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Abstract

provides higher embedding capacity.

This paper proposes a novel steganography technique, where edges in the cover image have been used to embed
messages. Amount of data to be embedded plays an important role on the selection of edges, i.e., the more the
amount of data to be embedded, larger the use of weaker edges for embedding. Experimental results have shown
that the proposed technique performs better or at least at par with the state-of-the-art steganography techniques but
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1 Introduction

Steganography is an art of secure transmission of mes-
sages from a sender to a receiver. It should ensure that no
one can reliably conclude on the secret communication
between the sender and the receiver. To achieve such a
secrecy, the message is hidden in some cover media which
may not raise any suspicion on the possibility of carrying
the secret message to the third party. Embedding intro-
duces distortion in the cover medium. The embedding
distortion in visual and statistical properties of the cover
medium may lead steganographic detectability. The objec-
tive of any steganographic technique is to preserve these
properties while embedding the message in the cover
media.

Images are preferred medium for the current steganog-
raphy techniques. Content adaptability, visual resilience,
and smaller size of images make them good carrier to
transmit secret messages over the internet. There exists
a large number of image steganography techniques which
are accompanied by various attacks on the steganogra-
phy systems. Security of any steganography technique
depends on the selection of pixels for embedding. Pixels
in noisy and textured area are better choice for embed-
ding because they are difficult to model. Pixels in edges
can be seen as noisy pixels because their intensities are
either higher or lower than their neighboring pixels due
to sudden change in the coefficient gradient. Due to these
sharp changes in the visual and statistical properties,
edges are difficult to model in comparison to pixels in
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smoother area. Therefore, edges make a better option to
hide secret data than any other region of an image where
a small distortion is much more noticeable. Figure 1a is
an image with 20% of pixels modified to produce dis-
tortion. The image has some smooth parts such as sky
and some parts with high concentration of edges, such
as trees and buildings. Some areas from both smoother
part and high texture part are cropped and zoomed as
shown in Figure 1b,c. It can be seen that the modified pix-
els in the smoother parts are clearly noticeable, whereas
it is hard to detect these distortions in the high texture
parts. In this paper, we have proposed a steganography
technique which can hide the secret message only in the
edges of the cover image. The proposed steganography
technique is found to have excellent security against ste-
ganalysis attacks. The performance of the technique is
analyzed by testing on ‘break our steganography system’
(BOSSbase) ver. 1.01 [1] and ‘break our watermarking sys-
tem’ (BOWS2)? databases, each having 10,000 grey scale
images.

The paper is organized as follows. Section 2 discusses
some well-known steganographic techniques. Various
observations which are used to propose the stegano-
graphic technique are discussed in Section 3. An efficient
edge-based steganography technique has been presented
in Section 4. Experimental results have been analyzed in
Section 5. Conclusions are given in the last section.

2 Literature review

There exist several steganographic techniques to embed
data securely in a carrier medium and tools to detect reli-
ably the presence of any secret message in a steganogram.
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(a) A Cover Image

(b) Smooth Part

(C) Texture Part

Figure 1 Effect of embedding in an image. (a) Cover image. (b) Smooth part. (¢) Textured part.

Steganographic technique consists of embedding and
extracting mechanism. Image-based steganographic tech-
niques can be classified into two categories: spatial
domain and frequency (transform) domain.

A secret message is generally considered as an
encrypted data, where bits of encrypted message are
embedded in pixels of the cover image. The trivial
steganography technique is based on the least signifi-
cant bit (LSB) substitution in which the LSB of the pixels
is modified to embed the secret message. In the spatial
domain, this type of techniques can be broadly classified
into two categories: LSB replacement and LSB matching.
In case of LSB replacement [2,3], the least significant bit
of each pixel of the cover image is replaced by the next bit
of the secret message to be embedded. In LSB matching
[4], if there is a mismatch between least significant bit of a
byte in the cover image and next bit of the secret message
to be embedded, then embedding, in general, is done by
increasing or decreasing randomly the content of the byte
of the cover image by 1, except at the boundary values. In
some techniques, the decision to increase or decrease the
content of a byte is governed by the score of the distortion
function [5]. Embedding in two least significant bits is an
extension of LSB replacement. There are multiple ways to
embed data by flipping the least and the second least bits
of a cover image [6].

In case of transform domain, the LSB-based embed-
ding is done by modifying the LSB of non-zero DCT
coefficients of a cover image. There exist several ways to
embed data in transform domain such as modification of
quantization table, heuristic based, utilizing non-shared
selection, and side information at sender side [7].

Steganalysis tools track the distortion caused during
the data embedding to detect the presence of the secret

message in an image. These tools are classified as visual,
structural, and non-structural [8,9]. Visual steganalysis
attacks analyze images for some distortions which are vis-
ible to human vision system. The distortions could be
visible in stego image or in LSB plane extracted from the
stego image. Structural attacks analyze structural proper-
ties of an image to find any anomaly which are introduced
by steganography. Structural detectors such as histogram
attack [10], sample pair analysis (SPA) [11], RS method
[12], and weighted stego [13] can reliably detect pres-
ence of stego data and even estimate message length.
Non-structural detectors use feature extractors to model
cover image and to compute distortion between the cover
and the stego image to detect embedding. A classifier
is trained by the feature set from large number of stego
and cover images. During training, the classifier learns
the differences in features, and this learning is used to
classify a fresh image into stego or clean image. Non-
structural detectors such as subtractive pixel adjacency
matrix (SPAM) [14] and spatial-rich model (SRM) [15]
claim better probability of detection of embedding in a
stego image. Features based on steganalysis techniques
use support vector machine (SVM) or ensemble classi-
fiers [16] for supervised learning. SVM is not suitable
for any high-dimension feature vector, while this is not
the case with ensemble classifier but its performance is
comparable to SVM.

Most of the current steganography techniques are based
on model-preserving principles. These techniques are
designed by finding a model for cover images, and embed-
ding modifications are done in such a way that this model
is preserved. Highly undetectable stego (HUGO) [5], ASO
[17], universal wavelet relative distortion (UNIWARD)
[18], and maximum mean discrepancy (MMD) [19] are
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designed on this principle. HUGO preserves features used
by SPAM for steganalysis, thus preserving features space
model. Similarly, UNIWARD preserves a wavelet-based
model, while MMD preserves parametric-based model.
Generally, these techniques embed message by minimiz-
ing a defined embedding distortion function heuristically.
But, in [20], a non-heuristic distortion function is used to
preserve the Kullback Leibler distance.

In [21], an embedding technique, known as pixel value
difference technique (PVD) has been proposed. In this
technique, the image is divided into non-overlapping
blocks of adjacent pixels which are randomly selected,
and data is embedded into each of its pixels. The amount
of data embedded, i.e., the number of last significant
bits used, is directly proportional to the differences in
the intensities of adjacent pixels. This uneven embed-
ding in PVD leads to unusual steps in the histogram of
pixel difference in the stego image. An improved tech-
nique (IPVD), proposed in [22], has exploited this vulner-
ability. Adaptive edge LSB technique (AE-LSB) [23] has
also removed this uneven pixel difference by introduc-
ing a readjusting phase and has provided better capacity.
All these techniques are edge adaptive in a way that
they can embed more data where pixel difference is
high but they have one fundamental limitation. These
techniques consider pixel pair at random, rather than
selecting on the basis of higher differences. So, they
may end up by embedding data at random places in the
image and by distorting the texture in LSB plane of the
image. Performance of these techniques are found to be
poor [24].

In hiding behind corners (HBC) [25]P technique, corner
pixels are used to contain hidden data. Data is embed-
ded by using simple LSB substitution. Such embedding
leads to many structural asymmetries and could easily be
detected by structural steganalysis tools like chi-square
[10], sample pair analysis (SP) [26], and weighted stego
(WS) [27]. Thus, the HBC technique which maintains
texture in LSB plane, offers poor security.

Edge adaptive image steganography (EALMR) [24] tech-
nique is based on LSB matching revisited (LSBMR) [3]
technique which alleviates some of the above said lim-
itations. EALMR calculates the difference between two
adjacent pixels. If this difference is greater than a pre-
defined threshold, then both pixels are marked as edge
pixels, and one bit of data is hidden in each of them using
LSBMR. This technique has some limitations. Difference
of intensities of adjacent pixels may not be an edge point;
any such technique may embed data in smoother parts
even though there are some unused prominent edges. So,
any well-known edge detection algorithm can be used to
find edge pixels and to hide data in the detected edges.
Further, since EALMR compares a pixel with its adja-
cent pixel, it can find edges only in one direction. To
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overcome this limitation, an image can be divided into
some non-overlapping but equal size blocks, and each
block is rotated in the range of set {0°, 90°, 180°, 270°} to
see edge pixels in more than one direction inside a given
block. But, poor edge selection results in detection by ste-
ganalysis tools like targeted attack [28] and blind attacks
SPAM [14] and SRM [15].

In [5], HUGO steganographic technique is presented.
Its design is derived from the image model obtained from
the feature set of SPAM steganalyzer. It is based on the
minimum-embedding impact principle, where embed-
ding is done in such a way that the distortion in a stego
image is minimum. It preserves a model utilized by SPAM
steganalyzer to derive steganalytic features in such a way
that it does not over-fit to a SPAM feature set. Dimension-
ality of the feature set has been tremendously enhanced so
that the technique is not detectable by minor modification
in SPAM steganalyzer. Instead of using Markov transi-
tion matrix to compute SPAM features, co-occurrence
matrix is used to derive those features. But, it may have
minor degradation in performance. Detectable parts of
the model are identified by Fisher linear discriminant
(FLD criteria) [29]. It rates individual features’ importance
for embedding changes. The parts of the model not vul-
nerable to embedding changes are identified using criteria
optimized in FLD. In [30], it is shown that HUGO is vul-
nerable against steganalysis that uses other models drawn
from different domains.

In [31], embedding distortion cost is computed through
directional residual obtained using Daubechies wavelet
filter bank [32]. The objective is to limit the embedding
changes to those parts of the cover image that are diffi-
cult to model in multiple directions. Embedding is done
in textures or noisy parts and avoiding smooth regions
and clean edges of empirical cover images. Distortion
function, called as UNIWARD [31], is used to compute
delectability map. Syndrome trellis code (STC) [33] and
detectability map are used to embed payload while min-
imizing the embedding distortion. The same distortion
design technique can be used for spatial and transform
domains.

3 Some observations

This section discusses some observations that are used to
design an edge-based steganography technique. The edges
are difficult to model, and the pixels belonging to each
selected edge are considered as noisy pixels for embed-
ding. In Figure 2, it is seen that embedding in edge pixels
leads to changes in edges of the stego image. Consider
the cover image shown in Figure 2a. The edges in the
cover image for maximum possible embedding capacity
are shown in Figure 2b, and corresponding edges in the
stego image are depicted in Figure 2c. Finally, Figure 2d
shows the locations where edges in stego and cover image
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image. (d) Edge pixel mismatch.

(d)

Figure 2 Change in the number of edge pixels due to embedding. (a) Cover image. (b) Edge pixels in a cover image. (c) Edge pixels in a stego

do not match. As a result, it makes it impossible to retrieve
the embedded message from the stego image. But, the
secret message must be extracted from the stego image.
Therefore, just by using any edge detection algorithm to
detect edges and embedding in those locations may not
be sufficient for designing an edge-based steganography
technique.

3.1 Masking cover image

In order to keep no changes in edges before and after
embedding, the LSBs of the cover image are masked, and
edge detectors are applied on the masked cover images.
Since LSB replacement does not modify any bit other than
LSB, a pixel of a cover image, the edges in cover and stego
images remain identical as shown in Figure 3. It has been
observed that the number of pixels belonging to edges
does not change much by masking LSB or the least two
significant bits (2LSB).

Table 1 lists the difference in the number of pixels
belonging to edges between cover image and its modi-
fied images by masking 2LSB for BOSSbase database ver.
1.01 of 10,000 natural images. It can be seen that the
average difference for different edge detectors and mask-
ing 2LSB is limited to less than 2%. However, there is a
outlier case, shown in Figure 4, where the difference is
61%. It can be noted that for both databases, the number
of pixels belonging to edges are increased after masking
2LSB. Hence, masking at least two significant bits does
not effect the edges in the cover image for most of the
cases.

3.2 Embeddingin LSB or 2LSB

Most of the steganographic techniques embed data in LSB
of pixels in the cover image pixel. Embedding is done by
either LSB replacement or LSB matching. LSB replace-
ment is detected by most of the structural detectors, but
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(c)

stego (masked). (d) No edge pixels mismatch.

Figure 3 Change in the number of edge pixels due to embedding. (a) Cover image. (b) Edge pixels in a cover (masked). (c) Edge pixels in a

(d)

LSB matching is reliably detected through non-structural
detector SPAM and SRM. Hence, if one embeds in the
LSB plane, then there is a high probability of detection
of presence of the message. To overcome these structural
and non-structural detectors, embedding is done in 2LSB
plane of the cover image. Embedding in 2LSB plane vio-
lates the basic assumption of structural detectors, and it
has been observed that even SPAM and SRM are less

accurate in detecting the presence of the message for less
amount of data embedding in comparison to LSB replace-
ment. It is shown in [6,34] that embedding in 2LSB plane
is preferable to embed in LSB plane.

4 Proposed technique
This section proposes a new steganography technique
which hides secret messages in the edges of the carrier

Table 1 Average difference in number of edge pixels between image and its (2LSB) masked image

Algorithm T.otal Edge pixels Edge pixels Edge pixels Difference Difference
pixels (average) (%) (masked) (average) (%)
Canny 262,144 23,818 9.1 24,201 383 1.61
Sobel 262,144 8,451 32 8,458 7 0.09
Prewitt 262,144 8,407 32 8415 8 0.10
LOG 262,144 18,220 6.9 18,357 137 0.80
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Figure 4 A cover image of an outlier case of edge difference.

image. It is an extension of edge embedding in color image
[35]. To get true edges, Canny edge detection technique
[36] has been used. The selection of edges for embedding
is dependent on the length of payload and the image. As
the payload size increases, a weak threshold for the selec-
tion of edges is used so that more edges can be selected to
accommodate the increased amount of data. For a given
payload, the sharpest possible edges are selected to embed
the message. The flow graph shown in Figure 5 shows
the proposed steganography technique which consists of
two primary tasks: threshold selection and embedding.
Threshold selection is to find Canny high threshold #, so
that sufficient number of edges are selected to embed the
given payload in a cover image, while embedding is done
by computing edge-map based on threshold. Payload is
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embedded in a cover image in a random order based on
the stego key and the edge map.

4.1 Threshold selection

Canny edge detection algorithm returns [36] edges in
a image on the basis of three parameters, namely, high
threshold (#,), lower threshold (#)), and width of Gaus-
sian kernel. Threshold ¢, is used to identify strong edges,
where £ helps to identify weaker edges. The t, value is
dynamically adjusted on the basis of message size in such
a way that enough number of edges in the cover image
are selected to embed the secret message. Experimentally,
the #; value is set to 0.4 x t,. The effect of change in the
threshold value for edge detection is shown in Figure 6.
The sharper edge means sharp change in visual and statis-
tical properties in the image which make the detection of
hidden data tougher. Canny edge detector’s sensitivity to
noise is controlled by width of the kernel. Increase of the
kernel width decreases detector’s noise sensitivity and vice
versa. Initially, the width of the kernel is taken as constant
to obtain the threshold value. Initial guess of the thresh-
old is obtained through Algorithm 1. Later, fine tuning of
the threshold and width of the Gaussian kernel are done
to improve the embedding algorithm. Figure 7 shows the
effect of width of kernel w on thresholds #, and ¢ and
number of pixels selected for embedding.

It is to be noted from Table 2 that for each image, differ-
ent sets of thresholds are obtained to fix the width of the
kernel. There is no way to obtain the best value of width of
the kernel, but it has been observed that high value of #,
and low value of w are better options for embedding. For
experimental purpose, fine tuning is done by increasing
the threshold value and decreasing width of the Gaussian
kernel. The results are evaluated for fixed values of w and
embedding rates. Sets of stego images are evaluated for
security, and the best result among all cases is reported.
Threshold selection tries to avoid clean edges by fixing
| = 0.4 x ty, and by reducing the width of Gaussian kernel.

Cover Image

Cover
Image

Threshold Selection

Secret
Message

Edge Detector

High Threshold

Edge Map PRNG

—

2-bit LSB

Replacement

Stego
Image

Stego Key

Secret Message

Figure 5 The proposed steganography technique.

PRNG: Pseudo random number generator
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Figure 6 Effect of threshold on edge detection. (a) Threshold 0.00. (b) Threshold 0.25. (c) Threshold 0.50. (d) Threshold 0.75.

To facilitate the extraction of message at the receiver
end, the length of the secret message is pre-fixed to the
message to form an augmented message. The structure of
the augmented message is shown in Figure 8. The mes-
sage size field of the augmented message is of fixed length
(C bits). The augmented message is a binary string with
the assumption that C bits are sufficient to store the
message size information.

The threshold value is computed at the time of embed-
ding, and it has to be sent to the receiver separately. The
threshold value and width of the kernel are stored in IEEE
754 floating point half precision format. They require only
16 bits and are embedded in non-edge pixels of the cover
image.

Algorithm 1 finds the suitable high threshold value for
the Canny edge detector. Initially £y is set to 0 and fmax
equal to 1. The high threshold value ¢, lies between these
two values. Let the number of pixels in edges returned

by Canny edge detector for the given threshold which is
median between tmin and £max be ne. Binary search is used
to find the threshold value. It is quite possible that num-
ber of pixels #n, belonging to edges may not be exactly
same as length of the secret message N. If this condition
occurs, binary search cannot return the threshold value.
To alleviate this problem, the terminating condition of the
search is modified so that it returns the number of pixels
greater than or equal to N, and limit is used to set upper
bound on #.. It has been found that limit of 1% is suffi-
cient for BOSSbase ver. 1.01 and BOW?2 database. If 7, is
less than the required number of edge pixels N, then ¢, has
to be greater than the median threshold, ¢min is set to the
median threshold, and the process is repeated. Similarly,
if n, is greater than (N + 0.01N), the median threshold is
set to tmax, and the process is repeated until the difference
between the number of edge pixels, n, and N, is less than
the limit.
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(e) (f)
Figure 7 Effect of width of the kernel on edge pixels for an embedding rate of 0.10 bits per pixel (bpp). (a) Cover image. (b) Relative width =
1.0. (c) Relative width = 0.8. (d) Relative width = 0.6. (e) Relative width = 0.4. (f) Relative width = 0.2.

4.2 The embedding the least two significant bits in the pixel intensity holds
Embedding in the cover image is done by least two- one bit of message. Bits of a pixel are flipped whenever
significant-bit substitutions (2LSB). It means that each of  they are not equal to the message bits. Only six most
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Table 2 Effect of width of kernel on edge pixels
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High threshold Low threshold Width Pixels required Embedding capacity
(th) (1) (w) (range in bits) (bits)
0.070 0.0280 1.0 26,234 10 28,835 28,801
0.105 0.0420 0.8 26,234 t0 28,835 28,598
0.105 0.0420 0.6 26,234 10 28,835 28,506
0.095 0.0380 04 26,234 10 28,835 28,798
0.095 0.0380 0.2 26,234 10 28,835 28422

Algorithm 1: getThreshold(/, N, w)

Data: I: Image, N: Length of augmented message to be
embedded, w: width of the Gaussian Kernel

Result: threshold: #, for Canny to get N pixels

//
//
//

limit is set to 1% of the message

length

no. of edge pixels,ne < N + 0.01 xN

and ne > N

ne = number of edge pixels in I, when
Canny edge detector is used on [ with
high threshold ¢, and low threshold

f1=04xt, and width w

limit <— 0.01 x N;
tmax <— L;

Lmin <— 0;

set <— false;
repeat

th <— [(tmax + tmin)/2];

ne <— getEdgePixelCount(Canny( I, ty, 1, w));
// it returns the number of pixels in
the edges obtained through Canny

edge detector

diff «— n.—N;
if diff > limit then

\ Lmin <— fh;
end
else if diff < 0 then

| Zmax <— th;
end
else

‘ set <— false;
end

until set = true;
return

significant bits participate in edge detection to form an
edge map of the gray scale cover image.

In Algorithm 2, two least significant bits of the cover
image are masked to form an edge map (e). Threshold
is computed using the masked cover image and length
of the augmented message. The number of edge pixels
used to embed the augmented message is half of the aug-
mented message bits because each edge pixel carries two
bits of the augmented message. The edge map e obtained
through the Canny edge detector is randomly arranged
using stego key P by calling randomPermute(e,P). It
ensures that only the intended users can extract data from
the stego image. The secret message M is embedded in
the randomly permuted S using edge map e by modify-
ing the least two bits of pixel Sy, to the corresponding
two consecutive message bits Mindex+1 and Mindex - The
threshold and width are embedded in non-edge pixels of
the stego image. Non-edge pixel map e’ is obtained by tak-
ing complement of e for minimum values of ¢, and w. The
threshold and width are embedded in the first 32 bits of S
corresponding to ¢’. Image S is reshuffled to get the stego
image.

4.3 Extraction

It is the process to retrieve the augmented message from
the given stego image. The threshold value and width are
extracted from the non-edge pixels of the stego image.
Stego key has been used as the seed to permute the set of
edge pixels. Extraction is similar to the embedding pro-
cess. The least two significants bits of the stego image S is
masked, and edge map e is computed. It is permuted using
stego key P to retrieve the message in the same order as it
has been embedded. The value corresponding to the least

Message Size

Secret Message

C bits

N bits

-+ <

Figure 8 Augmented message to be embedded.

(N +C) bits
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Algorithm 2: embed(I, M, P, w)

Algorithm 3: decode: retrieve secret message

Data: I: Image, M: Augmented message in binary, P: Stego

key, w: width of the Gaussian kernel

Result: S: Stego image

S<~— I;

// Mask 2LSB and find edges

I <— bitand(/,252);

L «— M|

// Length of the augmented message

// Compute Threshold

th <— getThreshold(Z, L, w);

// Obtain e: e is edge map obtained by
calling Canny edge detector algorithm
with high threshold ¢ and low
threshold {1 =04 %t and width w

e <— Canny(J, ty, {1, w);

// Shuffle eand S using Stego key P

e <— randomPermute(e,P);

S <— randomPermute(S,P);

// e is the set of edge pixels

index <— 0;

for each edge pixel i in e do
Sxy = bitand(Sy,252); // x,y are

co-ordinates of pixel i1
Sx,y = Sx,y + 2*Mindex+1 + Mindexs
index <— index + 2;

end

// Embed threshold and width in non-edge
pixels of S

e <— Canny(,0,0,0.1); // Pixels in e are
maximum number of edge pixels for a
given image

€ <— complement(e); // Pixels in e’ are
non-edge pixels

fori=1:16ine’do

Sxy = bitand(Sy,,254); // %,y are co-ordinates
of pixeli

Sxy = Sy + thays

// th is represented in 16 bits IEEE
754 floating point half precision

end

fori=17:32ine’ do

Sxy = bitand(Sy,,254); // x,y are co-ordinates
of pixel 1

Sx,y = Sx,y tW(i-16);

// w is represented in 16 bits IEEE
754 floating point half precision

end

S «— randomPermute(S,P); // Reshuffle S to
get Stego Image: S

return S;

two significant bits of each edge pixel is extracted to val.
Two consecutive bits Mindex+1 and Mindex of payload are
retrieved from val for each edge pixel belonging to e.
This retrieved payload consists of message size, actual

Data: I: stego image, T: Threshold, P: stego key, w: Kernel

width

Result: M: Secret message

S<~— I

// Mask least 2 bits and find edges

S’ «— bitand(S,252);

// Obtain e: e is edge map obtained by
calling Canny edge detector algorithm
with high threshold #, and low
threshold =04t and width w

th «<— T;

1 <— 0.4ty

e «— Canny(S)th, 4, w);

e <— randomPermute(e,P);

// Shuffle S to get order of embedding

S <— randomPermute(S, P);

index «— 0;

for each edge pixel i in e do
val <— bitand(S,,,3); // %,y are co-ordinates

of pixel 1
Mindex+1 <— val mod 2;
val «— val/2;

Mindex = val;
index <— index + 2;

end

// extract first C bits to get message
size

msg_size <— M[1:C];

M «— M[C + 1 : msg_size];

return (M);

message, and few extra bits. Message size msg size is
extracted from the first C bits of the payload which is used
to retrieve the actual message M[C+I1:msg size]. Extra
bits beyond msg size are discarded, and the secret mes-
sage M is returned. Algorithm 3 delineates the extraction
module.

5 Experimental results

The proposed technique has been tested on BOSSbase
database ver. 1.01 and BOWS2 database. Each database
contains 10,000 8-bit gray scale images with size of
512 x 512. Images of BOSSbase taken from eight dif-
ferent cameras, resized and uncompressed. Secret mes-
sage is randomly generated by a pseudo random number
generator (PRNG) to simulate encryption of the secret
message. For experimental purpose, payload is taken to
be 10% bits per pixel (bpp) of the cover image to show
the effectiveness of the proposed technique. In both
databases, the total number of pixels belonging to edges
is found to be less than 10%. Further, the technique
is also analyzed for variable payload and for the best
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threshold and width of the Gaussian filter. It is com-
pared with LSBM, existing edge adaptive techniques HBC
and EALMR, and minimizing distortion-based techniques
HUGO and S-UNIWARD. The steganographic security is
evaluated against visual, structural, and blind steganalysis
attacks.

5.1 Visual attacks

All well-known techniques do not create any visible mark
on the stego image. However, when the LSB plane is fil-
tered to remove the significant part of the cover image,
the difference becomes obvious. The technique like LSBM
embeds data, irrespective to the nature and structure of
image damaged texture in the LSB plane. One of the rea-
sons to use edge-based steganography is to preserve the
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texture in the LSB plane. Texture in LSB plane can be
seen in Figure 9b which has some white and black patches;
these are the clusters of pixels having same LSB value.
This property is more prominent in smoother areas of the
image like bright sky or dark shadow. So, any change in
the smoother part of the image may change LSB value of
the pixels in these clusters. This is visible in Figure 9c,
which is a stego image generated by LSBM, corresponding
to the area marked in Figure 9b. Here, LSBM writes some
message bits, causing some black pixels to appear. On
inspection, these black pixels on the white patch may raise
suspicion. On the other hand, all other edge-based tech-
niques in Figure 9 have not caused any noticeable change.
It can be concluded that the edge-based steganography
resists visual attacks.

Figure 9 LSB plane of cover image with 10% embedding and smooth area (marked) is cropped from stego images. (a) Cover image.
(b) Cover image LSB plane. (c) LSBM. (d) EALMR. (e) HBC. (f) Proposed technique.
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5.2 Structural attacks

Embedding data in an image leads to statistical modifi-
cation in the structure of cover image. Any such modi-
fication in a cover image can be observed by first- and
second-order statistics. SP [26] analysis and WS [27] are
two popular structural attacks. Both SP and WS esti-
mate the length of the embedded message by giving the
percentage of pixels which may hold data.

Table 3 lists the result of SP and WS for various
steganography techniques. It can be noted that the rela-
tive message length for HBC lies close to 10%, but that
for LSBM, EALMR, and the proposed technique is 0.2%,
0.06%, and 2.6%, respectively. For better understanding,
SP and WS are executed on the original databases to
get the mean value of relative message length. LSBM,
EALMR, and the proposed technique are found to be close
to the mean value of the natural images. One possible rea-
son for these results could be the use of LSB matching
and 2LSB-based embedding which do not lead to asym-
metry in pixels intensity. Therefore, the relative message
length for any edged-based technique does not raise any
suspicion.

5.3 Blind steganalysis using feature extraction
Edge-based steganographic techniques, minimizing em-
bedding distortion-based techniques, and the proposed
technique are analyzed using SPAM and SRM.

5.3.1 Steganalysis by Subtractive Pixel Adjacency Matrix
(SPAM)

Analysis of these techniques is performed by taking fea-
ture sets from their respective stego images and natural
images. These features are used to train SVM to learn
the difference in features caused by steganography [37].
Testing is done in fivefold cross-validation. For each tech-
nique, cover and corresponding stego sets of images are
divided into five parts. SVM is trained for four sets of ran-
domly selected sample images, and the results have been
validated for the remaining set. This process is repeated
five times, and the average of all the tests is reported as
the final result. The results from SVM may vary greatly
with the values of two parameters: penalization cost (C)
and gamma (y). However, there are few rules to determine
optimal values of these parameters. High or low values of

Table 3 SP and WS relative message length for various
steganography techniques (estimation results)
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both false positive (F,) and false negative (F,) indicate that
the classifier is biased towards one class. For a good clas-
sifier, average value of F, and F, should be low. So, the
values of C and y are adjusted to achieve minimum aver-
age value of F, and F;,. In [38], fivefold cross-validation is
used with the multiplicative grid

C € {0.001,0.01, . .. 10000}
yel2lie{-d—-3,...,—d+3}},

where d = log, (), x is the number of features in the sub-
set. But, the range of y has been extended as it has been
observed that the accuracy of SPAM increases for the
larger value of y. Hence, for experimental purpose, the
following multiplicative grid is used:

C € {0.001,0.01, . .. 10000}
y €1{0,0.01,0.1,1,2,4,8,16} .

Table 4 shows that LSBM is detected with an accu-
racy of 93.0%. HBC and EALMR both do not use any
well-known edge detection algorithm; therefore, they are
easily detected by SPAM and have accuracy rate of 89.6%
and 70.8%, respectively. The maximum detection accu-
racy achieved by the proposed technique is 51.1%, and it
can be attributed to the selection of noisy pixels through
true edge detection [36]. It can be noted that accuracy of
50% is like a random guess about cover and stego images.
This means that features extracted by SPAM have failed
to produce any considerable difference between stego and
natural images for the proposed technique.

5.3.2 Steganalysis by spatial-rich model
SRM consists of 39 symmetrized sub-models quantized
with three different quantization factors with a total
dimension of 34671. Due to its large dimensionality, it is
implemented using machine learning tool, ensemble clas-
sifier [16] which consists of many base learners such as
FLD [29]. Each of them is trained on a set of a cover
and stego images. The accuracy of the model is evaluated
using the ensemble’s unbiased estimate of the testing error
known as the ‘out-of-bag’ error, Eoop. It is an accurate
estimate of the testing error.

This subsection presents the results of the tests con-
ducted for relative payloads 0.05, 0.10, and 0.20 bpp. It
has been observed in Table 1 that for BOSSbase database,

Table 4 SPAM accuracy against edge embedding
algorithms

Database Attacks LSBM HBC EALMR Cover Proposed
image Algorithm Accuracy
BOWS2 SP 020 156 006 240 2.60 LSBM 93.0%
WS 012 834 001 0.84 1.30 HBA 89.6%
BOSSbase ver. 1.01 SP 032 960 009 0.01 0.07 EALMR 70.8%
WS 010 720 006 0.00 0.05 Proposed 51.1%
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the number of pixels belonging to edges is less than 10%.
The number of pixels belonging to edge can be increased
by decreasing threshold and kernel width. This increase
in the number of pixels is, on average, limited to 34.6%
of cover images of the database. Relative payloads of 0.30,
0.40, and 0.50 bpp are not considered in the database
because it is not possible to embed payload of 0.30 bpp in
large number of images by the proposed technique. The
number of cases for which the payload is more than the
number of pixels belonging to edges increases consider-
ably for embedding rate greater than 0.30 bpp. The simu-
lation results of the proposed technique is compared with
those of HUGO and S-UNIWARD [18]. The results are
obtained through fine tuning of threshold and width of the
Gaussian kernel and embedding using LSBMR. LSBMR is
used, instead of 2LSB, because HUGO and S-UNIWARD
embed at most 1 bit per pixel. The HUGO simulator
with default settings is used to create the stego images.
Similarly, the sets of stego images are obtained from the
S-UNIWARD simulator. Figure 10 presents Eqop errors
of the proposed technique, HUGO and S-UNIWARD. It
is seen that the proposed technique outperforms HUGO
and performs equivalent to the S-UNIWARD for embed-
ding rate up to 20%. Embedding rate beyond 20% cannot
correctly be evaluated because there are large number of
outlier cases as shown in Table 5. For relative payload of
30%, there are 1,331 cover images having less than 30%
of total pixels belonging to edge. Therefore, embedding is
not possible for the given payload in these images.

6 Conclusions

In this paper, a new technique for steganography in gray
scale images has been proposed. Data is hidden at the
edges of the cover image, and the edges are dynamically
selected based on the length of the message. The proposed
technique can resist visual, structural, and non-structural

T ' EHUGO
40k — CJS-UNIWARD
I Proposed
5 30} ]
o
@
3
3 20
=
["4
(%]
10+
0 005 010 020
Relative Payload (bpp)
Figure 10 SRM results for BOSSbase ver. 1.01.
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Table 5 Number of outlier cases for the proposed
technique

Bits per pixel Outliers
0.05 2
0.10 2
0.20 25
030 1,331

attacks better than the existing edge-based techniques.
HBC is detected by structural detectors due to anoma-
lies created by LSB substitution. These anomalies are well
resisted by LSBM, but it does not discriminate between
smooth areas and the edges in an image causing some dis-
tortion in LSB plane of stego image. EALMR is resistant
to structural attacks because it uses LSBMR for embed-
ding. It fails to discriminate between prominent edges
and smothered area for a given threshold. Hence, there
is a possibility of embedding in smoother parts of image.
The proposed technique uses two-bit LSB substitution for
embedding, and as aresult, it decreases the number of pix-
els to be distorted. Modification of two bits of the selected
pixels leads to significant change in pixel intensity, but
this change does not lead to detectability due to sharp dif-
ference in intensity of edge and non-edge pixels. Hence,
embedding in edges does not produce any visual distor-
tion in stego images. The performance of the proposed
technique is also found to be better than that of HUGO
for embedding rate less than 10% bpp and slightly better
than that of S-UNIWARD for embedding rate of 5%. An
embedding rate greater than 10% bpp leads to embedding
payload in weak edges. It tries to avoid clean edges by fix-
ing tj = 0.4 x ty and reducing width of Gaussian kernel,
but there is no rule of thumb to accurately discriminate
between clean and non-clean edges in an image. Further,
reduction of width of the Gaussian kernel improves the
performance of the proposed technique as some finer
details are also selected as edges. The performance of the
proposed technique is expected to be improved if one uses
syndrome coding to reduce the amount of distortion that
occurred due to embedding.

Endnotes

2BOWS-2 in http://bows2.ec-lille.fr/ (2013)

bDigital invisible ink toolkit in http://diit.sourceforge.
net/files/HidingBehindCorners.pdf (2014)
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