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1. Introduction

The availability of signal processing modules that work
directly on encrypted data would be of great help to
satisfy the security requirements stemming from applications
wherein valuable or sensible signals have to be processed
by a nontrusted party [1, 2]. In the image processing
field, there are two recent examples regarding buyer-seller
watermarking protocols [3] which prevent the seller from
obtaining a plaintext of the watermarked copy, so that the
image containing the buyer’s watermark cannot be illegally
distributed to third parties by the seller, and the access to
image databases by means of encrypted queries [4], in order
to avoid the disclosure of the content of the query image.

Signal processing in the encrypted domain (s.p.e.d.) is a
new field of research aiming at developing a set of specific
tools for processing encrypted data to be used as building
blocks in a large class of applications. In image processing,
one of such tools is the discrete cosine transform (DCT). The
availability of an efficient s.p.e.d. DCT would allow a large
number of processing tasks to be carried out on encrypted
images, like the extraction of encrypted features from an

encrypted image, or watermark embedding in encrypted
images. As a simple example, let us consider a scenario
where a party P1 needs to process an image by means of
a signal processing system known by another party P2. Let
us assume that P1 is concerned about the privacy of his
image, so that not to reveal the image content to the service
provider P2, he will send the image in encrypted form. In
the processing chain, it is possible that there is the need to
apply a DCT to the image, for example, to apply a watermark
in such a domain, or to reduce to zero some coefficients
in order to reduce the image bit rate. After this step, an
Inverse DCT (IDCT) will be needed; in such a scenario, both
DCT and IDCT will need to be performed in the encrypted
domain.

In [5, 6], we considered the similar problem of imple-
menting a discrete Fourier transform on encrypted data.
Here, we will extend the previous results by considering an
s.p.e.d. implementation of the DCT. In the following we will
concentrate on images, however we point out that a similar
approach can be applied to 1-dimensional signals as well, like
digitized audio. We will assume that an image is encrypted
pixelwise by means of a cryptosystem homomorphic with
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respect to the addition that is, there exists an operator φ(·, ·)
such that

D
[
φ(E[a], E[b])

] = a + b, (1)

where E[·] and D[·] denote the encryption and decryption
operators. With such a cryptosystem it is indeed possible
to add two encrypted values without first decrypting them
and it is possible to multiply an encrypted value by a
public integer value by repeatedly applying the operator
φ(·, ·). Moreover, we will assume that the cryptosystem is
probabilistic, that is, given two encrypted values it is not
possible to decide whether they conceal the same value or
not. This is fundamental, since the alphabet to which the
input pixels belong usually has a limited size. As it will be
detailed in the following section, a widely known example
of a cryptosystem fulfilling both the above requirements is
the Paillier cryptosystem [7], for which the operator φ(·, ·)
is a modular multiplication. Apart from [5, 6], previous
examples of the use of homomorphic cryptosystems for
performing encrypted computations can be found in buyer-
seller protocols [3, 8], zero-knowledge watermark detection
[9], and private scalar product computation [10].

Adopting such a cryptosystem, the DCT can be com-
puted on the encrypted pixel values by relying on the homo-
morphic properties and the fact that the DCT coefficients
are public. However, this requires several issues to be solved.
The first one is that we must represent the pixel values, the
DCT coefficients, and the transformed values in the domain
of the cryptosystem, that is, as integers on a finite field/ring.
Another problem is that encrypted values cannot be scaled
or truncated by relying on homomorphic computations
only. In general, for scaling the intermediate values of the
computation we should allow two or more parties to interact
[11, 12]. However, since we would keep the s.p.e.d. DCT
as simple as possible, it is preferable to avoid the use of
interactive protocols. A final problem is that encrypting each
pixel separately increases the size of the encrypted image and
affects the complexity.

1.1. Our Contributions. Solutions to the above issues will be
provided in this paper, whose rest is organized as follows.
In Section 2 a brief review of homomorphic cryptosystems,
with particular attention to the Paillier scheme, is given.
In order to properly represent the pixel values, the DCT
coefficients and the transformed values in the encrypted
domain, a convenient s.p.e.d. signal model is proposed in
Section 3. Such a model allows us to define in Section 4
both an s.p.e.d. DCT and an s.p.e.d. fast DCT and to
extend them to the 2D case. The proposed representation
permits also to avoid the use of interactive protocols, by
letting the magnitude of the intermediate results propagates
to the end of the processing chain. A solution to the
problem of encrypting each pixel separately is proposed in
Section 5. A block-based s.p.e.d. DCT, relying on a suitable
composite representation of the encrypted pixels, permits the
parallel application of the s.p.e.d. DCT algorithm to different
image blocks, thus lowering both the bandwidth usage and
the computational burden. In Section 6 we consider the

application of the s.p.e.d. 2D-DCT and 2D-BDCT to 8-
bit greyscale images, computing the upper bound on the
number of bits required in order to correctly represent the
DCT outputs, and, for the s.p.e.d. 2D-BDCT, the number of
pixels that can be safely packed into a single word. Section 7
describes a case study where the feasibility of the s.p.e.d. DCT
in a practical scenario is analyzed. Finally, conclusions are
drawn in Section 8.

2. Probabilistic Homomorphic Encryption

As already defined in the previous section, a homomorphic
cryptosystem allows to carry out some basic algebraic
operations on encrypted data by translating them into corre-
sponding operations in the plaintext domain. The concept of
privacy homomorphism was first introduced by Rivest et al.
[13] that defined privacy homomorphisms as encryption
functions which permit encrypted data to be operated on
without preliminary decryption of the operands.

According to the correspondence between the operation
in the ciphertext domain and the operation in the plaintext
domain, a cryptosystem can be additively homomorphic
or multiplicatively homomorphic. In this paper we are
interested in the former. Additively homomorphic cryp-
tosystems allow, in fact, to perform additions, subtractions
and multiplications with a known (nonencrypted) factor in
the encrypted domain. More extensive processing would be
allowed by the availability of an algebraically homomorphic
encryption scheme, that is, a scheme that is additive
and multiplicative homomorphic. Very recently, a fully
homomorphic scheme has been proposed in [14], but its
complexity seems too high for practical applications.

Another crucial concept for the s.p.e.d. framework is
probabilistic encryption. As a matter of fact, many of the
most popular cryptosystems are deterministic, that is, given
an encryption key and a plaintext, the ciphertext is univocally
determined. The main drawback of these schemes for s.p.e.d.
applications is that it is easy for an attacker to detect if
the same plaintext message is encrypted twice. Indeed, since
usually signal samples assume only a limited range of values,
an attacker will be easily able to decrypt the ciphertexts, or
at least to derive meaningful information about them. In
[15] the concept of probabilistic or semantically secure cryp-
tosystem has been proposed. In such schemes, the encryption
function E[·] is a function of both the secret message m
and a random parameter r that is changed at any new
encryption. Specifically, two subsequent encryptions of the
same message m result in two different encrypted messages
c1 = E[m, r1] and c2 = E[m, r2]. Of course, the scheme
has to be designed in such a way that D[c1] = D[c2] =
m, that is, the decryption phase is deterministic and does
not depend on the random parameter r. Luckily, encryption
schemes that satisfy both the homomorphic and probabilistic
properties detailed above do exist. One of the most known
examples is the scheme presented by Paillier in [7], and
later modified by Damgård and Jurik in [16]. It should be
pointed out that homomorphic cryptosystems are usually
more computationally demanding than symmetric ciphers,
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like AES, and require longer keys to achieve a comparable
level of security. Furthermore, probabilistic cryptosystems
cause an intrinsic data expansion due to the adoption of
randomizing parameters in the encryption function.

2.1. Paillier Cryptosystem. The Paillier cryptosystem [7] is
based on the problem to decide whether a number is an
Nth residue modulo N2. This problem is believed to be
computationally hard in the cryptographic community, and
is linked to the hardness to factorize N , if N is the product of
two large primes.

Let us now explain what an N-th residue is and how it
can be used to encrypt data. Given the product of two large
primes N = pq, the set ZN of the integer numbers modulo N ,
and the set Z∗N representing the integer numbers belonging to
ZN that are relatively prime with N , z ∈ Z∗N2 is said to be a
N-th residue modulo N2 if there exists a number y ∈ Z∗N2

such that

z = yN mod N2. (2)

For a complete analysis of the Paillier cryptosystem we
refer to the original paper [7]. Here, we simply describe the
set-up, encryption, and decryption procedures.

2.1.1. Set-Up. Select p, q big primes. The private key is the
least common multiple of (p − 1, q − 1), denoted as λ =
lcm(p − 1, q − 1). Let N = pq and g in Z∗N2 an element of
order αN for some α /= 0. The order of an integer a modulo
N is the smallest positive integer k such that ak = 1 mod N .
In such a case, g = N+1 is usually a convenient choice. (N , g)
is the public key.

2.1.2. Encryption. Let m < N be the plaintext, and r < N a
random value. The encryption c of m is

c = E[m, r] = gmrN mod N2. (3)

2.1.3. Decryption. Let c < N2 be the ciphertext. The plaintext
m hidden in c is

m =D[c] =
L
(
cλ mod N2

)

L
(
gλ mod N2

) mod N. (4)

where L(x) = (x − 1)/N . From the above equations, we
can easily verify that the Paillier cryptosystem is additively
homomorphic, since

E[m1, r1] · E[m2, r2] = gm1+m2 (r1r2)N = E[m1 + m2, r1r2],

E[m, r]a =
(
gm(r)N

)a =
(
gam(r)aN

)
= E[am, ra].

(5)

3. Signal Model for the Encrypted Domain

We will describe the proposed representation assuming the
signals are 1D sequences. The extension to the 2D case is
straightforward by using separable processing along rows

and columns. Let us consider a signal x(n) ∈ R, n =
0, . . . ,M − 1. In the following, we will assume that the signal
has been properly scaled so that |x(n)| ≤ 1. In order to
process x(n) in the encrypted domain, its values have to
be represented as integer numbers belonging to ZN . This is
accomplished by first defining an integer version of x(n) as

s(n) = �Q1x(n)�, (6)

where �·� is the rounding function, and Q1 is a suitable scal-
ing factor and then encrypting the modulo N representation
of s(n), that is, E[s(n)] � E[s(n) mod N] (for the sake of
brevity, we omit the random parameter r).

As long as s(n) does not exceed the size of N—that is,
the difference between the maximum and minimum values
of s(n) is less than N—its value can be represented in ZN

without loss of information. If we assume |s(n)| < N/2, then
the original value x(n) can be approximated from E[s(n)] as

x̂(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D[E[s(n)]]
Q1

, if D[E[s(n)]] <
N

2
,

D[E[s(n)]]−N

Q1
, if D[E[s(n)]] >

N

2
.

(7)

The above representation can be used to define an integer
approximation of the DCT. Let us consider the scaled DCT of
type II (DCT-II) of x(n), defined as

X(k) =
M−1∑

n=0

x(n) cos
π(2n + 1)k

2M
, k = 0, 1, . . . ,M − 1. (8)

The corresponding integer DCT of type II is defined as [6]

S(k) =
M−1∑

n=0

CII
M(n, k)s(n), k = 0, . . . ,M − 1, (9)

where CII
M(n, k) = �Q2 cos(π(2n + 1)k/2M)� and Q2 is a

suitable scaling factor for the cosine values.
A similar approach leads to the definition of the integer

inverse DCT (IDCT). The scaled IDCT, also referred to as
scaled DCT of type III, is defined as

x(n) =
M−1∑

k=0

c(k)X(k) cos
π(2n + 1)k

2M
, n = 0, 1, . . . ,M − 1.

(10)

where

c(k) =

⎧
⎪⎨

⎪⎩

1
2

, if k = 0,

1, if k /= 0
(11)

The integer IDCT or integer DCT of type III can be defined
as in (9) by using in place of CII

M(n, k) the following integer
coefficients:

CIII
M (n, k) =

⎧
⎪⎪⎨

⎪⎪⎩

⌈
Q2

2

⌋
, if n = 0

⌈
Q2 cos

π(2k + 1)n
2M

⌋
, if n /= 0.

(12)
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4. s.p.e.d. DCT

Since all computations are between integers and there
is no scaling, the expression in (9) can be evaluated in
the encrypted domain by relying on the homomorphic
properties. For instance, if the inputs are encrypted with the
Paillier cryptosystem, the s.p.e.d DCT is

E[S(k)] =
M−1∏

n=0

E[s(n)]C
II
M(n,k), k = 0, . . . ,M − 1, (13)

where all computations are done modulo N2 [7].
The computation of the DCT using (9) requires two

problems to be tackled with. The first one is that there will
be a scaling factor between S(k) and X(k). The second one
is that, if the cryptosystem encrypts integers modulo N , one
must ensure that there is a one-to-one mapping between S(k)
and S(k) mod N . A solution is to find an upper bound on S(k)
such that |S(k)| ≤ QS and verify that N > 2QS. We will show
that S(k) can be expressed in general as

S(k) = KX(k) + εS(k), (14)

where K is a suitable scaling factor and εS(k) models the
quantization error. Based on the above equation, the desired
DCT output can be estimated as X̃(k) = S(k)/K , and the
upper bound is

QS =MK + εS,U , (15)

where εS,U is an upper bound on εS(k). The value of both
K and εS,U will depend on the particular implementation of
the DCT. In the following, we will add to QS, K , and εS,U

the additional subscripts D and F to denote direct and fast
DCT, respectively whereas the superscript 2D will denote the
2-dimensional versions.

4.1. Direct Computation. Let us express s(n) = Q1x(n)+εs(n)
and CII

M(n, k) = Q2 cos(π(2n+1)k/2M)+εC(n, k). If the DCT
is directly computed by applying (9), then we have

S(k) = Q1Q2X(k) + εS(k), (16)

where εS(k) = ∑M−1
n=0 [Q1x(n)εC(n, k) + Q2εs(n) cos(π(2n +

1)k/2M) + εs(n)εC(n, k)]. The scaling factor is KD = Q1Q2.
As to the quantization error, we obtain the following upper
bound:

|εS(k)| ≤M
(
Q1

2
+
Q2

2
+

1
4

)
= εS,U ,D (17)

from which QS,D =MQ1Q2 + εS,U ,D.

4.2. Fast DCT. In order to obtain an s.p.e.d. version of the
fast DCT, we will refer to the recursive matrix representation
in [17]. Given [TII

M]nk = cos(π(2n + 1)k/2M), we have

TII
M = PM

⎡

⎣
IM/2 0

0 LM/2

⎤

⎦

⎡

⎣
TII
M/2 0

0 TII
M/2

⎤

⎦

×
⎡

⎣
IM/2 0

0 DM/2

⎤

⎦

⎡

⎣
IM/2 JM/2

IM/2 −JM/2

⎤

⎦

= AM

⎡

⎣
TII
M/2 0

0 TII
M/2

⎤

⎦

⎡

⎣
IM/2 0

0 DM/2

⎤

⎦BM ,

(18)

where DM/2 = diag{cos(π/2M), cos(3π/2M), . . . , cos((M −
1)π/2M)},

LM/2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 . . . 0 0

−1 2 0 0 0

1 −2 2 0 0

...
. . .

...

1 −2 2 2 0

−1 2 −2 . . . −2 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (19)

JM is obtained by the M×M identity matrix by reversing the
column order, and PM is a permutation matrix given as

PM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0 0 0 . . . 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

...
. . .

...
...

. . .
...

0 0 1 0 0 0

0 0 . . . 0 0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (20)

Since the only noninteger matrix in (18) is DM/2, the
corresponding s.p.e.d. structure can be recursively defined as

CII
M = AM

⎡

⎣
CII
M/2 0

0 CII
M/2

⎤

⎦

⎡

⎣
Q2IM/2 0

0 D̃M/2

⎤

⎦BM , (21)

where we define D̃M/2 = �Q2DM/2�.
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E[s]
M

Butterfly Scale
E[s1]

M/2

M/2

E[s2]

M
2 −DCT

M
2 −DCT

E[s3] E[s4]

Add

Permute
M

E[S]

BM Q2IM/2,D̃M/2 AM

Figure 1: Block diagram of s.p.e.d. fast DCT.

The s.p.e.d. fast DCT can be implemented according
to the block diagram in Figure 1. If we define [s]k =
s(k), [S]k = S(k), and we denote as [si]k = si(k), i = 1, . . . , 4,
the results of the intermediate computations in one recursion
of the s.p.e.d. fast DCT structure, the different blocks can
be defined as follows. The butterfly block performs the
following s.p.e.d. computations

E[s1(k)]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E[s(k)] · E[s(M − 1− k)], 0 ≤ k <
M

2
,

E
[
s
(
k − M

2

)]
· E

[
s
(

3M
2
− 1− k

)]−1

,
M

2
≤k <M,

(22)

whereas the scale block can be defined as

E[s2(k)] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E[s1(k)]Q2 , 0 ≤ k <
M

2
,

E[s1(k)]D̃M/2(k−M/2),
M

2
≤ k < M,

(23)

where D̃M/2(k) is the kth element on the diagonal of D̃M/2.
The output of the scale block is split in two halves, which are
recursively processed by two half size fast DCT. The lower
half is further processed by the add block, which can be
defined as

E
[
s4

(
M

2

)]
= E

[
s3

(
M

2

)]
, (24)

E[s4(k)] = E[s3(k)]2 · E[s3(k − 1)]−1,
M

2
+ 1 ≤ k < M.

(25)

Lastly, the two halves are combined and permuted according
to PM in order to yield the DCT outputs in the right order.

As to the upper bound analysis, let us consider the mth
stage of the recursion and express the quantized matrices

as D̃2m = Q2D2m + E(m)
D and CII

2m = K (m)TII
2m + E(m)

T ,

where E(m)
D and E(m)

T denote the quantization errors on the
corresponding matrix entries. We can rewrite (21) as

CII
2m+1 =A2m+1

⎡

⎣
K (m)TII

2m + E(m)
T 0

0 K (m)TII
2m + E(m)

T

⎤

⎦

×
⎡

⎣
Q2I2m 0

0 Q2D2m + E(m)
D

⎤

⎦B2m+1

= K (m)Q2TII
2m+1

+ A2m+1

⎧
⎨

⎩

⎡

⎣
K (m)TII

2m 0

0 K (m)TII
2m

⎤

⎦

⎡

⎣
0 0

0 E(m)
D

⎤

⎦

+

⎡

⎣
E(m)
T 0

0 E(m)
T

⎤

⎦

⎡

⎣
0 0

0 E(m)
D

⎤

⎦

+

⎡

⎣
E(m)
T 0

0 E(m)
T

⎤

⎦

⎡

⎣
Q2I2m 0

0 Q2D2m

⎤

⎦

⎫
⎬

⎭B2m+1

= K (m+1)TII
2m+1 + E(m+1)

T .

(26)

From the previous equation, we have both a recursive
relation on the scaling factor and a recursive relation on the
quantization error. Let us consider the vector of quantized
inputs s = [s(0), s(1), . . . , s(M − 1)]T . With a notation
similar to the scalar case, we can express s = Q1x + eS, where
x is vector containing the input values and eS is a vector of
quantization errors. Hence, the s.p.e.d. fast DCT is given by

CII
2ν s = K (ν)Q1TII

2ν x + K (ν)TII
2ν es + E(ν)

T Q1x + E(ν)
T es. (27)

As to the scaling factor, we have KF = K (ν)Q1. Since K (0) = 1,
it is easy to derive the final scaling factor as KF = Qν

2Q1. As to
the quantization error, we have |εS(k)| ≤ MK (ν)/2 + (Q1 +
1/2)‖E(ν)

T ‖∞, where ‖ · ‖∞ denotes the maximum absolute
row sum norm of a matrix. Based on (26), we can give an

equivalent recursive relation on ‖E(m)
T ‖∞ as

∥
∥∥E(m+1)

T

∥
∥∥∞ ≤

(
2m+1 − 1

)[
2mK (m) +

∥
∥∥E(m)

T

∥
∥∥∞(2Q2 + 1)

]
,

(28)

where we used ‖A2m+1‖∞ = 2m+1 − 1, ‖B2m+1‖∞ =
2, ‖K (m)TII

2m‖∞ = 2mK (m), and ‖E(m)
D ‖∞ = 1/2. At the start of
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the recursion we have ‖E(0)
T ‖∞ = 0, since TII

1 = 1 and there

is no quantization error. Hence, an upper bound on ‖E(ν)
T ‖∞

can be derived as

∥
∥
∥E(ν)

T

∥
∥
∥∞ ≤

ν−1∑

k=0

(2Q2 + 1)k2ν−kQν−k
2

ν∏

r=ν−k

(
2r+1 − 1

) = εE,U

(29)

from which we derive the upper bound on the quantization
error as

|εS(k)| ≤ MQν
2

2
+
(
Q1 +

1
2

)
εE,U = εS,U ,F . (30)

Finally, the upper bound on S(k) is QS,F =MQ1Q
ν
2 + εS,U ,F .

The above analysis can be extended also to the fast IDCT.
It suffices to consider [TIII

M ]nk = cos(π(2k + 1)n/2M) and,

thanks to TIII
M = (TII

M)
T

,

TIII
M =

⎡

⎣
IM/2 IM/2

JM/2 −JM/2

⎤

⎦

⎡

⎣
IM/2 0

0 DM/2

⎤

⎦

⎡

⎣
TIII
M/2 0

0 TIII
M/2

⎤

⎦

×
⎡

⎣
IM/2 0

0 LT
M/2

⎤

⎦PT
M

= BT
M

⎡

⎣
IM/2 0

0 DM/2

⎤

⎦

⎡

⎣
TIII
M/2 0

0 TIII
M/2

⎤

⎦AT
M.

(31)

It is easy to show that the model in (27) can be applied also
to the integer IDCT, so that the upper bound in (30) holds
for the IDCT as well.

4.3. Extension to 2D-DCT. In the case of separable processing
of the rows and the columns of an image, the expressions
derived in the preceding section can be extended to the 2D
case in an easy way. Let us assume that the 2D-DCT processes
first the rows and then the columns. After the processing
of the rows, the input to the next DCT will be expressed
as in (14). Hence, the scaling factor can be obtained by
substituting Q1 with K ; whereas the upper bound on the
quantization error can be derived by noting that |S(k)| ≤
MK + εS,U and |εS(k)| ≤ εS,U .

In the case of the direct DCT implementation, this leads
to

K2D
D = Q2KD = Q2

2Q1, (32)

ε2D
S,U ,D =M

(
MKD

2
+ Q2εS,U ,D +

εS,U ,D

2

)
, (33)

Q2D
S,D =M2K2D

D + ε2D
S,U ,D, (34)

whereas in the case of the fast DCT we obtain

K2D
F = Qν

2KF = Q2ν
2 Q1, (35)

ε2D
S,U ,F =MQν

2εS,U ,F +
(
MKF + εS,U ,F

)
εE,U , (36)

Q2D
S,F =M2K2D

F + ε2D
S,U ,F . (37)

In the case of nonseparable processing, the upper bound
on the output of the s.p.e.d. DCT can be derived in the same
way as in the one-dimensional case. For instance, a direct
nonseparable 2D-DCT will lead to the same upper bound
as in (17). Even if this will reduce the upper bound with
respect to the separable case, a nonseparable implementation
will have a greater complexity. In the following, only the
separable case will be considered.

4.4. Security. Concerning the security of the s.p.e.d. DCT,
if we work with a semantically secure cryptosystem, the
security is automatically achieved that is, the output of the
s.p.e.d. DCT does not reveal anything about the DCT inputs.
Under the assumption that deciding N-residuosity classes in
Z∗N2 is hard, that is, given w ∈ Z∗N2 it is not possible to decide
in polynomial time whether w is an N-residue or not, the
Paillier cryptosystem can be proved to be semantically secure
[7]. If the assumption is relaxed to the hardness of computing
N-residuosity classes, the security of the plaintext bits of
a Paillier encryption, and hence of the proposed scheme,
depends on the knowledge of the size of the plaintext. The
interested reader can find a discussion on such topics in [18].

5. s.p.e.d. Block-Based DCT

Several image processing algorithms, instead of applying
the DCT to the whole image, subdivide it into equal sized
(usually square) blocks and compute the DCT of each block.
The size of such blocks is usually quite small: typically 8 × 8
blocks or 16× 16 blocks are used in most of the applications.

From the s.p.e.d. perspective, this suggests two things.
Firstly, even if rescaling is not applied, in the case of a block
based s.p.e.d. DCT the maximum value of the DCT outputs
will not be very high. However, the size of the encrypted
word, that is, N , is fixed by the security requirements. Min-
imum security requirements for the Paillier cryptosystem
impose the use of at least 1024 bits for N . This means that,
irrespective of the size of the plaintext pixels, each encrypted
pixel will be represented as an encrypted word of at least 1024
bits. The result is that the outputs of the block-based s.p.e.d.
DCT will be far from exploiting the full bandwidth of the
modulus N . Secondly, each block undergoes exactly the same
processing. Hence, this could permit a parallel processing of
several blocks by simply packing the pixels having the same
position within the blocks in a single word.

In order to exploit the above ideas, we propose an s.p.e.d.
block DCT (BDCT) based on a composite representation
of the input pixels [19]. For the sake of simplicity, we can
assume the image as a one-dimensional signal, since the
extension to the 2D case is straightforward using separable
processing. Moreover, let us assume that the input pixel
values have been quantized as in Section 3, that is, they satisfy
the relation |s(n)| ≤ Q1.

We define the composite representation of s(n) of order R
and base B as

sC(k) =
R−1∑

i=0

si(k)Bi, k = 0, 1, . . . ,M − 1, (38)
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M × R

M

s0(k) s1(k)

0 1 M − 1 M M + 1 2M · · ·

sC(0) sC(1) · · · sC(M − 1)

R

Figure 2: Graphical representation of an M-polyphase composite representation having order R. The values inside the small boxes indicate
the indexes of the samples of s(n). Identically shaded boxes indicate values belonging to the same composite word.

where si(k), i = 0, 1, . . . ,R − 1, indicate R disjoint subse-
quences of the image pixels s(n).

The kth element of the composite signal sC(k) represents
a word where we can pack R samples of the original signal,
chosen by partitioning the original signal samples s(n) into
M sets of R samples each. In the following, we will consider
the so-called M-polyphase composite representation (M-
PCR), where the partitioning of s(n) is given by si(k) =
s(iM + k). As shown in Figure 2, in this representation each
composite word contains R samples which are spaced M
samples apart in the original sequence, that is, belonging to
one of the Mth order polyphase components of signal s(n).

For the composite representation, the following theorem
is valid.

Theorem 1. Let us assume that

|s(n)| < Q1 ∀n, (39)

B > 2Q1, (40)

BR ≤ N , (41)

whereN is a positive integer, and let sC(k) be defined as in (38).
Then, the following holds:

0 ≤ sC(k) + ωQ < N , (42)

where ωQ = Q1
∑R−1

i=0 Bi = Q1((BR − 1)/(B − 1)). Moreover,
the original pixels can be obtained from the composite represen-
tation as

si(k) =
{[(

sC(k) + ωQ
)÷ Bi

]
mod B

}
−Q1. (43)

Proof. let us express

sC(k) + ωQ =
R−1∑

j=0

[
s j(k) + Q1

]
Bj. (44)

Thanks to (39) and (40), we have 0 ≤ s j(k) + Q1 ≤ 2Q1 ≤
B−1. Hence, sC(k)+ωQ can be considered as a positive base-
B integer whose digits are given by s j(k)+Q1. Moreover, since
sC(k) + ωQ has R digits, it is bounded by

sC(k) + ωQ ≤
R−1∑

j=0

(B − 1)Bj = BR − 1 < N , (45)

where the last inequality comes from (41). As to the second
part of the theorem, for each i we have

sC(k) + ωQ = Bi
R−1∑

j=i

[
s j(k) + Q1

]
Bj−i +

i−1∑

j=0

[
s j(k) + Q1

]
Bj.

(46)

Thanks to the properties of s j(k) + Q1, we have
∑i−1

j=0[s j(k) +
Q1]Bj ≤ Bi − 1. Hence

[
sC(k) + ωQ

]÷ Bi =
R−1∑

j=i

[
s j(k) + Q1

]
Bj−i

= B
R−1∑

j=i+1

[
s j(k) + Q1

]
Bj−i−1 + si(k) + Q1

(47)

from which (43) follows hence completing the proof.

When dealing with encrypted data, the first part of the
previous theorem demonstrates that the composite repre-
sentation can be safely encrypted by using a homomorphic
cryptosystem defined on modulo N arithmetic: as long as the
hypotheses of the theorem hold, the composite data sC(n)
takes no more than N distinct values, so the values of the
composite signal can be represented modulo N without loss
of information. (i.e., it is possible to define a one-to-one
mapping between sC(n) and [s0(n), s1(n), . . . , sR−1(n)].)
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We propose now an s.p.e.d. block DCT (BDCT) based
on the composite representation of the input pixels. Let
us consider R distinct blocks of an image, assumed as
one-dimensional, having size M. Let us define the block
bandwidth as B = 
 R

√
N�. Moreover, let us assume that the

input pixel values s(n) have been quantized.
The blockwise DCT can be defined as

ui(r) =
M−1∑

n=0

CII
M(n, r)s(iM + n) r = 0, 1, . . . ,M − 1. (48)

Since the transform has a repeated structure, it is suitable
for a parallel implementation. If the pixels having the same
position within each block are packed in a single word
according to the M-PCR representation into sC(k), as in (38),
we can define the equivalent parallel blockwise DCT as

uC(r) =
M−1∑

k=0

CII
M(k, r)sC(k), r = 0, 1, . . . ,M − 1. (49)

Proposition 1. If B > 2QS, then ui(r), i = 0, 1, . . . ,R − 1,
can be exactly computed from the modulo N representation of
uC(r).

Proof. let us consider the following equalities:

uC(r) =
M−1∑

k=0

CII
M(k, r)

R−1∑

i=0

s(iM + k)Bi

=
R−1∑

i=0

⎡

⎣
M−1∑

k=0

CII
M(k, r)s(iM + k)

⎤

⎦Bi

=
R−1∑

i=0

ui(r)Bi.

(50)

Then, it suffices to note that |ui(r)| ≤ QS and replace Q1 with
QS in the proof of Theorem 1.

By exploiting the composite representation, we can
process R blocks by using a single s.p.e.d. DCT. This means
that the complexity of the s.p.e.d. BDCT is reduced by a
factor R with respect to that of a pixelwise implementation,
since the size of the encrypted values will be the same
irrespective of the implementation. Moreover, the bandwidth
usage is also reduced by the same factor, since we pack R
pixels into a single ciphertext.

Finally, we would like to point out that the fast DCT
algorithm can be used for the BDCT as well. The fast BDCT
algorithm is simply obtained by computing the fast DCT of
the composite signal sC(n). In order to verify that the above
algorithm is correct, it suffices to substitute C(n, k) in (49)
with the (n, k) element of the matrix CII

M as defined in (21).

6. Numerical Examples

We will consider the application of the s.p.e.d. 2D-DCT
and 2D-BDCT to square M × M 8-bit greyscale images.
The quantization scaling factor can be assumed as Q1 =

Table 1: Upper bounds (in bits) on the output values of s.p.e.d.
2D-DCTs having different size. Q2 = 215 is equivalent to a 16-
bit fixed point implementation. Q2 = 236 and Q2 = 265 are
equivalent to a single precision and a double precision floating point
implementations, respectively. A square M ×M 2D-DCT has been
considered.

Q2 = 215 Q2 = 236 Q2 = 265

M nU ,D nU ,F nU ,D nU ,F nU ,D nU ,F

64 51 201 93 453 151 801

256 55 265 97 601 155 1065

1024 59 329 101 749 159 1329

4096 63 393 105 897 163 1593

128. As to Q2, we will assume that the cosine values are
quantized so as not to exceed the quantization error of
the corresponding plaintext implementation. Three plaintext
implementations are considered: (1) 16-bit fixed point (XP);
(2) single precision floating point (FP1); (3) double precision
floating point (FP2). In the first case, we can assume Q2 =
215. In the floating point case, since the smallest magnitude
of a cosine value is equal to sin(π/2M), we need Q2 >
2 f / sin(π/2M), where f is the number of bits of the fractional
part of the floating point representation. For the sake of
simplicity, we will assume M ≤ 4096, so that we can choose
Q2 = 236 (FP1) and Q2 = 265 (FP2).

Since the values of QS in (34)–(37) can be huge, in the
case of the full frame DCT we will consider an upper bound
on the number of bits required in order to correctly represent
the DCT outputs. If we assume Q2D

S,Z < 2M2K2D
Z , this can be

expressed as

⌈
log2Q

2D
S,Z

⌉
+ 1 < 2ν +

⌈
log2K

2D
Z

⌉
+ 2 = nU ,Z , (51)

where ν = log2M and Z = {D,F}. Note that if log2N >
nU ,Z , it follows that N > 2QS,Z . In Table 1, we give
some upper bounds considering different values of M and
Q2. Highlighted in bold are the cases which cannot be
implemented relying on a 1024-bit modulus, which is a
standard in several cryptographic applications. As can be
seen, except for the case of FP2, a full frame s.p.e.d. DCT can
be always implemented relying on a standard modulus.

As to the s.p.e.d. 2D-BDCT, we consider an estimate of
the number of pixels that can be safely packed into a single
word. A safe implementation requires B = �2QS,Z�. Since we
must have B < R

√
N , this leads

Rmax =
⌊

log2N

log2

⌈
2QS,Z

⌉

⌋

≈
⎢
⎢
⎢
⎣

⌊
log2N

⌋

log2

⌈
2QS,Z

⌉

⎥
⎥
⎥
⎦ = RU ,Z. (52)

In Table 2, we give some values of RU ,Z considering DCT
sizes ranging from 4 × 4 to 64 × 64 and different precisions.
Specifically, RU ,D indicates the value of RU ,Z obtained with
a direct implementation of the DCT, while RU ,F indicates
the corresponding value for a fast implementation of DCT.
The results demonstrate that the composite representation
permits to significantly reduce both the bandwidth require-
ments and the complexity, especially for the fixed point case.
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Table 2: Upper bounds on the number of blocks R that can be
processed in parallel by an s.p.e.d. M ×M 2D-BDCT. Z = {D,F}
indicates a direct or a fast implementation of the DCT. Q2 = 215

is equivalent to a 16-bit fixed point implementation. Q2 = 236

and Q2 = 265 are equivalent to a single precision and a double
precision floating point implementations, respectively. We have
assumed 
log2N� = 1023.

Q2 = 215 Q2 = 236 Q2 = 265

M RU ,D RU ,F RU ,D RU ,F RU ,D RU ,F

4 24 12 12 6 7 3

8 23 8 11 4 7 2

16 22 6 11 3 7 1

32 21 4 11 2 6 1

64 20 4 11 2 6 1

It is worth noting that a direct implementation allows
to increase RU ,Z up to seven times with respect to the
fast BDCT. Since the BDCT usually works with small sized
blocks, the complexity of the direct implementation will not
be much higher than that of the fast implementation. To give
some figures, let us consider the number of multiplications
per sample required by the different implementations. The
complexity of a direct M-point DCT is M2 multiplications: if
we consider a separable implementation, an M×M DCT will
require 2M M-point DCTs to compute M2 output samples.
Since a BDCT can compute RU ,D DCTs in parallel, this results
in a complexity of

CD = 2M
RU ,D

mult/sample. (53)

As to the fast M-point DCT, the complexity is (M/2)log2M
multiplications [20]. By using similar arguments, the com-
plexity of a fast BDCT implementation can be then evaluated
as

CF =
log2M

RU ,F
mult/sample. (54)

In Figure 3, we compare the complexity of direct and fast
BDCT for two different precisions. The complexity of the
fast BDCT is always below that of the direct implementation.
However, it is worth noting that for small BDCT sizes,
for example, up to 16 × 16, the complexity of the direct
implementation is only slightly larger than that of the fast
implementation. Hence, there can be cases in which it is
preferable to employ a direct s.p.e.d. BDCT, since this will
reduce the bandwidth usage at the price of a very small
increase of complexity.

7. Implementation Case Study

The feasibility of the s.p.e.d. DCT in a practical scenario is
verified by considering its use in a buyer-seller watermarking
protocol. Namely, we consider the secure embedding of a
watermark as described in [8, 21]. In this scenario, a seller
receives the bits of the watermark encrypted with the public
key of a buyer—the output of a previous protocol between
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Figure 3: Complexity of direct BDCT versus fast BDCT. 8-bit input
values (Q = 27) have been assumed. We have assumed 
log2N� =
1023. (a) QT = 215; (b) QT = 265.

him and the buyer—and embeds them into a set of features
extracted from the digital content he owns. The output of this
procedure is a set of watermarked and encrypted features that
are sent to the buyer. In the following, such a protocol will be
referred to as secure watermark embedding (SWE).

In our case study, we assume that the content is an image
and that the features are obtained by applying a block 2D-
DCT to the pixel values. We also assume that the seller wants
to perform the inverse DCT (IDCT) of the watermarked
features in the encrypted domain, before sending them to
the buyer. This can be justified by his wish to keep the actual
transform secret, so as to expose as little details as possible
regarding the watermarking algorithm. Another reason for
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Figure 4: Secure watermark embedding scenario.

Table 3: Execution times (in seconds) of the different implemen-
tations. The row labeled as “packing” refers to the conversion
from encrypted samplewise representation to encrypted composite
representation. The row labeled as “DCT” refers to the actual DCT
computation.

256 IDCT F-IDCT B-IDCT BF-IDCT

packing — — 20.6 51.2

DCT 164.2 79.8 7.2 10

total 164.2 79.8 27.8 61.2

512 IDCT F-IDCT B-IDCT BF-IDCT

packing — — 83.8 208.2

DCT 663.2 319.7 29 40

total 663.2 319.7 112.8 248.2

1024 IDCT F-IDCT B-IDCT BF-IDCT

packing — — 334.4 850

DCT 2647.7 1277.1 115.2 159.6

total 2647.7 1277.1 449.6 1009.6

using the s.p.e.d. IDCT is the possibility of applying some
postprocessing to the watermarked image before distributing
it. Common postprocessing steps are the use of a perceptual
mask [22] or the insertion of a synchronization pattern [23].

The scheme we consider is summarized in Figure 4. The
image is divided into square blocks of 8 × 8 pixels and an
8×8 (I)DCT is applied to each block. We will assume that the
plaintext DCT and SWE building blocks are already available
and we will concentrate on the implementation of the s.p.e.d.
IDCT block. Two different implementations are considered:
a separable direct IDCT as described in Section 4.1; a
separable fast IDCT as described in Section 4.2. As to
the data representation, both a pixelwise/coefficientwise
representation and a composite representation as described
in Section 5 are considered. The combination of the former
choices results in four alternative s.p.e.d. implementations:
pixelwise direct IDCT (IDCT), pixelwise fast IDCT (F-
IDCT), composite (block) direct IDCT (B-IDCT), and
composite (block) fast IDCT (BF-IDCT).

The aforementioned versions have been implemented in
C++ using the GNU Multi-Precision (GMP) library [24]
and the NTL library [25], which provide software optimized
routines for the processing of integers having arbitrary
length. All versions have been run on an Intel(R) Core(TM)2
Quad CPU at 2.40 GHz, used as a single processor. In order
to verify the feasibility of the s.p.e.d. approach, we measured
the execution times of the four versions using three different
image sizes: 256 × 256, 512 × 512, and 1024 × 1024. In all

tests, the marked features are represented as 8-bit integers
(Q1 = 27) and the cosine values are quantized as 16-bit
integers (Q2 = 215). The image features are encrypted with
the Paillier’s cryptosystem, using a modulo N of 1024 bits.

The correctness of the s.p.e.d. DCT implementation
has been verified by comparing its output with the output
of an analogous plaintext DCT implementation, as well
as by verifying the amount of error introduced after the
application of a standard plaintext DCT followed by an
encrypted domain IDCT. With the used precision, the
normalized MSE after the DCT-IDCT chain was on the
order of 3 · 10−3. As to block DCT, its correctness has
been verified by checking that the output of B-(I)DCT, after
decryption and unpacking, was identical to the output of the
corresponding (I)DCT.

The execution times are reported in Table 3. From the
comparison between the pixelwise representation and the
composite representation, it is evident that the latter permits
to sensibly reduce the computational complexity of an
s.p.e.d. DCT. Interestingly, the B-IDCT proves slightly more
efficient than the BF-IDCT, confirming that the direct DCT
implementation may be preferable when combined with the
composite representation. In the considered scenario, we
assume that the inputs to the s.p.e.d. DCT are encrypted
samplewise. Hence, both B-IDCT and BF-IDCT require the
conversion from an encrypted samplewise representation to
an encrypted composite representation. Such a conversion
can be done thanks to the homomorphic properties of the
cryptosystem:

E[sC(k)] =
R−1∏

i=0

E[si(k)]B
i

, k = 0, 1, . . . ,M − 1. (55)

From Table 3, we can notice that the time required by this
conversion is greater than the time required to perform an
s.p.e.d. DCT. Since the overall computational complexity of
B-IDCT and BF-IDCT is given as the sum of both times, this
reduces the performance gain achievable by the composite
representation. Namely, B-IDCT is about three times faster
than F-IDCT; whereas BF-IDCT is only slightly faster than
F-IDCT.

8. Concluding Remarks

We have considered the implementation of the DCT on an
encrypted image by relying on the homomorphic properties
of the underlying cryptosystem. It has been shown how the
maximum allowable DCT size depends on the modulus of
the cryptosystem, on the chosen DCT implementation, and
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on the required precision. We have also proposed an s.p.e.d.
block DCT which is based on the packing of several pixels
into a single encrypted word, thus permitting the parallel
application of the s.p.e.d. DCT algorithm to different image
blocks.

To evaluate the proposed solutions, we have considered
the application of the s.p.e.d. 2D-DCT and 2D-BDCT to
8-bit greyscale images, computing the upper bound on the
number of bits required in order to correctly represent the
DCT outputs, and, for the s.p.e.d. 2D-BDCT, the number of
pixels that can be safely packed into a single word. The results
demonstrate that there can be cases in which it is preferable
to employ a direct s.p.e.d. BDCT, since this will reduce the
bandwidth usage at the price of a very small increase of
complexity.

The feasibility of the application of the s.p.e.d. DCT in
a practical buyer-seller watermarking protocol has been also
verified, providing promising results. Future research will be
devoted to the design and implementation of the complete
buyer-seller watermarking protocol.
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