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Abstract

The manual forensics investigation of security incidents is an opaque process that involves the collection and
correlation of diverse evidence. In this work we first conduct a complex experiment to expand our understanding of
forensics analysis processes. During a period of 4 weeks, we systematically investigated 200 detected security
incidents about compromised hosts within a large operational network. We used data from four commonly used
security sources, namely Snort alerts, reconnaissance and vulnerability scanners, blacklists, and a search engine, to
manually investigate these incidents. Based on our experiment, we first evaluate the (complementary) utility of the
four security data sources and surprisingly find that the search engine provided useful evidence for diagnosing many
more incidents than more traditional security sources, i.e., blacklists, reconnaissance, and vulnerability reports. Based
on our validation, we then identify and make publicly available a list of 165 good Snort signatures, i.e., signatures that
were effective in identifying validated malware without producing false positives. In addition, we analyze the
characteristics of good signatures and identify strong correlations between different signature features and their
effectiveness, i.e., the number of validated incidents in which a good signature is identified. Based on our experiment,
we finally introduce an IDS signature quality metric that can be exploited by security specialists to evaluate the
available rulesets, prioritize the generated alerts, and facilitate the forensics analysis processes. We apply our metric to
characterize the most popular Snort rulesets. Our analysis of signatures is useful not only for configuring Snort but also
for establishing best practices and for teaching how to write new IDS signatures.

Introduction
Security analysts are overwhelmed by massive data pro-
duced by different security sources. Investigating security
incidents is an opaque ‘art’ that involves (1) carefully
extracting and combining evidence from the available
security sources, (2) thoroughly understanding how sus-
pected malware operate, and (3) exploiting information
about the infrastructure and configuration of the affected
network. In this arena, security analysts are restricted to
using slow manual and often ad hoc forensics analysis
processes.
Towards understanding and improving forensics analy-

sis processes, in this work, we conduct a complex exper-
iment in which we systematically monitor the manual
forensics analysis of live suspected infections in a large
production university network that serves tens of thou-
sands of hosts. In particular, over a period of 4 weeks, we
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manually investigate, in coordination with the IT depart-
ment of our university, 200 security incidents about com-
promised hosts detected by an IDS alert correlator. The
security investigation combines data from four security
sources: (1) Snort alerts, (2) reports from four scanning
and vulnerability assessment tools, (3) five independent
blacklists, and (4) a search engine (Google).
Based on our experiment, we describe a number of

lessons we learned from the validation of security inci-
dents. In particular, we make three contributions. First,
we describe how to leverage four different security data
sources to remotely diagnose live infections in a large pro-
duction network. Second, to delineate the manual investi-
gation process, we evaluate the (complementary) utility of
the four data sources. Surprisingly, we find that a search
engine was one of the most useful sources in deciding
if a suspicious host was infected, providing useful evi-
dence that led to a positive diagnosis in 54.5% of the cases.
Reconnaissance and vulnerability reports were useful in
fewer cases, but helped diagnose more sophisticated mal-
ware, whereas blacklists were useful only for 10.5% of the
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incidents. In addition, we report which combinations of
sources helped diagnose different types of malware. Third,
we make available a list of 165 Snort signatures that were
effective in detecting validated malware without produc-
ing false positives. We analyze the differences between
good and regular Snort signatures and observe that good
signatures tend to use offsets, regular expressions, fixed
packet sizes, and specific destination ports much more
often than regular signatures. This shows that unlike com-
mon best practices for keeping IDS signatures simple,
complexity in the case of signature writing is a virtue. In
addition, we find that different signature features exhibit
strong correlations with the effectiveness of a good sig-
nature, i.e., the number of validated incidents it detected.
Based on this, we introduce a novel signature quality met-
ric that can be used by security specialists to evaluate the
available rulesets, prioritize the generated alerts, and facil-
itate the forensics analysis processes. Finally, we apply our
metric to the most popular signature rulesets, i.e., to the
Vulnerability Research Team, the Emerging Threats [1],
the Bleeding Edge [2], and the SRI Bothunter [3] rulesets,
and highlight their differences.
The remaining part of our paper is structured as follows.

In the next section, we describe the data we used. Then,
in Section ‘Evidence correlation studies’ we describe the
investigation of four representative malware cases. We
present our findings regarding the utility of the data
sources and the effective signatures in Section ‘Comple-
mentary utility and ranking of security sources’ and ‘What
does a good IDS signature look like?’, respectively. Finally,
in Sections ‘Related work’ and ‘Conclusions’ we outline
the related work and conclude our paper.

Data collection
Our monitored infrastructure is the main campus net-
work of the Swiss Federal Institute of Technology at
Zurich (ETH Zurich). The campus is a ‘zoo’ of diverse
systems, like critical servers, desktops, laptops, and other
lab and office devices. The traffic mix we observe is rich
since there are almost no restrictions on the software that
users can install on their devices and on the services they
can use. Ourmonitoring period lasted for approximately 4
weeks between the 1st and the 28th of April 2011, during
which we observed in total 28,665 unique active internal
hosts.
We select four data sources that provide complementary

views into the security status of a host from different van-
tage points covering aspects, like its traffic and the run-
ning services and their vulnerabilities. These sources are
commonly used for security assessment. First, we collect
IDS alerts generated by an IDS which is located between
the primary border router and the network firewall of
the monitored network. The IDS monitors all upstream
and downstream traffic and generates an alert when a

malicious signature is triggered. The IDS gives a view of
malicious activities from the gateway of the network.
To collect information related to services and applica-

tions running on internal hosts, we perform reconnais-
sance and active scanning using NIC whois querying and
Nmap. After mapping the accessible network services of
a host, we investigate for known vulnerabilities using the
Nessus [4] and OpenVas [5] vulnerability scanners. These
four tools, to which we collectively refer as reconnaissance
and vulnerability scanners, give a more detailed view of
the internal hosts. The last two data sources help extract
information about remote hosts by leveraging publicly
available data. In particular, we use blacklists from five
blacklist providers covering different types of malicious
hosts, like active attackers and spammers, and we query
the Google search engine for suspected remote hosts and
domains. The search engine indexes a variety of sources,
including public forums, bulletins, and banlists, which we
exploit in an automated way to find the roles, i.e., server
type or actions of remote hosts. The detailed descrip-
tion of each feature can be found in the accompanying
technical report [6].

IDS alerts
The IDS deployed in our infrastructure is Snort [7], which
is commonly considered the open source IDS solution
with the largest number of registered users and the most
active community [8,9]. Snort is configured to use signa-
tures from the two most widely used publicly available
rulesets, namely, the Vulnerability Research Team (VRT)
ruleset and the Emerging Threats (ET) ruleset [1]. As of
April 2011, the two rulesets have in total 37,388 distinct
signatures.
We use IDS alerts in two ways. First, we apply an

effective IDS alert correlator we have introduced in our
previous work [10] to derive a small set of incidents, which
we comprehensively analyze to evaluate their validity. Sec-
ond, during the forensics analysis, we manually examine
the alerts of an investigated host and extract a number of
features regarding the type and severity of the alerts, the
size and duration of an incident, and the involved services
and hosts. In Table 1 we illustrate the IDS alert features
extracted for a host that has been infected with the Torpig
trojan. Note that IP addresses have been anonymized.
These features are presented to the analyst along with

the additional information extracted from the other three
data sources and are used for the manual diagnosis of
incidents. In addition, in many cases the analyst manually
examined the specific signatures of Snort rules to assess
their trustworthiness.
We had to address two challenges when analyzing Snort

alerts. First, the amount of alerts is overwhelming, making
the analysis very time-consuming. In total, we collected
37 million alerts over a period of 4 weeks, the majority
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Table 1 Example features extracted from Snort alerts for
an investigated internal host

Feature Value

Contacted remote hosts {a.b.c.d , k.l.m.n}

Target remote services {80}

Target local services {80,135,443}

Severe alert count 271

Infection duration (hours) 23

Severe alerts triggered (IDs) {2801953, 2012642, 2912939, 240001}

of which are policy alerts that are not directly related
to security incidents of interest. Second, the alerts are
dominated by false positives, which makes it very hard
to have any certainty about the existence of a malware
based solely on a single alert. Our Snort alert correlator
distills a small number of events that exhibit a recurring
multi-stage malicious pattern involving specific types of
alerts. It first aggregates similar alerts that exhibit tem-
poral proximity, it then classifies each aggregate alert as
Direct attack, Compromised host, or Policy violation, and
finally it infers active infections by identifying internal
hosts that exhibit a recurring multi-stage network foot-
print involving alerts of the first two classes. Applying our
correlator on raw Snort alerts results into a small num-
ber of highly suspicious events. In particular, during the
4 weeks of our experiment, the correlator distilled 200
aggregate events from 37 million raw alerts.

Reconnaissance and vulnerability reports
In order to measure the exposure of a studied host to
external attacks, we additionally collect host-based infor-
mation about the running services, the patch level of
deployed software, and the presence of vulnerabilities.
This information is complementary to the network behav-
ior patterns we get from Snort alerts, since it helps identify
the threats that a host is susceptible to.
We use a combination of network scanning and vul-

nerability assessment techniques. In particular, we first
use basic reconnaissance techniques, like IP sweeps, NIC
whois querying, and TCP/UDP port-scanning, in order
to identify if a host is reachable and exposed to exter-
nal attacks. In addition, these techniques help determine
the role of host, e.g., web, mail, or Domain Name System
(DNS) server, within the infrastructure.
Secondly, we perform targeted network scanning using

Nmap in order to retrieve information regarding the TCP
and UDP network services running on suspected hosts,
details about the type and version of their operating sys-
tem, and information regarding the types of ICMP mes-
sages a host responds to, which reveal its filtering policies
and firewall effectiveness. After having detected the acces-
sible network services, we investigate a host for known

vulnerabilities. For this purpose, we use two well-known
vulnerability scanners, namely Nessus [4] and OpenVas
[5], in order to build a comprehensive profile of the vul-
nerability status of a host.

Blacklists
In order to examine if a host within our network
frequently initiates connections to known malicious
domains, we use a set of independent blacklists. We lever-
age five public blacklists [11-15], which are partly labeled
indicating the type of malicious activity exhibited by a
blacklisted host, e.g., bot activity, active attack, and spam-
ming. We then investigate whether the remote hosts con-
tacted by an internal host are listed in a blacklist. If there
is a hit, then we tag the investigated host with the label of
the corresponding blacklist. In Table 2 we show the differ-
ent blacklist providers we used and the available labels per
source.
This method is useful to identify if suspicious inter-

nal hosts frequently establish communication with known
malicious domains. Such communication typically occurs
when a user visits malicious websites or when a piece of
malware installed on the infected host attempts to per-
form unsolicited actions, e.g., redirecting to third-party
domains, updating its binary, sharing stolen confidential
data, or getting instructions from a remote controller.

Search engine
Apart from using intrusion detection alerts, active scans,
and blacklists in order to characterize remote hosts
exhibiting frequent communication with local investi-
gated hosts, we also exploit security-related information
residing on the web. When a host exhibits a malicious
activity, it will leave traces in different forms in publicly
available sources such as DNS lists, website access logs,
proxy logs, P2P tracker lists, forums, bulletins, banlists,
and IRC lists. To retrieve this information, we query the
Google search engine using as input the IP address and
the respective domain name of the local and remote hosts.
In an automated manner, we parse the output looking for
a set of pre-selected tags such as malware, spam, bot, tro-
jan, worm, pop3, netbios, banlist, adaware, irc, undernet,
innernet, and torrent. A similar approach has also been
used in [16]. These tags reveal specific actions a host has
taken, e.g., receiving instructions from a known botnet
C&C, or roles it had for extended periods of time, e.g.,
operating as a mail server. This process is illustrated in
Figure 1.

Evidence correlation studies
In this section, we first describe the manual malware val-
idation experiment we conducted and then we outline
example evidence correlation cases for four different types
of malware.
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Table 2 Public blacklist providers and blacklist data labels

Ads Attack Bot Chat Drugs Generic Malware Porn Rbn Religion Spam

Apews �
Dshield � �
Emerging Threats � � � �
Shadowserver �
UrlBlacklist � � � � � �

Our experiment used Snort alerts that were pushed in
an hourly basis to an alert archival infrastructure we are
operating since 2009. We configured our alert correla-
tor with the default configuration parameters [10]. We
restricted our analysis to static IP addresses, which are
widely-used in the monitored network. Detected inci-
dents about infected hosts were annotated with informa-
tion about the IP address of the host, the involved alerts,
and a timestamp. A security analyst on a daily basis (dur-
ing week days) manually investigated the latest detected
incidents. Our experiment was conducted in coopera-
tion with the IT department of ETH Zurich. To expedite
the manual analysis process, we developed a number of
tools that took as input the IP address of an investi-
gated host, collected the data described in the previous
section, extracted a large number of associated features,
and displayed all the relevant information on a dashboard.

The manual analysis process was complex and very time-
consuming as it often required processing and analyzing
a huge amount of IDS alerts, checking the quality of
their signatures, collecting information about malware,
and most importantly cross-correlating all this informa-
tion. We investigated in total 200 consecutive incidents
over approximately 4 weeks from the 1st until the 28th of
April 2011. In the following paragraphs, we present repre-
sentative cases of the manual investigation performed for
four different types of malware.

Case 1: Torpig infection
Torpig is one of the most sophisticated trojans in the wild.
The typical method of infection is drive-by-downloads.
The victim visits a vulnerable legitimate web site that
requests Javascript code from a malicious webserver. The
code is then executed and the trojan attaches itself to

Figure 1 Extracting features from Google.
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popular applications on the victim’s system. Torpig is a
typical data-harvesting trojan using both passive mon-
itoring and active phishing techniques to get valuable
confidential data from an infected machine. Our active
scanning for Torpig-infected hosts shows that Windows
is the operating system of the host, whereas the ser-
vices HTTP, Skype, and FTP are typically open. HTTP
is the protocol used by the malware to contact the C&C
servers and also to redirect the user to malicious domains,
whereas Skype and CuteFTP are standard applications
Torpig injects itself into. Torpig periodically contacts the
C&C servers to get instructions and to update its binary-
triggering IDS alerts with IDs 2002762 and 2003066. Also
frequently, it will attempt to report stolen user data using
a POST command on known malicious domains trigger-
ing alerts with IDs in the range [2404000:2404300]. The
domains we saw that were used for the POST operations
were vgnyarm.com, rajjunj.com, and Ycqgunj.com. The
dominant tags produced by our search engine profiling
method were trojan and bot.

Case 2: SdBot infection
W32/SdBot is a backdoor used by cyper-criminals to
gain unauthorized access to victim machines. It can be
used to launch active attacks or to harvest sensitive user
data from an infected host. We observe that W32/SdBot-
infected hosts are typically running MS network services
such as WebDav, RPC, and LSASS. The malware exploits
the MS-LSASS buffer overflow, the MS-RPC malformed
message buffer overflow, and the MS-WebDav vulnera-
bility to compromise a victim. W32/SdBot uses a typical
IRC communicationmethod to contact its C&C servers to
update its configuration triggering Snort alerts with IDs
in the range [2500000:2500500]. Also, the malware will
often attempt to propagate using extensive port scanning
to detect vulnerable hosts, mostly on port 445, triggering
alerts with IDs in the range [2011088:2011089]. Finally,
the W32/SdBot backdoor will attempt to fetch additional
badware from remote web sites to install them on the
local host. The infected hosts we analyzed attempted
to connect via FTP to the domains joher.com.tw and
service.incall.ru, which are typically used to download
W32/Koobface and Trojan.FakeAV, respectively. The tags
we extracted from our search engine query results for
these domains indicated that they are involved in mal-
ware- and bot-related activities.

Case 3: Hotbar infection
Win32/Hotbar is the most prominent infection detected
in our infrastructure. Typically, it comes as a web-browser
add-on, like the Asksearch or Mysearch toolbar, pro-
viding seemingly legitimate functionality. However, in
the background it tries to harvest user activity patterns
including browsing habits and application usage. This

spyware does not attempt to hide and it will often iden-
tify itself using the user-agent field of an HTTP request
using the string ‘AskTB’. Snort uses alerts with IDs in the
range [2003305:2003500] to detect this behavior. More-
over, the spyware will regularly attempt to redirect a user
to the domains bestdealshost.biz and zangocash.biz by
generating clickable pop-ups. These domains are typi-
cally tagged by our search engine analysis for hosting
malware.

Case 4: Koobface infection
W32.Koobface is a worm using social networking sites
such as Facebook and MySpace to propagate. It typically
links to popular videos, in order to convince a user to
install an executable that appears to be a necessary codec
update but is in fact the Koobface executable. After suc-
cessful infection it will attempt to propagate by sending
messages to the victim’s contact list. This is done by issu-
ing HTTP POST requests, which are detected by the
Snort signatures with IDs 2009156, 2010335, and 2010700.
Typical landing pages used for the redirection in order
to fetch the Koobface executable are prospect-m.ru and
pari270809.com, which are tagged as suspicious by our
Google profiling method generating the tags bot and
worm.

Complementary utility and ranking of security
sources
In this section we present our results on the complemen-
tary utility of the four security data sources for validating
different types of malware. In Table 3 we list the mal-
ware variants that were identified. We classify malware
into four categories, namely backdoors, spyware, worms,
and trojans, and for each malware we indicate in the sec-
ond column the relevant category. Note that the behavior
of modern malware often combines multiple character-
istics, which seriously perplexes the process of putting
real-world malware into a taxonomy. For this reason, in
few cases malware could also be assigned to a different
category.
For 30 out of the 200 analyzed incidents, our investi-

gation did not lead to a definite assessment even when
combining evidence from all sources. The remaining 170
validated incidents include 85 trojans, 59 spyware, 18
backdoors, and 8 worms. The most popular malware fam-
ily was AskSearch followed by FakeAV and Simbar. In the
last four columns of Table 3, we identify the combination
of sources that is useful for identifying the correspond-
ing type of malware. In 41.5% of the cases, two sources,
and in 14% of the cases, at least three sources had to be
combined to have high certainty about the diagnosis of an
investigated host. The correlation of multiple sources was
particularly useful for the diagnosis of more sophisticated
malware, like Torpig, SdBot, and Polybot. On the other

vgnyarm.com
rajjunj.com
Ycqgunj.com
joher.com.tw
service.incall.ru
bestdealshost.biz
zangocash.biz
prospect-m.ru
pari270809.com


Raftopoulos and Dimitropoulos EURASIP Journal on Information Security 2013, 2013:7 Page 6 of 15
http://jis.eurasipjournals.com/content/2013/1/7

Table 3 Prevalence of different malware types and
variants in the 200 investigated incidents

Malware type Variant IDS Search Blacklist Active
(number of (number of logs engine data scans
incidents) incidents)

Trojans (85) FakeAV (27) � �
Simbar (26) � �
Monkif (18) � �
Torpig (10) � � � �
Nervos (4) � �

Spyware (59) AskSearch (50) �
MySearch (9) �

Backdoors (18) SdBot (5) � � � �
ZBot (5) � � �
Blackenergy (4) � � � �
Parabola (2) � � �
Ramsky (2) � �

Worms (8) Koobface (6) � �
Conficker (2) � � �

The last four columns mark the data sources that provided useful evidence for
diagnosis.

hand, a single source was useful to identify AskSearch and
MySearch.
In our previous short paper [17] which complements

this work, we additionally mapped the forensics analysis
process into a decision tree and used the results of the
manual investigation to train the C4.5 tree classifier. In
this way we encoded the knowledge we derived from the
manual assessment of security incidents presented here,
to a decision support tool, which can be a significant aid
in the diagnosis of future incidents.
In Figure 2 we depict how often a source or a combi-

nation of sources were useful for diagnosing an infection,
which illustrates the complementary utility of the four
data sources. Based on our experiments, we rank the four
sources as follows:

1. IDS alerts: IDS alerts are the most fruitful source of
information since they were the basis for our
assessment. In 170 out of the 200 investigated
incidents, the further manual examination of IDS
alerts observed near the time of a detected incident
provided useful evidence for validation.

2. Search Engine: The second most useful data source
in our arsenal was the output of our automated
search engine queries. In 54.5% of the cases, query
results were a valuable resource providing critical

Figure 2 Complementary utility of security data sources for the
diagnosis of 200 incidents.

information for the analysis. This information was in
most cases complementary to the content of IDS
alerts, providing knowledge about active C&C hosts,
botnet communication channels, malware landing
pages, redirections to malicious domains, malware
download pages, and phishing forms.

3. Reconnaissance and Vulnerability reports: On the
other hand, the information we collected by scanning
suspicious hosts helped us to reach a definite
assessment in approximately 14% of the cases.
However, these were the most demanding inferences
involving sophisticated malware that exhibit a very
complex behavior like Torpig or SdBot.

4. Blacklists: Finally, blacklists were the least valuable
source of security information. Their output partially
overlapped with information we already extracted
from IDS alerts or from Google. Moreover, they
contain a very large number of false positives, we
speculate due to slow responsiveness in enlisting new
malicious hosts [18].

Belowwe summarized themain lessonswe learned from
our evaluation of the utility of different security sources:
Insight 1. No single sensor provides conclusive evidence

about an investigated incident. Relying on a single defen-
sive mechanism might be sufficient to detect automated
threats with deterministic and predictable activity. How-
ever, most modern threats exhibit complex behaviors that
require a multi-vantage point security architecture for
effective detection.
Insight 2. IDS sensors have been heavily criticized for

producing a large number of false positives, rendering
them unreliable if used in isolation for identifying active
infections. In this work we highlight that by exploiting sta-
tistical and temporal correlations of the alert stream, our
IDS data became very useful, since they helped identify
a few actionable cases that exhibited a high likelihood of
infection.
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Insight 3. Alternative security sources, such as the out-
put we get from the profiling method using the Google
search engine, proved to be more helpful for making
an assessment than traditional security sources, such
as vulnerability reports and blacklists. This highlights
the importance of endpoint profiling for domains vis-
ited by infected hosts. The reputation and typical activity
of these remote hosts provides invaluable pieces of evi-
dence that can drive the investigation process. Moreover,
blacklists should only be used as a low-quality indica-
tor of domain reputation. Search engine content seems to
be more reactive and up-to-date regarding changes in a
host’s activity compared to the information contained in
blacklists.

What does a good IDS signature look like?
Next, we provide a list of Snort signatures that were found
by our alert correlator that are useful for detecting con-
firmed malware without generating false positives. These
signatures are useful for configuring the widely used Snort
IDS and for teaching good signature writing practices.
They are based on the 170 validated incidents and are
effective in detecting the malware types listed in Table 3.
Our alert correlator finds tuples of aggregated alerts

that occur frequently together. For each tuple involved
in a validated incident, we extracted the corresponding
Snort signatures. We found in total 165 Snort signature
IDs (SID) that can be summarized into 49 aggregate sig-
natures as several affiliate SIDs detect small variations of
the same pattern. In Table 4 we provide the 165 SIDs and a
short description of the 49 aggregate signatures classified
in five classes based on the behavior they detect.
A signature is labeled as good if the following condi-

tions are met: it is contained in a tuple generated by
our correlator, it is used as evidence in the subsequent
manual assessment process, and the respective incident
is validated by a security expert as an infection. Note
that signatures, which generate a large number of false
positives and might coincidentally get triggered during
a security incident, will be in most cases filtered out by
our correlator [10]. Otherwise, they will be discarded as
irrelevant during the manual assessment process.
The malware we studied typically undergo a sequence

of stages after the initial infection. In many cases, they
attempt to contact their C&C to receive new instruc-
tions and/or to report stolen data. Periodically, they may
attempt to update their binary or to fetch additional mal-
ware, which are installed on infected hosts. Some types
of malware (e.g., clickbots) often attempt to redirect a
user to known malicious pages by changing search engine
results, by generating pop-ups, or by redirecting HTTP
requests. Finally, most trojans and worms in our study
also attempt to propagate by scanning for vulnerabili-
ties. Based on these, we classify signatures in one of

the following five categories (see Table 4): C&C Com-
munication, reporting, egg download, redirection, and
propagation.
In Figure 3 we show an example of a good signature

that looks for a beacon sent by a Blackenergy bot using
an HTTP POST command to its controller. The signature
checks for specific byte sequences in four different fields
of the HTTP packet. In addition, it attempts to match the
identification string sent by the infected host providing
information about the build of the malicious binary. Addi-
tional conditions regarding the maximum packet size, the
target ports, the state of the connection, and the exact for-
mat of the identification string are introduced to increase
its specificity.
We next compare key characteristics of our good sig-

natures to the average of the signatures that are triggered
in our infrastructure, which uses the default VRT and ET
rulesets. We created two groups of signatures: a group
with the extracted 165 good signatures and its comple-
ment group of 1,371 regular signatures that are triggered
during our experiment. In Table 5 we compare the dif-
ferent features of the two groups. We observe that good
signatures are much more complex requiring the satisfac-
tion of multiple conditions. A good signature attempts to
match on average 23.2 bytes in 2.4 different fields, while
a regular signature checks only 11.2 bytes in 1.2 fields. In
addition, 28% of the good signatures set the offset of a
sought byte sequence; 51% provide a regular expression to
further specify a search pattern; 22% fix the destination
port(s); and 14.5% give a specific packet size. In sharp con-
trast, the corresponding numbers for regular signatures
are only 8%, 15%, 17%, and 7%, respectively.
The regular expression size in good signatures is 11.3,

compared to 4.2 in the case of regular signatures. To
compute the regular expression size, we use the alpha-
betic width which is, to the best of our knowledge, the
most commonly used metric [19]. The alphabetic width
counts the total number of alphabetic symbols in the reg-
ular expression, taking into account multiplicity. However,
we have adapted this metric to reduce the effect of the
union operator, which attempts to match any of a list of
input variables to a target string, by considering only the
alphabetically widest variable of the union. For example,
we iteratively reduce the regular expression R(V1|V2) to
R(V1) if Alphabeticwidth(V1) ≥ Alphabeticwidth(V2).
Flow options are used to provide flow level control.

For example, signatures can state whether the processed
packet belongs to an established connection and further
explicitly define the direction (e.g., to_server, to_client). IP
options are typically used to detect IP-level attacks, recon-
naissance and network mapping attempts, and protocol
based DoS attacks. For example, IP options check for the
usage of the Fragment bit, the Type of Service option, and
the Time to Live value.
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Table 4 Effective Snort signatures in the 200 investigated incidents

SID Signature description

C&C Communication - update malicious binary instruction set

2007668 ET TROJAN Blackenergy Bot Checkin to C&C

2010861 ET TROJAN Zeus Bot Request to CnC

2404138:2404156, ET DROP Known Bot C&C Server Traffic TCP/UDP

2404242:2404247,2404335:240434

16693 SPYWARE-PUT Torpig bot sinkhole server DNS lookup attempt

2011857 ET TROJAN SpyEye C&C Check-in URI

2013076 ET TROJAN Zeus Bot GET to Google checking Internet connectivity

2013348 ET TROJAN Zeus Bot Request to CnC 2

2013911 ET TROJAN P2P Zeus or ZeroAccess Request To CnC

2000348 ET ATTACK_RESPONSE IRC - Channel JOIN on non-std port

2014107 ET TROJAN Zeus POST Request to CnC - cookie variation

2015813 ET CURRENT_EVENTS DNS Query Torpig Sinkhole Domain

16140 BACKDOOR torpig-mebroot command and control checkin

Reporting- share stolen user confidential data with controller

2008660 ET TROJAN Torpig Infection Reporting

2011827 ET TROJAN Xilcter/Zeus related malware dropper reporting in

2009024 ET TROJAN Downadup/Conficker A or B Worm reporting

2802912 ETPRO TROJAN Backdoor.Nervos.A Checkin to Server

2002728 ET TROJAN Ransky or variant backdoor communication ping

2010150 ET TROJAN Koobface HTTP Request

2010885 ET TROJAN BlackEnergy v2.x HTTP Request with Encrypted Variable

2012279 ET CURRENT_EVENTS SpyEye HTTP Library Checkin

2002762 ET TROJAN Torpig Reporting User Activity

2008660 ET TROJAN Torpig Infection Reporting

2000347 ET ATTACK_RESPONSE IRC - Private message on non-std port

Egg Download - update malicious binary/download additional malware

2010886 ET TROJAN BlackEnergy v2.x Plugin Download Request

2802975 ETPRO TROJAN Linezing.com Checkin

1012686 ET TROJAN SpyEye Checkin version 1.3.25 or later

2010071 ET TROJAN Hiloti/Mufanom Downloader Checkin

2011388 ET TROJAN Bredolab/Hiloti/ Mufanom Downloader Checkin 2

2014435 ET TROJAN Infostealer.Banprox Proxy.pac Download

2007577 ET TROJAN General Downloader Checkin URL

2016347 ET CURRENT_EVENTS Styx Exploit Kit Secondary Landing

2011365, 2010267 ET TROJAN Sinowal/sinonet/ mebroot/Torpig infected host checkin

Redirection - redirect user to malicious domain

2011912 ET CURRENT_EVENTS Possible Fake AV Checkin

2003494:2003496 ET USER_AGENTS AskSearch Toolbar Spyware User-Agent

2003626,2007854 ET USER_AGENTS Suspicious User Agent (agent)

2009005 ET MALWARE Simbar Spyware User-Agent Detected

2406001:2406012,2406147:2406167, ET RBN Known Russian Business Network IP TCP/UDP

2406361:2406383,2406635:2406649

2016583 ET CURRENT_EVENTS SUSPICIOUS Java Request to

DNSDynamic DNS
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Table 4 Effective Snort signatures in the 200 investigated incidents (Continued)

Propagation - detect and infect vulnerable hosts

2008802 ET TROJAN Possible Downadup/ Conficker-A Worm Activity

2003068 ET SCAN Potential SSH Scan OUTBOUND

2001569 ET SCAN Behavioral Unusual Port 445 traffic

2003292 ET WORM Allaple ICMP Sweep Ping Outbound

2011104 ET TROJAN Exploit kit attack activity likely hostile

2010087 ET SCAN Suspicious User-Agent Containing SQL Inject/ion,

SQL Scanner

2006546 ET SCAN LibSSH Based Frequent SSH Connections

BruteForce Attack!

2001219 ET SCAN Potential SSH Scan

2003 SQL Worm propagation attempt

3817 TFTP GET transfer mode overflow attempt

12798:12802 SHELLCODE base64 x86 NOOP

In the case of HTTP, we observe that good signa-
tures tend to define the section of an HTTP packet, e.g.,
with the Snort keywords header, method, uri, and revi-
sion, where pattern matching is performed. Overall, we
observe that the computed statistics exhibit a consistent
increase for good signatures by a factor that takes values
between 1.1 and 3.5. We conclude that good Snort sig-
natures tend to incorporate the entire arsenal of available
features. Complexity in the case of signature writing is a
virtue. Note, however, that this complexity typically comes
at the cost of higher processing overhead for matching
signatures.
Insight 4. IDS signature writing best practices often sug-

gest that signatures should be kept short and simple. The
primary reason for this is performance, since signature
length and the usage of additional features handled by
softwaremodules, such as regular expressions, have a neg-
ative impact on the packet processing delay. Secondly,
malware will often slightly change their behavior and com-
munication patterns in order to evade detection. This
results in a large number of similar network footprints
generated from different flavors of the same malware.
IDS signature writers cope with this problem by gener-
alizing existing signatures so that they effectively detect
all different variants of a malware family. However, our
work suggests that reducing signature complexity will also

reduce its effectiveness, since more generic signatures will
often get triggered by benign traffic. Highly specific signa-
tures exhibit higher true positive rate and generate in most
cases a low number of alerts that can be easily handled by
a security analyst.

Building a signature effectiveness metric
In Section ‘What does a good IDS signature look like?’ we
identified a number of complexity features for the trig-
gered signatures and highlighted that good signatures will
tend to exhibit much higher values compared to the regu-
lar ones. We next ask the following question: is it possible
to build a metric that would predict the effectiveness of
a new signature based on its structural characteristics?
Such a metric would be extremely useful to authors of
new signatures, allowing them to evaluate the quality of
the tailored rules before release, and also to security prac-
titioners that wish to rank and prioritize signatures in
the deployed IDS rulesets. To answer this question, we
first evaluate the correlation between the collected com-
plexity features and the effectiveness of a signature. We
explore whether a single complexity metric is sufficient or
whether a group of complexity features are needed to cap-
ture the signature effectiveness. Then, we tailor a metric
based on the most prominent set of complexity features
and evaluate its performance. Finally, we apply this metric

Figure 3 Example of good Snort signature used to detect a beacon frame sent by a Blackenergy bot to its controller.
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Table 5 Comparison of good and regular Snort signatures

Bytes Fields Byte offset Regular exp. Regular exp. Destination Packet size Flow options IP options
checked checked is set is set size port is set is set are set are set

Regular signatures 11.2 1.2 8% 15% 4.2 17% 6.9% 30.2% 62.1%

Good signatures 23.2 2.4 28% 51% 11.3 22% 14.5% 38% 68.4%

Increase 2.1 × 2 × 3.5 × 3.4 × 2.7 × 1.3 × 2.1 × 1.8 × 1.1 ×
Statistics are computed over 165 good and 1,371 regular signatures.

to evaluate the signatures contained in popular publicly
available rulesets.

Evaluating complexity features
To investigate the predictive strength of the collected
complexity features, we first evaluate whether they are
correlated to the signature effectiveness. Signature effec-
tiveness for good signatures, as defined in Section ‘What
does a good IDS signature look like?’, is equal to the
number of validated infection incidents involving the sig-
nature, whereas it is equal to zero for regular signatures.
Intuitively, an effective signature helps to validate many
detected infections.
We use the Spearman correlation coefficient that mea-

sures the monotonic relationship between two input ran-
dom variables. It is considered as a robust correlation
technique [20], since it does not consider a linear rela-
tionship between the examined variables, such as in the
case of Pearson correlation, and it is not sensitive to
outliers. In Table 6 we present the correlation results
for different signature classes. We highlight the signifi-
cant correlation values, at the 0.05 significance level, in
bold.
First, we see that there are significant correlations

among all signature classes for several complexity fea-
tures. These correlations exceed in some cases 0.90 at
the 0.05 significance level, indicating that there is a very
strong association between the respective complexity fea-
tures and the measured signature effectiveness.

Second, we observe that there is no single set of features
that correlates with signature effectiveness for all signa-
ture classes. C&C Communication signatures detect the
communication attempts between a victim host and its
controller. Typically, the victim machine will include in
the sent packet several pieces of information regarding its
state and ID, the version of the rootkit used, and the type
of request. This information is dispersed within the dif-
ferent sections of the payload. Therefore, we see increased
correlation values 0.94 and 0.95, for the Bytes Checked and
Fields Checked features.
Reporting signatures are triggered whenever a victim

host is attempting to leak sensitive data it has harvested
from the victim host. Typically, this information is split
into sections, which are preceded by a short string indi-
cating the beginning of the section. Therefore, we see
significant correlation for the Bytes Checked and Fields
Checked features. Moreover, a communication flow needs
to be established before the reporting takes place in most
of the cases, which explains the 0.78 coefficient for the
Flow Options are Set feature.
Egg Download signatures detect attempts made by the

malware to update itself or to download additional bad-
ware. Typically, they try to match the string following the
GET command of an HTTP request, corresponding to
the target malicious binary. This request can slightly vary
since the sender might include ID or timestamp infor-
mation, and the requested binary might come in differ-
ent versions with slightly different filenames. Therefore,

Table 6 Complexity features and their correlations with signature effectiveness for 165 good signatures

Signature class

Complexity feature C&C Communication Reporting Egg Download Redirection Propagation All signatures

Bytes checked 0.95 0.52 0.30 0.88 0.65 0.84

Fields checked 0.94 0.60 0.55 0.87 0.61 0.83

Byte offset is set 0.48 0.28 0.54 0.62 0.34 0.51

Regular expression is set 0.48 0.27 0.59 0.73 0.35 0.52

Regular expression size 0.73 0.24 0.51 0.63 0.30 0.37

Destination port is set 0.49 0.19 0.13 0.35 0.29 0.24

Packet size is set 0.19 0.12 0.19 0.16 0.40 0.12

Flow options are set 0.91 0.78 0.60 0.41 0.48 0.68

IP options are set 0.53 0.42 0.48 0.53 0.73 0.56

We highlight in bold correlation values higher than 0.4.
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regular expressions are used to cope with this issue,
explaining the increased correlation coefficient of 0.59 we
observe for the Regular Expression is Set feature.
Redirection signatures detect requests towards poten-

tially malicious domains. These signatures describe the
target domain using either a string descriptor or a
more flexible regular expression field. As a result, Bytes
Checked-, Fields Checked-, and regular expression-related
features exhibit an increased correlation value.
Finally, Propagation signatures involve scanning and

network enumeration detection, which often uses IP spe-
cific flags, such as the fragmentation bit, therefore, we see
that the correlation value for the IP Flags are Set feature is
high and equal to 0.73.
In the last column of Table 6, we see the respective cor-

relation values between the complexity features and the
signature effectiveness, considering all good signatures.
We see that Bytes Checked and Fields Checked are the
most prominent features, with correlation values of 0.84
and 0.83, followed by the Flow/IP options are Set and the
Regular Expression is Set feature, with correlation values
of 0.68, 0.56, and 0.52, respectively. However, these aggre-
gate correlation results exhibit significant difference from
the per-class correlation values, indicating that there is no
single feature set that captures the signature effectiveness
across all classes.
Insight 5. For most classes of signatures, there exists a

set of complexity features that strongly correlates with sig-
nature effectiveness. However, there is no single set of
features that fits all classes.

Building a metric that captures signature effectiveness
Our goal is to exploit complexity features that correlate
with signature effectiveness to build predictor variables.

This can be done by using a regression model that takes
as input the complexity features as the explanatory vari-
ables and the signature effectiveness as the response vari-
able. However, an inherent problem that we need to deal
with is the fact that the feature variables might exhibit
inter-correlations. This is the known problem of feature
multi-collinearity, which means that one feature can be
predicted from other input features with a non-trivial
degree of accuracy [21]. Such inter-correlations among
predictor variables can lead to unreliable and unsta-
ble estimates of regression coefficients, and therefore an
inflated variance of the response variable, which in our
model is the signature effectiveness.
To overcome this problem of inter-correlation among

input features, we employ Principal Component Analy-
sis (PCA). PCA takes as input the original features and
generates a new set of variables, which are called prin-
cipal components (PCs). PCs are linear combinations of
the original features and form an orthogonal basis, mean-
ing that they are linearly uncorrelated. Moreover, PCs
are ordered so that the first few components retain most
of the variation present in the original features. There-
fore, we can reduce the dimensions of the feature space
by only retaining the first few PCs. Fewer parameters in
the regression modeling translate in lower variance of
the regression coefficient estimator or, in other words, an
‘easier’ and more effective regression.
In Figure 4 we illustrate the extracted PCs for the fea-

ture matrix consisting of all good signatures. We see that
six PCs account for approximately 98% of the total vari-
ance of the dataset. This means that we can safely drop the
remaining three PCs and, thus, reduce the feature space
to six dimensions. Additionally, we perform the same
transformation for five feature matrices derived from the
remaining signature classes and one that corresponds to

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

Principal Components

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

V
ar

ia
nc

e 
E

xp
la

in
ed

 (
%

)

Figure 4 Variance explained by different PCs for all good signatures.
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all good signatures. In all cases, six PCs account for at least
95% of the total variance and, therefore, suffice.
We then apply multiple linear regression using the PCs

derived in the previous step as exploratory variables and
the signature effectiveness as response variable. The goal
of this process is to build a model that best describes
the relationship between the exploratory and the response
variables and can be used to perform prediction. In Table 7
we show the regression results for the derived models.
For each signature class, we list the R2 value which

is a statistic that measures the goodness of fit. It shows
how closely the values generated by the model match the
response variable. A value of 0.8 would mean that 80%
of the variability in the original data is explained by the
model, whereas an R2 value of 1.0 suggests that this is
a perfect fit. However, R2 improves as exploratory vari-
ables are being added to the model, which might lead to
artificially inflated R2 values. Adjusted R2 fixes this prob-
lem by penalizing the number of terms in the model and
therefore is more appropriate when comparing how dif-
ferent models fit the original data. The F-statistic tests
the hypothesis that the coefficients that associate the
exploratory variables to the response variable are zero.
In essence, it tests whether the selected exploratory vari-

ables are useful in predicting the response variable. Values
close to 1 suggest that there is no association, whereas val-
ues greater than 5 at statistically significant levels signify
that the selected exploratory variables are good predictors
of the response variable.
In Table 7 the R2 value indicates that the PCs extracted

from the complexity features explain in all cases between
73% and 96% of the original variance, meaning that the
derived regression model fits well the data. The adjusted
R2 ranging from 0.6 to 0.9 denotes that these results
are robust and are not subject to bias introduced by the
number of predictors used in the model.
To assess the predictive strength of our models, we per-

form a stratified threefold cross validation. In this process
the complete feature matrix, consisting of all good sig-
natures, is split into three folds, two of which are used
for training and one for testing. The folds are stratified
so that each fold has on average the same mix of differ-
ent signature classes. Based on the training data, we build

Table 7 Regressionmodels goodness of fit

Signature class R2value Adjusted R2 F-test

C&C Communication 0.939 0.848 91.8, p < 0.001

Reporting 0.737 0.614 9.9, p < 0.001

Egg Download 0.957 0.864 12.9, p < 0.0005

Redirection 0.961 0.910 151.9, p < 0.001

Propagation 0.917 0.856 6.9, p < 0.005

All signatures 0.933 0.802 31.9, p < 0.001

the predictors described in Table 7. We then compute the
Spearman correlation between the predicted values and
the signature effectiveness. A high correlation indicates
that the predictor sensitivity is high, signifying that it can
be used to estimate the signature effectiveness given the
respective features.
In Table 8 we show the results of the validation. In

total we evaluate 18 models derived from the six listed
classes and the three dataset splits introduced by the
stratified validation. We see that we get high correlations
on average, above 0.41 in all cases, at the 0.05 signifi-
cance level. If we exclude the Redirection signature class,
which appears to produce the worst prediction results,
the remaining classes exhibit correlations ranging from
0.68 to 0.87, suggesting that the generated models have
a very high prediction accuracy. Moreover, we see that
the generic model that uses all good signature complex-
ity features, without taking into account class information,
performs reasonably well with an average correlation of
0.6893.
However, how can one use these models in a realistic

setting? Assuming that we have a new set of developed
signatures, we have extracted the respective complex-
ity features. If we apply our regression model on this
data, we will get a list of response values correspond-
ing to the estimated signature effectiveness. These values
should be interpreted in a comparative fashion. Our met-
ric is essentially a method to rank the evaluated signatures
and assign a score of effectiveness that only makes sense
when compared to the same score computed for other
signatures.
To illustrate this process we perform the following

experiment. We use the predictors generated based on
the training folds of the stratified validation illustrated
in Table 8. We apply these predictors to the respective
testing fold and additionally apply the generic All Signa-
tures predictor to the PCs that we have extracted from the
complexity features of regular signatures. The predictor is
useful in practice if the good signatures of the testing fold
rank above the regular signatures in terms of estimated
effectiveness. We present the respective results in Table 9.

Table 8 Regressionmodel validation using threefold
stratified validation

Signature class Split A Split B Split C Class average

C&C Communication 0.8628 0.8691 0.6652 0.7990

Reporting 0.6752 0.7269 0.9517 0.7846

Egg Download 0.9127 0.8282 0.8845 0.8751

Redirection 0.6940 0.1309 0.6713 0.4115

Propagation 0.8473 0.9443 0.5387 0.7768

Good signatures 0.7680 0.6211 0.6783 0.6893
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Table 9 Predicted ranking of good signatures taking into
account all 1,423 signatures

Top N% Number of signatures Percentage (and the absolute
in the Top N% number in parenthesis) of the

good signatures that are in
the top N% of all signatures

N= 5% (71) 71 47% (24)

N= 10% (142) 142 79% (40)

N= 50% (711) 711 94% (48)

Table 9 shows that the top 5% of the predicted most
effective signatures included 24 (47%) of the good signa-
tures in the dataset, whereas 94% of the good signatures
are in the upper half of the ranking. This result practi-
cally tells us that if a security specialist would have a new
ruleset to deploy consisting of these 1,423 signatures; then
by using our predictor, he could derive an estimate about
which are the most prominent and reliable ones that he
should focus on. He could then use this information to pri-
oritize alerts generated by the deployed IDS and facilitate
the forensics analysis.
Insight 6. Complexity features can be used to build

regression models that allow the estimation of signature
effectiveness. These prediction models can constitute a
signature quality metric that can be exploited by secu-
rity specialists to evaluate the available rulesets, prioritize
the generated alerts, and facilitate the forensics analysis
processes.

Evaluating commonly used rulesets
Several publicly available IDS rulesets are used in the
security community. However, partitioners have no tools
available to evaluate the quality of these rulesets before
deployment. Our effectiveness metric can be used in this
context to provide an early indicator of the usefulness of a
given signature set. In Table 10 we compare the four most
popular rulesets, namely, the Vulnerability Research Team
[22] ruleset which is the default ruleset bundled with
SNORT, the Emerging Threats [1] ruleset, the Bleeding
Edge [2] ruleset, and the SRI Bothunter [3] ruleset. Note
that the latter ruleset also includes some selected Emerg-
ing Threats rules. We have excluded these overlapping
signatures and only considered the SRI signatures.
We build a composite ruleset consisting of all available

signatures. We then extract the complexity features for
this ruleset and derive the respective PCs. We apply our
generic predictor, i.e., the one produced considering all
good signatures, on the PCs and produce the signature
effectiveness vector. We sort the signature effectiveness
values on descending order and evaluate howmany signa-
tures from different rulesets fall into different percentiles.
For example, we see that the top 5%, which accounts for
988 signatures, contains 246 VRT, 703 ET, 13 BE, and

26 SRI signatures. These correspond to 4.4%, 6.2%, 1%,
and 1.6% of the total VRT, ET, BE, and SRI signatures,
respectively.
Table 10 suggests that the Emerging Threats ruleset is

the one contributing the most effective signatures at all
percentile levels, followed by the default VRT ruleset. The
ET is indeed considered one of the most sensitive and
responsive rulesets, since it is open-source and is fine-
tuned by a high number of contributors. This also is in
agreement with our own experience. As shown in Table 4
the signatures that we have listed as our good signatures
originate in principle from the ET ruleset. The VRT is
the most popular ruleset, since it comes bundled with the
default SNORT installation. It is sensitive to a wide range
of threats, accounting 5,559 signatures and is constantly
fine-tuned by the Sourcefire team. Based on our ranking
results, VRT is the second most fruitful source of signa-
tures, having 246 and 290 signatures at the 5% and 10%
levels, respectively.
The SRI ruleset is a collection of community rules

and custom-tailored signatures. It is targeted to a nar-
row range of specific threats, including 1,606 signatures.
Signature selection at SRI happens by deploying and eval-
uating rulesets on a custom honeynet. In our effectiveness
ranking, SRI ruleset has only a minor impact, contribut-
ing 26 signatures at the 5% and 104 at the 10% level.
These signature counts account for the 1.6% and 6.5% of
the available SRI signatures. Finally, Bleeding Edge is a
platform allowing security specialists to upload their own
custom rules. The Bleeding Edge team organizes them into
coherent rulesets and makes quality tweaks. Based on our
ranking, the Bleeding Edge ruleset was the least effective,
contributing only 13 and 98 signatures at the 5% and 10%
levels, respectively.

Table 10 Predicted signature ranking for four popular
SNORT rulesets

Percentile level and in parenthesis
absolute number of signatures

Top N% (total number N= 5% (988) N= 10% (1,976) N= 50% (9,881)
of signatures)

Ruleset (number
of signatures)a

Vulnerability Research 4.4% (246) 5.2% (290) 47.6% (2,646)
Team (5,559)

Emerging 6.2% (703) 13.0% (1,484) 51.1% (5,797)
Threats (11,344)

Bleeding Edge 1.0% (13) 7.8% (98) 44.1% (554)
Team (1,254)

SRI Bothunter 1.6% (26) 6.5% (104) 55.0% (884)
(1,606)

aCorresponding values in the second to the fourth columns are presented as
percentage (number of ruleset signatures).
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Related work
Several studies have detected security incidents in traf-
fic traces from production networks, e.g., [23-25], with-
out providing though a systematic validation of detected
incidents. Closer to our work, Sharma et al. [26] ana-
lyzed security incidents in a supercomputing center. The
incidents were verified based on forensics analysis that
exploited data from five security sources. The authors
highlighted a number of best practices for the perimeter
security of an organization. However, they do not provide
insights about the effectiveness of the different security
sources. In our recent short paper [17], we built a deci-
sion support tool that correlated evidence from different
security sensors to expedite manual forensics analysis of
compromised systems. Authors in [17] focused on the
automation of the security assessment process. In con-
trast, in this paper we study in detail how the manual
investigation of a wide range of incidents was carried out.
In addition, we evaluate the complementary utility of the
available security sources and highlight good practices for
writing IDS signatures.
Besides, a group of studies on automating digital foren-

sics analysis has focused on discovering and correlating
evidence primarily from end hosts [27-29]. This line of
work is orthogonal to ours, since their goal is to detect
unauthorized user activity by combining the available
host-level sources. Substantial part of these studies
are centered around optimizing data representation so
that evidence integrity and chain of custody is ensured
[30,31]. Our work, on the other hand, is to the best of
our knowledge the first that systematically documents
network forensics analysis practices in an operational
environment.
Prediction methods have been the subject of exten-

sive study in the field of vulnerability and software defect
prediction. The goal in this line of work is to detect vul-
nerabilities and defective softwaremodules at design time,
based on the structural or behavioral characteristics of
the respective code. Ohlsson et al. used graph based com-
plexity metrics to detect software prone components in
telecom systems [32]. Gyimothy et al. [33] applied logical
and linear regressionmethods to assess the applicability of
object-oriented metrics to estimate the fault-proneness of
Mozilla. Neuhaus et al. used diverse code features, includ-
ing imports, function call structure, and bug history, to
predict the vulnerabilities of future Mozilla components
[34]. Nagappan et al. used a long list of module, func-
tion, and class structural features to build a predictor of
five Microsoft systems, and found that predictors built
for individual projects only work well for similar projects
[35]. Zimmermann et al. exploited historical bug data and
code complexity features to predict vulnerable compo-
nents [36]. Our work uses a similar modeling approach to
solve a different problem. Instead of predicting software

vulnerabilities, we focus on building ametric that captures
the effectiveness of IDS signatures.

Conclusions
In this paper we conducted a complex manual investi-
gation of 200 suspected malware in a live operational
infrastructure. We exploited four commonly used secu-
rity data sources and a number of derived features to
validate suspected infections. Based on our experiment,
we analyze the complementary utility of the different
data sources and the characteristics of the IDS signatures
that were associated with confirmed incidents. Notably,
we observe that a search engine, which is a less well-
established security data source, was much more useful in
the diagnosis of security incidents than other more tradi-
tional security sources, namely, blacklists, active scanners,
and vulnerability analysis tools.
Furthermore, we learn that a single data source is

typically not sufficient to validate an incident and that
multiple sources should be combined. In more than 10%
of the cases, no single source, but the overall behav-
ior of a host as seen from multiple sources helped to
validate an infection. In addition, multiple sensors are
needed in 70.5% of all cases when the easier to detect
spyware are excluded. These results highlight the impor-
tance of a holistic approach in security assessment that
combines multiple data sources. In order to detect elab-
orate pieces of malware, as the ones shown in Table 3,
we need to combine local information about the expo-
sure level and the behavioral patterns of studied hosts with
public knowledge about the maliciousness of contacted
domains. In this context, future work could also use a vari-
ety of tools to complement some of the sensors used in our
study. For example, security inspectors (e.g., SecuniaPSI,
QualysGuard), IDSs (e.g., BRO, Surricata), and NetFlow
anomaly detectors can also be used to detect malicious
activity, whereas spamtraps, blocklists, and DNS-based
reputation engines can be exploited to build profiles of
contacted domains.
Finally, we extracted and made available a list of 165

Snort signatures that were triggered on hosts with vali-
dated malware. We compare the characteristics of good
and regular signatures and report a number of interesting
statistics that provide essential guidelines for configuring
Snort and for teaching good signature writing practices.
In addition, we introduce a novel signature quality met-
ric that can be exploited by security specialists to evaluate
the available rulesets, prioritize the generated alerts, and
facilitate the forensics analysis processes. Based on our
metric, we compare the most popular signature rulesets
and highlight differences.
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