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1. INTRODUCTION

The widespread availability of digital image and video data
has opened a wide range of possibilities to manipulate these
data. Compression algorithms usually change image and
video data without leaving perceptual traces. Additionally,
different image processing and image manipulation tools
offer a variety of possibilities to alter image data without
leaving traces which are recognizable by the human visual
system.

In order to ensure the integrity and authenticity of digital
visual data, algorithms have to be designed which consider
the special properties of such data types. On the one hand,
such an algorithm should be robust against compression and
format conversion, since such operations are a very integral
part of handling digital data (therefore, such techniques
are termed “robust authentication,” “soft authentication,” or
“semifragile authentication”). On the other hand, such an
algorithm should be able to detect a large amount of different
intentional manipulations to such data.

Classical cryptographic tools to check for data integrity
like the cryptographic hash functions MD-5 or SHA are
designed to be strongly dependent on every single bit of the
input data. While this property is important for a big class of
digital data (e.g., compressed text, executables, etc.), classical
hash functions cannot provide any form of robustness and
are therefore not suited for typical multimedia data.

To account for these properties, new techniques are
required which do not assure the integrity of the digital
representation of visual data but its visual appearance or
perceptual content. In the area of multimedia security, two
types of approaches have been proposed so far: semifrag-
ile watermarking and robust/perceptual/visual multimedia
hashes.

The use of robust hash algorithms for media authen-
tication has been extensively researched in recent years. A
number of different algorithms [1–9] have been proposed
and discussed in literature.

Similar to cryptographic hash functions, robust hash
functions for image authentication should satisfy 4 major
requirements [10] (where P denotes probability, H is the
hash function, X , ̂X ,Y are images, α and β are hash values,
and {0/1}L represents binary strings of length L) as follows.

(1) Equal distribution of hash values holds

P[H(X) = α] ≈ 1
2L

, ∀α ∈ {0/1
}L
. (1)

(2) Pairwise independence for visually different images X
and Y :∀ α,β ∈ {0/1}L holds

P[H(X) = α | H(Y) = β] ≈ P[H(X) = α]. (2)

(3) Invariance for visually similar images X and ̂X holds

P[H(X) = H( ̂X)] ≈ 1. (3)
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To fulfill this requirement, most proposed algorithms
try to extract image features which are invariant
to slight global modifications like compression or
filtering.

(4) Distinction of visually different images X and Y holds

P[H(X) = H(Y)] ≈ 0. (4)

This final requirement also means that given an image
X , it is almost impossible to find a visually different
image Y with H(X) = H(Y) (or even H(X) ≈ H(Y)).
In other words, it should be impossible to create a
forgery which results in the same hash value as the
original image.

A robust visual hashing scheme usually relies on a
technique for feature extraction as the initial processing
stage, often transformations like DCT or wavelet transform
[7] are used for this purpose. Subsequently, the features (e.g.,
a set of carefully selected transform coefficients) are further
processed to increase robustness and/or reduce dimensional-
ity (e.g., decoding stages of error-correcting codes are often
used for this purpose). Note that the visual features selected
according to requirement (3) are usually publicly known and
can therefore be modified. This might threaten security, as
the hash value could be adjusted maliciously to match that of
another image.

For this reason, security has always been a major design
and evaluation criterion [3, 9, 11] for these algorithms.
Several attacks on popular algorithms have been proposed
and countermeasures to these attacks have been developed.
A key problem in the construction of secure hash values is
the selection of image features that are resistant to common
transformations. In order to ensure the algorithms’ security,
these features are required to be key-dependent and must
not be computable without knowledge of the key used
for hash construction. Key-dependency schemes used in
the construction of robust hashes include key-dependent
transformations [1, 4, 12], pseudorandom permutation
of the data [13], randomized statistical features [8–10],
and randomized quantization/clustering [14]. The majority
of these approaches adds key-dependency to the feature
extraction stage, only the latter technique randomizes the
actual hash string generation stage. Nevertheless, even key-
dependent robust hashing schemes have been successfully
attacked. For example, the visual hash function (VHF)
[1] projects image blocks onto key-dependent patterns to
achieve key-dependency. A security weakness of VHF has
been pointed out and resolved by adding block interde-
pendencies to the algorithm [6]. As a second example,
we mention the strategy to achieve key-dependency by
pseudorandom partitioning of wavelet subbands before the
computation of statistical features [9]. An attack against this
scheme has been demonstrated [15] which can be resolved
by employing key-dependent wavelet transforms [12] or the
use of overlapping and nondisjoint tiling. Recently, generic
ways to assess the security of visual hash functions have
been proposed based on differential entropy [8] and unicity
distance [16].

In this work, we investigate the security of a JPEG2000-
based robust hashing scheme which has been proposed in
earlier works [17, 18]. We describe severe attacks against
the original scheme and propose a key-dependent lifting
parameterization in the wavelet transform stage of JPEG2000
encoding as key-dependency scheme for the JPEG2000-
based robust hashing scheme. We discuss robustness and
sensitivity of the resulting approach and show the improved
attack resistance of the key-dependent scheme. Note that
we restrict our investigations to the features extracted from
the JPEG2000 bitstream themselves and treat them as actual
hash string even though a final processing stage eliminat-
ing redundancy, and so forth, has not yet been applied.
After reviewing JPEG2000 basics, Section 2 discusses various
aspects and sorts of JPEG2000-based hashing schemes and
presents the attack against the approach covered in this
work. In Section 3, the employed lifting parameterization is
shortly described. Subsequently, we discuss properties of the
key-dependent hashing approach and provide experimental
evidence for its improved attack resistance. Also, its actual
key-dependency and unicity distance is discussed. Section 4
concludes this paper.

2. JPEG2000-BASED (ROBUST) HASHING

Most robust hashing techniques use a custom and dedicated
procedure for hash generation which differs substantially
from one technique to the other. Several techniques have
been proposed using the wavelet transform as a first stage
in feature extraction (e.g., [3, 9, 10]). The employment of a
standardized image coding technique like JPEG2000 (based
on a wavelet transform as well) for feature extraction offers
certain advantages as follows.

(1) Widespread knowledge on properties of the corre-
sponding bitstream is available.

(2) A vast hardware (e.g., Analog Devices ADV202 chip)
and software (official reference implementations like
JJ2000 or Jasper and additional commercial codecs)
repository is available.

(3) In case visual data is already given in JPEG2000
format, the hash value may be extracted with negligible
effort (parsing the bitstream and extracting the hash
data). In case any other visual data format is given,
simply JPEG2000 compression has to be applied before
extracting the features from the bitstream (this is the
usual way JPEG2000-based hashing is applied).

2.1. JPEG2000 basics

The JPEG2000 [19] image coding standard uses the wavelet
transform as energy compaction method. JPEG2000 may
be operated in lossy and lossless mode (using a reversible
integer transform in the latter case) and also the wavelet
decomposition depth may be defined. The major difference
between previously proposed zerotree wavelet-based image
compression algorithms such as EZW or SPIHT is that
JPEG2000 operates on independent, nonoverlapping blocks
of transform coefficients (“codeblocks”). After the wavelet
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transform, the coefficients are (optionally) quantized and
encoded on a codeblock basis using the EBCOT scheme,
which renders distortion scalability possible. Thereby, the
coefficients are grouped into codeblocks and these are
encoded bitplane by bitplane, each with three coding passes
(except the first bitplane). While the arithmetic encoding of
the codeblock is called Tier-1 coding, the generation of the
rate-distortion optimal final bitstream with its scalable struc-
ture is called Tier-2 coding (see also Figure 2). The codeblock
size can be chosen arbitrarily with certain restrictions.

The final JPEG2000 bitstream (see Figure 1) is organized
as follows. The main header is followed by packets of data
(packet bodies) each of which is preceded by a packet header.
A packet body contains CCPs (codeblock contribution
to packet) of codeblocks that belong to the same image
resolution (wavelet decomposition level) and layer (which
roughly stand for successive quality levels). Depending on the
arrangement of the packets, different progression orders may
be specified. Resolution and layer progression order are the
most important progression orders for grayscale images.

2.2. JPEG2000 authentication and hashing

Authentication of the JPEG2000 bitstream has been de-
scribed in previous work. In [20], it is proposed to apply
SHA-1 onto all packet data and to append the resulting hash
value after the final termination marker to the JPEG2000
bitstream. Contrasting to this approach, when focusing onto
robust authentication, it turns out to be difficult to insert
the hash value directly into the codestream itself (e.g., after
termination markers), since, in any operation which involves
decoding and recompression, the original hash value would
be lost. The only applications which do not destroy the

hash value are purely bitstream-oriented like rate adaptation
transcoding by simply dropping parts of the packet data. As a
consequence, a possible solution to this dilemma would be to
use a robust watermarking scheme to embed the hash value
into the codestream, provided that the embedding does not
change the features involved in computing the hash value. A
different solution would be to signal the hash value in the
context of a JPSEC [21] description. An elegant technical
solution of how authentication can be applied to the entire
codestream while it remains valid also for parts of it (e.g.,
scaled versions) has been derived using Merkle hash trees
[22] (and tested with MD-5 and RSA).

JPEG2000-related information has been suggested
recently to be used for content-based image search and
retrieval in the context of JPSearch, a recent standardization
effort of the JPEG committee. General wavelet-based
features have been proposed for image indexing and retrieval
which can be computed during JPEG2000 compression
(cf. [23]). However, this strategy does not take advantage
of the particular information available in JPEG2000
codestreams. The packet header information is specific to
the visual content, and it is specific enough to be used as
a fingerprint/hash for content search. Some suggestions
have been made in this direction in the context of indexing,
retrieval, and classification. In [23] the number of bytes
spent on coding each subband (“information content”)
is used for texture classification. Similarly, in [24] a set of
classifiers based on the packet header (codeblock entropy)
and packet body data (wavelet coefficient distribution) is
used to retrieve specified textures from JPEG2000 image
databases. In [25] the number of leading bitplanes is used
(means and variances of the number of nonzero bitplanes
in the codeblocks of each subband are computed) as a
fingerprint to retrieve specific images. Finally, in [26]
the same authors additionally propose to use significance
bitmaps of the coefficients and significant bits histograms.

In the following, we restrict the attention to a robust
hashing scheme proposed in earlier work [17, 18] which
employs parts of the JPEG2000 packet body data as robust
hash—we denote this approach JPEG2000 PBHash (Packet
Body Hash). An image given in arbitrary format is converted
into raw pixel data and compressed into JPEG2000 format.
Due to the embeddedness property of the JPEG2000 bit-
stream, the perceptually more relevant bitstream parts are
positioned at the very beginning of the file. Consequently, the
bitstream is scanned from the very beginning to the end, and
the data of each data packet—as they appear in the bitstream,
excluding any header structures—are collected sequentially
and concatenated to be then used as visual feature values (see
Figure 2).

Note that it is not required to actually perform the entire
JPEG2000 compression process—as soon as the amount of
data required for hash generation has been output by the
encoder, compression may be stopped. JPEG2000 PBHash
has been demonstrated to exhibit high robustness against
JPEG2000 recompression and JPEG compression [17] and
provides satisfying sensitivity with respect to intentional
local image modifications [18]. As it is expected due to
properties of the wavelet transform, also high sensitivity
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Figure 3: 50-byte images of the test images Goldhill, Plane, and Lena.
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Figure 4: Hamming distances among 200 uncorrelated images.

against global geometric alterations and rescaling has been
reported [18] (as determined using the Stirmark [27] attack
suite). While the latter properties are prohibitive for the use
of JPEG2000 PBHash in the content search scenario, these
specific robustness limitations are less critical for authenti-
cation purposes. In this scenario, a specific image size can
be enforced (e.g., by image interpolation) before the hash is
applied; and in a nonautomated scenario, image registration
may be conducted before the actual authentication process.

The visual information contained in the hash string
(i.e., concatenated packet body data) may be visualized
by decoding the corresponding part of the bitstream by a
JPEG2000 decoder (including the header information for
providing the required context information to the decoder).
Figure 3 shows the visual information corresponding to a
hash length of 50 bytes of the images displayed in Figures 5–7
(in fact, the images shown are severely compressed JPEG2000
images).

Unless noted otherwise, we use JPEG2000 with layer
progression order, output bitrate set to 1 bit per pixel, and
wavelet decomposition level 5 to generate the hash string.
The length of the hash and the wavelet decomposition depth
employed can be used as parameters to control the tradeoff
between robustness and sensitivity of the hashing scheme
[14]—obviously a shorter hash leads to increased robustness
and decreased sensitivity (see [17, 18] for detailed results).
A shallow decomposition depth is not at all suited for the
JPEG2000 PBHash application since settings of this type lead
to a large LL subband. For a large LL band, the hash only
consists of coefficient data of the LL band corresponding to
the upper part of the image (due to the size of the subband

and the raster-scan order used in the bitstream assembly
stage). Therefore, a certain minimal decomposition depth
(e.g., down to decomposition level 3) is a must and a
short hash string requires a higher decomposition depth for
sensible employment of the JPEG2000 PBHash in order to
avoid the phenomenon described before.

In Figure 4, we visualize the distribution of the Hamming
distances computed among hashes of 200 uncorrelated
images (i.e., perceptually entirely unrelated) for three param-
eter settings: hash-length 16 bytes with decomposition level
7, hash-length 50 bytes with decomposition level 5, and hash-
length 128 bytes with decomposition level 6.

It can be observed that the distributions of the Hamming
distances are centered around 0.5 as desired. The variance
of the distribution is larger for the more robust settings,
which is also to be expected. The influence of the wavelet
decomposition level may not be immediately derived from
these results but it is known from earlier experiments [18]
that there is a trend to result in higher robustness for a lower
decomposition level value (please refer also to the results
in Section 3.2 on this issue). The reason is obvious—low-
decomposition depth causes the hash string to be mainly
consisting of low frequency coefficient data while differences
caused by subtle image modifications are found in higher
frequency coefficient data.

2.3. Attacks against the JPEG2000 PBHash

In order to demonstrate the definite need for key-depend-
ency in the JPEG2000 PBHash procedure, we conduct attacks



G. Laimer and A. Uhl 5

(a) (b)

Figure 5: Test image Goldhill (original and with man removed).

(a) (b)

Figure 6: Test image Plane (original and with flag removed).

against the approach using the sightly modified images as
displayed in Figures 5–7.

With the standard hash settings (length 50 bytes with
decomposition level 5), the Hamming distance between
original and modified images is 0.2 for Goldhill, 0.255 for
Plane, and 0.1575 for Lena. Clearly, these modifications are
detected when the modification threshold is set to a sensible
value.

A possible attacker aims at maliciously tampering the
modified image in a way that the hash string becomes similar
or even identical to the hash string of the original image while
preserving the visual content (this is the attacked image).
In this way, the attacked image would be rated as being
authentic by the hashing algorithm.

The attack actually conducted works as follows. Both
the original and the modified images are considered in a
JPEG2000 representation matching the parameters used for
the JPEG2000 PBHash (if they do not match this condition,
they are converted to JPEG2000). Now the first part of
the bitstream of the original image (corresponding to the
packet body data used for hashing) is exchanged with the
corresponding part of the bitstream of the modified image
resulting in the attacked image. Obviously, if the attacked
image remains in JPEG2000 format, its hash exactly matches
that of the original. But even if both the original and the
attacked images are converted back to their source format
(e.g., PNG) and the JPEG2000 PBHash is applied subse-

quently it turns out that the hash strings are still identical.
Figure 8 shows the corresponding attacked Goldhill and Lena
images. Their hash strings are identical to those of the
respective originals.

This attack is even more severe when we do not apply it
to an original image and a slightly modified version as before
but to completely different images. In this case we denote
the attack as “collision attack” since we generate two visually
entirely distinct images exhibiting an identical JPEG2000
PBHash using the same approach. Two arbitrary images (an
original image and an attacked image) are either converted
or already given in corresponding JPEG2000 representation.
The attacked image should be modified to have a similar hash
as the original image. To accomplish this, the first part of the
bitstream of the attacked image is replaced by the first part
of the bitstream of the original image. Figure 9 visualizes the
result for the Plane and Lena image, respectively. In case the
images have been present in JPEG2000 format already and
remain in this format, the first image exhibits a hash string
identical to that of the Lena image and the second images
hash is identical to the one of the Plane image. Obviously,
this does not correspond to visual perception.

This attack facilitates the modification of a given original
image in a way that its hash matches that of an arbitrary
different image while the visual appearance of the attacked
image stays close to the original. This can be considered
an extremely serious threat to the reliability of the hashing
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(a) (b)

Figure 7: Test image Lena (original and with a grin).

(a) (b)

Figure 8: Attacked Goldhill and Lena images.

scheme. However, the hash values can only be made identical
in case no format conversion is applied. If the attacked and
original images have to be converted back to a different
source format, the resulting Hamming. distances between
the original and attacked versions are 0.235 and 0.113,
This is in contrast to the previous case when originals and
slightly modified versions have been considered. Still, those
differences are significantly below the values observed among
uncorrelated images (cf. Figure 4).

The demonstrated attack shows that the JPEG2000
PBHash is highly insecure in its original form and requires
a significant security improvement to be useful as a reliable
authentication hashing scheme.

3. KEY-DEPENDENT JPEG2000 PBHash

The concept of secret transform domains has been exploited
as a key-dependency scheme to some degree in the area
of multimedia security during the last years. Fridrich [28,
29] introduced the concept of DCT-type key-dependent
basis functions in order to protect a watermark from
hostile attacks. Unnikrishnan and Singh [30] suggest to use
secret fractional Fourier domains to encrypt visual data, a
technique which was also used to embed watermarks in
an unknown domain [31]. The many degrees of freedom

available to design a wavelet transform have also been
exploited in similar manner for image and video encryption
[32, 33] and to secure watermarking copy-protection [34, 35]
and authentication [36] schemes.

In recent works [12, 15, 37], we have proposed to use
Pollens’ orthogonal filter parameterization as a generic key-
dependency scheme for wavelet-based visual hash functions.
In the case of an authentication hash, this strategy proved to
be successful [12, 15] while it did not work out for a CBIR
hash [37] due to the high robustness of the original scheme.
Since the orthogonal Pollen parameterization does not easily
integrate with lifting-based biorthogonal JPEG2000 filters,
we propose to use a different strategy in this work, compliant
to the JPEG2000 Part 2 compression pipeline. JPEG2000 Part
2 allows to extend JPEG2000 in various ways. One possibility
is to employ different wavelet filters as specified in Part 1 of
the standard (e.g., user designed filters) and to vary the filters
during decomposition, which is discussed to be used as key-
dependency scheme in the following subsection.

Using a key-dependent hashing scheme, the advantage
of the JPEG2000 PBHash to generate hash strings from
already JPEG2000-encoded visual data by simple parsing and
concatenation is lost. An image present as JPEG2000 file
needs to be JPEG2000-decoded (with the standard filters)
into raw pixel data and reencoded into the key-dependent
JPEG2000 domain (with the key-dependent filters) for
generating the corresponding hash string.



G. Laimer and A. Uhl 7

(a) (b)

Figure 9: Collision attack: attacked Plane and Lena images.

3.1. Wavelet lifting parametrization

We use a lifting parameterization of the CDF 9/7 wavelet
filter, which is described in [32] based on the work of Zhong,
et al. [38], Daubechies and Sweldens [39] as well as Cohen,
et al. [40]. The following conditions for the lowpass and
highpass filter taps h and g are formulated [40] as follows:

h0 + 2
4
∑

n=1

hn =
√

2, g0 + 2
3
∑

n=1

gn =
√

2,

h0 + 2
4
∑

n=1

(−1)nhn = 0,

g0 + 2
3
∑

n=1

(−1)ngn = 0

2
3
∑

n=1

n2(−1)ngn = 0.

(5)

A possible transformation of the CDF 9/7 wavelet into
lifting steps, as described in [39] looks like

s(0)
n = x2n,

d(0)
n = x2n+1,

d(1)
n = d(0)

n + α
(

s(0)
n + s(0)

n+1

)

,

s(1)
n = s(0)

n + β
(

d(1)
n + d(1)

n−1

)

,

d(2)
n = d(1)

n + γ
(

s(1)
n + s(1)

n+1

)

,

s(2)
n = s(1)

n + δ
(

d(2)
n + d(2)

n−1

)

,

sn = ζs(2)
n ,

dn = d(2)
n

ζ
.

(6)

These lifting steps can be used to express the filter taps of
h and g as functions of the four parameters α, β, γ, δ, and a
scaling factor ζ. A parameterization which is only dependent

on a single parameter α can be derived from these lifting steps
together with condition (5) as described in [38]:

β = −1

4
(

1 + 2α
)2 ,

γ = −1− 4α− 4α2

1 + 4α
,

δ = 1
16

(

4− 2 + 4α
(

1 + 2α
)4 +

1− 8α
(

1 + 2α
)2

)

,

ζ = 2
√

2(1 + 2α)
1 + 4α

.

(7)

For α = −1.58613 . . . , the original CDF 9/7 filter
is obtained. The parameterization comes at virtually no
additional computational cost, only the functions (7) have
to be evaluated, and the lowpass and highpass synthesis filter
taps for normalization have to be calculated. For a discussion
on the applicability of certain parts of the range of α and on
the resulting keyspace see [32]; here, we restrict the range of
admissible α values to [−6,−1.4].

We do not only use one single key-dependent wavelet
filter in the decomposition. Instead, different key-dependent
filters are used at each decomposition level of the wavelet
transform and for each decomposition orientation (i.e.,
horizontal and vertical). These techniques originate from
content adaptive image compression [41] and are denoted as
“nonstationary” and “inhomogeneous” multiresolution
analyses. Consequently, we actually employ 2k filters during
a k-level wavelet decomposition—the corresponding 2k α’s
are all generated by a pseudorandom number generator
from a single seed denoted as “key.” However, in fact all 2k
α’s serve as potential key-material for our key-dependent
JPEG2000 PBHash and especially the approximation
subband data depends on all 2k α’s.

In the following, we investigate the impact of choosing
different keys on the resulting hash string, that is, whether
the resulting hash is really sufficiently dependent on the key
used during JPEG2000 compression. We take an image and
generate its hash string with specified settings (i.e., fixed
number of bytes extracted from the JPEG2000 bitstream and
a certain wavelet decomposition depth)—this procedure is
repeated for 100 randomly chosen keys and the Hamming
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Figure 10: Hamming distances among 16-byte hashes (decomposition depth 7) generated with 100 random keys (accumulation of 20
images, Goldhill, Lena).

distance among all hash strings is computed. Figure 10 shows
the resulting Hamming distance histograms for the images
Goldhill and Lena where the hash string is only 16 bytes
long and decomposition depth 7 is selected. The first plot in
Figure 10 displays the Hamming distances among the hash
strings of 100 randomly chosen keys where all corresponding
distances of 20 test images are accumulated (this set of images
includes Goldhill, Lena, Plane, Mandrill, Barbara, Boats, and
several other test images).

It is obvious that the key-dependency scheme works in
principle, however, there are several hash strings resulting
in distances below 0.1. Especially when compared to the
corresponding Hamming distance histogram for entirely
different images (see Figure 4 left), the distribution is shifted
to the left, is much broader, and exhibits many small values.
The situation is much improved when increasing the hash
length to 50 bytes as displayed in Figure 11. This corresponds
well to our expectations since in the longer hash string
more high-frequency coefficient data is included which
reflects the differences among different filters much more
significantly as compared to the smoothed approximation
subband data. The Hamming distance histograms are shown
in accumulated manner for the same set of 20 test images as
before varying the wavelet decomposition depth during hash
generation.

The histograms do hardly contain Hamming distances
below 0.2 for all three decomposition depths with this hash
length. Increasing the hash length even further to 128 bytes
with a decomposition depth 6 as shown in Figure 12 for
the Goldhill and Lena images and the set of 20 test images
even resolves the undesired effects seen before. Most distance
values are clearly above 0.3 and the histograms are clearly
unimodal. Still, the distributions of the Hamming distances
among different images in Figure 4 are centered better and
have a lower variance. As a consequence, we recommend to
use a hash length of at least 50 bytes when key-dependency of
the resulting hash string is important.

3.2. Properties: sensitivity and robustness

Sensitivity is the property of a hashing scheme to detect
image alterations—for the JPEG2000 PBHash, high sen-

sitivity means that a low number of packet body bytes
are required to detect image manipulations. Robustness
on the other hand is the property of a hashing scheme
to maintain an identical hash string even under common
image processing manipulations like compression—for the
JPEG2000 PBHash, high robustness means that a high
number of packet body bytes are required to detect such
types of manipulations. While sensitivity against intentional
image modifications and robustness with respect to image
compression has been discussed in detail for the key-
independent JPEG2000 PBHash in previous work [17, 18],
the impact of the different filters used in the key-dependency
scheme on these properties of the hashing scheme is not
clear yet. Therefore, we conduct several experiments on these
issues.

The first experiment investigates the sensitivity against
the modification of the Goldhill image shown in Figure 5. We
apply the JPEG2000 PBHash to the original and the modified
Goldhill images with the same key, and record the number of
bytes required to detect the modification (i.e., starting from
the beginning of the two hash strings, the position/number
of the first unequal byte is recorded). This procedure is
repeated for 100 different random keys and the results
for four different decomposition depths and are shown
in Figure 13 (only two different decomposition depths are
shown in Figures 14 and 15). The solid line represents the
value obtained with the key-independent JPEG2000 PBHash
while the dots represent 100 key-dependent results. Note that
(unrealistically) long hashes with 1000 bytes are used in this
experiments in order to be able to capture the corresponding
behavior well.

First, it is obvious that, in the plots in Figure 13, sensitiv-
ity varies among the different keys employed. Second, there is
no clear trend with respect to the sensitivity of the “standard”
JPEG2000 filter as compared to the parameterized versions.
While for decomposition depths 4 and 5 it seems that most
parameterized filters degrade sensitivity (i.e., more bytes
are required to detect the modifications), decomposition
depths 6 and 8 show improvements but also degradations
in sensitivity of the parameterized filters as compared to the
standard filter. It has to be noted that the different results for
different decomposition depths discussed are specific for the
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Figure 11: Hamming distances among 50-byte hashes generated with 100 random keys (decomposition depths 4, 6, and 8), accumulated
over 20 images.
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Figure 12: Hamming distances among 128-byte hashes (decomposition depth 6) generated with 100 random keys (accumulation of 20
images, Goldhill, Lena).

Goldhill image and its modification and depend significantly
on the kind and severeness of the modification performed
(e.g., for decomposition depth 5, we notice a sensitivity
decrease for the Goldhill image; but for the Lena image as
shown in Figure 15, we observe both improvements as well
as degradations). In fact, it is clear that there are variations
and that the “standard” filter is just one out of many other
filters with no specific properties with respect to sensitivity.

Figure 14 displays the results for decomposition depths
6 and 8 for the Plane image. While decomposition depth
6 seems to improve sensitivity, for depth 8, we notice
improvements as well as degradations as compared to the
standard filter.

Similarly, in Figure 15 we both observe improvements
as well as degradations with respect to sensitivity for both
decomposition depths considered.

The second experiment regarding sensitivity relates the
variations caused by the different filters to the type and
severeness of the modifications as shown in Figures 5–7. We
use the JPEG2000 PBHash with 128 bytes and decomposition
depth 6 and compute the Hamming distances between the
original and modified images for 200 random keys (identical
keys for original and modification are used). Figure 16 shows
the corresponding results.

The modification performed on the Plane image is rich
in contrast and affects a considerable area in the image.

This modification is clearly detected for all keys assuming
a detection threshold of 0.15 or lower as displayed by
the middle histogram. The modification of the Goldhill
image also affects a considerable number of pixels, but the
contrast in this area is not changed that much. Therefore,
the detection threshold had been set to 0.04 to detect
the modification for all filters (which in turn negatively
influences robustness of course). Finally, the modification
done to Lena image affects only few pixels and hardly changes
the contrast in the areas modified. Consequently, for some
filter parameters, the modification is not detected at all (i.e.,
the Hamming distance between the hash strings is 0). Similar
to the key-independent JPEG2000 PBHash, sensitivity can
be controlled by setting the hash length accordingly. In
the key-dependent scheme, the variations among different
filters need to be considered additionally which means that
longer hash strings as compared to the key-independent
scheme should be used to guarantee sufficient sensitivity
for all filters. Overall, employing the key-dependent hashing
scheme with different filters on the same image (see Figures
10–12) results in larger Hamming distances as compared to
using it with the same filters on an original and a slightly
modified image (Figure 16).

The second property investigated in this subsection is
robustness to common image transformations. As a typical
example, we select JPEG2000 compression. We apply the
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Figure 13: Number of hash bytes required to detect the removed man in the Goldhill image (hash strings generated with 100 random keys
versus “standard” JPEG2000 PBHash, decomposition depths 4, 5, 6, and 8).
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Figure 14: Number of hash bytes required to detect the removed flag in the Plane image (hash strings generated with 100 random keys
versus “standard” JPEG2000 PBHash, decomposition depths 6 and 8).
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Figure 15: Number of hash bytes required to detect Lena’s grin (hash strings generated with 100 random keys versus “standard” JPEG2000
PBHash, decomposition depths 3 and 5).
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Figure 16: Hamming distances among 128-byte hashes (decomposition depth 6) generated with 200 random keys: hash of the original
image is compared to the modified image, both use the same key (Goldhill, Plane, Lena).

JPEG2000 PBHash to the original and compressed Plane
images (bitrate 0.5 bpp) with the same key and record the
number of bytes required to detect the modification (i.e.,
starting from the beginning of the two hash strings, the
position/number of the first unequal byte is recorded). This
procedure is repeated for 100 different random keys and the
results for four different decomposition depths are shown in
Figure 17 (only two in Figure 18). The solid line represents
the value obtained with the key-independent JPEG2000
PBHash while the dots represent 100 key-dependent results.

Similar to the investigations on sensitivity, we notice
varying robustness for the parameterized filters (also con-
cerning the relation to the robustness of the “standard”
JPEG2000 filter) and inconsistent results for the different
decomposition levels. However, the differences are not as
pronounced as in the case of sensitivity and the results are
similar for different images.

The second experiment regarding robustness relates the
variations caused by the different filters to the target bitrate
used for compression and the length of the hash string.
We use the JPEG2000 PBHash with 16 and 128 bytes and

decomposition depths 7 and 6 and compute the Hamming
distances between the original and compressed images for
100 random keys (identical keys for original and compressed
are used). Figure 19 shows the corresponding results for
target bitrate 0.5 bpp.

At this bitrate, the 16-byte JPEG2000 PBHash provides
good robustness for almost all keys (i.e., almost all Hamming
distances are 0). The 128-byte hash string on the other hand
produces differences up to 0.5 for some keys so that for
this setting, compression robustness cannot be provided.
Figure 20 shows corresponding results for a target bitrate of
0.05 bpp. At this low rate, even the 16-byte hash generates
differences up to 0.5 and the 128-byte hash results in a
histogram distribution similar to the case when different
images have been used as input.

To summarize, we may conclude that the key-
dependency introduced into the JPEG2000 PBHash has
undesired effects on sensitivity and robustness. Caused by
the varying sensitivity for different filters used in the hashing
scheme, the length of the hash string has to be increased
as compared to the key-independent scheme to detect even
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Figure 17: Number of hash bytes required to detect that the Plane image got compressed to 0.5 bpp (hash strings generated with 100 random
keys versus “standard” JPEG2000 PBHash, decomposition depths 3, 4, 5, and 8).
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Figure 18: Number of hash bytes required to detect that the Goldhill image got compressed to 0.5 bpp (hash strings generated with 100
random keys versus “standard” JPEG2000 PBHash, decomposition depths 3 and 5).
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Figure 19: Hamming distances among hash strings generated with 100 random keys: hash of the original images is compared to a hash
from a compressed image at 0.5 bpp (16-byte hash at decomposition depth 7 versus 128-byte hash at decomposition depth 6); distances are
accumulated from 20 images.
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Figure 20: Hamming distances among hash strings generated with 100 random keys: hash of the original images is compared to a hash
from a compressed image at 0.05 bpp (16-byte hash at decomposition depth 7 versus 128-byte hash at decomposition depth 6); distances are
accumulated from 20 images.

small modifications reliably. For this setting, compression
robustness is already hard to achieve for all filters. So, in a
way, adding key-dependency to the scheme has to be paid
with an aggravation of the tradeoff between sensitivity and
robustness of the scheme caused by the varying respective
properties of the filters used.

The sensitivity/robustness tradeoff issue has not been
discussed in depth in earlier works on key-dependent wavelet
transforms [12, 37] in the context of robust hashing. As
already mentioned, in the CBIR scenario [37], the high
robustness of the feature extraction itself prevents a satis-
factory key-dependency of the hash string. In [12], param-
eterized (Pollen) wavelet filters as well as key-dependent
wavelet packet subband structures have been investigated for
their usefulness in the context of an authentication hashing
scheme. Key-dependency, key-space, and attack resistance
have been found to be in sensible ranges, however, the sensi-
tivity/robustness tradeoff has not been investigated explicitly.
However, the high variation in the Hamming distances
found suggests varying sensitivity as found in this work.
In recent work [42], we have investigated key-dependent
wavelet packet subband structures as a means to add key-
dependency to the JPEG2000 PBHash and found robustness

to be significantly reduced as compared to the standard
pyramidal subband structure, while sensitivity was found to
be almost identical to the standard case. Parameterized lifting
as employed in this work is clearly better suited to add key-
dependency as compared to key-dependent wavelet packet
structures, at least in the case of the JPEG2000 PBHash.

3.3. Attack resistance

The aim of adding key-dependency to the JPEG2000 PBHash
is to prevent the attacks as described is Section 2.3. In
case the key-dependent hashing scheme is used, an attacker
does not know which key is used to compute the hash
string for an image subject to authentication. He can just
choose an arbitrary key and perform the attack as described
using this key in hash generation (i.e., both the original
and the modified images are JPEG2000-compressed using
this particular chosen key for the attack and the part of
the bitstream required for the hash is interchanged). Now,
the attacker hopes that the Hamming distance between the
original image and her attacked version will be small also for
other keys than the single one used in her attack. Figure 21
shows an attacked version of the modified Lena image and
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Figure 21: Attacked Lena image and Hamming distances to hash
strings of the original generated with 100 random keys (50-byte
hash at decomposition depth 5).
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Figure 22: Attacked Plane image and Hamming distances to hash
strings of the original generated with 100 random keys (50-byte
hash at decomposition depth 5).

a histogram of Hamming distances between 50-byte hash
strings of the original and attacked images when 100 different
random keys are used in authentication (the same key is used
for both original and attacked versions).

It is clearly visible that only one key results in distance 0
which is the case where the authentication key is identical
to the key used for the attack. Two more distances are
around 0.2, the rest is between 0.4 and 0.6. We see that
the key-dependency scheme enables the JPEG2000 PBHash
to identify the attacked image reliably. Figure 22 shows the
same effect on the attacked Plane image where all Hamming
distances are between 0.4 and 0.6 except for the single filter
used in the attack.

Figure 23 verifies for the Plane image that the attack is
successfully prevented with the 50-byte hash also for different
decomposition depths.

When the hash length is increased to 128 bytes, the attack
gets more difficult since a larger share of the bitstream data
needs to be exchanged between original and modified ver-
sions possibly compromising image quality of the attacked
version. Figures 24 and 25 illustrate this case for the Lena
and the Goldhill images.

While the image quality of the attacked version might still
be sufficient for some applications, the Hamming distance
histograms clearly indicate that the attack is prevented also

under these settings (in these experiments, the key used for
producing the attacked versions is not included in the keys
used for authentication).

In Section 2.3, we have also demonstrated the collision
attack against the JPEG2000 PBHash where an image has
been attacked to produce the same hash as an arbitrary
original image. We cover the case of a 16-byte hash since the
attacked images shown in Figure 9 hardly meet any quality
requirement. In Figure 26, we visualize the attacked Lena
image modified to exhibit the hash string of the Plane image.
Figure 27 covers the vice versa situation. Again, the attacker
has to select an arbitrary key for conducting the attack. All
she can do is to hope that the hash string of the attacked
image produced by other keys is similar to the string she
created in the attack.

The histograms shown in Figures 26 and 27 show that
again the attack can be prevented reliably. Most Hamming
distances between the attacked image and the original image
are >0.2 and actually all are >0.1 The hash string of the
attacked image does no longer exhibit a high degree of
similarity to the original image in the authentication. The
same is of course true with respect to the original version
of the attacked image (histograms look similar but are not
shown).

The same results can be obtained for the settings
corresponding to the images shown in Figure 9; however,
since the visual quality of the attacked images is rather low,
we do not give the plots here.

3.4. Key-dependency and security

Recently, a method for measuring the security of robust
image hashing algorithms has been proposed [16]. It is based
on unicity distance, a concept pioneered by Shannon [43]
in 1949, which states that the amount of uncertainty in an
encryption key reduces with each observed clear-text and
cipher-text pair. This means for image hashing, that the
secret key can be estimated when the key is reused multiple
times on different input images. In this case, the unicity
distance of a hashing scheme determines how often (i.e., for
how many different images) a key can be reused, before it can
be uniquely determined.

H() is the image hash function, X the input image,
K the secret key, and v = HK (X) the resulting hash
vector. When we use the same key n-times for different
input images, we get pairs of images and hash vectors
(X1, v1), (X2, v2), . . . , (Xn, vn). The conditional entropy of the
secret key K can then be denoted by E(K | {(Xj , vj)}nj=1).
In general, with the increase of n, conditional entropy will
decrease. To determine the unicity distance of the image-
hashing algorithm, the observed image-hash pairs are taken
as the input to a key estimation algorithm. The output of this
algorithm (i.e., the estimated secret key) is gradually refined
with the increased number of observed image-hash pairs. It
is expected that the estimated key gets closer and closer to
the actual key K , until they can be considered identical. The
number of image-hash pairs required to recover the key K is
denoted by “unicity distance.”
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Figure 23: Plane image: Hamming distances between hash strings of the original and the attacked images generated with 100 random keys
(50-byte hash at decomposition depths 3, 4, 8).
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Figure 24: Attacked Lena image and Hamming distances to hash
strings of the original generated with 100 random keys (128-byte
hash at decomposition depth 6).
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Figure 25: Attacked Goldhill image and Hamming distances to
hash strings of the original generated with 100 random keys (128-
byte hash at decomposition depth 6).

The iterative search algorithm suggested to estimate
key data [16] relies on the assumption that the Hamming
distances between hashes derived from similar keys get
smaller the more similar the keys get. The sensitivity of the
key-dependency scheme towards small changes in the key
has therefore major impact on the convergence speed of this
algorithm.
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Figure 26: Attacked Lena image and Hamming distances to hash
strings of Plane generated with 100 random keys (16-byte hash at
decomposition depth 7).
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Figure 27: Attacked Plane image and Hamming distances to hash
strings of Lena generated with 100 random keys (16 byte hash at
decomposition depth 7).

To investigate this issue in the context of the key-
dependent JPEG2000 PBHash, we list in Table 1 the α’s
derived from a specific key when decomposition depth 5 is
employed. We further assume that 9 out of 10 parameters
used for JPEG2000 PBHash generation are already set to the
correct value and only one parameter is changed slightly.
Table 2 shows the Hamming distances between the hash of



16 EURASIP Journal on Information Security

0

0.1

0.2

0.3

0.4

0.5

0.6
H

am
m

in
g

di
st

an
ce

a− 1 a− 0.5 a a + 0.5 a + 1

Vertical α offset

Hamming distances varying
one vertical parameter

(a)

0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

H
am

m
in

g
di

st
an

ce

a− 1 a− 0.5 a a + 0.5 a + 1

Vertical α offset

Hamming distances varying
one vertical parameter

(b)

Figure 28: Hamming distances by varying one α -parameter (resolution level 1-2).
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Figure 29: Hamming distances by varying one α-parameter (resolution level 3-4).

Table 1: Lifting parameters derived from the key s = 25.

Vertical α Horizontal α

res. level 1 −1.4159169 −2.6140037

res. level 2 −2.1948574 −5.109782

res. level 3 −1.477038 −3.8211455

res. level 4 −5.109782 −1.7081523

res. level 5 −2.136 −1.698885

length 50 bytes computed with all correct α’s and a hash
determined where a single vertical α is slightly incorrect
(the value used as compared to Table 1 is given in the table,
Hamming distances for 10 images are given).

We observe that when the resolution level-1 vertical α
is slightly incorrect, all hash values still show significant
Hamming differences. For incorrect level-2 and level-3 α’s,
some images exhibit 0 Hamming distance (e.g., 3 out of
10 at level three), others show large distances. Only at level
4 (and level 5) all images show consistently a 0 difference
when all other parameters are known exactly. Note that these
observations have been made under the assumption that 9

Table 2: Normalized Hamming distances for 10 images after
varying one parameter.

Hamming distance

Level 1 Level 2 Level 3 Level 4

α = −1.47 α = −2.35 α = −1.6 α = −5.4

0.39 0.00 0.00 0.00

0.49 0.51 0.51 0.00

0.29 0.00 0.29 0.00

0.46 0.00 0.00 0.00

0.44 0.42 0.36 0.00

0.33 0.14 0.14 0.00

0.45 0.46 0.45 0.00

0.17 0.03 0.03 0.00

0.32 0.00 0.08 0.00

0.40 0.00 0.00 0.00

out of 10 α’s are already correct without arguing how this
could be achieved in an actual key-estimation algorithm.

In order to investigate the sensitivity with respect to small
key changes in more detail, we determine the Hamming
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distances for varying the vertical parameter of each of the five
resolution levels within the interval [α − 1.0,α + 1.0] using
a step size of 0.002. This leads to 1000 Hamming distances
for each resolution level. Figures 28 and 29 show the results
obtained for the Lena image. When varying level-1 α, we note
that the Hamming distance gets 0 for an extremely small
range only. Also for the level-2 and level-3 α’s, only a small
interval around the correct α leads to a 0 Hamming distance
(i.e., [α − 0.15,α + 0.15]). Only for level 4 (and level 5—not
shown) the entire range investigated leads to a 0 Hamming
distance.

The assumption made so far to determine all but one α
correctly is already difficult to satisfy. Considering this fact
and the phenomenon that the iterative key search procedure
has even problems to achieve convergence with all but one
correct α at least in case the level-1 α is not yet correct makes
us believe that unicity distance will be rather large for the
key-dependent JPEG2000 PBHash. In fact, the assumption
that the Hamming distances between hashes derived from
similar keys get smaller the more similar the keys get does
only hold in very small neighborhoods. Therefore, instead
of an iterative key estimation technique based on successive
refinement, the only way to obtain the correct key would
involve a rather costly random search through a significant
share of the keyspace until a configuration with small
Hamming distance is found which can be systematically
improved.

Consequently, we estimate the key-dependent JPEG2000
PBHash to have a rather large unicity distance.

4. CONCLUSION AND FUTUREWORK

Key-dependency is added to a JPEG2000 packet data-based
hashing scheme by means of employing a parameterized
lifting scheme in the wavelet decomposition stage. Attacks
demonstrated against the scheme without key-dependency
can be prevented effectively in this manner. Also the security
of the scheme in terms of unicity distance is assumed to be
high. However, key-dependency comes at a certain cost for
this scheme: due to reduced sensitivity of some potentially
employed filters, the hash length has to be increased as
compared to the scheme without key-dependency. This leads
to reduced robustness on the other hand.

In future work, we will investigate possibilities how
to add key-dependency to the JPEG2000 PBHash without
affecting sensitivity too much: while we have found signifi-
cant variations in sensitivity among the different decompo-
sitions and filters employed, it is not yet clear if it is possible
to identify subsets of the range for α where these variations
could be bounded. An alternative approach is to investigate
different types of key-dependency for wavelet transforms
like isotropic or anisotropic wavelet packets. Additionally,
we will estimate the magnitude of the keyspace available
(focusing on decomposition level-dependent discretization
of the α range), and we will determine the sensitivity against
key modifications for the scheme in more detail to provide
an approximation for an actual unicity distance value. In
particular, we will investigate possibilities how to make the

key-estimation procedure separable, that is, conduct key
estimation for each decomposition level separately.
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