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Abstract

IP networks are constantly targeted by new techniques of denial of service attacks (SYN flooding, port scan, UDP
flooding, etc), causing service disruption and considerable financial damage. The on-line detection of DoS attacks in
the current high-bit rate IP traffic is a big challenge. We propose in this paper an on-line algorithm for port scan
detection. It is composed of two complementary parts: First, a probabilistic counting part, where the number of
distinct destination ports is estimated by adapting a method called ‘sliding HyperLogLog’ to the context of port scan
in IP traffic. Second, a decisional mechanism is performed on the estimated number of destination ports in order to
detect in real time any behavior that could be related to a malicious traffic. This latter part is mainly based on the
exponentially weighted moving average algorithm (EWMA) that we adapted to the context of on-line analysis by
adding a learning step (supposed without attacks) and improving its update mechanism. The obtained port scan
detecting method is tested against real IP traffic containing some attacks. It detects all the port scan attacks within a
very short time response (of about 30 s) and without any false positive. The algorithm uses a very small total memory
of less than 22 kb and has a very good accuracy on the estimation of the number of destination ports (a relative error
of about 3.25%), which is in agreement with the theoretical bounds provided by the sliding HyperLogLog algorithm.

Introduction
Problem statement
Denial of service (DoS) attacks are one of the most impor-
tant issues in network security. They aim to make a server
resource unavailable by either damaging data or software
or flooding the network with a huge amount of traffic.
Thus, the server becomes unreachable by legitimate users,
causing a significant financial loss in some cases. Port scan
is a particular DoS attack that aims to discover available
services on the targeted system [1]. It essentially consists
of sending an IP packet to each port and analyzing the
response to the connection attempts. Definitions found in
the literature are enable to provide an absolute quantita-
tive definition of port scan. The attack is rather defined by
a comparison to the standard behavior. The attacker can
discover not only available ports (or sevices) but also more
relevant information about the victim such as its operating
system, services owners, and the authentication method.
Once the system vulnerabilities are identified, a future
attack can be launched, engendering important damages.
Various port scanning techniques have been developed
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and are very simple to install in order to launch serious
port scan attacks. Nmap [2] is the most known port scan
method. It was proposed by Fyodor in 2009. Zmap [3] is
a faster scanning method developed by Durumeric et al.
in 2013. It can scan the IPv4 address space in less than 45
min using a single machine.
Network operators are always looking for scalable solu-

tions to detect on-line DoS attacks. Their objective is to
stop the attack very quickly in order to avoid wasting net-
work resources. So, the attack detection solution should
ideally be deployed very close to the source of the attack,
which is unrealistic as it means that it has to be imple-
mented for each user. Moreover, the DoS attacks can be
launched from several sources against a single victim, at
the same time, and are called distributed attacks (DDoS)
in this case. To detect such attacks, one has to consider the
aggregated traffic issued from the several sources, because
the contribution of each source can be considered as a
normal traffic. Therefore, the attack detection solution
has to be implemented in a core router network so as to
analyze the traffic issued from several users. It has also
to perform an on-line analysis and rise alarms in case of
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suspicious traffic. In the context of core network, the real-
time processing is a big challenge. In fact, the analysis time
of an IP packet has to be shorter packet inter-arrival time
which is of only some nanoseconds in the current IP traffic
carried by core networks (8 ns in an OC-768 link). More-
over, as attack detection is not the main role of the router,
which can provide many other functions such as prioriti-
zation and quality of service, the amount of memory used
for attack detection has to be very small.

Related work
The problem of DoS attack detection in IP traffic has been
largely addressed by the network security community.
Most of the proposed methods analyze the exhaustive
traffic and maintain accurate statistics about the various
flows (number of packets per communication (source-
destination pair), number of SYN packets sent by each
source address, etc.) (e.g., the threshold random walk
method proposed in [4]). The memory size required by
this kind of approach is proportional to the number of
flows, which is clearly unscalable and not adapted to the
current very high-bit traffic carried by very high speed
links. To overcome this problem, it is necessary to dis-
pense accurate statistics and to generate estimates which
require less memory and are based on a faster processing.
In this context, some recent probabilistic methods based
on Bloom filters have been proposed (see [5,6], and [7]). A
Bloom filter is an efficient data structure of a limited size
that guarantees fast processing, thanks to the use of hash
functions.
Attack detection algorithms must first generate on-line

aggregate information and statistics on the observed traf-
fic, and then identify, based on the obtained statistics, the
suspicious traffic that could correspond to attacks. Prob-
abilistic algorithms can be used to extract statistics and
estimates quickly, but they must be complemented by a
decision phase that identifies attacks.
Various methods can be used for the decision phase. In

[8], a detailed study of the port scan detection approaches
is provided by Monowar et al. The different methods are
divided into five main classes (soft computing, algorith-
mic, rule-based, threshold-based, and visual approaches).
The performance of these algorithms is compared (accu-
racy, response time, etc.,). The results show that methods
combining the data mining and threshold-based analy-
sis are the most efficient in terms of false positive rates,
robustness, and scalability. A common weakness of the
threshold-based methods is that their accuracy is closely
related to traffic characteristics. As an example, the detec-
tion mechanism used in [5], and [9], is based on the
well-known problem of finding the top k elements from
a data stream. This means that at most, k simultaneous
attacks can be detected. Therefore, the parameter k must
be well chosen in order to minimize false alarms and

missed attacks. The aim of this paper is to use Bloom
filters for the extraction of relevant information about
the traffic and to automatically adapt a threshold-based
algorithm to the on-line analysis context and the varying
traffic conditions.

Organization of the paper
In this paper, we designed a new algorithm that detects
on-line port scan attacks. The proposed method is mainly
based on the sliding HyperLogLog algorithm [10] that we
adapted to the context of port scan detection in IP traf-
fic. Sliding HyperLogLog is an efficient algorithm that
estimates the number of distinct elements over a slid-
ing window. It is able to deal with a massive data stream
and provides an accurate estimate using a very small
memory. We used sliding HyperLogLog to analyze traf-
fic and perform an on-line counting that we completed
with a decisional mechanism that identifies port scan
attacks.
The organization of this paper is as follows: The

sliding HyperLogLog algorithm is presented in Section
The sliding HyperLogLog algorithm. A detailed descrip-
tion of the proposed method for port scan detection is
given in Section The proposed method for port scan
detection. In this latter section, the counting method
and the decisional mechanism are explained separately.
The new detecting method is tested against experimen-
tal data collected from IP backbone network in Section
Experimental results. It is also compared to other
existing methods. Concluding remarks are presented in
Section Conclusion.

The sliding HyperLogLog algorithm
The sliding HyperLogLog algorithm is mainly based on
the HyperLogLog algorithm [11] designed by Flajolet et al.
in 2007. The HyperLogLog algorithm is a very efficient
probabilistic algorithm for cardinality estimation. It per-
forms a single pass on data and gives an accurate esti-
mation of the number of distinct elements, using a very
small memory. The HyperLogLog algorithm is nowadays
used inmany fields such as databases and networks, where
an exact counting is impractical because of memory con-
sumption and high latency. An example of an application
of HyperLogLog for the improvement of database queries
in Google systems is provided in [12]. A new release of the
well-known database management system, PostgreSQL,
has been recently developed in 2013 to add HyperLogLog
data structures as a native data type (see [13] for more
details). The HyperLogLog algorithm is said to be prob-
abilistic because it uses some randomness introduced by
the hash function h. The objective is to estimate the car-
dinality of a given set S, where elements can be repeated
(also called multiset). Each element v of S will be first
hashed into a random value h(v). The algorithm focuses
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on the following pattern ‘0ρ1’ in the binary representation
of h(v) (ρ is the position of the leftmost 1). Let us denote
by R the highest value of ρ among all the elements of
the multiset S. The key idea of the algorithm is that
with a larger cardinality, we are more likely to have a
higher value of R. More precisely, 2R is a good estimator
of the multiset cardinality. To have a more robust esti-
mation, a stochastic averaging process is introduced. It
consists in splitting S into m subsets S1, . . . Sm, accord-
ing the first b bits in the hashed value h(v), where m =
2b. R[i] is computed and stored independently for each
subset Si. R[1] , . . . ,R[m] are initialized to −∞ at the
beginning.

R[i]= max
v∈Si

ρ(v), ρ is the position of the leftmost 1.

The harmonic mean of 2R[i], i ∈ {1, ..,m}, is then com-
puted using the following formula:

Z :=
⎛
⎝ m∑

j=1
2−R[j]

⎞
⎠

−1

.

The normalized harmonic mean is given by

E := αmm2Z where αm

:=
(
m

∫ ∞

0

(
log2

(
2 + u
1 + u

))m
du

)−1
.

The full specification of the HyperLogLog algorithm is
given by the following pseudo-code:

The HyperLogLog algorithm

Assumem = 2b, b ∈ N
Initialize them registers, R[1] , . . . ,R[m] to − ∞;

For v ∈ S do

- set x := h(A);
- set i := the subset identifier, given by the first b

bits of x;
- set xb+ := x stripped of its initial b bits;
- set R[i] := max(R[i] , ρ(xb+)), where ρ(xb+) is the

leftmost 1 position of xb+;

Compute the harmonic mean of 2R[j],Z :=
(∑m

j=12−R[j]
)−1

return the estimate E := αmm2Z, where αm :=(
m

∫ ∞
0

(
log2

(
2+u
1+u

))m
du

)−1
.

The main advantage of the HyperLogLog algorithm is
that it provides an excellent cardinality estimation, with
a relative accuracy of about 1.04/

√
m, using a very small

memory equal to m log2 log2(n/m) bits. m is the number
of subsets, and n is the real cardinality of the multiset. In
practice, using only 1.5 Kb, a cardinality of a one billion
can be easily estimated with a typical standard error of
about 2%.
The sliding window model is widely used in many

applications requiring data stream management such as
network monitoring, security, and financial applications.
It consists of maintaining and updating some relevant
statistics about the recent items of data stream. The slid-
ing window can be logical or physical if it is, respec-
tively, defined as the last N received items or the last
time window T. Datar et al. [14] proposed a standard
framework to adapt several applications (sums, aver-
ages, min, max, etc.) to the data stream context by
adding a sliding window. They showed that their slid-
ing window mechanism requires a memory overhead
and adds a loss in the accuracy of the estimation. The
additional error depends of course on the total used
memory.
The sliding HyperLogLog algorithm proposed in [10]

aims to adapt the original HyperLogLog algorithm to the
context of data stream management. Its objective is to
estimate the cardinality over a variable-bounded duration.
In other words, one can answer at any time t the query
about the number of distinct items seen over the last w
units of time, where w is bounded by the window size
W. For this purpose, it is compulsory to consider and
store information about item arrival times (timestamps)
to identify recent items at any time. Just like in Hyper-
LogLog, each received item v will be hashed using the
hash function h. Then, the corresponding subset will
be identified with the first b bits of the hashed value.
Finally, ρ(v), defined as the position of the leftmost 1
in v stripped of its initial b bits, is computed. Thus, v
will be associated to the pair < tv, ρ(v) >, where tv is
the timestamp of the item v. The main idea of the slid-
ing HyperLogLog algorithm is to maintain and update
only relevant information, useful to answer at any time
the query about the cardinality over the sliding window
W. In particular, one must be able to compute, at any
time, for each subset i, i ∈ {1, ..,m}, the crucial param-
eter R[i]= max

v∈Si
ρ(v). For each subset i, a list called

‘list of future possible maxima’ (LFPMi) will be stored.
An element < tv, ρ(v) > remains in the LFPMi if and
only if it is a possible maximum over a future win-
dow of time. In other words, R[i] can be equal to ρ(v)
for a future possible query at a future time t, concern-
ing the last time window W. The LFPMi is updated as
follows:
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For each received item < tv, ρ(v) >, associated to the
subset i, do the following:

- Delete old items (items with a timestamp
t < tv − W ) from all the lists LFPMi, i ∈ {1, ..,m};

- Delete items v′ with ρ(v′) ≤ ρ(v) from the LFPMi;
- Add< tv, ρ(v) > to the LFPMi.

To answer at a given time t, the query about the number
of distinct elements seen over the last w units of time, one
has to follow the following steps:
For each LFPMi, i ∈ {1, ..,m}

- Extract items concerned by the query:
< tv, ρ(v) >, with tv < t − w.

- Compute R[i] over the extracted items.

Compute the harmonic mean and the cardinality esti-
mation with the exactly the same manner as that in the
HyperLogLog algorithm.

Two major results about accuracy and memory con-
sumption of sliding HyperLogLog algorithm are detailed
in [10]. First, unlike in [14], adding the sliding window
does not modify the accuracy of the algorithm. So, the
accuracy of the sliding HyperLogLog algorithm is exactly
the same as that in the HyperLogLog algorithm (a stan-
dard error of 1.04/

√
m). Second, an upper bound to the

total used memory was established. The total size of the
m lists LFPM is bounded is Idsizemln(n/m) bytes, where
Idsize is the size of the item identifier< tv, ρ(v) >. In prac-
tice, the timestamp tv is encoded on 4 bytes, and only 1
byte is sufficient for ρ(v).

The proposedmethod for port scan detection
The aim of this paper is to propose a new method that
detects on-line port scan attacks in the IP traffic. Such a
solution is designed to be implemented on a core router
of the backbone network of the operator. The router has
to analyze on the fly the huge amount of data received
at a very high bit rate in order to extract relevant statis-
tics that will be used by the decisional mechanism to
identify the suspicious traffic. The two different steps
of the algorithm are illustrated in Figure 1. The on-line
analysis is a real challenge because the router has very
limited resources and many other functions to provide.

Figure 1 The proposedmethod for port scan detection.

Therefore, very efficient detecting methods are required
to extract relevant statistics about the traffic and to make
very quick decision about legitimacy of the traffic. In par-
ticular, the analysis of each packet has to be faster than
the inter-arrival of the IP packets which is of only few
nanoseconds.

Probabilistic countingmethod
We focus in this paper on a particular kind of port
scan attack called vertical port scan [8]. It consists of
scanning many ports for a given destination. The num-
ber of destination ports can theoretically reach 65, 536 as
it is encoded on 2 bytes, but the commonly used destina-
tion ports are not very numerous. The used destination
ports are mainly composed of the so-called, in [1], well-
known ports (0-1023) and some registered ports (1024-
49151). Therefore, the total number of distinct destination
ports is a key observable to detect port scan attacks. In
this context, the sliding HyperLogLog algorithm can be
applied to count indefinitely, over a sliding window, the
number of distinct destination ports. For each received
packet (identified by the classical 5tuple composed of the
source and destination addresses, the source and destina-
tion port numbers together with the protocol type), only
the destination port will be considered and hashed into
a random value. The sliding HyperLogLog algorithm will
not perform an exact counting but will only provide an
estimation. Therefore, a good choice of the parameters
of the algorithm has to be done in order to ensure an
acceptable error on the estimation. The number of buck-
ets, m, is the crucial parameter of the counting method.
With a high value of m, a smaller standard error can be
achieved (1.04/

√
m), but a larger memory will be used

(Idsizemln(n/m) bytes). Moreover, m depends on the car-
dinality of the multiset: the number of distinct destination
ports which can theoretically reach 65, 536. The number
of distinct elements per bucket has to be high enough
to perform significant statistics. With a total number of
buckets of 1,024 (m = 1, 024 = 210), a standard error of
only 3.25% can easily be achieved. Notice that this choice
does not depend on the traffic trace and can be used for
any port scan attack detection.
There is clearly a tradeoff in the choice of the size of

the sliding time window W. With a larger time window,
one can answer requests concerning larger durations, for
example, the number of destination ports in the last 30
min. But to deal with a larger time window, more infor-
mation has to be stored. More precisely, the upper bound
of the used memory (5mln(n/m) bytes) depends on n,
the number of distinct destination ports, which is closely
related to the size of the time window. Moreover, the stan-
dard duration of the attack must be considered in the
choice of the size of the time window: W has to be large
enough to notice the impact of the attack on the traffic.
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The port scan attacks last about 20 min and should be
detected from the first minute. Thus, W = 60 s is a good
choice for the size of the time window. So, the total used
memory will be less than 22 kB, which is very reasonable
for a router.
Some slow attacks, also called progressive attacks, are

more difficult to detect because the intensity of the attack
is increasing slowly. The attack lasts more than the stan-
dard duration in this case. To detect this kind of attack,
one has to aggregate more the traffic in time. For the slid-
ing HyperLogLog algorithm, a larger time window W ′ =
5 min can be added. The algorithm is performed indepen-
dently and in parallel for the two time scales: W = 60 s
andW ′ = 5 min.

Decisional mechanism
Once relevant statistics related to port scan attacks are
provided from the counting process, one has to filter and
classify these information in two groups: ‘standard behav-
ior’ and ‘suspicious traffic’ . This problem, also known as
‘change-point detection’ has been widely studied in the lit-
erature. Many methods have been developed by the com-
munity of statistics and datamining for several application
fields.
In their [15] book entitled Detection of Abrupt Changes:

Theory and Application, Basseville and Nikiforov pro-
vided the description and the performance analysis of a
wide range of algorithms dealing with this problem of
change detection. They classified these algorithms into
three main categories: the elementary algorithms, the
cumulative sum algorithm, and the Bayes-type algorithms.
The elementary algorithms use simple and intuitive

concepts. They have many industrial applications, in par-
ticular, in the quality control field. One can cite the She-
wart control charts algorithm that was first introduced by
Walter Shewhart [16] in 1924. This technique has found
many applications in improving the quality of manufac-
turing processes [17]. A more efficient method, called ‘the
geometric moving average control charts’ algorithm, was
proposed later by Roberts in 1965 [18]. This algorithm is
also known as the ‘exponentially weighted moving aver-
age’ (EWMA) algorithm. Its key idea is to give different
weights to the values of the observed process, to detect
the change point: the recent values must be given more
importance. Another solution presented in the ‘finite
moving average’ (FMA) is to ignore very old observations
by using a finite set of weights. The filtered derivative
algorithm is another elementary algorithm introduced by
Basseville and Gasnier [19] in 1981, based on the gradient
techniques. It is widely used in the context of image edge
detection.
The ‘cumulative sum’ (CUSUM) algorithmwas designed

by Page in 1954 [20]. It is based on the sum of the pro-
cess past observations. The CUSUM algorithm is well

adapted to the detection of systematic small variations of
the process.
The Bayesian algorithms were first introduced by

Girshick and Rubin in 1952 [21]. The main advantage
of these methods is that they guarantee a robust perfor-
mance with a formal proof of optimality, but they need an
a priori knowledge about the observed process, more pre-
cisely, the distribution of the change time must be given in
advance.
Roberts presents in [22] a comparative experimental

study of all the different algorithms described above. The
input parameters of all these algorithms are set to their
optimal values, and the mean detection delays are com-
pared. The main result is that the CUSUM algorithm out-
performs the other algorithms when the observed process
has small shifts.
Recall that in the context of on-line port scan detec-

tion, we focus on change-point detection in a high-speed
data stream. Sequential data is provided on the fly from
the counting process, and our purpose is to identify as
quickly as possible the change point using a very small
memory. According to Basseville and Nikiforov [15], all
the approaches described above can be used in the con-
text of on-line analysis. But, in our particular context of
port-scan detection, no assumption about the distribution
of the attack time can be made. So, the Bayesian algo-
rithms are not adapted for such applications. Moreover,
the total duration of an attack is about 20 min, so the
detection delay must be small enough (less than 1 min) to
stop the attack quickly. Therefore, the lack of reactivity of
the CUSUM algorithm against abrupt change points may
be a big weakness.
Sebastiao and Gama performed in [23] an experimen-

tal comparison between some particular algorithms well
adapted for an on-line analysis. More precisely, they com-
pared the efficiency of the four following algorithms: the
statistical process control (SPC) [24], the adaptative win-
dowing (ADWIN) [25], the fixed cumulative windows
model (FCWM) [26], and the Page-Hinkley test (PHT)
[20]. These methods are closely related to the the three
kinds of algorithms presented above. The main result
of this paper is that PHT and SPC are less time- and
memory-consuming, but in some cases, they endanger a
high rate of false alarms.
To achieve our objectives in terms of detection delay,

on-line analysis (only one pass over the whole data) and
without any a priori knowledge about IP traffic character-
istics, we choose to focus in this paper on an elementary
algorithm: EWMA [18] proposed by Roberts. The main
idea of the EWMA algorithm is to define a threshold
delimiting a ‘standard behavior’ and to handle and update
periodically an average of the observed data stream. The
change point is then declared as soon as the average
exceeds the fixed threshold. This algorithm is very simple
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to implement. Unlike ADWIN, the past values of the
observed data are not stored. It does not require any data
structure. It also has a lower complexity because for each
observed data, one has only to update a weighted aver-
age [27]. Compared to PHT and CUSUM, EWMA has the
advantage to closely relate the importance of the observed
data to its age which is more meaningful in the con-
text of data stream. In PHT and CUSUM algorithms, all
data history is equivalent and is considered in the same
manner.
Our objective in this is to adapt the EWMA algorithm to

the context of port scan detection and to experiment and
evaluate the so obtained version. EWMA is an advanced
control chart which calculates, over a sliding window, a
weighted average of the data, taking into account the past
observations. The older the observation, the less weight
it has in the computation of the average. The sliding
weighted average is updated as follows:
{
EWMA(0) := the average of all the observations

EWMA(t) = λ ∗ Y (t) + (1 − λ) ∗ EWMA(t − 1), for t > 0,

where Y (t) is the observed value at time t. λ is a multi-
plicative factor (0 < λ ≤ 1). It can be interpreted as a kind
of correlation between Y (t) and EWMA(t). In practice,
we want the moving average EWMA(t) to follow care-
fully the variations of the observed process Y (t). To give
more importance to the past observations, than the cur-
rent one, λ is very often taken smaller than 0.5. However,
with very small value of λ, the algorithm becomes insensi-
tive to some attacks having a small duration or a moderate
intensity. That is why λ is usually between 0.2 and 0.5 in
practice. EWMA(0), also called the target, is the average
of the whole data set.
In this control chart, an alarm is raised as soon as the

moving average EWMA(t) exceeds some thresholds called
‘upper control limit’ (UCL) and the ‘lower control limit’
(LCL), respectively, defined as

UCL = EWMA(0) + k ∗
√

λ/(2 − λ)s20

LCL = EWMA(0) − k ∗
√

λ/(2 − λ)s20,

where the factor k is either set equal to 3 or chosen using
the tables in Lucas et al. [28] in the enhanced version of
EWMA proposed in 1990. s0 is the standard deviation
calculated on the whole data set.
It is clear that the so-described EWMA algorithm can-

not be directly applied for the on-line data stream analysis
because it clearly requires two passes over the whole data
set. In fact, it needs first to compute EWMA(0) and s0
using the whole data to fix the threshold UCL. Then, all
the data will be considered again to detect the change

points. To overcome this problem, we propose to add a
learning step of some minutes at the beginning of the
algorithm in order to initialize its parameters, namely,
EWMA(0) and s0. No change-point detection will be per-
formed during this learning step. So, we implicitly assume
that this period corresponds to the ‘standard behavior’ and
does not contain any anomaly.
Notice also that in the EWMA algorithm described

above, the moving average EWMA(t) is always updated
even if it exceeds the detection threshold UCL. It turns out
however that it is useless to update EWMA(t) in this latter
case as this can generate some false positives (false alarms)
just after some intensive attacks. In fact, when EWMA(t)
gets very high, in case of an attack, it needs a long time
(several slices of time windows) to reach its normal values
(<UCL) when the attack is stopped. Thus, we propose the
following update mechanism for EWMA(t):

{
if (EWMA(t) > UCL) then EWMA(t) = EWMA(t − 1)

else EWMA(t) = λ ∗ Y (t) + (1 − λ) ∗ EWMA(t − 1).

Experimental results
Dataset
The so-obtained algorithm with the two complementary
parts (the counting and the decisional mechanisms) is
tested against real IP traffic containing some port scan
attacks. The considered traffic trace was captured in
December 2007, by Orange Labs, in the context of an
ANR-RNRT project on network security called ‘OSCAR’.
The traffic capture was performed on a router belonging
to the IP backbone network of Orange Labs. Some global
characteristics of this traffic trace are given in Table 1.
The flow is defined as the set of those packets with the

same source and destination addresses, the same source
and destination port numbers, and the same protocol
type.

Counting process
In this part, we focus on testing the counting process
based on the sliding HyperLogLog algorithm. The number
of distinct destination ports in the last time window W is
estimated every 30 s. The time window is taken equal to
60 s, and the number of bucketsm equals 1, 024.
In Figure 2, the standard error on the estimated num-

ber of destination ports is plotted. One can notice that
the standard error is most often within the theoretical

Table 1 Characteristics of the traffic trace used for attack
detection

Duration No. of IP packets No. of flows

67 min 32.106 250.103
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Figure 2 Standard error on the estimation of the number of
distinct destination ports.

error σ of 3.25% (σ = 1.04/
√
m). It sometimes slightly

exceeds this value, in fact σ is not an upper bound, but
just an estimation of the standard error. As mentioned in
[11], the estimate provided by HyperLogLog is expected
to be within σ , 2σ , 3σ of the exact count in, respectively,
65%, 95%, and 99% of all the cases. Thus, the experi-
ments confirm that adding the sliding windowmechanism
does not affect the accuracy of the original HyperLogLog
algorithm.
In Figure 3, the size of the total used memory is plotted.

It closely depends on n, the number of distinct destina-
tion ports. The results show that the total used memory
(also called LFPM) is always below the theoretical bound
of 5mln(n/m) bytes given in [10]. Recall that m is here
constant (equal to 1, 024). This corresponds to a total used
memory less than 22 kB.
Figure 4 shows the impact of m on the size of the total

used memory. The mean size (calculated over the whole
traffic trace) of the list LFPM is computed for different
values of m, (m = 16, 32, 64, . . . 2, 048). One can easily
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check that the total used size is always below the theo-
retical bound. In the sliding HyperLogLog algorithm, for
each received packet, the LFPM is updated in order to
erase very old elements. So, the number of elements in the
LFPM impacts directly the complexity of the update oper-
ation. One can conclude that the value of the parameter
m can be chosen according to a total memory usage con-
straint. Moreover, with a good choice ofm, it is possible to
control the complexity of the algorithm.
In the description of the counting method, an additional

time window (W ′ = 5 min) is suggested to deal with slow
or progressive attacks. Recall that the time window was
fixed to 1 min in the previous experiments. So, one has
to check that the total used memory remains reasonable
for larger time windows. For this purpose, many time win-
dows have been considered in Figure 5 (W between 1 and
5 min). m is constant, taken as equal to 1, 024. In a larger
time window, more distinct destination ports can be seen.
So, more information will be stored in the list of future
possible maxima (LFPM); that is why a larger memory is
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required. But, the total used memory is still small as it
is only multiplied by 1.5 when the time window grows
from 1 to 5 min. This can be explained by the fact that
the total number of distinct destination ports is bounded
by 216 = 65, 536. Moreover, many frequently used ports
(well-known and registered ports) can be used over sev-
eral 1-min time windows. This information is confirmed
by Figure 6 which shows that the estimated number of dis-
tinct destination ports, with two time scales (W = 1 min
andW ′ = 5 min).

Decisional mechanism using EWMA algorithm
The input of this decisional part is the estimated number
of distinct destination ports provided by the counting pro-
cess. This information is received every 30 s; it concerns
the last 60-s time window. The input data is presented in
Figure 6. One can easily see several peaks that are very
likely to correspond to some port scan attacks. Our objec-
tive here is to automatically identify these peaks using the
EWMA algorithm. The multiplicative update factor λ is
taken equal to 0.3 and the detection parameter k equals to
3. All the implementations are performed with R.
In Figure 7, the original version of EWMA algorithm

is tested. We considered first the whole data to compute
the parameters of the algorithm: the target EWMA(0), the
standard deviation S0, and thus the upper bound UCL. A
second pass on the data is performed to detect the port
scan attacks. EWMA(t) is plotted; it is updated every 30 s.
The detected port scan attacks are represented by squares:
An alarm is raised each time EWMA(t) exceeds the upper
bound UCL. We are not interested here in the lower
bound LCL defined by the EWMA algorithm. Notice
finally that the attacks are detected within a reasonable
delay time of only 30 s.
Figure 8 concerns the first improvement added to the

EWMA algorithm: To respect the on-line analysis con-
straint, only one pass on the data is performed. First
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EWMA(0), S0, and UCL are calculated in the introduced
learning step taken equal to 10 min. Notice that the tar-
get EWMA(0) is lower than in the original version of
EWMA. In fact, unlike in the original version, the attacks
(where the observed data has high values) are not included
in the computation of EWMA(0). So, with this proposed
improvement, more attacks can be detected because UCL
has also a lower value as it is closely related to EWMA(0).
In Figure 9, the second improvement is added: The

weightedmoving average EWMA(t) is not updated in case
of attacks. It is constant, keeping its old value. The squares
correspond to the calculated values of the weighted mov-
ing average, and as they exceed UCL, they are not affected
by EWMA(t). So, in case of attack, EWMA(t) and thus
the squares (calculated using EWMA(t)) have lower val-
ues than in the original version of the EWMA. This
enables EWMA(t) to reach very quickly the normal behav-
ior (<UCL) when the attack stops. That is why we have less
alarms in this case (compared to Figure 8), in particular at
the end of the attacks.
The same experiments as that in Figure 9 are per-

formed with different values of λ in order to analyze
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Figure 9 The EWMA control chart with a new learning step and
an additional update constraint, λ = 0.3.

the impact of this parameter on the performance of the
algorithm. Recall that λ is used to update the moving aver-
age EWMA(t) and to compute the upper bound UCL =
EWMA(0) + k∗

√
λ/(2 − λ)s20. In Figure 9, λ is taken equal

to 0.3.With a value of λ set to 0.5, roughly, the same results
are obtained: the target EWMA(0) is always equal to 6, 333
as it does not depend on λ. The upper bound, UCL, is
higher (9, 297 instead of 8, 458), but the same alarms are
raised at the samemoments. Figure 10 shows the obtained
results for λ = 0.1. One can notice that in this case, UCL is
very close to the target EWMA(0); it is equal to 7, 441. In
fact the difference UCL−EWMA(0) = k ∗

√
λ/(2 − λ)s20 is

proportional to
√

λ/(2 − λ), which is an increasing func-
tion on [0 : 1] with values in [0 : 1]. In this case, only small
variations of EWMA(t) are tolerated, and many false pos-
itives (false alarms) are generated by the algorithm. Thus,
the results are consistent with the choice of λ (between
0.2 and 0.5) presented in the description of the EWMA
algorithm.
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Figure 10 The EWMA control chart with a new learning step and
an additional update constraint, λ = 0.1.

The use of the learning phase aims to adapt on-line the
parameters of the algorithm to the initial characteristics
of the traffic. EWMA(0) and UCL only depend on the
traffic of this training set. It is clearly assumed that this
period (taken equal to 10 min in practice) corresponds to
a standard data having no attacks. The performance of the
algorithm is of course closely related to the effectiveness
of this assumption. We propose the following solution to
reduce the dependance on this assumption and improve
the robustness of the algorithm: We define a lower bound
LCL in the same manner as in the EWMA algorithm:

LCL = EWMA(0) − k ∗
√

λ/(2 − λ)s20
If, at any time t, EWMA(t) < LCL, then we restart the

algorithm. The idea is that if we consider the worst case
where the learning phase contains many port scan attacks,
EWMA(t) will have smaller values at the end of the
attacks, which can be detected by comparing EWMA(t)
to the lower bound LCL defined in the learning phase. In
other words, if there is no more correlation between the
initial parameters calculated on the training set and the
current values, the algorithm has to be restarted again.
The learning phase is very useful as there is no absolute
quantitative description of a port scan attack. The attack
is simply defined as a significant deviation from a standard
behavior that has to be learned online.

EWMA versus CUSUM algorithm
The CUSUM algorithm was first introduced by Page in
1954 [20]. It aims to detect small process shifts and is
based on the cumulative sum Ct of the observed process
Y (i):

CUSUM(t) =
t∑

i=1
(Y (i) − μ0) = CUSUM(t − 1) + (Y (t) − μ0),

where μ0 is the target of the process given by its mean
value. A process shift is declared if CUSUM(t) exceeds
the upper bound k ∗ σ , σ being the standard deviation of
the process Y (i). Notice that in this original version of the
CUSUM algorithm, σ and μ0 are calculated on the whole
process. Therefore, in our case, two passes on the dataset
are required to detect the port scan attacks using the origi-
nal version of CUSUM. This version is clearly not adapted
to an online analysis. Figure 11 shows the result of the
CUSUM algorithm on the dataset containing some port
scan attacks. The CUSUM algorithm was implemented
with R. According to the recommendations given in [27],
the process Y (i) was first normalized, and the CUSUM
algorithm was applied on the X(i) process defined by the
following relation:

X(i) = Y (i) − μ0
σ

,
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X(i) has a mean of 0 and a standard deviation equal to 1.
The upper bound k is taken equal to 5 to have good ARL
properties as mentioned in [27]. Figure 11 shows that only
the first attack is detected. The second attack that hap-
pens around the second 3,450 has a shorter duration and
a smaller magnitude; that is why it has a limited impact
on CUSUM(t) and can not be detected. Moreover, the
duration of the first attack is largely overestimated. In fact
CUSUM(t) is updated even in case of attacks, and unlike
EWMA(t), in its original version, it takes a long time to
reach normal values at the end of the attack. This can be
explained by the fact that the CUSUM algorithm accumu-
lates the effect of the attack over several sliding windows
as it is based on a sum and gives the same weight to all the
observed values.
Just like the EWMA algorithm, we introduced a learn-

ing step to adapt the CUSUM algorithm to the online
analysis context. Thus, μ0 and σ computation is only
based on the first 10 min. Moreover, CUSUM(t) is not
updated in case of attack. The results of the so-obtained
version of CUSUM are given by Figure 12. The attack that
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Figure 12 The CUSUM control chart with a new learning step
and an additional update constraint.

happens at the end of the traffic trace (around the second
3,450) is not detected. In addition, between the second
2,000 and 3,000, the mean of the input process is slightly
higher, which is considered by the CUSUM algorithm as
an attack. One can easily check that it is a false positive
using Figure 6 which displays the aggregated input data
over larger time window. In fact, the time aggregation has
no additive impact on the observed data. As a conclusion,
the EWMA algorithm is more adapted than the CUSUM
algorithm to the context of port scan attack detection.
It is more reactive to the attacks with a short duration
and a relatively small magnitude, and it is less sensitive to
the small shifts that are mainly related to the varying IP
traffic conditions (activity depending on the time of the
day, etc.)

Conclusion
In this paper, a new method identifying online port scan
attacks in IP traffic is proposed. First, some relevant statis-
tics are extracted from the data stream using the sliding
HyperLogLog algorithm. A good choice of the param-
eters of the this algorithm has to be done in order to
ensure an acceptable accuracy of the statistics. Second,
a change point detection method based on the EWMA
algorithm is used to identify suspicious traffic. It is mainly
an adaption of the EWMA to the data stream context.
For this purpose, a learning phase is added at the begin-
ning of the algorithm in order to initialize its parameters.
Then, a new constraint is added to the moving average
EWMA(t) update to overcome the false-positive prob-
lem when this latter exceeds the UCL detection threshold.
Finally, we run experiments on a real traffic trace cap-
tured in the IP backbone network of Orange Labs in
December 2007 in the context of the ANR-RNRTOSCAR
project. The obtained results confirm the efficiency of the
adapted combination of the HyperLogLog and EWMA
algorithms in terms of accuracy, memory usage, and time
response.
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