the number of shares is adjusted with the
protocol described in the next section.

4.2.2 Dynamic share handling
To dynamically assign shares to group members, we use
the scheme of Lesueur et al. [50]. With this scheme, even
though a group is composed of n members, the number
E of shares can vary in respect to the number t′ ≤ n
of online members. The scheme allows to specify a fixed
ratio r of nodes that are required to recover SG (not a fixed
number of nodes as in classical threshold schemes [50]).
To achieve this, shares (ei) are split and merged and may
be replicated on different nodes. Nodes that are assigned
the same share ei compose a sharing group.
The share and merge operations require distributed

sums and subtractions, since split(ei) = (ei1 , ei2) and
merge((ej, ek)) = ejk . To prevent an attacker from

reconstructing SG from old shares, old sharesmust be ren-
dered useless after each split and merge operation. To this
end, if a newly created ei is mixed with another share ej,
their owners collaboratively calculate ei := ei − � and
ej := ej + �, maintaining

∑E
i=1 ei = SG. � is a chosen

random value that hides the original share (cf. [50]).
The ideal number of shares is E = r× t′, with each shar-

ing group composed of g = 1
r nodes knowing the same

share [50].We require clients to participate inmerge oper-
ation only if the number of shares E would not fall under
a minimum of Emin = 3. This way, at least three collud-
ing attackers must be present in a group to recover SG
and forge notary signatures. In practice, when only three
group members are online and one member wants to dis-
connect, the whole group is shut down. The last three
shares are assigned to a third of the group members and
stored in the DHT encryptedly. Nodes can recover the
shares once they re-connect. The notary group ratio is set
to r = 1

2 . We will motivate this choice in Section 5.

4.2.3 Obtaining a notary signature
In order to obtain a notary signature for amessageD, there
must be at least one member per sharing group available
and willing to sign D, i. e., each share ei is required for the
signature computation. Following the signature protocol
(cf. Figure 6), the group signature ofD isDSG [m].With the
equality

DSG [m]= D(
∑E

i=1 ei)[m]=
(E∏
i=1

Dei [m]
)
[m]

the signature can be calculated collaboratively. One node
per sharing group signs D with its share, i. e., calculates
si = Dei [m] and multiplies the result (mod m) with the
result from the previous group (cf. Figure 6 and [50]).

4.2.4 Notary group protectionmeasures
Like any other P2P system, Laribus has to address Sybil
attacks that consist of a malicious user joining the net-
work with multiple nodes and fake identities in order to

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 11 of 17

Figure 6 A notary group collaborating for the signature of a message D. One node per sharing group signs D and forwards it along with the
calculated incremental product to the next sharing group. Shares are stored encryptedly in the DHT for offline nodes (empty circles).

control (large) parts of the network. We plan to employ
Gatekeeper [58] as an admission control system to counter
Sybil attacks. Gatekeeper uses a ticket distribution algo-
rithm to detect attackers and is a suitable choice since,
like Laribus, it is based on a social network and does not
require users to have a global view of the network.
When a notary group decides about the inclusion

of a new candidate (Pi, IDi), already present members
will take into account their own friendship relations (cf.
Section 3.4) as well as Gatekeeper. If the new candidate
passes both tests, his public key is collaboratively signed
by the notary group and stored in the DHT to prove
its membership. From that moment on, the candidate’s
NodeID in the group and DHT is fixed as siggrp,inc. Table 1
shows the resulting data structure.

4.3 Layered encryption scheme
As mentioned in Section 3.7.1, direct queries in Laribus
are protected by a layered encryption scheme and passed
around between members of a notary group to obfuscate
IP addresses (cf. StepC in Figure 4). To this end, when-
ever Alice wants to perform a direct query, she chooses r
members of her group at random and establishes a shared
secret sr with each of the hops. The shared secrets are
required by the hops involved to derive cryptographic
keys for decryption and integrity validation of Alice’s

query (request direction) and for encryption of the corre-
sponding response, i.e., the requested certificate (response
direction).
To reduce overhead, instead of an iterative channel con-

struction as used in Tor [38], we employ a none-interactive
scheme that requires only a single message to establish all
shared secrets between Alice and the r hops. The scheme
is based on the Sphinx blinding logic (cf. [59] and [60]):
Instead of sending r shared secrets, a single element e of
a cyclic group of prime order (satisfying the decisional
Diffie-Hellman assumption) is used at each hop to derive
the individual secrets. To prevent linkability, the element
is blinded at each hop with a blinding factor derived from
e. Figure 7 shows the operations performed by each hop.
A query consists of e, a header field h, a message authen-

tication code (MAC) and a payload field n. When hop r
receives a query, it uses its private key xr to compute sr
(the shared secret). If sr was seen before by r, the query
is discarded (replay detection). Otherwise, hop r uses a
key derivation function (KDF) initialized with sr to derive
kMAC,r and verify the integrity of the query. If the query
is valid, another key (kSYM,r) and an initialization vector
(IV r) is derived from sr with KDF in order to decrypt h
and n (i. e., to remove one layer of encryption). Further, r
derives and stores a key (kResponse,r) and an initialization
vector (IVResponse,r) from sr with KDF that will be used

Table 1 The inclusion of a node in a notary group

Row type Node Timestamp

Inclusion (Pi , IDi) tx

︸ ︷︷ ︸
Signature

siggrp,inc

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 12 of 17

Hop r
ex

= er hr MACr nr

s

kHMAC ,IV
check integrity

decrypt and pad
replay

detection

blinding

KDF

 hr +1 nr +1

Ar +1 hr +1 MACr +1 nr +1

Ar -1: kResponse , IVResponse

MACr +1

kSYM

b

= er +1

Figure 7 Operations performed by each hop in the layered encryption scheme.

later to encrypt the response for Alice’s request (i. e., to
add a layer of encryption).
If r is not the final hop, the decryption reveals the IP

address of the next hop (Ar + 1) along with its header
field, MAC and payload (hr+1, MACr+1 and nr+1). In this
case, hop r will pad the request with random data derived
from sr in order to maintain a constant message length
(otherwise, the hops would get to know their position in
the path), contact it with er+1 (the blinded element for the
next hop) and forward the resulting message to hop r + 1.
The required blinding factor b is again derived from sr
with KDF.
If r is the final hop, the plaintext of n will reveal Alice’s

query along with padding and an identifier of the notary
group the query is intended for. In this case, the final hop
will retrieve the response from the intended notary group
on behalf of Alice, pad it to a constant message length,
encrypt it with kResponse,r and forward the resulting cipher-
text to the previous hop in the path (hop r − 1, response
direction).
Each of the following r − 1 reply hops will add another

layer of encryption with its corresponding key kResponse
derived and stored during query processing before. Since
all keys, blinding factors etc. are derived from e, and e is
chosen by Alice, she is able to create all those items locally
and remove the layers of encryption added by the hops.

4.4 Certificate timeline and storage data format
To improve performance and availability of Laribus,
clients can retrieve certificates signed by other groups,
certificate validation records (CVR), from the DHT
instead of issuing a direct query (cf. Section 3.3). The DHT
stores

〈
key → value

〉
pairs (cf. Table 2), wheremultiple val-

ues (i. e., CVRs) per key can be returned, e. g., records
from different groups or from different times (certificate
timeline). Laribus employs the Kademlia DHT [49], i. e.,
keys are truncated to 160 bits (cf. Table 2).
DHT lookups require either a hash of the certificate in

question (certX) or a hash of the domain name (SRVX , cf.
Section 3.3), i. e., the DHT stores two different keys for
CVR lookups (cf. Table 2). As mentioned in Section 3.7.2,
to meet the users’ privacy requirements, clients may
request a subtree of the DHT by submitting only a prefix
with 160 − k bits (range query), i. e., they will receive all
CVRs with a key that starts with the prefix.
The data format of a CVR is shown in Table 3. The

row type validation separates blacklisted from whitelisted
CVRs. The certificate field identifies the certificates by
their SHA256 hash. The row type server consists ofSRV =〈
hostname, port

〉
values that identify the server which

offered certX . The timestamp field states when certX was
validated. All CVR fields are signed with the respective
notary group’s signature (siggrp).

Table 2 The stored certX validation records in the DHT

DHT keys

SHA256(certX)[0 · · · 159] =⇒
CVR

SHA256(SRVX)[0 · · · 159] =⇒

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 13 of 17

Table 3 Certificate validation record storage format

Row type Certificate Server Timestamp

Validation SHA256(certX) SRVX tx

︸ ︷︷ ︸
Signature

siggrp

5 Evaluation
The goal of this section is to provide an initial feasibility
study of Laribus. We focus on the computational cost of
cryptographic processes as well as availability aspects.

5.1 Cryptographic processes
Laribus makes use of four cryptographic schemes: Dis-
tributed key generation (cf. Section 4.2.1), notary signa-
tures (cf. Section 4.2.3), ring signatures (cf. Section 4.1)
and a layered encryption scheme (cf. Section 4.3).
The distributed key generation scheme is by far the most

expensive sub-protocol of Laribus. It requires several
rounds of private distributed computation, e. g., to gener-
ate an RSA modulus and for biprimality testing. However,
key generation is performed only once per group, when
a new group is initialized. Given the results of Congos et
al. [61], generating a 2,048 bit key that consists of three
shares can be expected to be finished in less than 4 min
on commodity hardware and with a total network traf-
fic of less than 25 Mbyte. As this process is required only
once per group and has no strong real-time requirements,
we expect no practical limitations no matter if keys are
generated in a LAN or via Internet.
The notary signature scheme consists of share assign-

ment and distribution and the signing process itself. The
distribution of shares is not expensive, as it only consists
of distributed sums and subtractions (cf. Section 4.2.2 and
[50]). The signing process requires a single normal signa-
ture per sharing group, as well as a simple multiplication
of the resulting signatures (cf. Section 4.2.3 and [50]). The
overhead of both processes seems negligible.
The ring signature scheme [55] is practical for our sce-

nario as well: It requires only between n and 2n modular
multiplications, where n is the group size and can be
performed locally by a single node (cf. Section 4.1).
The layered encryption scheme of Laribus (cf.

Section 4.3) requires essentially 2r public key operations
to create a message (r is the number of hops) and again
two public key operations on each of the r hops (i. e.,
group members) that forward the message for the Sphinx
blinding logic and the computation of the shared secrets
[59]. It can be used in conjunction with the very efficient
Curve25519 elliptic curve library [62]. Results of a recent
study [63] indicate that the delay introduced by Sphinx
and the relaying of messages should be well below 1 s.

In conclusion, we do not expect performance problems
due to cryptographic overhead. The only sub-protocol
of Laribus that introduces considerable delay is the dis-
tributed key generation, which takes place only once a
group is initialized.

5.2 Availability aspects
Whether a group is operational (i. e., it can answer
direct queries, for instance) depends on three factors:
the group size n, the number of online nodes neces-
sary to recover the group secret (threshold t′) and the
user behavior (i. e., online and offline times). We have
performed a simulation-based study to determine ade-
quate values for n and t′ and to assess whether these
values are indeed practical or not. Source code and con-
figuration files will be made available by the authors on
request.
Since Laribus is not deployed yet, we have to estimate

the user behavior of clients. We model four different
types of users: casual, normal, office, and power users.
Casual users connect to the Internet with short session
times (on average, 10 min per session) during daytime
(between 8:00 and 21:00) and spend 60 min on the Inter-
net per day on average. Normal users are connected 5
h per day on average, split into two sessions, one in
the morning (around 10:00) and evening (around 19:00).
Office users connect between 9:00 and 10:00 and end their
session between 17:00 and 18:00. Power users are either
running a server or leaving their computer online most of
the day, with 4 h of downtime per day on average. User
connection times and session durations are sampled from
a Gaussian distribution (standard deviation 0.5), except
for casual and power users, whose connection times are
drawn uniformly from the [8, 21] and [0, 24] hour ranges,
respectively. We assume that Laribus is run as a system
service, i. e., that clients are available whenever a user is
connected to the Internet.
Figures 8, 9, and 10 show the success percentage p for

different group sizes n, thresholds t′ and (mixes of) user
types. The success percentage is defined as the probabil-
ity that, whenever at least one node of a notary group
is online, the group is operational (i. e., it can perform a
notary signature), i. e., at least t′ of its nodes are online.
Figures 8 and 9 present the success ratios of groups

with uniform type of users, respectively normal and power

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 14 of 17

Minimum online nodes per group to retrieve the secret (t')

Figure 8 Simulations of online availability for normal users.

users. Figure 10 shows results for amore realistic case with
mixed user types, i. e., 80% normal and office users and
20% casual and power users. As we can see from Figures 8
and 9, user behavior has a strong influence on the success
percentage. The results for normal users (Figure 8) sug-
gest that for p = 50% and n = 6, t′ ≈ 0.7n would be
a reasonable choice (t′n = 4

6 ≈ 0.7), while the results for
power users (Figure 9) suggest t′ ≈ 0.9n. The simulation
of the most realistic case, the mixed case (Figure 10), sug-
gests t′ ≈ 0.5n. As expected, larger groups can tolerate
a bigger fraction of offline nodes for the desired success
percentage of 50%. For instance, a group with n = 14
nodes can tolerate nine offline nodes in the mixed case,
which is about 64%, while a group with n = 6 nodes can
tolerate only about three offline nodes, i. e., about 50%
(cf. Figure 10).
In conclusion, the results suggest that t′ ≈ n

2 is a reason-
able choice, if n ≥ 6, i. e., groups should consist of at least
6 members to be operational in 50% of cases.

6 Limitations and discussion
In this section, we will discuss limitations and challenges
of Laribus.We focus on the attacker model as well as prac-
tical problems, performance tradeoffs, and bootstrapping.
Laribus cannot protect against attackers that control

large parts of the Internet. By design, and like any
other notary-based MitM detection approach, Laribus
can solely detect local attacks, i. e., the majority of notaries
must not be affected by an attack and must be able to
retrieve valid certificates. Attacks that affect a single coun-
try (e. g., a repressive regime) or continent can be detected
as long as notaries from different parts of the world are
available. Moreover, strong attackers may try to block all
traffic pertaining to certificate validation. While this is
straightforward given static, centralized notaries, Laribus
is less vulnerable to blocking due to its decentralized
architecture.
A general problem of collaborative distributed

certificate validation is that some hosts and especially

Minimum online nodes per group to retrieve the secret (t')

Figure 9 Simulations of online availability for power users.

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 15 of 17

Minimum online nodes per group to retrieve the secret (t')

Figure 10 The simulation of online availability formixed users.

content distribution networks (CDNs) use different valid
certificates for the same host. As a result, a 1:1-comparison
of certificates is not appropriate. However, since the
timeline of seen certificates of Laribus allows to store
several certificates for a host (cf. Section 4.4), clients can
still judge the validity of a certificate by the number of
notaries that have seen the same certificate.
Newly issued or renewed certificates cannot be

answered with DHT lookups as the timeline will not con-
tain any records for them. In this case direct queries (cf.
Section 3.3) have to be issued, i. e., enough notaries that
the client trusts have to be available.
The results of our initial feasibility study suggest that

groups should consist of at least six members to be opera-
tional in 50% of cases (cf. Section 5.2). Composing a group
of at least six friends should not be a problem in practice.
An average 50% availability of a notary group should be
practical as well, especially since the storage and caching
mechanisms of the DHT do allow to access the timeline of
the certificates seen by different groups even if all mem-
bers of those groups are offline. Further, previous studies
indicate that the popularity of web hosts follows a power-
law distribution [64], i. e., a small set of popular hosts
is responsible for the vast majority of all requests, while
the long tail of remaining hosts is requested rarely. Thus,
we expect that the DHT’s cache hit ratio will be high;
direct queries will not be needed in most cases. Our anal-
ysis of the cryptographic processes of Laribus showed that
cryptographic overhead is moderate, except for distributed
key generation which is required only during initialization
(cf. Section 5.1).
In conclusion, results for both availability and perfor-

mance are quite promising. They indicate that a Laribus
deployment would indeed be practical. However, future
work should focus on analyzing the cache hit ratio using
different caching strategies (such as ‘most recently used’
or based on a time-to-live value like in DNS) and the

resulting user-perceived latencies. The results would be
of particular interest for the parameterization of Laribus,
especially the security parameter k of the range query
protection mechanism (cf. Section 3.7.2).
To offer adequate performance and availability dur-

ing the initial deployment of Laribus, we suggest to
bootstrap the network with a set of dedicated servers
operated by different universities around the world until
enough users participate. In fact, a permanent opera-
tion of these servers could be an option as well as it
would allow to combine the benefits of P2P (especially
blocking resistance) and client-server solutions and thus
further increase the attractiveness of Laribus. Further-
more, snapshots of the timeline (including group signa-
tures) could be mirrored and made publicly available for
all users on the Internet. This resembles the approach of
Sovereign Keys (cf. Section 2 and [32]) and would also
help to reduce lookup latencies as well as the size of
the DHT.

7 Conclusions
In this paper, we presented Laribus, a social peer-to-
peer network that addresses the problem of man-in-the-
middle attacks on SSL. Laribus integrates approved tech-
niques from current state-of-the-art solutions and com-
bines them with well-known proposals from the privacy
enhancing technologies research community to improve
both privacy and availability.
To the best of our knowledge, Laribus is the first fully

distributed solution for the detection of fake SSL certifi-
cates. It does not require cooperation of website owners
and is blocking-resistant due to its decentralized architec-
ture. Further, clients do not have to trust a central notary
service. The Laribus architecture is fundamentally differ-
ent from previous solutions since users can model trust
relationships that reflect their social relationships andmay

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 16 of 17

create virtual notaries that consist of their friends. The
resulting groups of friends are utilized both as anonymity
sets and to increase availability.
Our initial evaluation results are promising and sug-

gest that Laribus is feasible. Future work will focus on an
implementation of its components as well as an in-depth
analysis of the effectiveness of caching and user-perceived
latencies in order to prepare the practical deployment of
Laribus.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The authors are grateful to the anonymous reviewers for their constructive
feedback and insightful comments. A preliminary version of this article has
been published in the ARES 2013 proceedings [13].

Received: 15 March 2014 Accepted: 10 July 2014

References

1. T Dierks, E Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2
RFC 5246. (IETF, Fremont, CA, USA, 2008)

2. A Freier, P Karlton, P Kocher, The Secure Sockets Layer (SSL) Protocol Version
3.0 RFC 6101. (IETF, Fremont, CA, USA, 2011)

3. E Rescorla, SSL and TLS: Designing and Building Secure Systems.
(Addison-Wesley, Boston, Toronto, Paris, 2001)

4. J Rizzo, T Duong, Here Come The XOR Ninjas. Unpublished manuscript
(2011). http://netifera.com/research/beast/beast_DRAFT_0621.pdf

5. Y Gluck, N Harris, A Prado, BREACH: Reviving THE CRIME Attack.
Unpublished manuscript (2013). http://breachattack.com/resources/
BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf

6. NJ AlFardan, KG Paterson, in IEEE Symposium on Security and Privacy (S&P
2013), Berkeley, CA, USA, May 19–22, 2013, Proceedings. Lucky Thirteen:
Breaking the TLS and DTLS Record Protocols (IEEE New York, NY, USA,
2013), pp. 526–540

7. C Meyer, J Schwenk, Lessons Learned From Previous SSL/TLS Attacks – A
Brief Chronology Of Attacks And Weaknesses. Cryptology ePrint Archive,
Report 2013/049 (2013). http://eprint.iacr.org/2013/049/20130201:021008

8. C Meyer, J Schwenk, in Information Security Applications – 14th
International Workshop (WISA 2013), Jeju Island, Korea, August 19–21, 2013,
Revised Selected Papers, Lecture Notes in Computer Science, ed. by Y Kim,
H Lee, and A Perrig. SoK: Lessons Learned from SSL/TLS Attacks, vol. 8267
(Springer Berlin Heidelberg, 2013), pp. 189–209

9. D Cooper, S Santesson, S Farrell, S Boeyen, R Housley, W Polk, Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile, RFC 5280. (IETF, Fremont, CA, USA, 2008)

10. Electronic Frontier Foundation, EFF SSL Observatory. https://www.eff.org/
observatory. accessed 2014-03-14

11. C Soghoian, S Stamm, in Financial Cryptography and Data Security – 15th
International Conference (FC 2011), Gros Islet, St. Lucia, February 28 –March
4, 2011, Revised Selected Papers. Lecture Notes in Computer Science, ed. by
G Danezis. Certified Lies: Detecting and Defeating Government
Interception Attacks Against SSL, vol. 7035 (Springer Berlin Heidelberg,
2012), pp. 250–259

12. N Leavitt, Internet Security Under Attack: The Undermining of Digital
Certificates. IEEE Computer. 44(12), 17–20 (2011)

13. A Micheloni, K-P Fuchs, D Herrmann, H Federrath, in International
Conference on Availability, Reliability and Security (ARES 2013), Regensburg,
Germany, September 2–6, 2013, Proceedings. Laribus: Privacy-Preserving
Detection of Fake SSL Certificates with a Social P2P Notary Network (IEEE
New York, NY, USA, 2013), pp. 1–10

14. J Clark, PC van Oorschot, in IEEE Symposium on Security and Privacy (S&P
2013), Berkeley, CA, USA, May 19–22, 2013, Proceedings. SoK: SSL and HTTPS:
Revisiting Past Challenges and Evaluating Certificate Trust Model
Enhancements (IEEE New York, NY, USA, 2013), pp. 511–525

15. H Tschofenig, E Lear, Evolving theWeb Public Key Infrastructure. Internet
Draft. (IETF, Fremont, CA, USA, 2013). http://tools.ietf.org/html/draft-
tschofenig-iab-webpki-evolution-01

16. J Kasten, E Wustrow, JA Halderman, in International Conference on
Financial Cryptography andData Security (FC 2013), Okinawa, Japan, April 1–
5, 2013, Revised Selected Papers. Lecture Notes in Computer Science, ed. by
A-R Sadeghi. Cage: Taming Certificate Authorities by Inferring Restricted
Scopes, vol. 7859 (Springer Berlin Heidelberg, 2013), pp. 329–337

17. H Perl, S Fahl, M Smith, in 18th International Conference on Financial
Cryptography and Data Security (FC 2014), Barbados, March 3—7, 2014,
Proceedings. You Won’t Be Needing These Any More: On Removing
Unused Certificates From Trust Stores, (2014)

18. J Sunshine, S Egelman, H Almuhimedi, N Atri, LF Cranor, in USENIX Security
Symposium, Montreal, Canada, August 10–14, 2009, Proceedings. Crying
Wolf: An Empirical Study of SSL Warning Effectiveness (USENIX
Association Berkeley, CA, USA, 2009), pp. 399–416

19. C Evans, C Palmer, R Sleevi, Public Key Pinning Extension for HTTP. Internet
Draft. (IETF, Fremont, CA, USA, 2014). http://tools.ietf.org/html/draft-ietf-
websec-key-pinning-11

20. M Marlinspike, T Perrin, Trust Assertions for Certificate Keys. Internet Draft.
(IETF, Fremont, CA, USA, 2013). http://tools.ietf.org/html/draft-perrin-tls-
tack-02

21. P Hoffman, J Schlyter, The DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698. (IETF,
Fremont, CA, USA, 2012)

22. R Arends, R Austein, M Larson, D Massey, S Rose, DNS Security Introduction
and Requirements RFC 4033. (IETF, Fremont, CA, USA, 2005)

23. E Osterweil, B Kaliski, M Larson, D McPherson, inWorkshop on Securing and
Trusting Internet Names (SATIN 2012), March 22–23, 2012, Teddington, UK,
Proceedings. Reducing the X.509 Attack Surface with DNSSEC’s DANE,
(2012). http://conferences.npl.co.uk/satin/papers/satin2012-Osterweil.pdf

24. H Yang, E Osterweil, D Massey, S Lu, L Zhang, Deploying Cryptography in
Internet-scale Systems: A Case Study on DNSSEC. Dependable and Secure
Computing, IEEE Transactions on. 8(5), 656–669 (2011)

25. VeriSign, Licensing Verisign Certificates. Technical Report (2005).
http://www.verisign.com/static/001496.pdf

26. P Hallam-Baker, R Stradling, DNS Certification Authority Authorization (CAA)
Resource Record. RFC 6844. (IETF, Fremont, CA, USA, 2013)

27. W Koch, M Brinkmann, STEED – Usable End-to-End Encryption.
Unpublished manuscript (2011). http://g10code.com/docs/steed-usable-
e2ee.pdf

28. GX Toth, T Vlieg, Public Key Pinning for TLS – Using a Trust on First Use
Model. Technical report, University of Amsterdam (2013). http://www.
delaat.net/rp/2012-2013/p56/report.pdf

29. Certificate Patrol Homepage. http://tg-x.net/code/certpatrol. accessed
2014-03-14

30. I Dacosta, M Ahamad, P Traynor, in European Symposium on Research in
Computer Security (ESORICS 2012), Pisa, Italy, September 10–12, 2012,
Proceedings. Lecture Notes in Computer Science, ed. by S Foresti, M Yung,
and F Martinelli. Trust No One Else: Detecting MITM Attacks against
SSL/TLS without Third-Parties, vol. 7459 (Springer Berlin Heidelberg,
2012), pp. 199–216

31. The Monkeysphere Project. http://web.monkeysphere.info/. accessed
2014-03-14

32. The Sovereign Keys Project. https://www.eff.org/sovereign-keys.
accessed 2014-03-14

33. B Laurie, A Langley, E Kasper, Certificate Transparency. RFC 6962. (IETF,
Fremont, CA, USA, 2013)

34. TH-J Kim, L-S Huang, A Perrig, C Jackson, V Gligor, Transparent Key
Integrity (TKI): A Proposal for a Public-Key Validation Infrastructure.
Technical Report CMU-CyLab-12-016, Carnegie Mellon University (July
2012). https://www.cylab.cmu.edu/files/pdfs/tech_reports/
CMUCyLab12016.pdf

35. D Wendlandt, DG Andersen, A Perrig, in USENIX Annual Technical
Conference, Boston, MA, USA, June 22–27, 2008, Proceedings. Perspectives:
Improving SSH-style Host Authentication with Multi-Path Probing
(USENIX Berkeley, CA, USA, 2008), pp. 321–334

36. The Convergence Project. http://convergence.io/. accessed 2014-03-14
37. J Wilberding, A Yates, M Sherr, W Zhou, in Annual Computer Security

Applications Conference (ACSAC ’13), New Orleans, LA, USA, December 9-13,
2013, Proceedings, ed. by CNP Jr. Validating Web Content with Senser
(ACM New York, NY, USA, 2013), pp. 339–348

http://netifera.com/research/beast/beast_DRAFT_0621.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
http://eprint.iacr.org/2013/049/20130201:021008
https://www.eff.org/observatory
https://www.eff.org/observatory
http://tools.ietf.org/html/draft-tschofenig-iab-webpki-evolution-01
http://tools.ietf.org/html/draft-tschofenig-iab-webpki-evolution-01
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-11
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-11
http://tools.ietf.org/html/draft-perrin-tls-tack-02
http://tools.ietf.org/html/draft-perrin-tls-tack-02
http://conferences.npl.co.uk/satin/papers/satin2012-Osterweil.pdf
http://www.verisign.com/static/001496.pdf
http://g10code.com/docs/steed-usable-e2ee.pdf
http://g10code.com/docs/steed-usable-e2ee.pdf
http://www.delaat.net/rp/2012-2013/p56/report.pdf
http://www.delaat.net/rp/2012-2013/p56/report.pdf
http://tg-x.net/code/certpatrol
http://web.monkeysphere.info/
https://www.eff.org/sovereign-keys
https://www.cylab.cmu.edu/files/pdfs/tech_reports/CMUCyLab12016.pdf
https://www.cylab.cmu.edu/files/pdfs/tech_reports/CMUCyLab12016.pdf
http://convergence.io/

Fuchs et al. EURASIP Journal on Information Security (2015) 2015:1 Page 17 of 17

38. R Dingledine, N Mathewson, PF Syverson, in USENIX Security Symposium,
August 9–13, 2004, San Diego, CA, USA, Proceedings. Tor: The
Second-Generation Onion Router (USENIX Berkeley, CA, USA, 2004),
pp. 303–320

39. M Alicherry, AD Keromytis, in IEEE Symposium on Computers and
Communications (ISCC 2009), July 5–8, Sousse, Tunisia, Proceedings.
DoubleCheck: Multi-path Verification Against Man-in-the-Middle Attacks
(IEEE New York, NY, USA, 2009), pp. 557–563

40. K Engert, DetecTor (version 1.02 2013). http://detector.io/DetecTor.pdf
accessed 2014-03-14

41. D McCoy, KS Bauer, D Grunwald, T Kohno, DC Sicker, in Privacy Enhancing
Technologies, 8th International Symposium (PETS 2008), Leuven, Belgium,
July 23–25, 2008, Proceedings. Lecture Notes in Computer Science, ed. by
N Borisov, I Goldberg. Shining Light in Dark Places: Understanding the Tor
Network, vol. 5134 (Springer Berlin Heidelberg, 2008), pp. 63–76

42. P Winter, R Köwer, M Mulazzani, M Huber, S Schrittwieser, S Lindskog,
E Weippl, in Privacy Enhancing Technologies, 14th International Symposium
(PETS 2014), Amsterdam, The Netherlands, July 16–18, 2014, Proceedings.
Lecture Notes in Computer Science, ed. by E De Cristofaro, SJ Murdoch.
Spoiled Onions: Exposing Malicious Tor Exit Relays, vol. 8555 (Springer
Berlin Heidelberg, 2014), pp. 304–331

43. B Amann, M Vallentin, S Hall, R Sommer, Extracting Certificates from Live
Traffic: A Near Real-Time SSL Notary Service. Technical Report TR-12-014.
(International Computer Science Institute, Berkeley, CA, USA, 2012).
http://www.icsi.berkeley.edu/pubs/techreports/ICSI_TR-12-014.pdf

44. R Holz, T Riedmaier, N Kammenhuber, G Carle, in European Symposium on
Research in Computer Security (ESORICS 2012), Pisa, Italy, September 10–12,
2012, Proceedings. Lecture Notes in Computer Science, ed. by S Foresti, M
Yung, and F Martinelli. X.509 Forensics: Detecting and Localising the
SSL/TLS Men-in-the-Middle, vol. 7459 (Springer Berlin Heidelberg, 2012),
pp. 217–234

45. H-M Sun, W-H Chang, S-Y Chang, Y-H Lin, in Cryptology and Network
Security, 8th International Conference (CANS 2009), Kanazawa, Japan,
December 12–14, 2009, Proceedings. Lecture Notes in Computer Science,
ed. by JA Garay, A Miyaji, and A Otsuka. DepenDNS: Dependable
Mechanism against DNS Cache Poisoning, vol. 5888 (Springer Berlin
Heidelberg, 2009), pp. 174–188

46. K Park, VS Pai, LL Peterson, Z Wang, in Symposium on Operating System
Design and Implementation (OSDI 2004), San Francisco, California, USA,
December 6–8, 2004, Proceedings. CoDNS: Improving DNS Performance
and Reliability via Cooperative Lookups (USENIX Association Berkeley, CA,
USA, 2004), pp. 199–214

47. L Poole, VS Pai, in USENIX Annual Technical Conference, Boston, MA, USA,
June 22–27, 2008, Proceedings. ConfiDNS: Leveraging Scale and History to
Detect Compromise (USENIX Berkeley, CA, USA, 2008), pp. 99–112

48. L Yuan, K Kant, P Mohapatra, C-N Chuah, in International Conference on
Communications (ICC 2006), Istanbul, Turkey, 11-15 June 2006, Proceedings.
DoX: A Peer-to-Peer Antidote for DNS Cache Poisoning Attacks (IEEE New
York, NY, USA, 2006), pp. 2345–2350

49. P Maymounkov, D Mazières, in Peer-to-Peer Systems, First International
Workshop (IPTPS 2002), Cambridge, MA, USA, March 7–8, 2002, Revised
Papers. Lecture Notes in Computer Science. Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric, vol. 2429 (Springer Berlin
Heidelberg, 2002), pp. 53–65

50. F Lesueur, Mé, VVT Tong, in Resilient Networks and Services, Second
International Conference on Autonomous Infrastructure, Management and
Security (AIMS 2008), Bremen, Germany, July 1–3, 2008, Proceedings. Lecture
Notes in Computer Science. A Distributed Certification System for
Structured P2P Networks, vol. 5127 (Springer Berlin Heidelberg, 2008),
pp. 40–52

51. R Dingledine, SJ Murdoch, Performance Improvements on Tor, or, Why
Tor is Slow and What We’re Going to Do About It. Unpublished
manuscript (2009). https://svn.torproject.org/svn/projects/roadmaps/
2009-03-11-performance.pdf

52. D Chaum, Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM. 24(2) (1981)

53. Y Lu, G Tsudik, in International Conference on Peer-to-Peer Computing (P2P
2010), Delft, The Netherlands, 25–27 August 2010, Proceedings. Towards
Plugging Privacy Leaks in the Domain Name System (IEEE New York, NY,
USA, 2010), pp. 1–10

54. RL Rivest, A Shamir, Y Tauman, in Advances in Cryptology (ASIACRYPT 2001),
7th International Conference on the Theory and Application of Cryptology
and Information Security, Gold Coast, Australia, December 9–13, 2001,
Proceedings. Lecture Notes in Computer Science, ed. by C Boyd. How to
Leak a Secret, vol. 2248 (Springer Berlin Heidelberg, 2001), pp. 552–565

55. RL Rivest, A Shamir, Y Tauman, in Theoretical Computer Science, Essays in
Memory of Shimon Even. Lecture Notes in Computer Science, ed. by O
Goldreich, AL Rosenberg, and AL Selman. How to Leak a Secret: Theory
and Applications of Ring Signatures, vol. 3895, vol. 3895 (Springer Berlin
Heidelberg, 2006), pp. 164–186

56. A Shamir, How to share a secret. Commun. ACM. 22(11), 612–613 (1979)
57. D Boneh, MK Franklin, in Advances in Cryptology (CRYPTO ’97), 17th Annual

International Cryptology Conference, Santa Barbara, California, USA, August
17–21, 1997, Proceedings. Lecture Notes in Computer Science. Efficient
Generation of Shared RSA Keys (Extended Abstract), vol. 1294 (Springer
Berlin Heidelberg, 1997), pp. 425–439

58. DN Tran, J Li, L Subramanian, SSM Chow, in International Conference on
Computer Communications (INFOCOM 2011), Joint Conference of the IEEE
Computer and Communications Societies, 10–15 April 2011, Shanghai,
China, Proceedings. Optimal Sybil-Resilient Node Admission Control (IEEE
New York, NY, USA, 2011), pp. 3218–3226

59. G Danezis, I Goldberg, in IEEE Symposium on Security and Privacy (S&P
2009), 17–20May 2009, Oakland, California, USA, Proceedings. Sphinx: A
Compact and Provably Secure Mix Format (IEEE New York, NY, USA, 2009),
pp. 269–282

60. A Kate, I Goldberg, in Financial Cryptography and Data Security, 14th
International Conference (FC 2010), Tenerife, Canary Islands, January 25–28,
2010, Revised Selected Papers. Lecture Notes in Computer Science, ed. by R
Sion. Using Sphinx to Improve Onion Routing Circuit Construction,
vol. 6052 (Springer Berlin Heidelberg, 2010), pp. 359–366

61. T Congos, F Lesueur, inWorkshop on Security and Trust Management (STM
2009), Proceedings. Electronic Notes in Theoretical Computer Science.
Experimenting with Distributed Generation of RSA Keys (Elsevier
Saint-Malo, France, 2009)

62. DJ Bernstein, in Public Key Cryptography – 9th International Conference on
Theory and Practice of Public-Key Cryptography (PKC 2006), New York, NY,
USA, April 24–26, 2006, Proceedings. Lecture Notes in Computer Science.
Curve25519: New Diffie-Hellman Speed Records, vol. 3958 (Springer
Berlin Heidelberg, 2006), pp. 207–228

63. K-P Fuchs, D Herrmann, H Federrath, in European Symposium on Research
in Computer Security (ESORICS 2012), Pisa, Italy, September 10–12, 2012,
Proceedings. Lecture Notes in Computer Science, ed. by S Foresti, M Yung,
and F Martinelli. Introducing the gMix Open Source Framework for Mix
Implementations, vol. 7459 (Springer Berlin Heidelberg, 2012),
pp. 487–504

64. J Jung, E Sit, H Balakrishnan, R Morris, DNS Performance and the
Effectiveness of Caching. Networking, IEEE/ACM Transactions on. 10(5),
589–603 (2002)

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://detector.io/DetecTor.pdf
http://www.icsi.berkeley.edu/pubs/techreports/ICSI_TR-12-014.pdf
https://svn.torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf
https://svn.torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf

	Abstract
	Keywords

	Introduction
	Related work
	Limiting the scope of CAs
	Certificate pinning
	Trust on first use
	Incorporating out-of-band information
	Append-only timelines
	Relying on notaries and peers

	The Laribus proposal
	Shortcomings of a naïve approach
	Layered network structure
	Interactions during certificate validation
	User-defined trust
	Security measures
	Availability measures
	Privacy-preserving certificate validation
	Preserving privacy for direct queries
	Preserving privacy of DHT lookups

	Laribus cryptography mechanisms
	Ring signatures
	Notary signatures
	Key generation
	Dynamic share handling
	Obtaining a notary signature
	Notary group protection measures

	Layered encryption scheme
	Certificate timeline and storage data format

	Evaluation
	Cryptographic processes
	Availability aspects

	Limitations and discussion
	Conclusions
	Competing interests
	Acknowledgements
	References

