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Extracting binary strings from real-valued biometric templates is a fundamental step in template compression and protection
systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Quantization and coding is the
straightforward way to extract binary representations from arbitrary real-valued biometric modalities. In this paper, we propose
a pairwise adaptive phase quantization (APQ) method, together with a long-short (LS) pairing strategy, which aims to maximize
the overall detection rate. Experimental results on the FVC2000 fingerprint and the FRGC face database show reasonably good
verification performances.

1. Introduction

Extracting binary biometric strings is a fundamental step in
template compression and protection [1]. It is well known
that biometric information is unique, yet inevitably noisy,
leading to intraclass variations. Therefore, the binary strings
are desired not only to be discriminative, but also have
to low intraclass variations. Such requirements translate to
both low false acceptance rate (FAR) and low false rejection
rate (FRR). Additionally, from the template protection
perspective, we know that general biometric information
is always public, thus any person has some knowledge of
the distribution of biometric features. Furthermore, the
biometric bits in the binary string should be independent
and identically distributed (i.i.d.), in order to maximize the
attacker’s efforts in guessing the target template.

Several biometric template protection concepts have
been published. Cancelable biometrics [2, 3] distort the
image of a face or a fingerprint by using a one-way geometric
distortion function. The fuzzy vault method [4, 5] is a
cryptographic construction allowing to store a secret in a
vault that can be locked using a possibly unordered set of
features, for example, fingerprint minutiae. A third group
of techniques, containing fuzzy commitment [6], fuzzy
extractor [7], secure sketch [8], and helper data system [9–

13], derive a binary string from a biometric measurement
and store an irreversibly hashed version of the string with
or without binding a crypto key. In this paper, we adopt the
third group of techniques.

The straightforward way to extract binary strings is
quantization and coding of the real-valued features. So far,
many works [9–11, 14–20] have adopted the bit extraction
framework shown in Figure 1, involving two tasks: (1)
designing a one-dimensional quantizer and (2) determining
the number of quantization bits for every feature. The final
binary string is then the concatenation of the output bits
from all the individual features.

Designing a one-dimensional quantizer relies on two
probability density functions (PDFs): the background PDF
and the genuine user PDF, representing the probability
density of the entire population and the genuine user,
respectively. Based on the two PDFs, quantization intervals
are determined to maximize the detection rate, subject to a
given FAR, according to the Neyman-Pearson criterion. So
far, a number of one-dimensional quantizers have been pro-
posed [9–11, 14–17], as categorized in Table 1. Quantizers
in [9–11] are userindependent, constructed merely from the
background PDF, whereas quantizers in [14–17] are user-
specific, constructed from both the genuine user PDF and
the background PDF. Theoretically, user-specific quantizers
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Figure 1: The bit extraction framework based on the one-
dimensional quantization and coding, whereD denotes the number
of features; bi denotes the number of quantization bits for the ith
feature (i = 1, . . . ,D), and si denotes the output bits. The final
binary string is s = s1s2 · · · sD .

provide better verification performances. Particularly, the
likelihood ratio-based quantizer [17], among all the quan-
tizers, is optimal in the Neyman-Pearson sense. Quantizers
in [9, 14–16] have equal-width intervals. Unfortunately, this
leads to potential threats: features obtain higher probabilities
in certain quantization intervals than in others, and thus
attackers can easily find the genuine interval by continuously
guessing the one with the highest probability. To avoid this
problem, quantizers in [10, 11, 17] have equal-probability
intervals, ensuring i.i.d. bits.

Apart from the one-dimensional quantizer design, some
papers focus on assigning a varying number of quantization
bits to each feature. So far, several bit allocation principles
have been proposed: fixed bit allocation (FBA) [10, 11, 17]
simply assigns a fixed number of bits to each feature. On
the contrary, the detection rate optimized bit allocation
(DROBA) [19] and the area under the FRR curve optimized
bit allocation (AUF-OBA) [20], assign a variable number of
bits to each feature, according to the features’ distinctiveness.
Generally, AUF-OBA and DROBA outperform FBA.

In this paper, we deal with quantizer design rather than
assigning the quantization bits to features. Although one-
dimensional quantizers yield reasonably good performances,
a problem remains: independency between all feature dimen-
sions is usually difficult to achieve. Furthermore, one-
dimensional quantization leads to inflexible quantization
intervals, for instance, the orthogonal boundaries in the
two-dimensional feature space, as illustrated in Figure 2(a).
Contrarily, two-dimensional quantizers, with an extra degree
of freedom, bring more flexible quantizer structures. There-
fore, a user-independent pairwise polar quantization was
proposed in [21]. The polar quantizer is illustrated in
Figure 2(b), where both the magnitude and the phase
intervals are determined merely by the background PDF. In
principle, polar quantization is less prone to outliers and less
strict on independency of the features, when the genuine user
PDF is located far from the origin. Therefore, in [21], two

Table 1: The categorized one-dimensional quantizers.

User independent User specific

Linnartz and Tuyls [9] Vielhauer et al. [14]

Tuyls et al. [10] Feng and Wah [15]

Kevenaar et al. [11] Chang et al. [16]

Chen et al. [17]

Equal width Equal probability

Linnartz and Tuyls [9] Tuyls et al. [10]

Vielhauer et al. [14] Kevenaar et al. [11]

Feng and Wah [15] Chen et al. [17]

Chang et al. [16]

pairing strategies, the long-long and the long-short pairing,
were proposed for the magnitude and the phase, respectively.
Both pairing strategies use the Euclidean distances between
each feature’s mean and the origin. Results showed that the
magnitude yields a poor verification performance, whereas
the phase yields a good performance. The two-dimensional
quantization-based bit extraction framework, including an
extra feature pairing step, is illustrated in Figure 3.

Since the phase quantization has shown in [21] to yield
a good performance, in this paper, we propose a user-
specific adaptive phase quantizer (APQ). Furthermore, we
introduce a Mahalanobis distance-based long-short (LS)
pairing strategy that by good approximation maximizes the
theoretical overall detection rate at zero Hamming distance
threshold.

In Section 2 we introduce the adaptive phase quantizer
(APQ), with simulations in a particular case with indepen-
dent Gaussian densities. In Section 3 the long-short (LS)
pairing strategy is introduced to compose pairwise features.
In Section 4, we give some experimental results on the
FVC2000 fingerprint database and the FRGC face database.
In Section 5 the results are discussed and conclusions are
drawn in Section 6.

2. Adaptive Phase Quantizer (APQ)

In this section, we first introduce the APQ. Afterwards, we
discuss its performance in a particular case where the feature
pairs have independent Gaussian densities.

2.1. Adaptive Phase Quantizer (APQ). The adaptive phase
quantization can be applied to a two-dimensional feature
vector if its background PDF is circularly symmetric about
the origin. Let v = {v1, v2} denote a two-dimensional feature
vector. The phase θ = angle(v1, v2), ranging from [0, 2π), is
defined as its counterclockwise angle from the v1-axis. For a
genuine user ω, a b-bit APQ is then constructed as

ξ = 2π
2b

, (1)

Qω, j =
(
ϕ∗ω +

(
j − 1

)
ξ mod 2π,ϕ∗ω + jξ mod 2π

]
,

j = 1, . . . , 2b,
(2)
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Figure 2: The two-dimensional illustration of (a) the one-dimensional quantizer boundaries (dash line) and (b) the userindependent polar
quantization boundaries (dash line). The genuine user PDF is in red and the background PDF is in blue. The detection rate and the FAR are
the integral of both PDFs in the pink area.
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Figure 3: The bits extraction framework based on two-dimensional quantization and coding, where D denotes the number of features;
K denotes the number of feature pairs; ck denotes the feature index for the kth feature pair (k = 1, . . . ,K); si denotes the corresponding
quantized bits. The final output binary string is S = s1s2 · · · sK .

where Qω, j represents the jth quantization interval, deter-
mined by the quantization step ξ and an offset angle ϕ∗ω .
Every quantization interval is uniquely encoded using b bits.
Let µω be the mean of the genuine feature vector v, then
among the intervals, the genuine interval Qω,genuine, which is
assigned for the genuine user ω, is referred to as

Qω, j = Qω,genuine ⇐⇒ µω ∈ Qω, j , (3)

that is, Qω,genuine is the interval where the mean µω is located.
In Figure 4 we give an illustration of a b-bit APQ.

The adaptive offset ϕ∗ω in (2) is determined by the
background PDF pω(v) as well as the genuine user PDF
pω(v): given both PDFs and an arbitrary offset ϕ, the
theoretical detection rate δ and the FAR α at zero Hamming

0 2π

Qω,1 Qω,1Qω,2

ξ

· · ·

ϕ∗ω

Figure 4: An illustration of a b-bit APQ in the phase domain, where
Qω, j , j = 1, . . . , 2b denotes the jth quantization interval with width
ξ, and offset angle ϕ∗ω . The first interval Qω,1 is wrapped.

distance threshold are

δω
(
Qω,genuine

)
=
∫

Qω,genuine(b,ϕ)
pω(v)dv, (4)

αω
(
Qω,genuine

)
=
∫

Qω,genuine(b,ϕ)
pω(v)dv. (5)
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Given that the background PDF is circularly symmetric, (5)
is independent of ϕ. Thus, (5) becomes

αω = 2−b. (6)

Therefore, the optimal ϕ∗ω is determined by maximizing the
detection rate in (4):

ϕ∗ω = argmax
ϕ

δω. (7)

After the ϕ∗ω is determined, the quantization intervals are
constructed from (2). Additionally, the detection rate of the
APQ is

δω
(
Qω,genuine

)
=
∫

Qω,genuine(b,ϕ∗ω )
pω(v)dv. (8)

Essentially, APQ has both equal-width and equal-
probability intervals, with rotation offset ϕ∗ω that maximizes
the detection rate.

2.2. Simulations on Independent Gaussian Densities. We
investigate the APQ performances on synthetic data, in a
particular case where the feature pairs have independent
Gaussian densities. That is, the background PDF of both
features are normalized as zero mean and unit variance, that
is, pω,1 = pω,2 = N(v, 0, 1). Similarly, the genuine user PDFs
are pω,1(v) = N(v,μω,1, σω,1) and pω,2(v) = N(v,μω,2, σω,2).
Since the two features are independent, the two-dimensional
joint background PDF pω(v) and the joint genuine user PDF
pω(v) are

pω(v) = pω,1 · pω,2,
pω(v) = pω,1 · pω,2.

(9)

According to (6), the FAR for a b-bit APQ is fixed to
2−b. Therefore, we only have to investigate the detection rate
in (8) regarding the genuine user PDF pω, defined by the μ
and σ values. In Figure 5, we show the detection rate δω of
the b-bit APQ (b = 1, 2, 3, 4), when pω(v) is modeled as
σω,1 = σω,2 = 0.2; σω,1 = σω,2 = 0.8; σω,1 = 0.8, σω,2 = 0.2,
at various {μω,1, μω,2} locations for optimal ϕ∗ω . The white
pixels represent high values of the detection rate whilst the
black pixels represent low values. The δω appears to depend
more on how far the features are from the origin than on the
direction of the features. This is due to the rotation adaptive
property. In general, the δω is higher when the genuine
user PDF has smaller σω and larger μω for both features.
Either decreasing the μω or increasing the σω deteriorates the
performance.

To generalize such property, we define a Mahalanobis
distance dω,i for feature i as

dω,i = abs

(
μω,i
σω,i

)

. (10)

Given theMahalanobis distances dω,1, dω,2 of two features, we
define dω for this feature pair as

dω =
√
d2ω,1 + d2ω,2. (11)

In Figure 6 we give some simulation results for the
relation between dω and δω. The parameters μ and σ for the
genuine user PDF pω are modeled as four σ combinations at
various μ locations. For every μ-σ setting, we plot its dω and
δω. We observe that the detection rate δω tends to increase
when the feature pair Mahalanobis distance dω increases,
although not always monotonically.

We further compare the detection rate of APQ to that of
the one-dimensional fixed quantizer (FQ) [17]. In order to
compare with the 2-bit APQ at the same FAR, we choose a
1-bit FQ (b = 1) for every feature dimension. In Figure 7 we
show the ratio of their detection rates (δAPQ/δFQ) at various
μ-σ values. The white pixels represent high values whilst the
black pixels represent low values. It is observed that APQ
consistently outperforms FQ, especially when the mean of
the genuine user PDF is located far away from the origin and
close to the FQ boundary, namely, the v1-axis and v2-axis.
In fact, the two 1-bit FQ works as a special case of the 2-bit
APQ, with ϕ∗ω = 0.

3. Biometric Binary String Extraction

The APQ can be directly applied to two-dimensional fea-
tures, such as Iris [22], while for arbitrary features, we
have the freedom to pair the features. In this section, we
first formulate the pairing problem, which in practice is
difficult to solve. Therefore, we simplify this problem and
then propose a long-short pairing strategy (LS) with low
computational complexity.

3.1. Problem Formulation. The aim for extracting biometric
binary string is for a genuine user ω who has D features, we
need to determine a strategy to pair theseD features intoD/2
pairs, in such way that the entire L-bit binary string (L =
b × D/2) obtains optimal classification performance, when
every feature pair is quantized by a b-bit APQ. Assuming that
the D/2 feature pairs are statistically independent, we know
from [19] that when applying a Hamming distance classifier,
zero Hamming distance threshold gives a lower bound for
both the detection rate and the FAR. Therefore, we decide to
optimize this lower bound classification performance.

Let cω,k, (k = 1, . . . ,D/2) be the kth pair of feature
indices, and {cω,k} a valid pairing configuration containing
D/2 feature index pairs such that every feature index only
appears once. For instance, cω,k = (1, 1) is not valid because
it contains the same feature and therefore cannot be included
in {cω,k}. Also, {cω,k} = {(1, 2), (1, 3)} is not a valid pairing
configuration because the index value “1” appears twice. The
overall FAR (αω) and the overall detection rate (δω), at zero
Hamming distance threshold are

αω
({
cω,k
}) =

D/2∏

k=1
αω,k

(
cω,k
)
, (12)

δω
({
cω,k
}) =

D/2∏

k=1
δω,k

(
cω,k
)
, (13)
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Figure 5: The detection rate of the b-bit APQ (b = 1, 2, 3, 4), when pω(v) is modeled as (a) σω,1 = σω,2 = 0.2; (b) σω,1 = σω,2 = 0.8;
(c) σω,1 = 0.8, σω,2 = 0.2, at various {μω,1, μω,2} locations: μω,1,μω,2 ∈ [−22]. The detection rate ranges from 0 (black) to 1 (white).

where αω,k and δω,k are the FAR and the detection rate for the
kth feature pair, computed from (6) and (8). Furthermore,
according to (6), αω becomes

αω = 2−L, (14)

which is independent of {cω,k}. Therefore, we only need to
search for a user-specific pairing configuration {c∗ω,k}, that
maximizes the overall detection rate in (13). Solving the

optimization problem is formulated as

{
c∗ω,k
}
= arg max

{cω,k}
D/2∏

k=1
δω
(
cω,k
)
. (15)

The detection rate δω given a feature pair cω,k is computed
from (8). Considering that the performance at zero Ham-
ming distance threshold indeed pinpoints theminimum FAR
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Figure 6: The relations between dω and δω when the genuine user PDF pω is modeled as with μω,1,μω,2 ∈ [−22] and four σω,1, σω,2 settings.
The result is shown as (a) 1-bit APQ; (b) 2-bit APQ.
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Figure 7: The detection rate ratio δAPQ/δFQ of the 2-bit APQ to the 1-bit FQ (b = 1), when pω(v) is modeled as (a) σω,1 = σω,2 = 0.2;
(b) σω,1 = 0.8, σω,2 = 0.2, with various μω,1, μω,2 locations: μω,1,μω,2 ∈ [−1.6 1.6]. The detection rate ratio ranges from 1 (black) to 2 (white).

and detection rate value on the receiver operating character-
istic curve (ROC), optimizing such point in (15) essentially
provides a maximum lower bound for the ROC curve.

3.2. Long-Short Pairing. There are two problems in solving
(15): first, it is often not possible to compute δcω,k in (8),

due to the difficulties in estimating the genuine user PDF pω.
Additionally, even if the δcω,k can be accurately estimated, a
brute-force search would involve 2−D/2D!/(D/2)! evaluations
of the overall detection rate, which renders a brute-force
search unfeasible for realistic values of D. Therefore, we
propose to simplify the problem definition in (15) as well as
the optimization searching approach.
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Figure 8: (a) Fingerprint image, (b) directional field, and (c)–(f) the absolute values of Gabor responses for different orientations θ.

Simplified Problem Definition. In Section 2.2 we observed a
useful relation between d and δ for the APQ: A feature pair
with a higher d would approximately also obtain a higher
detection rate δω for APQ. Therefore, we simplify (15) into

{
c∗ω,k
}
= arg max

{cω,k}
D/2∏

k=1
dω
(
cω,k
)
, (16)

with dω(cω,k) defined in (11). Furthermore, instead of
brute force searching, we propose a simplified optimization
searching approach: the long-short (LS) pairing strategy.

Long-Short (LS) Pairing. For the genuine user ω, sort the set
{dω,i = abs(μω,i/σω,i) : i = 1, . . . ,D} from largest to smallest
into a sequence of ordered feature indices {Iω,1, Iω,2, . . . , Iω,D}.
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Figure 9: (a) Controlled image, (b) uncontrolled image, (c) landmarks, and (d) the region of interest (ROI).
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ϕ′ω

Figure 10: An example of a 2-bit simplified APQ, with the
background PDF (blue) and the genuine user PDF (red). The
dashed lines are the quantization boundaries.

The index for the kth feature pair is then

cω,k =
(
Iω,k, Iω,D+1−k

)
, k = 1, . . . ,D/2. (17)

The computational complexity of the LS pairing is only
O(D). Additionally, it is applicable to arbitrary feature types
and independent of the number of quantization bits b. Note
that this LS pairing is similar to the pairing strategy proposed
in [21], where Euclidean distances are used. In fact, there
are other alternative pairing strategies, for instance greedy
or long-long pairing [21]. However, in terms of the entire
binary string performance, these methods are not as good
as the approach presented in this paper, especially when
D is large. Therefore, in this paper, we choose the long-
short pairing strategy, providing a compromise between the
classification performance and computational complexity.

4. Experiments

In this section we test the pairwise phase quantization (LS +
APQ) on real data. First we present a simplified APQ, which
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Figure 11: The detection rate ratio between the original 2-bit APQ
and the simplified APQ, when pω(v) is modeled as σω,1 = 0.2, σω,2 =
0.8, with various μω,1, μω,2 locations: μω,1,μω,2 ∈ [−1.6 1.6]. The
detection rate ratio scale is [1 2.2].

is employed in all the experiments. Afterwards, we verify
the relation between d and δ for real data. We also show
some examples of LS pairing results. Then we investigate
the verification performances while varying the input feature
dimensions (D) and the number of quantization bits per
feature pair (b). The results are further compared to the one-
dimensional fixed quantization (1D FQ) [17] as well as the
the FQ in combined with the DROBA bit allocation principle
(FQ + DROBA).

4.1. Experimental Setup. We tested the pairwise phase quan-
tization on two real data sets: the FVC2000(DB2) fingerprint
database [23] and the FRGC(version 1) face database [24].
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Figure 12: The differences of the rotation angle between the original APQ and the simplified APQ (ϕ∗ω − ϕ′ω), computed from 50 feature
pairs, for (a) FVC2000 and (b) FRGC.
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Figure 13: The averaged value of the detection rate and the FAR that correspond to the bins of d, derived from the random pairing and the
2-bit APQ, for (a) FVC2000 and (b) FRGC.

(i) FVC2000: The FVC2000(DB2) fingerprint data set
contains 8 images of 110 users. The features were
extracted in a fingerprint recognition system that was
used in [10]. As illustrated in Figure 8, the raw fea-
tures contain two types of information: the squared
directional field in both x and y directions and the
Gabor response in 4 orientations (0, π/4, π/2, 3π/4).
Determined by a regular grid of 16 by 16 points with
spacing of 8 pixels, measurements are taken at 256
positions, leading to a total of 1536 elements.

(ii) FRGC: The FRGC(version 1) face data set contains
275 users with a different number of images per
user, taken under both controlled and uncontrolled
conditions. The number of samples s per user ranges
from 4 to 36. The image size was 128 × 128. From
that a region of interest (ROI) with 8762 pixels was
taken as illustrated in Figure 9.

A limitation of biometric compression or protection is
that it is not possible to conduct the user-specific image



10 EURASIP Journal on Information Security

2 4 6 8 10
0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d

P
ro
ba
bi
lit
y

FVC2000, d = abs(μ/σ) histogram

(a)

0

d

0.05

0.1

0.15

0.2

0.25

P
ro
ba
bi
lit
y

FVC2000, d histogram

Random pairing
LS pairing

0 1 2 3 4 5 6 7 8

(b)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5
−2

−1.5
−1

−0.5

0

0.5

1

1.5

2

2.5

v 2

v1

FVC2000, pairwise features

Random pairing
LS pairing

(c)

Figure 14: An example of the LS pairing performance on FVC2000, at D = 50. (a) the histogram of d = abs(μ/σ); (b) the histogram of d for
pairwise features and (c) an illustration of the pairwise features as independent Gaussian density, from both LS and random pairing.

alignment, because the image or other alignment informa-
tion cannot be stored. Therefore, in this paper, we applied
basic absolute alignment methods: the fingerprint images
are aligned according to a standard core point position; the
face images are aligned according to a set of four standard
landmarks, that is, eyes, nose and mouth.

We randomly selected different users for training and
testing and repeated our experiments with a number of trials.
The data division is described in Table 2, where s is the
number of samples per user that varies in the experiments.

Our experiments involved three steps: training, enroll-
ment, and verification. (1) In the training step, we first

Table 2: Data division: number of users × number of samples per
user(s), and the number of trials for FVC2000 and FRGC. The s is a
parameter that varies in the experiments.

Training Enrollment Verification Trials

FVC2000 80× 8 30× 6 30× 2 20

FRGC 210× s 65× 2s/3 65× s/3 5

applied a combined PCA/LDA method [25] on a training
set. The obtained transformation was then applied to both
the enrollment and verification sets. We assume that the
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Figure 15: The EER performances of b-bit (b ∈ [1 6]) LS + APQ at various feature dimensionality D, as compared with the b/2-bit 1D FQ
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Figure 16: An example of the FAR/FRR performances (FAR in logarithm) of LS + APQ, with b from 1 to 4, for (a) FVC2000 and (b) FRGC.

measurements have a Gaussian density, thus after the PCA
transformation, the extracted features are assumed to be
statistically independent. The goal of applying PCA/LDA in
the training step is to extract independent features so that
by pairing them we could subsequently obtain independent
feature pairs, which meet our problem requirements. Note
that for FVC2000, since we have only 80 users in the training
set, applying LDA results in very limited number of features

(e.g., D ≤ 79). Therefore, we relax the independency
requirement for the genuine user by applying only the
PCA transformation. (2) In the enrollment step, for every
genuine user ω, the LS pairing was first applied, resulting in
the user-specific pairing configuration {c∗ω,k}. The pairwise
features were further quantized through a b-bit APQ with
the adaptive angle {ϕ∗ω,k}, and assigned with a Gray code
[26]. The concatenation of the codes from D/2 feature pairs
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formed the L-bit target binary string Sω. Both Sω and the
quantization information ({c∗ω,k}, {ϕ∗ω,k}) were stored for
each genuine user. (3) In the verification step, the features
of the query user were quantized and coded according to
the quantization information ({c∗ω,k}, {ϕ∗ω,k}) of the claimed
identity, leading to a query binary string S′. Finally, the
decision was made by comparing the Hamming distance
between the query and the target string.

4.2. Simplified APQ. In practice, computing the optimal
offset angle ϕ∗ω for APQ in (7) is difficult, because it is hard to
find a closed-form solution ϕ∗ω . Besides, it is often impossible
to accurately estimate the underlying genuine user PDF
pω, due to the limited number of available samples per
user. Therefore, instead of ϕ∗ω , we propose an approximate
solution ϕ′ω. For genuine user ω, let the mean of the two-
dimensional feature vector be {μω,1,μω,2}, and its phase be
θω = angle(μω,1,μω,2), the approximate offset angle ϕ′ω is
then computed as

ϕ′ω = θω − ξ

2
, (18)

where ξ = 2π/2b. We give an illustration of computing ϕ′ω
in Figure 10. The approximate solution ϕ′ω in fact maximizes
the product of two Euclidean distances, namely, the distance
of the mean vector {μω,1,μω,2} to both the lower and the
higher genuine interval boundaries.

Note that when the two features have independent
Gaussian density with equal standard deviation, ϕ∗ω = ϕ′ω.
Thus, in that case, the simplified APQ equals the original
APQ. In Figure 11, we illustrates an example of the detection
rate ratio between the simplified and the original APQ,
where both features are modeled as Gaussian with different
standard deviations, for example, σω,1 = 0.2, σω,2 = 0.8.

The white pixels represent high values whilst the black pixels
represent low values. Results show that the simplified APQ is
only slightly worse than the original APQ when the mean of
the two-dimensional feature {μω,1,μω,2} is close to the origin.
However, if we apply APQ after the LS pairing, we would
expect that the overall selected pairwise features are located
farther away from the origin. In such cases, the simplified
APQworks almost the same as the original APQ. In Figure 12
we illustrate the differences of the rotation angle between
the original APQ and the simplified APQ, computed from
(7) and (18), respectively. These differences are computed
from 50 feature pairs for both FVC2000 and FRGC. The
results show that there is no much differences between the
rotation angle. Additionally, the simplified APQ is much
simpler, avoiding the problem of estimating the underlying
genuine user PDF pω. For these reasons, we employed this
simplified APQ in all the following experiments (Section 4.3
to Section 4.5).

4.3. APQ d-δ Property. In this section we test the relation
between the APQ detection rate δω and the pairwise feature’s
distance dω on both data sets. The goal is to see whether the
real data exhibit the same dω − δω property as we found with
synthetic data in Section 2.2: the feature pairs with higher dω
obtains higher detection rate δω.

During the enrollment, for every genuine user, we
conducted a random pairing. For every feature pair, we
computed their dω value according to (11). Afterwards, we
applied the b-bit APQ quantizer to every feature pair. In
the verification, for every feature pair, we computed the
Hamming distance between the b-bits from the genuine
user and the b-bits from the imposters; that is, we count
as a detection if the b-bit genuine query string obtains
zero Hamming distance as compared to the target string.
Similarly, we count as a false acceptance if the b-bit imposter
query string obtains zero Hamming distance as compared
to the target string. We then repeated this process over all
feature pairs as well as all genuine users, in order to ensure
that the results we obtain are neither user or feature biased.
Finally, in Figure 13, we plot the relations between the dω and
the δω. The points we plot are averaged according to the bins
of dω, when b = 2. Results show that for the real data, the
larger dω is, consistently the higher detection rate we obtain.
Additionally, the FAR performance is indeed independent of
pairing and equals the theoretical value 2−b.

4.4. LS Pairing Performance. In this section we test the LS
pairing performances. We give an example of FVC2000 at
D = 50. Figure 14(a) shows the histogram of d for all single
features over all the genuine users. Around 70% of them
are close to zero, suggesting low quality features. After LS
pairing, the histogram of the pairwise d values are shown
in Figure 14(b), as compared with the random pairing. In
Figure 14(c), we illustrate the 25 pairwise features in terms
of independent Gaussian densities, for one specific genuine
user. Figures 14(b) and 14(c) shows that after LS pairing,
a large proportion of feature pairs have relatively moderate
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Figure 18: An example of the feature density based on LS pairing and APQ. (a) The two-dimensional feature density; (b) the density of v1;
(c) the density of v2; (d) the pairwise phase density of {v1 v2}, with the adaptive quantization boundaries (dashed line).

“size” densities and moderate d values. Thus it avoids small
d values and effectively maximizes (16).

4.5. Verification Performance. We test the performances of
LS + APQ at various numbers of input features D as well
as various numbers of quantization bits b ∈ {1, . . . , 6}.
The performances are further compared with the one-
dimensional fixed quantization (1D FQ) [17]. The EER
results for FVC2000 and FRGC are shown in Table 3 and
Figure 15.

Both data sets show that by increasing the number of
features D at a fixed b-bit quantization per feature pair, the
performances of LS + APQ improves and becomes stable.
Additionally, given D features, the overall performances of
LS + APQ are relatively good only when b ≤ 3. However,
when b ≥ 4, the performances become poor. For FVC2000,
an average of 1-bit per feature pair gives the lowest EER,
while for FRGC, the lowest EER allows 2-bit per feature pair.
In Figure 16, we give their FAR/FRR performances at the best
D, with b from 1 to 4, and the FAR/FRR performances at the
best b are given in Table 4.
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Table 3: The EER performances of LS + APQ and 1D FQ, at various feature dimensionality D and various numbers of quantization bits b,
for (a) FVC2000 and (b) FRGC.

(a)

FVC2000 DPCA = D, EER = (%)

D = 50 100 150 200 250 300

LS + APQ

b = 1 4.4 2.8 2.0 1.9 1.8 1.9

b = 2 4.6 3.0 2.0 2.1 1.7 1.6

b = 3 6.4 3.7 2.8 2.6 2.5 2.7

b = 4 8.2 5.9 4.6 3.4 3.2 3.3

b = 5 10.0 6.6 5.9 4.4 4.0 3.7

b = 6 11.4 7.1 6.6 5.4 4.7 4.7

1D FQ

b = 1 6.7 4.0 2.9 2.6 2.7 2.3

b = 2 7.5 5.3 4.2 3.6 3.6 3.6

b = 3 9.2 6.4 5.5 5.0 5.2 4.9

(b)

FRGC DPCA = 500, DLDA = D, EER = (%)

D = 50 80 100 120 150 180 200

LS + APQ

b = 1 4.0 3.4 3.0 2.6 2.9 2.7 2.7

b = 2 3.5 3.0 2.8 2.3 2.8 2.7 2.9

b = 3 4.7 4.1 3.7 3.4 3.3 3.6 3.9

b = 4 6.7 5.9 5.0 4.8 4.7 5.0 5.2

b = 5 8.1 7.0 6.3 6.1 6.5 6.6 6.4

b = 6 10.1 8.6 7.5 7.2 7.2 7.4 7.6

1D FQ

b = 1 5.7 4.7 4.2 4.0 4.1 4.1 4.2

b = 2 5.1 5.4 5.1 5.0 5.2 5.9 6.1

b = 3 6.5 6.5 6.4 6.2 6.5 6.9 7.3

Table 4: The FAR/FRR performances for FVC2000 and FRGC at
the best D-L setting.

FRR (%) FAR = 10−4 10−3 10−2

FVC2000, D = 300, L = 300 17.2 9.6 2.6

FRGC, D = 120, L = 120 14.7 8.2 3.7

We further compare the LS + APQ with the 1D FQ. In
order to compare at the same string length, we compare
the b/2-bit 1D FQ with the b-bit LS + APQ. The EER
performances in Figure 15 show that in general when b ≤ 3,
LS + APQ outperforms 1D FQ. However, when b ≥ 4, LS +
APQ is no longer competitive to 1D FQ. In Figure 17, we give
an example of comparing the FAR/FRR performances of LS +
APQ and 1D FQ, on FRGC. Since both APQ and FQ provide
equal-probability intervals, they yield almost the same FAR
performance. On the other hand, LS + APQ obtains lower
FRR as compared with 1D FQ.

In [19], it was shown that FQ in combination with the
DROBA adaptive bit allocation principle (FQ + DROBA)
provides considerably good performances. Therefore, we
compare the LS + APQ with the FQ + DROBA. In order
to compare both methods at the same D-L setting, for LS

Table 5: The EER performances of LS + APQ and FQ + DROBA, at
at several D-L settings, for (a) FVC2000 and (b) FRGC.

(a)

FVC2000 D = 250, EER = (%)

L = 50 L = 100 L = 150

LS + APQ 2.3 1.7 1.9

FQ + DROBA 2.4 2.1 2.2

(b)

FRGC D = 120, EER = (%)

L = 60 L = 90 L = 120

LS + APQ 2.3 2.4 2.3

FQ + DROBA 2.4 2.6 2.8

+ APQ, we extract only 2K features from the D features,
thus K pairs from the LS pairing. Afterwards, we apply the
2-bit APQ for every feature pair (see Figure 3). In this case,
K = L/2. Table 5 shows the EER performances of LS + APQ
and FQ + DROBA at several different D-L settings. Results
show that LS + APQ obtains slightly better performances
than FQ + DROBA.



EURASIP Journal on Information Security 15

5. Discussion

Essentially, the pairwise phase quantization involves two
user-specific adaptation steps: the long-short (LS) pairing,
as well as the adaptive phase quantization (APQ). From the
pairing’s perspective, although we only quantize the phase,
the magnitude information (i.e. the feature mean) is not
discarded. Instead, it is employed in the LS pairing strategy
to facilitate extracting distinctive phase bits. Additionally,
although with low computational complexity, the LS pairing
strategy is effective for arbitrary feature densities. From
the quantizer’s perspective, quantizing in phase domain has
the advantage that a circularly symmetric two-dimensional
feature density results in a simple uniform phase density.
Additionally, we apply user-specific phase adaptation. As
a result, the extracted phase bits are not only distinctive
but also robust to over-fitting. However, the experimental
results imply that such advantages only exist when b ≤ 3.
To summarize, as illustrated in Figure 18, the LS pairing is
a user-specific resampling procedure that provides simple
unform but distinctive phase densities. The APQ further
enhances the feature distinctiveness by adjusting the user-
specific phase quantization intervals.

6. Conclusion

Extracting binary biometric strings is a fundamental step
in biometric compression and template protection. Unlike
many previous work which quantize features individually,
in this paper, we propose a pairwise adaptive phase quan-
tization (APQ), together with a long-short (LS) pairing
strategy, which aims to maximize the overall detection rate.
Experimental results on the FVC2000 and the FRGC database
show reasonably good verification performances.
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