
Hindawi Publishing Corporation
EURASIP Journal on Information Security
Volume 2008, Article ID 345184, 14 pages
doi:10.1155/2008/345184

Research Article
Stochastic ImageWarping for ImprovedWatermark
Desynchronization

Angela D’Angelo,1 Mauro Barni,1 and Neri Merhav2

1Department of Information Engineering, University of Siena, 53100 Siena, Italy
2Department of Electrical Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel

Correspondence should be addressed to Angela D’Angelo, angela.dangelo@unisi.it

Received 28 November 2007; Accepted 19 March 2008

Recommended by Deepa Kundur

The use of digital watermarking in real applications is impeded by the weakness of current available algorithms against signal
processing manipulations leading to the desynchronization of the watermark embedder and detector. For this reason, the problem
of watermarking under geometric attacks has received considerable attention throughout recent years. Despite their importance,
only few classes of geometric attacks are considered in the literature, most of which consist of global geometric attacks. The random
bending attack contained in the Stirmark benchmark software is the most popular example of a local geometric transformation.
In this paper, we introduce two new classes of local desynchronization attacks (DAs). The effectiveness of the new classes of DAs
is evaluated from different perspectives including perceptual intrusiveness and desynchronization efficacy. This can be seen as an
initial effort towards the characterization of the whole class of perceptually admissible DAs, a necessary step for the theoretical
analysis of the ultimate performance reachable in the presence of watermark desynchronization and for the development of a new
class of watermarking algorithms that can efficiently cope with them.
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1. INTRODUCTION

Geometric transformations whereby the watermark embed-
der and detector are desynchronized are known to be one
of the most serious threats against any digital watermarking
scheme. In the case of still images, for which desynchroniza-
tion attacks (DAs) can be easily implemented by applying a
geometric transformation to the watermarked image, DAs
are of the outmost importance, since failing to cope with
them would nullify the efficacy of the whole watermarking
system.

In the general case, a geometric distortion can be seen
as a transformation of the position of the pixels in the
image. It is possible to distinguish between global and local
geometric distortions. A global transformation is defined
by an analytic function that maps the points in the input
image to the corresponding points in the output image. It
is defined by a set of operational parameters and performed
over all the image pixels. Local distortions, instead, refer to
transformations affecting in different ways the position of the
pixels of the same image or affecting only part of the image.

The random bending attack [1], contained in the Stirmark
utility, is the most famous example of a local geometric
transformation.

Global geometric transformations, especially rotation,
scaling, and translation, have been extensively studied in the
watermarking literature given their simplicity and diffusion.
Though no perfect solution exists to cope with geometric
attacks, DAs based on global transformations can be handled
in a variety of ways, including exhaustive search [2, 3],
template-based resynchronization [4–6], self-synchronizing
watermarks [7, 8], and watermarking in invariant domains
[9]. In all the cases, the proposed solutions rely on the
restricted number of parameters specifying the DA. For
instance, it is the relatively low cardinality of the set of
possible attacks that makes the estimation of the geometric
transformation applied by the attacker via exhaustive search
or template matching possible (computationally feasible).
For this reason, recovering from localized attacks is much
harder than recovering from a global attack. A possibility to
overcome this problem in case of local attacks could split the
search into a number of local searches. However, in this way,
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it is likely that the accuracy of the estimation is reduced, given
that the estimation would have to rely on a reduced number
of samples.

Despite the threats they pose, local geometric transfor-
mations have received little attention by the watermarking
community. In practice, only the random bending sttack
(RBA) contained in the Stirmark software has been studied
to some extent. However, even in this case, the real de-
synchronization capabilities of RBA are not fully understood,
given that as implemented in Stirmark, RBA consists of
three modules with only one corresponding to a truly local
geometric transformation [1].

In this paper, we focus on local geometric attacks for still
images. In particular, the aim of our research is twofold:

(i) to introduce two new classes of local DAs that extend
the class of local geometric attacks for still images;

(ii) to evaluate the effectiveness of the new attacks and
compare them with the classical RBA.

For the above goals, the perceptual impact of the DAs is
taken into account since this is the only factor limiting the
choice of the attacking strategy. The two models we propose
can be seen as a first step towards the characterization of the
whole class of perceptually admissible DAs, which in turn is
an essential step towards the development of a new class of
watermarking systems that can effectively cope with them.

This paper is organized as follows. In Section 2, we
describe the RBA contained in the Stirmark software. In
Section 3, we introduce a new class of local desynchro-
nization attacks, the LPCD DAs, applied in a full and
multiresolution framework. In Section 4, a class of attacks
based on Markov random fields is presented. In Section 5,
we evaluate the effectiveness of the two new classes of DAs
using two simple watermarking systems based on the DCT
and DWT transforms. Finally, in Section 6, we summarize
the contribution of this work and propose some ideas for
future research.

In order to ensure the reproducibility of the experimental
results the software, we used for the experiments is available
on the web site http://www.dii.unisi.it/∼vipp, furthermore
a pseudocode description of the algorithms is provided in
order to link the software to the global description of the
algorithms.

2. STIRMARK RBA

The Stirmark benchmark software first explored RBA’s
ability to confuse watermark detection. In most of the
scientific literature, by RBA, the corresponding geometric
attack implemented in the Stirmark software is meant [10],
however such an attack is not a truly local attack since it
couples three different geometric transformations applied
sequentially, only the last of which corresponds to a local
attack.

The first transformation applied by Stirmark is defined
by

x′ = t10 + t11x + t12y + t13xy,

y′ = t20 + t21x + t22y + t23xy,
(1)

where x′, y′ are the new coordinates and x, y the old ones. In
practice, this transformation corresponds to moving the four
corners of the image into four new positions, and modifying
coherently all the other sampling positions. The second step
is given by

x′′ = x′ + dmax sin
(
y′

π

M

)
,

y′′ = y′ + dmax sin
(
x′

π

N

)
,

(2)

where M and N are the vertical and horizontal dimensions of
the image. This transformation applies a displacement which
is zero at the border of the image and maximum ( dmax) in
the center. The third step of the Stirmark geometric attack is
expressed as

x′′′ = x′′ + δmax sin
(
2π fxx

′′) sin
(
2π fy y

′′) randx
(
x′′, y′′

)
,

y′′′ = y′′ + δmax sin
(
2π fxx

′′) sin
(
2π fy y

′′) randy
(
x′′, y′′

)
,

(3)

where fx and fy are two frequencies (usually smaller than
1/20) that depend on the image size, and randx(x′′, y′′)
and randy(x′′, y′′) are random numbers in the interval
[1, 2). However, (3) is the only local component of the
Stirmark attack since it introduces a random displacement
at every pixel position. In the sequel by RBA, we will
mean only the transformation expressed by (3). This can
be obtained by using the Stirmark software setting to 0
the b, d, i, and o parameters (resp., the bending factor, the
maximum variation of a pixel value, the maximum distance
a corner can move inwards and outwards), and leaving R (the
randomisation factor) to the default value of 0.1.

3. THE CLASS OF LPCD DAS

In this section, we describe a first new class of DAs, namely,
local permutation with cancelation and duplication (LPCD)
DAs. We start from the plain LPCD attack, then we pass to
the C-LPCD (constrained LPCD). Finally, we consider the
multiresolution extension of the above two classes.

3.1. LPCD

By focusing on the 1D case, let y = {y(1), let y(2), . . . , y(n)}
be a generic signal, and let z = {z(1), z(2), . . . , z(n)} be
the distorted version of y. The LPCD model states that
z(i) = y(i + Δi), where Δi is a sequences of i.i.d random
variables uniformly distributed in a predefined interval I =
[−Δ,Δ]. For simplicity, we assume that Δi can take only
integer values in I . This way, the values assumed by the
samples of z are chosen among those of y. The above model
yields an interesting interpretation of the attacked signal z.
To introduce it, it is convenient to describe the LPCD attack
as a channel W(z | y) defined as follows (neglecting edge
effects):

W
(
z | y) =

n∏
i=1

W
(
z(i) | yi+Δi−Δ

)
, (4)
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where (i) y
j
i , for i ≤ j, denotes (y(i), y(i + 1), . . . , y( j)) (a

similar notation convention applies to z), and (ii)

W
(
z(i) | yi+Δi−Δ

) = 1
2Δ + 1

Δ∑
k=−Δ

1
{
z(i) = y(i− k)

}
, (5)

where 1{z(i) = y(i − k)} denotes the indicator function
of the event {z(i) = y(i − k)}. According to the above
equation, the LPCD channel W(z(i) | yi+Δi−Δ) assigns the same
probability, 1/(2Δ + 1), and independently, to all possible
values of k ∈ {−Δ,−Δ + 1, . . . ,Δ}, and it picks z(i) =
y(i−k). However, any other probability assignment W(z(i) |
yi+Δi−Δ) is allowed. Likewise, the probability law of y does not
need to be known (except the fact that it is memoryless).
An equivalent representation of this model is obtained by
defining u(i) = yi+Δi−Δ. Here, if {y(i)} are i.i.d., then {u(i)}
is a first-order Markov process. Also, the channel W from
u = (u(1), . . . ,u(n)) to y is obviously memoryless according
to (4). Thus, z is governed by a hidden Markov process:

Q(z) =
∑
u

n∏
i=1

[
P
(
u(i) | u(i− 1)

)
W
(
z(i) | u(i)

)]
. (6)

The above interpretation of the LPCD model may open the
way to the definition of optimum embedding and detection
strategies along the same lines described in [11].

To extend the 1D-LPCD model to the two-dimensional
case, if Z(i, j) is a generic pixel of the distorted image Z, we
let

Z(i, j) = Y
(
i + Δh(i, j), j + Δv(i, j)

)
, (7)

where Y is the original image and Δh(i, j) and Δv(i, j) are
i.i.d. integer random variables uniformly distributed in the
interval [−Δ,Δ].

3.2. C-LPCD

An important limitation of the LPCD model is the lack of
memory. This is likely to be a problem from a perceptual
point of view: with no constraints on the smoothness of the
displacement field, there is no guarantee that the set of LPCD
distortions is perceptually admissible even by considering
very small values of Δ.

One way to overcome the limitation of the LPCD model,
and to obtain better results from a perceptual point of view, is
to require that the sample order, in the 1D case, is preserved
(thus introducing memory in the system). In practice, the
displacement of each element i of the distorted sequence z
is conditioned on the displacement of the element i − 1 of
the same sequence. In formulas, z(i) = y(i + Δi), where
Δi is a sequence of i.i.d integer random variables uniformly
distributed in the interval I = [max(−Δ,Δi−1 − 1),Δ]. In
the sequel, we will refer to this new class of DAs as C-
LPCD (constrained local permutation with cancelation and
duplication). Figure 1 illustrates the behavior of the C-LPCD
model in the 1D case with Δ = 2. We know that z(i) =
y(i + Δi), let us assume that Δi is chosen in the interval
Ii = [−2, 2] (the solid-line box) and that Δi = 1, it means

i

Ii+1

i + 1 i + 3 y

Ii

i i + 1 z

z(i) = y(i + 1)
z(i) = y(i + 1 + 2)

Figure 1: Constrained LPCD with Δ = 2 (one-dimensional case).

that z(i) = y(i + 1). At the next step, we know that z(i + 1) =
y(i + 1 + Δi+1), where Δi+1, due to the position of the pixel
z(i), must be chosen in the interval Ii+1 = [0, 2] (the bold
dotted-line box). The interval Ii+1 is smaller than Ii because
the position of the element i + 1 cannot precede that of the
element i. For example, Δi+1 could be equal to 2 yielding
z(i + 1) = y(i + 3).

The C-LPCD model can be mathematically described by
resorting to the theory of Markov chains. For simplicity, let
us focus again on the one-dimensional case. It is possible
to design a Markov chain whose states correspond to the
possible sizes of the interval I = [max(−Δ,Δi−1 − 1),Δ].

In a general case, given Δ, the maximum size of I is equal
to N = 2Δ + 1 (the minimum being equal to 2) and the
transition matrix of the Markov chain (whose size is 2Δ×2Δ)
is

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

0 · · · · · · · · · 0

1
3

1
3

1
3

0 · · · · · · 0

1
4

1
4

1
4

1
4

0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·
1

2Δ + 1
1

2Δ + 1
1

2Δ + 1
· · · · · · · · · 2

2Δ + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(8)

where each element pi j of the matrix is the transition
probability of going from state i to state j.

A visual inspection conducted on a set of images
distorted with the C-LPCD model reveals that changing the
value of Δ does not change the perceived intensity of the
deformation.

This effect, which can be described by resorting to the
properties of Markov chains [12], can be avoided by allowing
the model to generate a larger variety of displacement fields.
For this reason, we modified the Markov chain by changing
the transition probabilities among the states in order to
give a greater probability to the transitions that result in
a larger interval I . A way to do this is to assign the same
probability (equal to 1/(2Δ+ 1)) to the transitions that cause
a decrease of the size of I , corresponding to the elements i, j
with i = 1, . . . ,Δ and j = 1, . . . , i of the transition matrix,
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Figure 2: Limit probability distribution of states versus Δ ( N =
2Δ + 1).

and to assign all the remaining probability mass, equal to
1 −∑i

j=1pi j , to the transition corresponding to the element
i, j with i = 1, . . . ,Δ and j = i + 1, that is, the transition
whose effect is to enlarge the interval I . The corresponding
transition matrix becomes

P=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2Δ + 1
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2Δ + 1

0 · · · · · · · · · 0

1
2Δ + 1

1
2Δ + 1

2Δ− 1
2Δ + 1

0 · · · · · · 0

1
2Δ + 1

1
2Δ + 1

1
2Δ + 1

2Δ− 2
2Δ + 1

0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·
1

2Δ + 1
1

2Δ + 1
1

2Δ + 1
· · · · · · · · · 2

2Δ + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)

Figure 2 shows the limit probability distribution of the
states versus Δ for the described Markov chain.

By looking at the figure, it is possible to note that
regardless of the value ofΔ, all the states have almost the same
limit probabilities.

The extension of the C-LPCD model to the 2D case is
obtained by applying the 1D algorithm by rows to obtain the
horizontal displacement fieldΔh(i, j), and by columns for the
vertical displacements Δv(i, j).

3.3. Multiresolution extension

To make the distortion less perceptible, we considered a
multiresolution version of the LPCD and C-LPCD attacks,
whereby the DAs are applied at different resolutions to obtain
the global displacement field: a low-resolution displacement
field is first generated, then a full-size displacement is built by
means of a bicubic interpolation. The full resolution field is
applied to the original image to produce the distorted image.

More specifically, the multiresolution models consist of
two steps. Let S × S be the size of the image (for sake of
simplicity, we assume that S is a power of 2). To apply the
LPCD (or C-LPCD) model at the Lth level of resolution, two
displacement fields δh(i, j) and δv(i, j) with size S/2L × S/2L

are generated. Then, the full-resolution fields Δh(i, j) and
Δv(i, j) are built by means of bicubic interpolation. Note that
this way noninteger displacement values are introduced. It is
still possible to obtain integer displacements by applying a
nearest neighbor interpolation instead of a bicubic one (of
course at the expense of the smoothness of the displacement
field). The full-resolution displacement fields Δh and Δv are
used to generate the warped image Z as follows:

Z(i, j) = Y
(
i + Δh(i, j), j + Δv(i, j)

)
. (10)

As opposed to the original version of LPCD and C-
LPCD, however, the presence of noninteger displacements
is now possible due to the interpolation. To account for
this possibility, whenever the displacement vector points to
noninteger coordinates of the original image, the gray level
of the attacked image Z(i, j) is computed by means of the
bicubic interpolation. While the above interpolation does
not have a significant impact on the visual quality of the
attacked image, the possible introduction of new gray levels,
which were not present in the original image, complicates the
LPCD and C-LPCD models, by making it more difficult to
describe the attacked signal as a hidden Markov process (as
we did in Section 3.1).

The pseudocode description of the multiresolution ver-
sion of LPCD DAs is provided by Algorithms 1 and 2.

3.4. Cardinality evaluation

A measure of the difficulty of coping with a given type of
DA is given by the cardinality of the attack class. In fact,
the larger is the DA space, the more difficult will be to
recover the synchronization between the embedded and the
detector, both in terms of complexity and accuracy. As a
matter of fact, it is possible to show [3, 11] that as long as
the cardinality of the DAs is subexponential, the exhaustive
search of the watermark results in asymptotically optimum
watermark detection with no loss of accuracy with regard
to false-detection probability. By contrast, when the size of
the DA is exponential, simply considering all the possible
distortions may not be a feasible solution both from the point
of view of computational complexity and detection accuracy
[11]. In order to evaluate the cardinality of the classes of DAs,
the perceptual impact of LPCD and C-LPCD must be taken
into account. Thus, we first found the limits of the model
parameters by means of perceptual considerations, then we
estimated the cardinality of the various classes of LPCD DAs.

Let us observe that from a perceptual point of view,
LPCD DAs have a different behavior for different values
of N and for different levels of resolution L, in particular,
the image quality increases if the attacks are applied to a
lower level of resolution (larger L) but, at the same time, the
number of possible distortions decreases.

In a previous work [13], both subjective and objective
tests were performed to establish the sensitivity of the human
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1. Read image to be attacked Y, read size of the window Δ, read level of resolution L
2. dim = size(image)/2L {size of the low resolution displacement field}
3. Initialize matrices δh and δv of horizontal and vertical displacement fields to 0
4. for i = 1 : dim do
5. for j = 1 : dim do
6. If (i < Δ + 1) or ( j < Δ + 1) then
7. δh(i, j) and δv(i, j) are randomly chosen in [−(min(i, j)−

1); (min(i, j)− 1)]
8. else if (i > dim− Δ) or ( j > dim− Δ) then
9. δh(i, j) and δv(i, j) are randomly chosen in [−(dim−

max(i, j)); (dim−max(i, j))]
10. else
11. δh(i, j) and δv(i, j) are randomly chosen in [−Δ;Δ]
12. end if
13. end for
14. end for
15. Resize the displacement fields given by δh and δv to the image size through

bicubic interpolation provided by the matlab function imresize{to obtain
the high resolution displacement fields Δh an Δv}

16. for i = 1 : size(image) do
17. for j = 1 : size(image) do
18. Z(i, j) = Y(i + Δh(i, j), j + Δv(i, j)) {Apply the displacement fields

to the image, to obtain the attacked image Z, by means of bicubic
interpolation}

19. end for
20. end for

Algorithm 1: LPCD model.

1. Read image to be attacked, read size of the window Δ, read level of resolution L
2. dim = size(image)/2L{size of the low resolution displacement field}
3. Initialize matrices δh and δv of horizontal and vertical displacement fields to 0
4. for i = 1 : dim do
5. for j = 1 : dim do
6. if (i < Δ + 1) or ( j < Δ + 1) then
7. δh(i, j) and δv(i, j) are randomly chosen in [−(min(i, j)−

1); (min(i, j)− 1)]
8. else if (i > dim− Δ) or ( j > dim− Δ) Then
9. δh(i, j) and δv(i, j) are randomly chosen in [−(dim−

max(i, j)); (dim−max(i, j))]
10. else
11. δh(i, j) is chosen in Ix = [max(Δ, δh(i− 1, j)− 1),Δ] with a

distribution vector P = [1− (size(Ix)− 1)/Δ; 1/Δ; . . . ; 1/Δ]
12. δv(i, j) is chosen in I y = [max(Δ, δv(i− 1, j)− 1),Δ] with a

distribution vector P = [1− (size(I y)− 1)/Δ; 1/Δ; . . . ; 1/Δ]
13. end if
14. end for
15. end for
16. Resize the displacement fields given by δh and δv to the image size through

bicubic interpolation provided by the matlab function imresize{to obtain
the high resolution displacement fields Δh an Δv}

17. for i = 1 : size(image) do
18. for j = 1 : size(image) do
19. Z(i, j) = Y(i + Δh(i, j), j + Δv(i, j)){Apply the displacement fields

to the image, to obtain the attacked image Z, by means of bicubic
interpolation}

20. end for
21. end for

Algorithm 2: Constrained LPCD model (modified version).
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(a) (b)

Figure 3: Examples of displacement fields generated with LPCD DA’s: (a) LPCD with L = 6 and N = 5; (b) C-LPCD with L = 5 and N = 5.

visual system to the geometric distortions introduced by the
LPCD model as a function of the control parameters N and
L. This way, the authors were able to identify the range of
values of the control parameters that do not affect image
quality: for each level of resolution, the maximum value of
N that can be used while keeping the distortion invisible was
found. For instance, in the case of images of size 512 × 512,
the maximum admissible geometric distortions are obtained
by using L = 6, N = 5 for the LPCD model and L = 5, N = 5
or L = 6, N = 7 for the C-LPCD model (for higher level of
resolution, it is not possible to find an adequate value of N
resulting in an invisible distortion).

In Figure 3, two examples of displacement fields gener-
ated with the LPCD attack with L = 6 and N = 5 Figure 3(a)
and the C-LPCD attack with L = 5 and N = 5 Figure 3(b)
are given: as expected, by applying the model to a lower
level of resolution, it is possible to obtain a more uniform
field (for the purpose of visibility, the total displacement
field is cropped and only one vector every sixteen samples
is depicted in the figure).

We can now use the above considerations to estimate
the cardinality of the class of LPCD DAs. For the LPCD
model, the number of possible admissible geometric dis-
tortions is simply equal, neglecting the boundary effects, to
(NS/2L×S/2L)2, where S is the size of the image. Then, if we
consider a 512 × 512 image, and if we take into account
the perceptual analysis in [13], then we obtain 2.93 × 1089

different attacked images.
With regard to the C-LPCD model, we need to refer

again to the theory of Markov chains. Let us consider the
one-dimensional case and the graph of the Markov chain
describing the C-LPCD model. It is possible to construct the
adjacency matrix A of zeroes and ones, where Ai, j = 1 if
in the graph there is an edge going from node i to node j
and zero, otherwise. The number of paths of length n that
start from node i and end into node j is given by the (i, j)
entry of the matrix An. The exponential growth rate of the
number of paths of length n in the graph is en ln λmax , where
λmax is the largest eigenvalue of A. In the C-LPCD case, the
practical values of n are not very large, for instance, for a
512 × 512 image, with L = 5, we have n = 16, then we can
easily compute the matrix An and derive the exact size of the

Table 1: Cardinality evaluation of the LPCD attacks: in the first
row, the number of possible distortions is reported, the second row
refers to the number of typical sequences.

LPCD C-LPCD C-LPCD

L6−N5 L5−N5 L6−N7

Cardinality 2.93× 1089 1.54× 10265 1.54× 1084

2nH 2.93× 1089 4.76× 10114 8.53× 1030

C-LPCD class of attacks. Specifically, by remembering that
the two-dimensional extension of C-LPCD is obtained by
applying the one-dimensional C-LPCD DA first by rows and
then by columns, we obtain the results reported in Table 1.

With the above approach, we were able to count all the
distortions that can be generated with the C-LPCD model.
Nevertheless, as explained in the previous subsection, the
occurrence of a particular distortion configuration depends
on the Markov chain-transition matrix and is not constant
for all the configurations. Thus, for a more appropriate
evaluation of the cardinality of C-LPCD DAs, we need to
refer to the entropy rate of the corresponding Markov chain.
In this context, the following result from information theory
[14] is useful: let {Xi} be a stationary Markov chain with
stationary distribution μ and transition matrix P, then the
entropy rate is

H(X) = −
∑
i j

μi pi j log pi j . (11)

The knowledge of the entropy rate of the Markov chain and
the asymptotic equipartition property (AEP) [14] help us to
find the number of possible distortions that can be generated
with a so-defined Markov chain, since it asymptotically
corresponds to the number of typical sequences, that is, 2nH .
After some algebraic manipulations, we find that in the case
of C-LPCD with N = 5 and L = 5, H(X) is approximately
equal to 1.4881 bits and the number of different distortions
that is possible to generate is 2256·1.4881 � 4.76·10114. In
the same way, in the case of C-LPCD with N = 7 and
L = 6, it is possible to generate 264·1.6055 � 8.53·1030

different distortions. By looking at Table 1, we can see that,
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as we expected, the cardinality of C-LPCD evaluated by
considering the entropy rate of the Markov chain (second
row) is much smaller than the number of possible distortions
(first row). We conclude this section by observing that the
size of both the LPCD and the C-LPCD DAs exhibit an
exponential growth, with the constrained model resulting in
a higher growth rate. For this reason, both classes of attacks
are likely to make watermark detection rather difficult, and
will need to be carefully considered in future works on DA-
resistent watermarking.

4. MARKOV FIELD DA (MF-DA)

One problem with the C-LPCD attack is that it does not take
into account the two-dimensional nature of images since it
is based on a one-dimensional Markov chain. To overcome
this limitation, we introduce a new class of DAs based on the
theory of Markov random fields. We will refer to this new
class of attacks as MF-DA.

Markov random field theory is a branch of probability
theory for analyzing the spatial or contextual dependencies
of physical phenomena. The foundations of the theory of
Markov random fields may be found in statistical physics
of magnetic materials (Ising models, spin glasses, etc.) and
also in solids and crystals, where the molecules are arranged
in a lattice structure and there are interactions with close
neighbors (e.g., Debye’s theory for the vibration of atoms in
a lattice is based on a model of quantum harmonic oscillators
with coupling among nearest neighbors). Markov random
fields are often used in image processing applications,
because this approach defines a model for describing the
correlation among neighboring pixels [15].

4.1. Model description

Many vision problems can be posed as labeling problems in
which the solution of a problem is a set of labels assigned to
image pixels or features. A labeling problem is specified in
terms of a set of sites and a set of labels. Let S = {1, . . . ,m}
be a discrete set of m sites in which 1, . . . ,m are indices (a site
often represents a point or a region in the Euclidean space
such as an image pixel or an image feature). A label is an
event that may happen to a site. Let L = {l1, . . . , ln} be a set
of labels. The labeling problem is to assign a label from L to
each of the sites in S. In the terminology of random fields, a
labeling is called a configuration.

The sites in S are related to one another via a neigh-
borhood system. A neighborhood system for S is defined as
N = {Ni | ∀i ∈ S}, where Ni is the set of sites neighboring i.
The neighboring relationship has the following properties:

(1) a site is not neighboring to itself: i /∈Ni,

(2) the neighboring relationship is mutual: i ∈ Ni′ ⇔
i′ ∈ Ni.

If S is a regular lattice, the neighboring set of i is often
defined as the set of nearby sites within a radius of r:

Ni =
{
i′ ∈ S | [dist

(
i, i′
)]2 ≤ r, i′ /=i

}
. (12)

x
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Figure 4: Structure of a first-order neighborhood system and
corresponding pair-sites cliques.

Once introduced a set S and a neighborhood system N ,
it is possible to define a clique c for (S,N) like a subset of
sites in S. It consists either of a single-site c = {i} (single-site
clique), or a pair of neighboring sites c = {i, i′} (pair-sites
cliques), or a triple of neighboring sites c = {i, i′, i′′} (triple-
sites cliques), and so on.

The collections of single-site, pair-site, and triple-site,
cliques will be denoted by C1, C2, and C3, respectively, where

C1 =
{
i |∈ S

}
,

C2 =
{{
i, i′
} | i′ ∈ Ni, i ∈ S

}
,

C3 =
{{
i, i′, i′′

} | i, i′, i′′ ∈ S are neighbors to one another
}
.

(13)

The collection of all cliques for (S,N) is denoted by C.
Figure 4 shows a first-order neighborhood system, also

called a 4 -neighborhood system, with the four correspond-
ing pair-sites cliques. The x symbol denotes the considered
site and the letters indicate its neighbors.

A random field F = {F1,F2, . . . ,Fm} is a family of
random variables defined on a set S, in which each random
variable Fi takes a value fi in a set of labels L.

F is said to be a Markov random field (MRF) on S with
respect to a neighborhood system N if and only if the two
following conditions are satisfied:

P( f ) > 0, ∀ f ∈ Lm (positivity),

P
(
fi | fS−{i}

) = P
(
fi | fNi

)
, ∀i ∈ S (Markov property),

(14)

where f = { f1, . . . , fm} is a configuration of F (correspond-
ing to a realization of the field), P( f ) is the joint probability
P(F1 = f1, . . . ,Fm = fm) of the joint event F = f , that is,
it measures the probability of the occurrence of a particular
configuration, and

fNi =
{
fi′ , i′ ∈ Ni

}
(15)

denotes the set of values at the sites neighboring i, that is, the
neighborhood N centered at position i. The positivity is due
to technical reasons, since it is a necessary condition if we
want the Hammersley-Clifford theorem (see below) to hold
[16].

To exploit MRFs characteristics in a practical way, we
need to refer to the Hammersley-Clifford theorem [15] for
which F is an MRF on S with respect to N if and only if F
is a Gibbs random field (GRF) on S with respect to N , that
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is, the probability distribution of an MRF has the form of a
Gibbs distribution:

P( f ) = e−(1/T)U( f )

Z
, (16)

where Z is a normalizing constant called the partition
function, T is a constant called the temperature, and U( f )
is the energy function. The energy function

U( f ) =
∑
c∈C

Vc( f ) (17)

is a sum of cliques potentials, Vc( f ), over all possible
cliques C. Thus the value of Vc( f ) depends on the local
configuration on the clique c. The practical value of the
theorem is that it provides a simple way of specifying
the joint probability. Since P( f ) measures the probability
of the occurrence of a particular configuration, we know
that the more probable configurations are those with lower
energies.

In our case, we can model geometric attacks with a
random field F defined on the set S of the image pixels.
The value assumed by each random variable represents the
displacement associated to a particular pixel. Specifically, for
each pixel, we have two values for the two directions x and
y. For this reason, each variable Fi is assigned a displacement
vector fi = ( fx, fy) ∈ L×L. The advantage brought by MRF
theory is that by letting the displacement field of a generic
point (x, y) of the image depend on the displacement fields of
the other points of its neighborhood (let us indicate this set
with the notation N(x, y)), we can automatically impose that
the resulting displacement field is smooth enough to avoid
annoying geometrical distortions.

As we said, an MRF is uniquely determined once the
Gibbs distribution and the neighborhood system are defined.
In the approach proposed here, for each pixel (x, y), only
four neighbors of first order and the corresponding four pair-
site cliques, as described by Figure 4. The potential function
we used is a bivariate normal distribution expressed by:

V((x,y),(x̃, ỹ)) = 1
2πσxσy

exp

{
−
[(

fx − fx̃
)2

2σ2
x

+

(
fy − fỹ

)2

2σ2
y

]}
,

(18)

where fx and fy are the components of the displacement
vector f(x,y) associated to the pixel (x, y), (x̃, ỹ) is a point
belonging to the 4-neighborhood of (x, y), fx̃ and fỹ are the
x,y components of the displacement vector f(x̃, ỹ) associated
to the pixel (x̃, ỹ) and σx and σy are the two components of
the standard deviation vector σ (these values are controlled
by perceptual constraints).

A typical application of MRF in the image processing
field is to recover the original version of an image (or a
motion vector field) by relying on a noisy version of the
image. By assuming that the original image can be described
by means of an MRF, the above problem is formulated
as a maximum a posteriori estimation problem. Thanks
to the Hammersley-Clifford theorem, this corresponds to
an energy minimization problem that is usually solved

by applying an iterative relaxation algorithm to the noisy
version of the image [16]. The problem we have to face here,
however, is slightly different. We simply want to generate
a displacement field according to the Gibbs probability
distribution defined by (16) and the particular potential
function expressed in (18).

To do so, the displacement field is initialized by assigning
to each pixel (x, y) in the image a displacement vector f(x,y)

generated randomly (and independently on the other pixels)
in the interval in L × L with L = { f ∈ Z : −c ≤ f ≤
c} (the value of c is determined by relying on perceptual
considerations). This initial random field is treated as a noisy
version of an underlying displacement field obeying the MF-
DA model. The MF-DA field is then obtained by applying
an iterative smoothing algorithm to the randomly generated
field. More specifically, the technique we used visits all the
points of the displacement field and updates their values
through the iterated conditional mode (ICM) algorithm
detailed in [16]. Specifically, when the ICM algorithm starts,
all the pixels (x, y) of the displacement field are randomly
visited and their displacement vectors updated by trying to
minimize the potential function (18). Specifically, a local
minimum is sought by letting

fopt (x,y) = arg min
f∈(L×L)

∑
(x̃, ỹ)∈N(x,y)

V((x,y),(x̃, ỹ)). (19)

Note that in the above equation, the displacements of the
pixels in the neighborhood of (x, y) are fixed, hence resulting
in a local minimization of the Gibbs potential. After each
pixel is visited and the corresponding displacement gets
updated, a new iteration starts. The algorithm ends when no
new modification is introduced for a whole iteration, which
is usually the case after 7-8 iterations.

As for the LPCD DAs, we considered a multiresolution
version of the MF-DA, where the full-resolution version
of the the displacement field is built by interpolating the
displacement field obtained by applying the MF-DA at a
resolution level L. In Figures 5(a) and 5(b), two examples
of displacement fields generated with the MF-DA model
are shown, using respectively, the parameters L = 6, σ =
(1, 1), c = 6 and L = 4, σ = (7, 7), c = 18. With MF-DA,
it is possible to obtain larger displacement vectors than with
the LPCD attacks (due to the high value of the c parameter),
while keeping the distortion invisible, thanks to the ability
of the iterative conditional mode to generate a very smooth
field, as we can see from Figure 5. A pseudocode description
of the MF-DA is provided by Algorithms 3, 4, and 5.

4.2. Perceptual analysis

In order to evaluate the potentiality of the MF-DA class of
attacks, the perceptual impact of the distortion they generate
must be taken into account. From a perceptual point of view,
MRF DAs have a different behavior for different values of
L, σ , and c, in particular, the image quality increases if the
attacks are generated at a lower level of resolution but, in the
meantime, the number of possible distortions decreases.
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(a) (b)

Figure 5: Examples of displacement fields generated with MRF DA’s: (a) MRF with L = 6, σ = 1, and c = 6; (b) MRF with L = 4, σ = 7, and
c = 18.

1. Read image to be attacked, read level of resolution L, read standard deviation σ , read c
2. dim = size(image)/2L {size of the low resolution displacement fields δh and δv}
3. Initialize matrices δh and δv with random values in the interval [−c, c]
4. diffh = δh
5. diffv = δv
6. while diffh and diffv are /= 0 do
7. temph = δh
8. tempv = δv
9. row = randperm(dim);
10. col = randperm(dim);
11. for k = 1 : dim do
12. for h = 1 : dim do
13. i = col(1, k);
14. j = row(1, h)
15. [sx, sy] = Vopt(i, j, δh, δv , σ , dim){Find the optimum

displacements sx and sy, i.e. the ones minimizing the potential
function}

16. δh(i, j) = sx
17. δv(i, j) = sy
18. end for
19. end for
20. diffh = δh − temph
21. diffv = δv − tempv
22. end while
23. Resize the displacement fields given by δh and δv to the image size through

bicubic interpolation provided by the matlab function imresize{to obtain
the high resolution displacement fields Δh an Δv}

24. for i = 1 : size(image) do
25. for j = 1 : size(image) do
26. Z(i, j) = Y(i + Δh(i, j), j + Δv(i, j)) Apply the displacement fields

to the image, to obtain the attacked image Z, by means of bicubic
interpolat}

27. end for
28. end for

Algorithm 3: MF-DA-based model.

After a visual inspection conducted on a set of images,
we found, for each level of resolution, the maximum value of
the σ components and c that can be used while keeping the
distortion invisible. Specifically, we found that, in case of im-
ages of size 512 × 512, the larger perceptually admissible

displacements are obtained by using L = 6, σ = 1, c =
6, L = 5, σ = 3, c = 8, and L = 4, σ = 7, c = 18, (σ =
σx = σy).

In Figure 6, two examples of images distorted with an
MF-DA attack applied at different levels of resolution are
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(a) (b) (c) (d)

Figure 6: Example of two images attacked with the MF-DA model: (a) original image; (b) attacked image with L = 6; (c) original image; (d)
attacked image with L = 4.

1. Read position of the pixel (i, j), matrices of displacement fields δh and δv ,
standard deviation σ

2. sxtemp = δh(i, j)
3. sytemp = δv(i, j)
4. Vinit = Gibbs(i, j, sx, sy, δh, δv){Initial potential}
5. for sx = −i + 1 : dim− i do
6. for sy = − j + 1 : dim− j do
7. Vtemp = Gibbs(i, j, sx, sy, δh, δv)
8. if Vtemp < Vinit then
9. Vinit = Vtemp

10. sxtemp = sx
11. sytemp = sy
12. end if
13. end for
14. end for
15. sx = sxtemp

16. sy = sytemp

17. return sx and sy

Algorithm 4: Function Vopt(i, j, δh, δv , σ , dim).

1. Read position of the pixel (i, j), displacements sx and sy, matrices of
displacement fields δh and δv

2. N(i, j) = [(i− 1, j); (i + 1, j); (i, j − 1); (i, j + 1)]N(i, j) is a first order
neighborhood system associated with the pixel (i, j)

3. V((i, j),(ĩ, j̃)) =
1

2πσxσy
exp

{
−
[(

sx − δh
(
ĩ, j̃
))2

2σ2
x

+

(
sy − δv

(
ĩ, j̃
))2

2σ2
y

]}

4. Potential = ∑
(ĩ, j̃)∈N(i, j)

V((i, j),(ĩ, j̃))

5. return Potential

Algorithm 5: Potential funtion Gibbs(i, j, sx, sy, δh, δv).

shown: in the Barbara image, the MRF is applied at a lower
level of resolution ( L = 6), while in the Lena image, the
distortion is generated at a higher level of resolution (L = 4).
In both cases by comparing the original image (on the left)
with the attacked one (on the right), we can notice a slightly
perceptible distortion that is, however, not annoying due to
the smoothness constraints of the field (the distortion is not

visible if only the attacked image is provided so that the
comparison with the original image is not possible).

Regarding the cardinality evaluation of this new class
of DAs, in principle all the displacement fields are allowed,
with the most annoying distortions corresponding to very
low probabilities (and thus very large Gibbs potential). In
order to evaluate the cardinality of the MF-DA class, then,
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Table 2: Value of the parameters used for the experiments.

Parameter Value

Stirmark

b 0

d 0

i 0

o 0

R 0.1

MF-DA c
dim

2

DCT system
k 5

L 25000

M 16000

DWT system k 2

a first step would be to calculate the entropy rate of the field.
However, this is a prohibitive task given that no technique
is known to calculate the entropy rate of even the simplest
MRFs.

5. DESYNCHRONIZATION PROPERTIES OF
THE VARIOUS DAS

In this section, we evaluate the desynchronization capability
of the various classes of attacks. To do so, two very simple
watermarking algorithms were implemented and the ability
of the various DAs to inhibit watermark detection was eval-
uated. The source image database used for the experiments
includes the six standard images: Baboon, Barbara, Boats,
Goldhill, Lena, and Peppers. The source image database and
the software we used for the experiments are available on
http://www.dii.unisi.it/∼vipp.

The tested algorithms include

(i) blind additive spread spectrum in the frequency
domain (BSS-F),

(ii) blind additive spread spectrum in the wavelet domain
(BSS-W).

In both the systems, the watermark consists of a sequence
of nb bits X = {x(1), x(2), . . . , x(nb)}; each value x(i) being a
random scalar that is either 0 or 1 with equal probability.

In the BSS-F algorithm, the watermark is inserted into
the middle frequency coefficients of the full-frame DCT
domain. The DCT of the original image is computed, the
frequency coefficients are reordered in a zig-zag scan, and
the first L + M coefficients are selected to generate a vector
W = {t(1), t(2), . . . , t(L), t(L + 1), . . . , t(L + M)}. Then, in
order to obtain a tradeoff between perceptual invisibility
and robustness to image processing techniques, the lowest L
coefficients are skipped and the watermark X is embedded in
the last M coefficients T = {t(L+ 1), . . . , t(L+M)} to obtain
a new vector T′ = {t′(L+ 1), . . . , t′(L+M)} according to the
following rule:

T′ = T + kPN if bit = 0,

T′ = T − kPN if bit = 1,
(20)
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MRF.s7L4
MRF.s3L5
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CLPCD.N7L6

Figure 7: Desynchronization capabilities of the various DAs against
the DCT domain system.
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Figure 8: Desynchronization capabilities of the various DAs against
the DWT domain system.

where k is the embedding strength and PN is a uniformly
distributed pseudorandom sequence of 1 and −1. (20) refers
to the embedding of one bit, the extension to multiple bits
consists of applying (20) for each bit considering each time a
different subset of 0 T and a different PN sequence (a more-
detailed description of the watermark embedding is given by
the Algorithm 4).

In watermark detection, the DCT is applied to the water-
marked (and possibly attacked) image, the DCT coefficients
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1. Read image to be watermarked, length of the watermark nb, energy of the
watermark k, seed key, L, M

2. Generate a random nb long message
3. Perform full-frame DCT
4. Reorder the DCT coefficients into a zig-zag scan
5. Select the coefficients: TL+M

L = {t(L), t(L + 1), . . . , t(L + M)}middle
frequency coefficients to be watermarked}

6. for bit = 1: nb do
7. Generate an antipodal PN sequence of length lbit =M/nb
8. a = (bit− 1)∗lbit + 1 and b = (bit− 1)∗lbit + lbit
9. if bit = 0 then
10. T̂b

a = Tb
a + kPN

11. else
12. T̂b

a = Tb
a − kPN

13. end if
14. end for
15. Reinsert the vector T̂ in the zig-zag scan
16. Perform inverse scan
17. Perform inverse full frame DCT
18. Save watermarked image and message

Algorithm 6: DCT domain watermarking: embedding.

1. Read watermarked image, seed key, length of the watermark nb and load
inserted message {needed to evaluate bit error rat}

2. Perform full frame DCT transform
3. Reorder the DCT coefficients into a zig-zag scan
4. Select the coefficients: T∗L+M

L = {t(L), t(L + 1), . . . , t(L + M)}{middle
frequency watermarked coefficients}

5. for bit = 1: nb do
6. Generate an antipodal PN sequence of length lbit =M/nb
7. Compute the correlation coefficient as expressed in (21) between

PN and T∗ba where a = (bit− 1)∗lbit + 1 and b = (bit− 1)∗lbit + lbit
8. end for
9. for bit = 1: nb do
10. if correlation(bit) > 0 Then
11. extracted message(bit) = 0
12. else
13. extracted message(bit) = 1
14. end if
15. end for
16. return Bit Error Rate

Algorithm 7: DCT domain watermarking: decoding.

are reordered into a zig-zag scan, and the coefficients from
the (L+1)th to the (L+M)th are selected to generate a vector
T∗ = {t(L + 1), . . . , t(L + M)}. For each bit, the correlation
coefficient between the corresponding subset of the T∗

vector and a new PN sequence is evaluated and compared
to a threshold (equal to 0) to recover the embedded bit.

The correlation coefficient is evaluated in the following
way:

r(A,B) =
∑n

i=1

(
A(i)− μ(A)

)(
B(i)− μ(A)

)
√(∑n

i=1

(
A(i)− μ(A)

)2)(∑n
i=1

(
B(i)− μ(B)

)2) ,

(21)

where A and B are two vectors of same size n and μ is the

mean operator. The decision rule states that,

bit = 0 if r > 0,

bit = 1 if r < 0.
(22)

In the BSS-W watermarking system, the watermark is
added to the DWT coefficients of the three largest detail (i.e.,
LH, HL, HH) subbands of the image. The embedding and
decoding functions are implemented in the same way of the
previous system but the watermark is inserted in the wavelet
coefficients obtained with a one-step wavelet decomposition.
A more-detailed description of the two watermarking sys-
tems is given by the Algorithms 6, 7, 8, and 9.
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1. Read image to be watermarked, length of the watermark nb, energy of the
watermark k, seed key

2. Generate a random nb long message
3. Perform a one step wavelet decomposition using Haar filter
4. Reorder the LH, HL and HH components into a vector T
5. for bit = 1: nb do
6. Generate an antipodal PN sequence of length lbit = size(T)/nb
7. a = (bit− 1)∗lbit + 1 and b = (bit− 1)∗lbit + lbit
8. if bit = 0 then
9. T̂b

a = Tb
a + kPN

10. else
11. T̂b

a = Tb
a − kPN

12. end if
13. end for
14. Perform a one step inverse wavelet decomposition using Haar filter
15. Save watermarked image and message

Algorithm 8: DWT domain watermarking: embedding.

1. Read watermarked image, seed key, length of the watermark nb and load
inserted message {needed to evaluate bit error rate}

2. Perform a one step wavelet decomposition using Haar filter
3. Reorder the LH, HL and HH components into a vector T∗

4. for bit = 1: nb do
5. Generate an antipodal PN sequence of length lbit = size(T)/nb
6. Compute the correlation coefficient as expressed in (21) between

PN and T∗ba where a = (bit− 1)∗lbit + 1 and b = (bit− 1)∗lbit + lbit
7. end for
8. for bit = 1: nb do
9. if correlation(bit) > 0 then
10. extracted message(bit) = 0
11. else
12. extracted message(bit) = 1
13. end if
14. end for
15. return Bit Error Rate

Algorithm 9: DWT domain watermarking: decoding.

The six standard images were watermarked with the
systems described above with different payloads and then
attacked with RBA and the two new classes of attacks.
Each image is attacked with a different realization of the
field. In Table 2, the values of the parameters used for the
experiments are shown. Figures 7 and 8 show the ability of
the RBA and of the two new DAs to inhibit correct decoding.
The average of the bit-error rate obtained for the six images
is plotted versus different values of the payload for both the
watermarking systems.

For both the systems, the RBA attack is not able to
prevent a correct watermark decoding, in fact, the RBA plot
is not visible in the figures because the bit-error rate is always
equal to zero. A more powerful class of DAs is the LPCD DAs
that in both the systems gives a bit-error rate much higher
than the RBA attack. The MF-DA always results in a very
high bit-error rate also applying the attack to a lower level
of resolution.

6. CONCLUSION

In this paper, we introduced two new classes of desynchro-
nization attacks that extend the class of local geometric
attacks so to allow for more powerful attacks with respect
to classical RBA. The effectiveness of the new classes
of DAs is evaluated from different perspectives including
perceptual intrusiveness and desynchronization efficacy. The
experimental results showed that the two new classes of
attacks are more powerful than the local geometric attacks
proposed so far.

This work can be seen as a first step towards the charac-
terization of the whole class of perceptually admissible DAs,
which in turn is an essential step towards the development of
a new class of watermarking systems that can effectively cope
with them.

Future works may include the development of a percep-
tual metric suited for geometric distortions and the use of
new potential functions.
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