
Hindawi Publishing Corporation
EURASIP Journal on Information Security
Volume 2007, Article ID 79048, 7 pages
doi:10.1155/2007/79048

Research Article
Joint Source, Channel Coding, and Secrecy

EnricoMagli, Marco Grangetto, and Gabriella Olmo

Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Correspondence should be addressed to Enrico Magli, enrico.magli@polito.it

Received 1 March 2007; Accepted 13 August 2007

Recommended by Qibin Sun

We introduce the concept of joint source coding, channel coding, and secrecy. In particular, we propose two practical joint schemes:
the first one is based on error-correcting randomized arithmetic codes, while the second one employs turbo codes with compres-
sion, error protection, and securization capabilities. We provide simulation results on ideal binary data showing that the proposed
schemes achieve satisfactory performance; they also eliminate the need for external compression and ciphering blocks with a sig-
nificant potential computational advantage.

Copyright © 2007 Enrico Magli et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION AND BACKGROUND

The design of modern multimedia communication systems
is very challenging, as the system must satisfy several con-
trasting requirements. On one hand, because of the typically
limited transmission bandwidth, compression is necessary in
order to serve the highest possible number of users. On the
other hand, compression typically renders the transmission
very sensitive to errors or packet losses, which can very eas-
ily decrease the quality perceived by the final users. In addi-
tion to these problems, the ease of access and distribution of
digital multimedia contents makes it possible to infringe the
rights of the copyright owners by generating copies of the
content which are exactly identical to the original. Therefore,
the last years have witnessed an enormous growth of activity
in the field of digital rights management.

The design issues mentioned above have received a great
deal of attention, either individually or jointly. The last
decades have seen a lot of technical advances in source coding
(e.g., context-based coding) and channel coding (e.g., turbo
codes and low-density parity-check codes). Joint source and
channel coding have also been considered; while different
source and channel codes can be used in a joint scheme in or-
der to achieve the desired balance between source and chan-
nel coding (see, e.g., [1]), it is known that both source codes
and channel codes can be used to perform the joint task. For
example, ternary arithmetic coders (AC) with a forbidden
symbol, along with their soft decoding, have been proposed
for compression and error protection [2]. On the other hand,

turbo codes have also been used for compression and pro-
tection; the compression is obtained by not sending the sys-
tematic bits and heavily puncturing the parity bits, while the
decoder can take advantage of knowledge of the source prior
probabilities [3].

The problem of joint compression and security has also
been considered. In [4], a binary arithmetic coder with secu-
rity capabilities has been proposed, which employs pseudo-
random swapping of the intervals in order to prevent decod-
ing by an unauthorized user without knowledge of the pseu-
dorandom key; this scheme has been generalized in [6, 20]
to arbitrary partitions of the unit interval. With arithmetic
and Huffman codes, security can also be achieved through
proper design of the probability model, as shown in [5]. The
main problem of joint compression and security is to make
sure that security does not decrease the compression perfor-
mance. To do so, encryption must take place after compres-
sion, even though it has been shown [6] that in some cases
the reverse is also possible by using distributed source coding
ideas.

Some work has also been presented regarding the
problem of joint channel coding and security. Following
McEliece’s pioneering work [7], several authors have inves-
tigated the possible use of channel codes for security appli-
cations. In [8], the authors propose to use punctured turbo
codes and to adapt the puncturing pattern in order to obtain
security. In [9], it is also proposed to exploit perfect punc-
tured erasure-correcting codes, in such a way that correct de-
coding is guaranteed provided that at least as many symbols

mailto:enrico.magli@polito.it

2 EURASIP Journal on Information Security

as the input symbols are received out of the systematic and
parity bits, and the puncturing pattern is known.

In this paper, we present the first attempt at design-
ing practical algorithms that perform source coding, chan-
nel coding, and security within one single tool. This is
very important in light of simplifying the system design, as
well as providing advanced features. For example, if chan-
nel coding was applied to a JPEG 2000 compressed and se-
cured image, after channel coding, the data would not be
format-compliant; moreover, it would be difficult to per-
form compressed-domain processing such as rate adaptation
or resolution-progressive transmission, because these opera-
tions would require channel decoding. On the other hand,
having a single tool provides maximum flexibility in han-
dling the compressed, secured, and protected file.

In particular, inspired by the duality between source and
channel coding, we propose two algorithms based on com-
pression and channel coding, respectively. The first algo-
rithm employs arithmetic codes for error correction [2], im-
proved with interval randomization as in [4]. The second al-
gorithm is based on turbo codes, can exploit the prior source
probability to improve compression, and randomizes the in-
terleaver, the puncturing pattern and the bitstream in order
to achieve secrecy. Both algorithms have the desirable feature
that security is obtained without any degradation of com-
pression performance.

This paper is organized as follows. In Sections 2 and 3, we
describe the two algorithms, as well as their security issues. In
Section 4, we show performance results, and in Section 5, we
draw some conclusions.

2. PROPOSED ALGORITHM 1: ERROR-CORRECTING
RANDOMIZED ARITHMETIC CODING

The first proposed algorithm is based on the ternary arith-
metic coder with forbidden symbol described in [2].

2.1. Encoder

We consider a binary memoryless source X with probabili-
ties P0 and P1, encoded by means of a ternary AC with alpha-
bet “0,” “1,” and μ (the forbidden symbol), with probability
distribution P0(1 − ε), (1 − P0)(1 − ε), and ε. We consider
the encoding of a length-L string X, which is mapped onto a
variable-length sequence Y of length LY bits. The introduc-
tion of μ produces an amount of artificial coding redundancy
per encoded bit equal to−log 2(1−ε), at the expense of com-
pression efficiency.

The AC encoding procedure is based on the classical re-
cursive probability interval partition known as Elias coding;
at each iteration, the interval is split into three subintervals
that represent symbols “0”, “1”, and μ, and the subinterval
corresponding to “0” or “1” is selected depending on the
value of the input bit. Unlike a classical AC, in which the
relation between interval and symbols is fixed and known
by both the encoder and the decoder, in the proposed, al-
gorithm we extend the approach of [4] to the ternary coder,
by randomizing the order of the three intervals at each en-
coding step (i.e., at each input bit). By doing so, even in the

error-free case, the decoder is going to be able to decode the
received codeword only if it can replicate the sequence of
pseudorandom numbers (i.e., the key) that have been used
to randomize the intervals. Interestingly, this randomization
does not affect the bit rate, since the length of the final inter-
val is the same as the nonrandomized coder; the redundancy
is related to the introduction of the forbidden symbol, and
has the purpose of allowing the correction of transmission
errors.

At each input bit, the interval ordering is selected
through the sample value of a random variable S, which is
used to pick one out of the six possible orderings of “0”,
“1”, and μ; for maximum randomization, all orderings have
the same occurrence probability, equal to 1/6. The sample
drawing of random variable S is done using a pseudorandom
number generator with seed K , which represents the encryp-
tion key. Note that, since this coder encrypts one bit at a time
during the AC process, it can be functionally seen as a stream
cypher.

2.2. Decoder

The coding redundancy can be exploited by the decoder for
error correction. Let us consider that Y is transmitted, and
the receiver observes the sequence R of length LR = LY ,
through a channel with transition probability P(R|Y). The
objective of the MAP decoder is to select the most likely in-
put string

̂X = arg max
X

P(X|R) = arg max
X

P(R|Y)P(X)
P(R)

. (1)

The MAP metric is characterized by the a priori source
term P(X), and the probability P(R) of observing a cer-
tain sequence at the receiver. We can write P(R) =
∑

Y∈BLR
P(R|Y)P(X), where BLR is the subset of all coded se-

quences whose length is LR bits, with LR the length of R.
The estimation of ̂X is carried out using a sequential de-

coding technique as detailed below.

2.3. Detailed algorithm implementation and setup

The AC encoding procedure maps the input sequence X onto
the probability interval I(X), represented by the codeword
Y = [Y0,Y1, . . . ,YLR−1] of length LR. The encoding is based on
the iterative selection of the probability interval I(X), which
is progressively refined according to the input source symbols
Xk, k = 1, . . . ,L. At the first iteration, the interval is initial-
ized to I0 = [0, 1), that is, the whole probability space. For
k = 1, . . . ,L, the interval Ik = [Ilk, Irk) is progressively selected
according to the following rules:

Ik =
{[

Ilk−1, Ilk−1 + |Ik−1|P
(

Xk−1 = 0
))

, ifXk−1 = 0,
[

Irk−1 − |Ik−1|P
(

Xk−1 = 1
)

, Irk−1

)

, ifXk−1 = 1,
(2)

where |Ik| = Irk − Ilk represents the interval length at iter-
ation k. After all source bits have been processed, the in-
terval IL = I(X) is identified along with the codeword Y,

Enrico Magli et al. 3

which corresponds to the binary representation of the value
v(Y) : v(Y) ∈ I(X), chosen so as to minimize the number
of bits in Y. In order to guarantee the decoding uniqueness,
either the number of input symbols L is provided to the de-
coder, or an end-of-file symbol is used to terminate the de-
coding process.

The coding procedure described above is made feasible in
practice by means of finite precision arithmetic, with proper
scaling of the interval Ik in order to avoid the underflow con-
dition. Furthermore, the interval scaling makes the sequen-
tial encoding easier. For example, as soon as |Irk| < 0.5, the
most significant bit of Y is fully determined and can be trans-
mitted to the decoder, and the interval can be scaled up by a
factor of two. The results reported in this paper are obtained
with a 32-bit fixed-point implementation.

In principle, the metric (1) must be evaluated for all
possible transmitted strings Y ∈ BLR . This is practically
infeasible for reasonable values of L, and therefore subop-
timal sequential search is employed. The decoding metric
is decomposed into additive terms m = log [P(X|R)] =
∑ LR−1

j=0 mj , with additive branch metric mj = log [P(Rj|Yj)]+
log [P(Xj)]− log [P(Rj)]; P(Xj) represents the a priori prob-
ability of the source bits output by the arithmetic decoder in
correspondence of the jth bit of Y, and P(Rj) the probability
of the jth bit of R. As in [2], we let P(Rj) = 0.5, assuming
that all the received sequences in BLR are equally probable.

The problem then recasts as a search along the binary tree
of all sequences of length LR. In this paper, the M-algorithm
[10] is used to this purpose. At each depth j, the M-algorithm
limits the search space to the M nodes that exhibit the high-
est posterior probability; for this reason, it belongs to the
so-called breadth-first techniques. At each iteration, all the
stored nodes are extended one step forward and only the best
M, out of the 2M possible paths, are kept for the next re-
cursion. When the algorithm reaches the maximum depth
j = N−1, the surviving path with the best accumulated met-
ric is taken as the best estimate ̂Y. Note that, because of the
search space reduction, the correct path can be irreversibly
dropped during the recursions, leading to a decoding failure.
We have selected M = 256 as a good compromise between
performance and complexity.

2.4. Security

The cryptanalysis of a randomized binary arithmetic coder
has been presented in [4]; the main result is due to [11] and
shows that resynchronization of the first b bits of a binary
arithmetic coded string requires no less than O(2b/2) decod-
ing attempts. This leads to huge complexity for a brute force
attack, also in case only partial resynchronization is accept-
able. This bound, which is derived counting the number of
existing sequences with b/2 ones and b/2 zeros, is also a lower
bound for the ternary coder as used in this paper.

It is also worth investigating the robustness of random-
ized arithmetic coders towards plaintext attacks. While in
general these coders are robust towards known-plaintext at-
tacks, in [12], it has been shown that if the security lies in
the adaptive probability model, these algorithms are suscep-

Probability estimation

CC1

CC2

X

K

Interleaver

Pseudorandom
generator

P
u

n
ct

u
ra

ti
on

Scrambler Compressed file

Figure 1: Block diagram of the joint encoder.

tible to chosen-plaintext attacks; specifically, only w+ 2 sym-
bols are required to break a probability of w bits. The secu-
rity of randomized arithmetic coders as in [4] does not rely
on the adaptive probability model, but rather on the random
interval swapping. However, it has been pointed out in [13]
that such randomized arithmetic coders are also susceptible
to chosen-plaintext attacks. In fact, if an attacker has access to
the randomized encoder, they would need to perform a num-
ber of trials on the order of N to determine an N-bit pseudo-
random swapping sequence; this could be done by compar-
ing N-output pairs corresponding to inputs that differ in ex-
actly one symbol. In [13], input and output permutations are
used to make the arithmetic coder secure to chosen-plaintext
attacks; this could also be applied to our proposed algorithm.

3. PROPOSED ALGORITHM 2: PUNCTURED
TURBO CODING

3.1. Encoder

The block diagram of the second algorithm is shown in
Figure 1. The private key K is used to initialize the pseudo-
random number generator; the purpose of this generator is
to create a random interleaver of suitable size for the turbo
coding process as well as a pseudorandom puncturing pat-
tern.

The core of the encoder lies in the parallel turbo code,
which consists in the blocks labelled as first constituent con-
volutional code “CC1,” “Interleaver,” and second constituent
convolutional code “CC2” in Figure 1. In particular, the bi-
nary source information string X is encoded using the (CC1),
generating a first set of parity bits in addition to the system-
atic information bits. Since, unlike a separated source and
channel coding scenario, in our setting, the turbo code also
performs compression, only the parity bits from CC1 are re-
tained, whereas the systematic bits are discarded.

A known permutation (interleaving) is applied to the in-
put source data. The permutation is such that the position of
each and every input symbol is scrambled in the interleaved
sequence, according to a pseudorandom order. The purpose
of the interleaver is mainly to increase the number of states of
the turbo coder, and not to provide security. However, the in-
terleaving operation does add some security if the scrambling

4 EURASIP Journal on Information Security

rule is kept secret, as is the case of the proposed scheme. The
interleaved sequence is fed as input to the (CC2), which gen-
erates a second set of parity bits; as done with CC1, the sys-
tematic bits are discarded.

The parity bits from CC1 and CC2 are input to the punc-
turation block. As has been said, unlike other turbo cod-
ing schemes, the systematic information bits are discarded.
This is necessary for two reasons. The first is that we want
to achieve compression, and hence we need to transmit few
bits. The second, equally important, is that the systematic bits
would represent plaintext that is left in the clear; this would
be a threat to the system security, as these bits would leak
information on the other plaintext bits through the convo-
lutional codes. Since in our implementation the constituent
convolutional codes have rate 1/2, for an information string
of L-bits we obtain 2L parity bits. The L systematic bits are
discarded, and the parity bits are punctured as much as nec-
essary in order to obtain the desired bit rate; a pseudorandom
puncturing pattern is employed.

The punctured bits are further scrambled using a pseu-
dorandom scrambling pattern. This has the purpose of com-
plicating a possible attack aiming at estimating the punctura-
tion pattern, possibly using different coded and protected
versions of the same image, as it makes it impossible to carry
out statistical inference on corresponding bits in two or more
coded sequences.

The final compressed file contains the punctured and
scrambled parity bits; moreover, it also contains the proba-
bility P0 = P(Xi = 0) of the original sequence, which can
be used by the decoder to improve the turbo decoder perfor-
mance.

3.2. Decoder

The interleaver, puncturation pattern, and scrambling pat-
tern are not explicitly revealed to the decoder. However, the
encoder and the decoder share common randomness; hence
if the decoder knows the private key used by encoder, it will
be able to generate the same interleaver, puncturation pat-
tern, and scrambler employed at the encoder side. In this
case, correct decoding is possible.

The decoding process works as follows. A schematic is
given in Figure 2, while a detailed description along with
pseudocode is available in [14]. The punctured parity bits
Xp1 and Xp2 related to constituent code “CC1” and “CC2”
are input to a maximum a posteriori decoder of the respec-
tive convolutional code. Each decoder generates soft decod-
ing information in terms of the extrinsic information Le12 of
decoder 1 to be passed to decoder 2, and Le21 of decoder 2
to be passed to decoder 1. An interleaver and a deinterleaver
are inserted between decoders 1 and 2 so as to match the en-
coding process. The information exchange between decoder
1 and decoder 2 is iterated for a given number of times; af-
ter the last iteration, Le12 and Le21 are used to estimate the
systematic bits. Note that the turbo decoder is also able to ex-
ploit the a priori source information, that is, the probability
P0. This is very important in order to achieve a good com-
pression ratio, and is obtained by modifying the extrinsic in-
formation of each the two recursive convolutional decoders;

Deinterleaver

Xp1

Xp2

CC1 MAP
decoder

Le12
Le21Interleaver

CC2 MAP
decoder

Figure 2: Block diagram of the turbo decoder.

in particular, the extrinsic information is modified by adding
the term log ((1− P0)/P0).

3.3. Detailed algorithm implementation and setup

For the Algorithm 2, we have employed a turbo code based
on two rate-1/2 16-state constituent convolutional coders,
using a uniform random interleaver. The turbo code soft-
ware we have used is an amended version of the software,
distributed with [15] and freely available on the Internet at
www.the-art-of-ecc.com, which implements the punctured
parallel turbo encoder and decoder as described by the pseu-
docode in [14]. The constituent convolutional codes have
rate-1/2
generator (31,27) octal (16 states), and the interleaver is ran-
dom. The turbo decoder is a BCJR decoder with a limit of 15
iterations. This turbo code has been improved as follows.

(i) Since we need to select the bit rate with high precision,
we have modified the available regular puncturing pat-
tern implementing a pseudorandom puncturing pat-
tern.

(ii) Since, in addition to channel coding and decoding, the
turbo code also performs compression, the BCJR de-
coder has been improved by adding the a priori term
to the extrinsic information. In particular, denoting as
Lik the extrinsic information on Xk produced in con-
stituent decoder Di, with i ∈ {1, 2}, the modified ex-
trinsic information is Lik + log ((1− P0)/P0).

3.4. Security

The security of the proposed scheme lies in the fact that
the unauthorized decoder does not know some information
which is necessary for decoding; this is akin to the system
proposed in [4], where a pseudorandom interval swapping
is used to desynchronize the decoder. In general, this kind
of systems are potentially prone to chosen-plaintext attacks,
since it is often possible to come up with specific input se-
quences that will bring the encoder in a known state from
which it is possible to estimate the key. However, these algo-
rithms are generally robust towards known-plaintext attacks.
A typical chosen-plaintext attack to channel-coding based
encryption schemes needs to estimate the key from chosen
input-output pairs [16]. In [8], this is shown to be extremely
difficult; in the proposed scheme, we have added the scram-
bler block so as to make the system secure against attacks that
aim at estimating the code structure using multiple images

file:www.the-art-of-ecc.com

Enrico Magli et al. 5

encoded with the same interleaver and puncturation. In [8],
it is also shown that the ciphertext-only attack to turbo codes
is an NP-complete problem if the puncturation matrix is not
known. Obviously, the lack of knowledge of the interleaver
along with the presence of the scrambler improve the secu-
rity of the proposed system even further with respect to [8].

It should be noted that, in turbo coding, the interleaver
is designed to improve the coding performance, and not to
guarantee secrecy. The proposed scheme does not rely on the
interleaver to achieve secrecy, but rather on the puncturation
pattern and on the scrambler, while the interleaver simply
adds another intermediate level of scrambling. This is nec-
essary in order to prevent attacks based on estimation of the
interleaver itself. If the interleaver was truly random, it would
be extremely difficult for an attacker to estimate it using other
than a brute force search. However, some interleavers like S-
random do exhibit some structure that could potentially be
exploited by an attacker. Note that the interleaver acts as a
“diffusion” step, which helps improving the secrecy of the
overall system.

4. RESULTS

We tested the proposed schemes using ideal binary sources
transmitted over a binary symmetric channel with transi-
tion probability p. In the following, we refer to the algorithm
based on arithmetic codes as Algorithm 1, and the algorithm
based on turbo codes as Algorithm 2.

For both algorithms, the results have been averaged over
1000 runs with block size L = 2000, hence 2·106 bits have
been simulated.

Table 1 reports the residual bit error rate (BER) of the de-
coded data block when the BER on the transmission channel
is equal to p = 5·10−3. The rate RC represents the equivalent
rate of a channel code applied after compression. That is, for
a block size equal to L, the number of bits transmitted on the
channel is equal to L·H·RC , where H is the entropy of the
source. The source has prior probability P0 = 0.8.

As can be seen from Table 1, a decoder with knowledge
of the private key is able to reconstruct the data with a small
error provided that the rate is sufficiently high.

For RC = 8/9, Algorithm 2 does not work. Note that
RC = 8/9 means that with P0 = 0.8, only 0.8122 bits per
sample (bps) are transmitted on the channel, as compared to
the rate of 1 bps for the original data. For RC = 4/5, the bit
rate is 0.9024 bps; the performance is still not good, although
the decoder halves the error rate with respect to the previ-
ous case. Error-free transmission is obtained with RC = 2/3,
which corresponds to a bit rate of 1.0829 bps. These results
reflect a typical behavior of turbo codes; when the BER is
below a certain threshold, almost all errors are corrected,
whereas a very large error probability is obtained in the op-
posite case. For Algorithm 2, even with a relatively high-
channel BER (p = 5·10−3), a minimum overhead is required
to obtain compression, error correction, and secrecy; in fact,
it can be seen from the previous example that, if the probabil-
ity of the least probable symbol is sufficiently small, compres-
sion based on channel codes turns out to be very effective. As
can be seen from Table 1, Algorithm 1 provides better results

Table 1: Residual BER for block size L = 2000 and prior probability
P0 = 0.8, as obtained by a decoder with knowledge of the private
key.

RC Algorithm 1 Algorithm 2

8/9 0.038 0.191614

4/5 0.0057 0.099489

2/3 1.6·10−5 <0.5·10−6

Table 2: Residual BER for block size L = 2000 and prior probability
P0 = 0.9, as obtained by a decoder with knowledge of the private
key.

RC Algorithm 1 Algorithm 2

8/9 0.014 0.091261

4/5 0.0014 0.043532

2/3 2.2·10−5 <0.5·10−6

Table 3: Residual BER for block size L = 2000 and prior probability
P0 = 0.5, as obtained by a decoder with knowledge of the private
key.

RC Algorithm 1 Algorithm 2

8/9 7.4·10−2 0.496

4/5 8.1·10−3 0.496

2/3 1.7·10−4 0.483

for small levels of redundancy, and slightly worse results at
higher levels, for example, RC = 2/3.

Table 2 shows the results of a similar simulation, with dif-
ferent prior probability P0 = 0.9. The results are very similar
to the previous case. For RC = 8/9, only 0.5276 bps are trans-
mitted on the channel, as compared to the rate of 1 bps for
the original data. For RC = 4/5, the bit-rate is 0.5862 bps, and
for RC = 2/3, it is 0.7035 bps. As in the previous case, Algo-
rithm 2 does not work at low redundancy, and works very
well after a certain threshold, while Algorithm 1 works well
at all redundancies, though slightly worse than Algorithm 2
at RC = 2/3. Out of the 6000 decoding attempts whose re-
sults are reported in Tables 1 and 2, Algorithm 1 yielded 7
decoding failures.

We also tested the algorithms for a symmetric source with
probability P0 = 0.5. This case is representative of a source
that is not compressible, but still has to be secured and trans-
mitted. In general, the results, shown in Table 3, are worse
than for P0 = 0.8 and P0 = 0.9; since this source is not com-
pressible, the amount of rate left for redundancy is smaller
and, as a consequence, the residual BER is higher. This is es-
pecially apparent for Algorithm 2, since even at RC = 2/3,
the turbo code is in the error floor and does not correct
the errors. It takes a slightly more powerful code, for exam-
ple, RC = 0.6, for the turbo code to start correcting errors.
The performance degradation for Algorithm 1 is much less
dramatic, though the algorithm indeed performs worse than
that with higher P0.

The following experiments show the results obtained by
a decoder that attempts to recover the original string without
knowing the key.

6 EURASIP Journal on Information Security

Table 4: Residual BER for block size L = 2000 and different prior
probabilities, as obtained by a decoder that does not have knowledge
of the interleaver.

RC P0 = 0.8 P0 = 0.9

8/9 0.196 0.097

4/5 0.1915 0.0953

2/3 0.1855 0.089

Table 5: Residual BER for block size L = 2000 and different prior
probabilities, as obtained by a decoder that does not have knowledge
of the puncturation pattern.

RC P0 = 0.8 P0 = 0.9

8/9 0.203 0.1013

4/5 0.2049 0.1018

2/3 0.216 0.1038

We first present the results for Algorithm 2. Table 4 shows
the effect of decoding the binary string with knowledge of
the puncturation pattern and the scrambler, but without
knowledge of the interleaver. The decoder generates a ran-
dom interleaver different from that used by the encoder and
attempts to decode the string. As can be seen, the resid-
ual BER for these attempts is always very high and typically
close to min (P0, 1 − P0). This means that the decoder here
is only exploiting the prior source information in order to
limit the error probability. A possible improvement, which is
left for further work, is to modify the decoder so that it es-
timates the prior probabilities from the data, as suggested in
[3]; in this case, the estimation obtained using a wrong in-
terleaver would be highly inaccurate, and the residual BER
would likely be close to 0.5.

Table 5 shows the results of a similar test, assuming that
the decoder knows the scrambling pattern and the inter-
leaver, but does not know the puncturation pattern. The re-
sults are very similar to the previous case with the residual
BER being very high.

For Algorithm 1, similar results are obtained. The decod-
ing process of Algorithm 1 is complicated by the event of a
decoding failure, which becomes very likely when the proba-
bility set is mismatched, as happens when one tries to decode
a randomized AC codeword without knowing the key. The
following setups have been tested, and all of them yielded
100% of decoding failures. We denote by ε̂ and ̂P0 the proba-
bilities used by the decoder as follows:

(i) ε̂ > ε;
(ii) ε̂ = 0.99·ε;

(iii) ε̂ = 0;
(iv) ̂P0 = 0.95·P0.

In one setting, we have set P0 to the correct value and ε̂ =
0.5·ε; this tests the security of Algorithm 1 when the intervals
are multiplied by powers of two, which is a more critical case
for the AC. In this simulation, 50% of the decoding attempts
yielded a failure; the residual BER for the successful attempts
is reported in Table 6; as can be seen, even when the decoding
is successful, Algorithm 1 yields very high BER.

Table 6: Residual BER of Algorithm 1 for block size L = 2000, P0

known, and ε̂ = 0.5·ε.
RC P0 = 0.8 P0 = 0.9

8/9 0.331 0.192

4/5 0.335 0.201

2/3 0.347 0.214

5. CONCLUSIONS

We have proposed two practical algorithms able to perform
jointly source coding, channel coding, and secrecy. Algo-
rithm 1 is based on an arithmetic coder with forbidden sym-
bol and interval randomization coupled with a soft decoder;
Algorithm 2 is based on turbo codes, which generate parity
bits for error protection and can be used for compression by
puncturing the output. Secrecy is achieved by hiding to the
unauthorized decoder, the parameters of the encoding pro-
cess, that is, the interleaver, the puncturation pattern, and the
scrambling pattern.

It has been shown that, given a reasonable amount of re-
dundancy, both algorithms provide good performance under
quality metric for protection, distortion, and secrecy. Algo-
rithm 2 requires a minimum level of redundancy, after which
its performance is near perfect, whereas Algorithm 1 also
works at lower-redundancy levels.

The proposed schemes eliminate the need for external
compression and ciphering blocks, and hence reduce the sys-
tem complexity, which is a clear advantage for power-limited
wireless applications. In particular, the adoption of Algo-
rithm 1 requires trivial modifications of an existing compres-
sion algorithm, for example, JPEG 2000 or H.264/AVC.

REFERENCES

[1] A. Mohr, E. Riskin, and R. Ladner, “Unequal loss protec-
tion: graceful degradation of image quality over packet erasure
channels through forward error correction,” IEEE Journal on
Selected Areas in Communications, vol. 18, no. 6, pp. 819–828,
2000.

[2] M. Grangetto, P. Cosman, and G. Olmo, “Joint source/channel
coding and MAP decoding of arithmetic codes,” IEEE Transac-
tions on Communications, vol. 53, no. 6, pp. 1007–1016, 2005.

[3] J. Garcia-Frias and Y. Zhao, “Compression of binary memory-
less sources using punctured turbo codes,” IEEE Communica-
tions Letters, vol. 6, no. 9, pp. 394–396, 2002.

[4] M. Grangetto, E. Magli, and G. Olmo, “Multimedia selective
encryption by means of randomized arithmetic coding,” IEEE
Transactions on Multimedia, vol. 8, no. 5, pp. 905–917, 2006.

[5] C.-P. Wu and C.-C. J. Kuo, “Design of integrated multimedia
compression and encryption systems,” IEEE Transactions on
Multimedia, vol. 7, no. 5, pp. 828–839, 2005.

[6] M. Johnson, P. Ishwar, V. Prabhakaran, D. Schonberg, and K.
Ramchandran, “On compressing encrypted data,” IEEE Trans-
actions on Signal Processing, vol. 52, no. 10, pp. 2992–3006,
2004.

[7] R. J. McEliece, “A public-key cryptosystem based on alge-
braic coding theory,” DSN Progress Report 42-44, pp. 114–
116, Jet Propulsion Laboratory, Pasadena, Calif, USA, January-
February 1978.

Enrico Magli et al. 7

[8] A. Payandeh, M. Ahmadian, and M. Reza Aref, “Adaptive se-
cure channel coding based on punctured turbo codes,” IEE
Proceedings: Communications, vol. 153, no. 2, pp. 313–316,
2006.

[9] L. Xu, “A general encryption scheme based on MDS code,”
in Proceedings IEEE International Symposium on Information
Theory (ISIT ’03), p. 19, Yokohama, Japan, June-July 2003.

[10] J. B. Anderson and S. Mohan, Source and Channel Coding,
Kluwer Academic Publishers, Norwell, Mass, USA, 1991.

[11] P. W. Moo and X. Wu, “Resynchronization properties of arith-
metic coding,” in Proceedings of IEEE International Confer-
ence on Image Processing (ICIP ’99), vol. 2, pp. 545–549, Kobe,
Japan, October 1999.

[12] J. G. Cleary, S. A. Irvine, and I. Rinsma-Melchert, “On the in-
security of arithmetic coding,” Computers and Security, vol. 14,
no. 2, pp. 167–180, 1995.

[13] H. Kim, J. Wen, and J. D. Villasenor, “Secure arithmetic cod-
ing,” IEEE Transactions on Signal Processing, vol. 55, no. 5, pp.
2263–2272, 2007.

[14] W. E. Ryan, “A turbo code tutorial,” 1997, http://www.ece
.arizona.edu/∼ryan/.

[15] R. H. Morelos-Zaragoza, The Art of Error Correcting Coding,
John Wiley & Sons, New York, NY, USA, 2nd edition, 2006.

[16] T. R. N. Rao and K.-H. Nam, “Private-key algebraic-code en-
cryptions,” IEEE Transactions on Information Theory, vol. 35,
no. 4, pp. 829–833, 1989.

http://www.ece.arizona.edu/~ryan/
http://www.ece.arizona.edu/~ryan/

	INTRODUCTION AND BACKGROUND
	PROPOSED ALGORITHM 1: ERROR-CORRECTING RANDOMIZED ARITHMETIC CODING
	Encoder
	Decoder
	Detailed algorithm implementation and setup
	Security

	PROPOSED ALGORITHM 2: PUNCTUREDTURBO CODING
	Encoder
	Decoder
	Detailed algorithm implementation and setup
	Security

	RESULTS
	CONCLUSIONS
	REFERENCES

