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1. INTRODUCTION

The wide availability of digital multimedia contents as well
as the accelerated growth of wired and wireless communica-
tion technologies have brought the multimedia content se-
curity issue to the forefront. In particular, the problem of ef-
ficient multimedia data encryption has recently gained more
attention in both academia and industry. Although encrypt-
ing the entire multimedia content by a traditional crypto-
graphic cipher (e.g., the block or stream cipher) yields a sat-
isfactory level of security, such an approach does have sev-
eral shortcomings. First, the computational cost associated
with encrypting the entire multimedia content is often high
due to the large data size. Second, the encryption and de-
cryption operations add another level of complexity to the
system. In most cases, additional hardware or software func-
tions are needed in order to implement it. This is particularly
unfavorable in certain applications such as mobile communi-
cations and embedded systems, where devices (e.g., cellular
phones and portable equipments) are resource constrained
due to the size limitation and the power consumption con-
sideration. Hence, it is desirable to develop an efficient yet
secure multimedia encryption technique.

In this work, the problem of multimedia encryption is
investigated from a new angle. After a careful comparison
between the multimedia compression process and the en-
cryption process from the viewpoint of information theory,
we point out that both can be in general viewed as a pro-
cess to remove redundancy contained in the input. The key
distinction between the two is that a secret key controls op-
erations in encryption while all operations in compression
are performed according to some standards. Based on this
observation, a novel multimedia encryption methodology is
proposed, where encryption is achieved by maneuvering cer-
tain operations in the compression process under the con-
trol of a secret key. Our new encryption approach consists of
two stages. The first stage is called randomized entropy cod-
ing (REC). The core idea of REC is to use multiple entropy
coding parameters/settings according to a random sequence
inside the entropy coder. The second one is called rotation in
partitioned bitstream (RPB), which further performs a ran-
dom rotation to the output of the REC stage to yield the final
bitstream.

This joint REC/RPB encryption paradigm has several ad-
vantages. First, the design leverages the structure of the en-
tropy coder, thus demanding a negligible cost to implement
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in hardware or software. Second, encryption does not im-
pair the compression ratio in the sense that the size of the
encrypted bitstream is exactly the same as that obtained by
standard compression. In terms of security strength, our pro-
posed scheme can withstand various types of attack. The key
space of a brute-force attack is studied and shown to be an ex-
ponential function of the plaintext/ciphertext length, which
guarantees security under the ciphertext-only attack. Fur-
thermore, we demonstrate how the REC/RPB cascade struc-
ture enhances the security by thwarting certain attacks. An
interesting concept regarding the RPB encryption called the
equivalent key is also developed. That is, there exist multi-
ple different keys that can encipher the same plaintext to
the same ciphertext. The properties of equivalent keys are
studied and it is revealed that the average number of equiv-
alent keys grows exponentially with respect to the size of the
plaintext/ciphertext. This fact, combined with the cascade
structure of REC/RPB encryption, provides strong resistance
against the known/chosen plaintext attack.

The rest of this paper is organized as follows. Section 2
provides a brief overview of previous research work in this
field. In Section 3, we compare the differences between com-
pression and encryption, and propose a new multimedia en-
cryption methodology of adding randomness into the com-
pression process. The basic idea and the detailed imple-
mentation of the REC encryption scheme are presented in
Section 3. Section 4 presents the RPB encryption scheme and
investigates its key space and equivalent key properties. The
computational cost is analyzed in Section 6. Section 7 ex-
amines the security strength of the joint REC/RPB encryp-
tion model with respect to the ciphertext-only attack and
the known/chosen plaintext attack. The impact of RPB on
the statistical randomness of input and output bitstreams is
also discussed. Experiments are conducted to demonstrate
the performance of the joint REC/RPB encryption scheme in
Section 8. Finally, concluding remarks are given in Section 9.

2. PREVIOUSWORK

Encrypting the entire multimedia content imposes a heavy
computational burden due to the large data size. Several se-
lective encryption schemes have been proposed as a possi-
ble solution, where only a specific portion of the multimedia
data is selected for encryption. In this section, we briefly re-
view encryption schemes for DCT-based compression stan-
dards (e.g., JPEG, MPEG, H.264, etc.), which are widely used
today. For wavelet-based and quadtree-based compression
methods, we refer interested readers to [1–4] for more de-
tails.

Most existing selective encryption schemes are based on
the encryption and/or scrambling of DCT coefficients and
motion vectors, since it is generally believed that DCT coef-
ficients and motion vectors carry more important semantic
information. An encryption scheme called “Aegis” was de-
veloped by Spanos and Maples [5], which encrypts all the
I frames of an MPEG video stream. Conceptually, B and P
frames cannot be correctly decoded without the correspond-
ing I frames. However, Agi and Gong [6] showed that a con-
siderable amount of video contents is still visible largely due

to unencrypted I macroblocks in B and P frames as well as the
interframe correlation. Tang [7] proposed to encrypt DC co-
efficients by DES and use a random permutation (instead of
the standard zigzag scan order) to scramble AC coefficients.
Shi and Bhargava [8] proposed the video encrytion algo-
rithm (VEA), where 64 most significant sign bits of DCT co-
efficients and motion vectors in each 16× 16 macroblock are
encrypted by a symmetric key cipher. An improved scheme
called RVEA was presented in [9]. However, it was observed
in [10] that even the DC and the first 8 AC coefficients are
discarded for all DCT blocks, the reconstructed image still
contains some meaningful content. Another scheme, called
SECMPEG and developed by Meyer and Gadegast [11], pro-
vides four levels of security using a combination of selective
encryption and additional headers. However, the system is
incompatible with the standard MPEG encoder and decoder
due to additional headers.

Qiao and Nahrstedt [12] proposed a scheme to split a bit-
stream into two halves odd and even according to a random
pattern. The ciphertext c is obtained by the following opera-
tion

c = odd⊕ even, (1)

where ⊕ is the XOR operation. The ciphertext c is then sent
together with E(even), and E is an encryption cipher. Al-
though this scheme cuts the encryption cost by half, it costs
an additional step to recover the original data by assembling
decrypted odd and even according to the random pattern.
An even faster algorithm called the permutation encryption
was proposed by Chu et al. [13]. It treats a bitstream in the
unit of bytes and performs a byte permutation according to a
key. The permutation operation yields a faster speed since it
is much simpler than cryptographic operations. It is however
a fixed byte-level permutation, which is shown to be vulner-
able to the known plaintext attack in [14].

In summary, selective encryption schemes either incur a
large computational overhead to achieve high security or fail
to provide enough protection against attacks at a relatively
low computational cost as compared to that of total encryp-
tion.

The recent trend in multimedia encryption research has
placed more attention on integrating encryption with com-
pression. Wu and Kuo [10, 15, 16] pioneered in this direction
and proposed the use of multiple Huffman tables (MHT) al-
ternately in a secret order in an entropy coder. Xie and Kuo
[17] proposed an efficient encryption scheme for arithmetic
coding by randomly alternating between two coding conven-
tions in 2004. A very similar algorithm was later presented by
Grangetto et al. in [18]. More recently, the use of key-based
interval splitting to implement encryption in arithmetic cod-
ing was considered by Wen et al. [19, 20]. The work in [20]
added an additional input permutation and output permu-
tation on top of the scheme proposed in [19] in an attempt to
enhance the security. Bose and Pathak [21] suggested an en-
cryption scheme using a variable model arithmetic coder and
the coupled chaotic system. Another encryption approach by
random rotation in partitioned bitstreams was investigated
by Xie and Kuo [22].
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These papers have demonstrated promising results in in-
tegrating compression and encryption to achieve computa-
tional efficiency. However, some weakness of these schemes
under advanced attacks has been pointed out by cryptanaly-
sis. For instance, a recent study by Zhou et al. [23] revealed
the weak key problem for the MHT scheme under some cho-
sen plaintext attack. Thus, the design of an efficient and se-
cure multimedia encryption scheme remains a challenging
problem.

3. JOINT REC/RPB ENCRYPTION PARADIGM

The main deficiency of aforementioned encryption schemes
is that they neglect one fundamental characteristic of coded
multimedia data; that is, the compressed multimedia bit-
stream usually contains little redundancy as compared to reg-
ular data to be encrypted, for example, text documents and
database files. This serves as an important basis in develop-
ing our new encryption methodology. By exploiting this fea-
ture, we design effective encryption schemes that can achieve
high security strength at a relatively low computation cost. To
better understand the interplay among redundancy, compu-
tation complexity, and security, we examine the operations
of compression and encryption and make a comparison be-
tween these two.

Basically, encryption is a process of transforming an in-
put (plaintext) that has a certain structure and semantics
(meaning) to an output (ciphertext) that is statistically ran-
dom and has no apparent structure. Under the control of a
secret key, many rounds of complicated operations are per-
formed to scramble the plaintext so as to produce the final ci-
phertext. These operations include logic operations (e.g., bit-
wise AND, OR, XOR, shift), mathematical operations (e.g.,
vector and matrix multiplications), and permutation and
substitution, and so forth. As a result, the structure of the
input file is completely scrambled without revealing any re-
dundancy. The output appears to be a set of random data
without any meaning. Thus, from the viewpoint of informa-
tion theory, encryption can be considered as a transforma-
tion that hides redundancy contained in the input to produce
a random output that is almost redundancy free.

Conceptually, a multimedia compression system works
in a very similar fashion. Here, the input is the raw mul-
timedia content (mostly video and audio) that contains a
large amount of redundancy and the output is again an al-
most redundancy-free bitstream. Various compression tech-
niques such as motion estimation, DCT transform, quantiza-
tion, and entropy coding are exploited to remove rich redun-
dancy in the raw content. The significant difference between
encryption and compression is that operations in encryption
are controlled by a secret key so that it is impossible to de-
crypt the original plaintext without knowing the key. While
in multimedia compression, all operations are performed ac-
cording to agreed standards, which allows the raw content to
be decoded from the compressed bitstream. The comparison
between encryption and compression is listed in Table 1.

Based on this observation, we argue that encryption can
be achieved by controlling certain operations in the compres-
sion system using a secret key. As a result, a correct key is re-

quired to decode the bitstream and recover the original mul-
timedia content, just as one cannot obtain the original plain-
text from the ciphertext without knowing the encryption key.
If it is properly designed, such a scheme would demand a
low computational cost since operations such as motion es-
timation, DCT, quantization have already taken care of the
heavy work of redundancy removal from the input data. The
focus of the remaining design is to manipulate the output
bitstreams so that the resultant encryption scheme achieves
high security. We stress here that such an encryption scheme
should meet at least the following criteria.

(1) High security
The scheme should provide resistance against various
types of attacks, including the ciphertext-only attack
and the known/chosen plaintext attack.

(2) Low encryption cost
The encryption cost should not exceed an acceptably
small portion of the total computation cost of com-
pression (motion estimation, DCT transform, quanti-
zation, etc.). In most practical applications, 5% could
be a proper threshold.

(3) No harm to the compression ratio
The ultimate goal of multimedia compression is to re-
duce the bitstream length to the minimum possible ex-
tent. Any multimedia encryption scheme cannot vio-
late this fundamental goal. Achieving high security at
the expense of sacrificing the compression ratio is not
desired. Again, we may consider a proper threshold de-
pending on the application context. For example, the
increase of the final bitstream size due to encryption
should not be higher than 5% of the original coded
bitstream.

(4) Compatible to standard compression.
It is desirable that an encryption scheme can go back
to the standard compression by a simple configura-
tion using a trivial key (say, a key with the value of
zero). This provides users flexibility since they can de-
cide whether or not to perform encryption according
to the security concern of specific applications.

In what follows, we propose two novel techniques to ma-
neuver the compression system, and the combination of the
two can form an efficient and secure multimedia encryp-
tion solution. The first method is called randomized entropy
coding (REC). REC uses multiple coding parameters/settings
and dynamically chooses one to encode each successive sym-
bol according to a random sequence. In contrast, standard
entropy coding has only one parameters/settings in the en-
tire encoding. The REC method is an extension of previous
work by Wu and Kuo [10, 15]. The second technique is called
rotation in partitioned bitstream (RPB). It is cascaded after
the REC module to further scramble the bitstream encoded
by REC. As the name suggests, RPB first partitions bitstream
into blocks and then performs a random cyclic rotation in
each block. The joint REC/RPB encryption paradigm is il-
lustrated in Figure 1.

The box “compression before entropy coding” represents
all operations before entropy coding, including motion com-
pensation, DCT transform, quantization, and so forth. Its
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Table 1: Comparison of encryption and compression.

Encryption Compression

Input redundancy High High

Output redundancy Low Low

Output size = input size < input size

Redundancy removal operations
AND, OR, XOR, shift vector, matrix multi-
plication permutation, substitution

Motion estimation DCT, quantization entropy coding

Decryption/Decoding secret key required no key required

Raw
multimedia
content

Compression
before entropy
coding

M
REC RPB

A C
Encrypted
multimedia
bit stream

Secret key Secret key

Figure 1: The joint REC/RPB encryption scheme.

output M are symbols in compressed domain such as DCT
coefficients and motion vectors. The REC module encrypts
M to an internal ciphertext A, which is further processed by
the RPB module to produce the final encrypted bitstream C.
REC and RPB modules are enclosed by dotted line to empha-
size the fact that in practice they are implemented as a whole
inside the entropy coder. The dotted line box conceptually
behaves like a black box and the internal ciphertext A cannot
be observed from outside. We will analyze later in Section 7
how this affects the model’s security to resist cryptographic
attacks.

Throughout the rest of the paper the following notations
are used.
x ← y: x assigns the result of evaluating y
a[i]: the ith leftmost bit of binary string a
a‖b: the concatenation of binary string a and b
a� r: the r-bit left shift operation on binary string a
a� r: the r-bit right shift operation on binary string a
�a�: the smallest integer larger than a > 0
{0, 1}n: the space of all n-bit binary strings
h(·): cryptographic one-way hash function
PRBG: cryptographic pseudorandom bit generator.

4. RANDOMIZED ENTROPY CODING (REC)

A question following the discussion in the last section is what
are the ideal operations/steps that can be controlled using a
secret key so as to achieve encryption? Wu and Kuo [10, 15]
are the first to explore in this direction and they proposed
to implement encryption in entropy coding. In standard en-
tropy coding, only one statistical model (though it may adapt
to varying input statistics) is used throughout the whole en-
coding process. It is their novel idea to use multiple statis-
tical models to encode each individual symbol while the or-
der of those multiple models are kept secret as the key. Since
choosing a random model usually demands only a negligible
computation cost, encryption can be done very quickly. They

proposed two encryption schemes called the multiple Huff-
man table (the MHT coder) for the Huffman coder and the
multiple state indices (the MSI coder) for the QM coder.

In this section, we extend this multiple statistical model
coding method and develop the concept of randomized
entropy coding (REC). It is readily observed that other
than statistical model, there exist other adjustable parame-
ters/settings in the entropy coding. Changing these param-
eters during entropy coding will lead to different bitstream
output. One example is the use of different quantization table
to generate bitstreams with variable rates in a VBR (variable
bit rate) coding scheme. We can make further distinction be-
tween two type of adjustable parameters.

(i) This first type of parameters adjust their values accord-
ing to statistical property of input. Their values change
dynamically to better accommodate the change of in-
put statistics and are closely related to the coding effi-
ciency of the entropy coder. For instance, the probabil-
ity estimation in an adaptive QM coder is determined
by an internal state machine and changes according to
the state and current input.

(ii) The second type of parameters has nothing to do with
coding efficiency. Instead, they are chosen as a general
setting of the entropy coder and the particular choice
is just a matter of preference or convention. The Huff-
man tree in the Huffman coder is an example of this
type of parameters. We can use different binary codes
to implement the same Huffman tree.

Because the second type of parameters does not affect the
coding efficiency of entropy coder, they are obviously ideal
choices in REC encryption method. We make a formal defi-
nition below.

Definition 1 (equivalent coding paramter). An equivalent
coding parameter (ECP) is a parameter in the entropy coder
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that meets the following conditions:

(1) using different (often adjustable) values of this param-
eter will lead to different bitstream output;

(2) changing values of this parameter dynamically during
coding does not affect the coding efficiency.

We use the word “equivalent” to emphasize the fact that
an ECP can take different values freely during entropy coding
and the choice does not have an impact on the coding effi-
ciency. By default, an entropy coder uses a fixed value of ECP
to encode all inputs throughout the entire compression pro-
cess. In our proposed REC approach, a particular ECP value
is selected according to a random sequence to encode each
individual input. This random sequence apparently becomes
the encryption key since it is needed in order to correctly de-
crypt the bitstream. This sequence is termed the key hopping
sequence (KHS) in that the way REC works is similar to a fre-
quency hopping communication system. The entropy coder
alternates among different ECP values just as the communi-
cation channel hops among different frequencies according
to a random sequence. Apparently, the property of KHS is
of utmost significance to the security of the REC encryption
approach. One has to be cautious in designing a good KHS
to achieve a high level of security.

Let us examine the desired properties of a KHS. Note that
REC encryption can be viewed as a successive series of ran-
dom tests, each step being choosing a random ECP value ac-
cording to the KHS. Thus, the first requirement is that the
KHS be indistinguishable from a truly random sequence sta-
tistically. An attack should not be able to differentiate it from
a truly random sequence based on statistical properties such
as the mean, the variance, and the distribution of run length,
and so forth. Second, successive bits of a KHS should be sta-
tistically independent. This is because it is always prudent
to assume that an attacker is able to obtain part of the KHS
being used. The statistical independence between successive
bits prohibits attacker from gaining any useful information
about other parts of KHS. These two requirements can be
expressed as follows.

(1) Given a KHS and a truly random sequence of the same
length, no polynomial-time algorithm can distinguish
them apart with probability significantly greater than
1/2.

(2) Given a sequence of k bits of a KHS, no polynomial-
time algorithm exists that can predict the (k + 1)th bit
with a probability significantly greater than 1/2.

In cryptography, the above two conditions are recognized
as the polynomial-time statistical test and the next-bit test, re-
spectively [24]. It is also well known that a pseudorandom
bit sequence meets these two conditions and such a sequence
can be generated by a pseudorandom bit generator (PRBG).
The input of a PRBG is a relatively short binary sequence
generally called the seed, which drives the PRBG to output
a very long pseudorandom bit sequence.

Next, we present two encryption schemes based on the
REC model. They are associated with the well-known Huff-
man coder and arithmetic coder, respectively.

4.1. Randomized Huffman table (RHT) scheme

Huffman coding is the most widely used entropy coder in im-
age/video compression system. The Huffman tree is a good
ECP since the same tree can be represented by different bi-
nary codes. The RHT scheme is actually very similar to that
in [10] and it was presented here as an example under the
REC model. In the RHT encryption, a number of different
Huffman codes are constructed that correspond to the same
Huffman tree and published. This can be easily done using
a technique called the Huffman tree mutation process [10].
Then, a particular Huffman codes is chosen to encode each
input according to the KHS. The detailed algorithm is de-
scribed below.

RHT encryption scheme:

(1) Generate M= 2m different Huffman coding tables,
numbered from 0 to M − 1. These tables can be made
public.

(2) Select a cryptographically secure PRBG as the KHS
generator. Generate a random seed s, which is the key
of RHT encryption. z ← first output of KHS genera-
tor.

(3) Break z into m-bit blocks. Write z = t1‖t2‖ · · ·
‖tk‖rem with each ti representing a number from 0 to
M − 1 and rem the remaining bits.

(4) for i = 1 to k
use Huffman table ti to encode one symbol.

(5) After encoding k symbols in Step (4), update KHS: z ←
new output of KHS generator. Go to Step (3).

The legitimate receiver knows the key (random seed s).
He is thus able to reproduce the KHS used in encryption and
in turn correctly decode the bitstream. We give an example
of RHT encryption scheme below to illustrate several inter-
esting properties.

We assume a small alphabet of the source input consist-
ing of seven symbols, denoted by A, B, C, D, E, F, G. Two dif-
ferent Huffman codes, as shown in Figure 2, are constructed
to encode these 7 symbols. Note that the topologies of two
Huffman trees are the same so the code length of each symbol
is identical, although the code values are different. A sample
input plaintext

P = ACDABEFG, (2)

is encrypted using two KHS sequences

k1 = 00000000, k2 = 10011010, (3)

where “0” indicates that Huffman code #0 is used to encode
the plaintext symbol while “1” indicates the use of Huffman
code #1. Note that the all-0 key k1 corresponds to the default
Huffman coding where code #0 is used to encode all plaintext
inputs. The key value and the corresponding ciphertext are
shown in Table 2 with different ciphertext bits highlighted
by the blue color. It is clear that the difference depends on
the particular key value chosen.

Assume that plaintext P is encrypted using key k2 with
the ciphertext as shown in the 2nd row of Table 2. Next, we
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Figure 2: Two Huffman trees with the same topology.

Table 2: RHT encryption using two different keys.

Plaintext KHS Ciphertext

ACDABEFG
00000000 010111000100110111101111

10011010 110111001001110101011111

Table 3: RHT decryption using three different keys.

Ciphertext KHS Plaintext

110111001001110101011111
10011010 ACDABEFG

00000000 EDBFCAG

10111010 ACAABAEA

study the effect of the RHT decryption with 3 keys as shown
in Table 3. The first KHS is the correct one so that it re-
covers plaintext P successfully. The second KHS is the all-
0 sequence which emulates the situation where the receiver
decodes the RHT-encrypted ciphertext using the standard
Huffman decoding procedure. The decoding result is totally
different from the correct plaintext P. Furthermore, it is im-
portant to note that even if only 1 bit in the KHS is wrong,
the decoding result starting from that position will be totally
wrong. This error propagation effect is demonstrated by the
third KHS. The third KHS is different from the correct one
only at the 3rd bit. The first 2 plaintext symbols are decrypted
correctly. However from the 3rd plaintext symbol on, the de-
cryption result totally deviates from the correct plaintext P.
Since Huffman code is a unique decodable code, decoding
can always continue with any KHS sequence. This decoding
error will not be detected until the wrong results are further
converted to raw multimedia content and found meaning-
less.

Finally, it is worthwhile to point out that the construc-
tion of different Huffman tables plays an important role in
security. A design guideline is to ensure that any symbol has
an association with at least two different bit sequences in the
union of all possible Huffman tables. Otherwise, an attacker
would be able to produce a particular output in a chosen
plaintext attack. For instance, if we do not swap the 0-1 la-
beling on the root in Figure 2, symbol A will correspond to
code “0” in both code #0 and code #1. Then, an attacker
can easily generate an output 0000 · · · 0 by inputting se-
quence AAAA · · ·A. Such a particular pattern could be used
to mount a powerful attack to the following RPB module. As

discussed later, security analysis in Section 7.2 assumes that
the output of the REC module can be viewed as a random bit
sequence. This design guideline must be strictly enforced for
the assumption to be valid.

4.2. Randomized arithmetic coding convention
interleaving (RACCI) scheme

The binary arithmetic coder is another popular entropy cod-
ing method widely used in multimedia compress system.
Simply speaking, arithmetic coding is a process of repeat-
edly dividing an interval, and any point in the current in-
terval represents the bitstream. There have been previous re-
search on using adaptive arithmetic coding as a means of
encryption. But those schemes are not satisfactory in terms
of both security and complexity. (Please refer to [25–28] for
discussion of those schemes and security analysis). Based on
the REC approach, we propose an encryption scheme called
random arithmetic coding convention interleaving (RACCI)
encryption. This scheme is first developed in one of the au-
thor’s early work [17] and we show here that it can fit into
the REC model. As the name suggests, the ECP we have cho-
sen for this scheme is the coding convention in arithmetic
coding.

In binary arithmetic coding, there are two possible sym-
bol orderings (i.e., the LPS subinterval above the MPS subin-
terval, or the MPS subinterval above the LPS subinterval) and
two possible code stream conventions (i.e., points to the bot-
tom or the top of an interval), which leads to a total of four
possible coding conventions. In the following, we use QM
coder to illustrate the technical details of RACCI encryption.
QM coder represents a well-known binary arithmetic coder
that uses techniques such as multiplication approximation
and renormalization of the probability interval to optimize
performance. Here, C denotes the bitstream and A is the up-
dating inteval, Qe is the probability of the least probable sym-
bol. Figure 3 illustrates these 4 coding conventions.

Convention (a):

if MPS: C unchanged, A = A−Qe,
renormalize if needed
if LPS: C = C + A−Qe, A = Qe,
renormalize.
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Convention (b):

if MPS: C = C + Qe, A = A−Qe,
renormalize if needed
if LPS: C unchanged, A = Qe,
renormalize.

Convention (c):

if MPS: C = C −Qe, A = A−Qe,
renormalize if needed
if LPS: C unchanged, A = Qe,
renormalize.

Convention (d):

if MPS: C unchanged, A = A−Qe,
renormalize if needed
if LPS: C = C − A + Qe, A = Qe,
renormalize.
Only conventions (a) and (b) are used in our proposed

scheme. Because although conventions (a) and (c) look very
different, the difference between the two bitstreams is always
equal to the remaining probability interval A, as can be seen
by careful inspection of (4) and (6). There is a similar rela-
tionship between the code streams of conventions (b) and
(d). The proposed RACCI encryption scheme is described
below.

RACCI encryption scheme:

(1) Select a cryptographically secure PRBG as the KHS
generator. Generate a random seed s, which is the key
of RACCI encryption.

(2) z ← output of KHS generator.
(3) For the ith input

if z[i] = 0

use convention (a) to encode the input

if z[i] = 1

use convention (b) to encode the input.

(4) Repeat Steps (3) until all inputs are coded.

The legitimate receiver knows the key (random seed s).
He is thus able to reproduce the KHS used in encryption and
in turn correctly decode the bitstream.

5. ROTATION IN PARTITIONED BITSTREAM (RPB)

The idea of the RPB encryption first appeared in [22], which
used two operations in cascade to encrypt a compressed bit-
stream. The 0-1 bitstream is first partitioned into blocks of
random sizes and then a circular random rotation is per-
formed within each block. We revisit the RPB encryption and
provide more analytical results in this section. In particular,
an interesting concept called the equivalent key, which is im-
portant in defending the known/chosen plaintext attack, is
developed and its properties are investigated.

Many operations can be used to alter the bit order in a
block. A permutation on all bits shuffles the bit order most
thoroughly but requires a lot of computation. To reduce the
complexity and facilitate the bitstream processing, we restrict
the bit manipulation to a simple left rotation here. For a block
of n bits A = (a1a2 · · · an), an r-bit left rotation transforms
A into (ar+1ar+2 · · · ana1a2 · · · ar) by rotating the first r bits
to the end of A. The main reason to use this simple oper-
ation is that it can be easily merged into the algorithm that
prepares the bitstream for the final output, thus adding a very
small computation overhead. Furthermore, although left ro-
tation is a simple operation, our analysis in Section 7 shows
that, if being combined with random-sized block partition-
ing, it does provide high security. Mathematically, the above
concept can be formalized as follows.

Definition 2. Let A = (a1a2 · · · aN ) be a bitstream of length
N . The (p, r) rotation in partitioned blocks of A, denoted
RPB(A, p, r) with p = (p1p2 · · · pm) and r = (r1r2 · · · rm),
is obtained by the following 2 steps.

(1) Partition A into m blocks Ai with length pi, i =
1, 2, . . . ,m,

∑m
i=0 pi = N .

(2) Perform an ri-bit left rotation on each block Ai, i =
1, 2, . . . ,m.

An example is given in Figure 4 to illustrate the RPB op-
eration applied to a stream of 10 bits A = (a0, a1 · · · a9). The
partition sequence is p = (3, 5, 2) and the rotation sequence
is r = (2, 3, 1). The bitstream after performing RPB(A, p, r)
is denoted by C.

In the proposed RPB encryption scheme, a plaintext bit-
stream A is enciphered into a ciphertext RPB(A, p, r) with
the partition sequence p and rotation sequence r. To achieve
the best possible random scrambling, it is important that se-
quences p and r are highly random without much statistical
regularities. For this reason, components pi and ri are ob-
tained from a pseudorandom bit sequence, which is gener-
ated by a PRBG using a secret seed.

The RPB algorithm has another performance advantage.
In real-world data compression system, coded bits output
from the entropy coder are first sequentially queued into a
buffer. Only after enough number of bits has accumulated in
the buffer, the buffer will be written to the final compressed
data file so as to avoid frequent memory access. This allows
the RPB operation to be conveniently implemented by sim-
ply regulating the order in which bits are queued into the
buffer. For a single p-bit block A, an r-bit left rotation is
equivalent to a “hold-and-write” operation as specified in the
following steps:

(1) hold the first r bits of A;

(2) write the remaining p − r bits to the buffer;

(3) write the r bits in Step (1) to the buffer.

The above “hold-and-write” procedure enables to perform
the RPB encryption instantaneously as coded bits are contin-
uously generated from entropy coder. Furthermore, the size
of the output buffer is finite in the real world implementa-
tion. It is assumed to be bounded by B bits. To accommodate
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Figure 3: Four possible coding conventions of arithmetic coding.

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

a2 a0 a1 a6 a7 a3 a4 a5 a9 a8

A stream of 10 bits: A

C = RPB (A, p, r)

Rotation key
r = (2, 3, 1)

Partition key: p = (3, 5, 2)

Figure 4: An example of rotation in partitioned bitstream.

the “hold-and-write” operation described above, it is clear
that the block partition size pi cannot exceed the output
buffer size; namely, pi < B.

The proposed RPB encryption algorithm is outlined as
follows.

Rotation in partitioned bitstream (RPB) scheme

(1) Select a secure PRBG algorithm and generate a ran-
dom number s as the seed (which is also the encryp-
tion key). The output keystream z is grouped into B-
bit blocks to produce a random number in the range
0∼2B − 1.

(2) Obtain two random numbers p and r′ from z,
and scale r′ into the range 0∼p by computing
r = (p × r′) � B.

(3) Hold the first r bits of the output bit stream from the
entropy coder.

(4) Write next p − r bits of the output bit stream to the
buffer. Then, write the r bits in Step (3) to the buffer.

(5) When the buffer is full, write the buffer content to the
final bit stream file.

(6) Repeat Steps (2)∼(5) until no more bits are output
from the entropy coder.

The secret seed s is the encryption key and C =
RPB(A, p, r) is the ciphertext bit stream. On the receiving
side, sequence z with its component partition sequence p and
rotation sequence r can be generated using the same encryp-
tion key. It is easy to check that operation RPB(C, p, p − r)
recovers the plaintext A from the ciphertext C.

Next we investigate several important mathematical
properties of the RPB operation. As will be shown later in
Section 7, these properties form the basis of analyzing secu-
rity under various types of attacks.

5.1. Key space analysis

We first study the key space size of RPB encryption. For a
given N-bit ciphertext C = RPB(A, p, r), the key space of
the RPB scheme is the total number of different ways to
decrypt C using all possible partition sequence p and ro-
tation sequence r. As mentioned before, if the ciphertext is
C = RPB(A, p, r), then the plaintext is A = RPB(C, p, p− r).
Thus, the key space is equivalent to the total number of dif-
ferent ways to encrypt A using all possible p and r. We have
the following definition.

Definition 3. Let A = (a1a2 · · · aN ) be a bitstream of length
N . Two RPBs of A, RPB(A, p1, r1) and RPB(A, p2, r2), are said
to be different if they achieve a different order of ai’s in the
resulting stream C. The total number of different RPBs is de-
noted by R(N).

The key space of a complete permutation of A =
(a1a2 · · · aN ) is N !. Clearly, R(n) < N ! because a lot of these
permutations cannot be achieved by applying RPB operation
due to two reasons. First, the block rotation in RPB opera-
tion prohibits some particular permutations to be produced.
For example, in a simple case A = (a1a2a3a4), the permu-
tation (a4a3a2a1) cannot be a result of any RPB operation.
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Actually R(4) = 12 while the number of complete permuta-
tion is 4! = 24. Second, the upper bound of the partitioned
block size reduces the number of different RPBs. Because we
require pi < B, it is impossible that an RPB starts with ai for
i > B + 1.

While an exact expression of R(N) may be difficult to ob-
tain, we derive a recursive relationship of R(N) and establish
a lower bound for R(N) as given in the following lemma.

Lemma 1. Let A = (a1a2 · · · aN ) be a bitstream of length N
and B the maximal length of partitioned blocks Ai. Then, the
total number of different RPBs of A, denoted by R(N), satisfies
the following two equations:

R(N) = 2R(N − 1) +
N−3∑

k=N−B
R(k), (4)

R(N)> 2N , forN ≥ 6. (5)

The basic idea is to divide all possible RPBs into B cate-
gories according to the first bit being a1, a2 up to aB. Then,
the number in each category is counted and summed up to
get (4). From this recursive equation, the lower bound given
in (5) is straightforward since R(N) > 2R(N − 1). A detailed
proof is provided in Appendix A.1.

It is important to observe that the size of R(N) grows ex-
ponentially with the length of the plaintext/ciphertext. For a
large value of N , it becomes impractical to exhaust all possi-
ble RPBs for a given ciphertext.

5.2. Equivalent key analysis

We studied R(N), the total number of possible RPBs of a
stream of N bits, and provided a lower bound for R(N) in the
last subsection. In this subsection, we analyze another inter-
esting property of RPB, called the equivalent key, and show
how it can help defend known/chosen plaintext attack.

In Definition 3, two RPBs are different if they lead to a
different order of ai’s in the resulting stream C, where all ai’s
are treated as distinct symbols. If two RPBs yield different
ciphertext C, then they must be different. However, the con-
verse is not always true, that is, two different RPBs may trans-
form A to the same ciphertext C. This is due to the fact that,
when the plaintext A is a binary bitstream, each ai is either 0
or 1. Therefore, it is possible that two different RPBs give the
same ciphertext, although the underlying order of ai’s is dif-
ferent. This effect can be explained by the following example.

Example 1. 8-bit plaintext: A = (a1a2 · · · a8)
key 1: p1 = (1, 7), r1 = (0, 1)
key 2: p2 = (3, 4, 1), r2 = (2, 1, 0).

For the above two keys, it is readily checked that
RPB(A, p1, r1) = (a1a3a4a5a6a7a8a2) and RPB(A, p2, r2) =
(a3a1a2a5a6a7a4a8). They are apparently different RPBs
by Definition 3. However, for a particular plaintext A =
(01011101), we have RPB(A, p1, r1) = RPB(A, p2, r2) =
(00111011). That is, both keys encipher A to the same ci-
phertext C = (00111011). These keys are called equivalent
keys. Mathematically, the equivalent key is defined as follows.

Definition 4 (equivalent keys). For a given plaintext bit-
stream A, two keys (p1, r1) and (p2, r2) are called equivalent
keys if

(1) RPB(A, p1, r1) and RPB(A, p2, r2) are different RPB per
Definition 3,

(2) they transform A to the same output C = RPB (A,
p1, r1) = RPB(A, p2, r2).

We stress that the concept of equivalent keys is associ-
ated with a particular ciphertext (assuming a fixed plaintext).
Two equivalent keys for one ciphertext may not be equiv-
alent keys for another ciphertext. Discussion on equivalent
keys is not meaningful without the context of one particular
ciphertext. Given a plaintext/ciphertext pair, it is natural to
consider two important questions regarding equivalent keys.
First, does there exist equivalent keys? Second, if there is any,
then what is the exact amount of equivalent keys for the given
pair?

The answer to the first question is most likely positive
since one is allowed to arbitrarily partition the bit stream
provided that block size < B and rotate freely in each block.
From the above 8-bit plaintext example, it seems not so hard
to obtain two equivalent keys by observing the bitstream pat-
tern and do several trials. The second problem, that is, to
compute the accurate number of equivalent keys, is however
not an easy one. Since equivalent keys are ciphertext depen-
dent, there seems no quick formula to compute the num-
ber of equivalent keys for a given plaintext/ciphertext pair.
Nonetheless, if we take into account all possible ciphertexts
C for a plaintext A, we have the following conclusion regard-
ing equivalent keys.

Lemma 2. Let A = (a1a2 · · · aN ) be a bitstream of length N
containing Z 0’s and let Equiv (A,C) denote the number of
equivalent keys for the plaintext/ciphertext pair (A,C). Then,
there exists a ciphertext C′ such that

Equiv
(
A,C′

)
>

⌈

2N
/(

N
Z

)⌉

. (6)

In a statistically average sense, a random plaintext A contains
half 0’s (Z = N/2). When the plaintext length N is large
enough, we have

Equiv
(
A,C′

)
>
√
πN/2. (7)

The above lemma establishes the existence of equivalent
keys. Refer to Appendix A.2 for a complete proof. The quan-
tity

√
πN/2 is however a conservative estimate of number of

equivalent keys. Further analysis of the average number of
equivalent keys will be given in Section 7.3.

6. COMPUTATIONAL COST ANALYSIS

The computational cost of REC encryption consists primar-
ily of two parts: the KHS generation cost, and the cost to have
entropy coder dynamically select an ECP value. Usually the
first part is the major computational overhead because the
length of KHS required to encrypt all inputs is proportional
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to the length of the plaintext M. As for the second part, if the
entropy coder is implemented in software, this can be done
by adding a variable index (according to KHS) to the base ad-
dress of ECP value. It takes no more than 2 to 3 instructions
to accomplish this task. If the entropy coder is implemented
by hardware, then this cost translates to several kilobytes of
memory to store multiple ECP values in an array plus a cou-
ple of multiplexer and control logic to index into the array.
In general, this part of the cost is much lower as compared to
the KHS generation cost.

The RPB encryption scheme is in essence a bit reorder-
ing algorithm in variable-length blocks of the plaintext bit-
stream. In contrast to cryptographic ciphers, there are no
multiple rounds of complicated bit manipulation operations
invoked by the RPB scheme. Encryption is achieved by the
simple “hold-and-write” operation described in the last sec-
tion.

In practice, it is quite easy to implement the “hold-and-
write” operation in parallel with the algorithm that forms the
bit stream. The only addition needed is a small delay buffer
(less than B bits). First, hold r bits output from the entropy
coder in the delay buffer. Then write next p− r bits from the
entropy coder into the output buffer. Finally, write the r bits
in the delay buffer into the output buffer. Since this can be
easily done either by software or hardware, the overhead of
implementing the RPB scheme in a multimedia compression
system is almost negligible. Actually, the primary encryption
cost is the generation of pseudorandom sequences to yield
the partition sequence and the rotation sequence.

7. SECURITY ANALYSIS

In this section we discuss the security strength of the joint
REC/RPB encryption paradigm under three most common
cryptographic attack types: ciphertext-only attack, known
plaintext attack, and chosen plaintext attack. As shown in
Figure 1, in our system the ciphertext is C, the output of RPB
module. The plaintext could be regarded M, the direct input
to the REC module, because M can be converted to/from the
raw content using standard decoder/encoder. As to the key,
we consider the KHS used in REC and the partition and ro-
tation key sequence used in RPB, but not the random seed of
the PRBG generator, as the key of interest. Recovering these
key sequences (or a large part of them) is deemed a successful
attack because these sequences allow directly decrypting C to
M, which could be decoded to raw content using standard
decoder.

We stress that in our system, the output of REC module
A (also input to RPB module) in Figure 1 is not available to
the adversary for study. Although conceptually REC and RPB
are two modules, in practice they are easily implemented to-
gether in the entropy coder as a whole. Therefore, A as an
“internal” ciphertext is usually not accessible to outside en-
tity. In other words, the adversary can arbitrarily manipulate
the input M and observe the output C. But he does not have
the capability to obtain the value of A nor insert an arbitrary
A of his choice in between the REC and RPB encryption.

7.1. Ciphertext-only attack

In this attack the adversary is given only the ciphertext C and
tries to deduce the key or plaintext M. Adversary can pick
a random partition/rotation key sequence to decrypt C to a
possible A, then pick another random KHS, decrypt that A
to M, and finally decode M to see whether the raw content is
meaningful. The computation involved is quite heavy. Since
adversary has no idea what the value of actual A is, he has
to examine all possible A in the first step and all possible M
in the second step. As shown by Lemma 1, the key space of
the first step already amounts to R(N) > 2N , not to mention
checking all possible M for each A in second step. Given this
exponential key space, the bitstream in real applications is
usually long enough to thwart any ciphertext-only attack. For
instance, in the state-of-the-art video compression standard
such as H.264, it would cost around 1∼2 kilobits to encode a
CIF-size (352× 288) video frame.

An adversary could also exhaust all possible values of
PRBG seed that generates the KHS and partition/rotation
sequence. The search space for an r-bit number is 2r . Con-
sidering the current state-of-the-art of computing, using
seed longer than 80 bits in our encryption provides adequate
safety margin under ciphertext-only attack.

7.2. Known plaintext and chosen plaintext attack

In the known plaintext attack, several M/C pairs are avail-
able for study. With the knowledge of the plaintext M, the
adversary can launch a classic “meet-in-the-middle” attack
on the internal ciphertext A. Starting from the plaintext side,
the adversary picks random KHS and REC encrypts M to
A1. On the ciphertext side, the adversary chooses random
partition/rotation keys and RPB decrypts C to A2. The ad-
versary accumulates two datasets A1 and A2 until a collision
A1 = A = A2 is found. Let us study the complexity of this
attack to find the internal ciphertext A.

Due to the pseudorandom KHS and entropy coding
property, the output of REC module A can be generally con-
sidered a random N-bit sequence. The same conclusion ap-
plies to C given the randomness of the partition and ro-
tation key. This can be justified by the experimental study
in Section 8.3 that entropies of A and C are very close to
1 bit/symbol, the entropy of a truly random binary sequence.
Based on this and the random selection of KHS and parti-
tion/rotation keys in the above attack, A1 and A2 could be
regarded as a random sample from the space of all N-bit se-
quence as well. This is a classic birthday attack and the com-
putational complexity (i.e., expected number of trials before

a collision are met) is (2N )
1/2= 2N/2. Similar to the discussion

in ciphertext-only attack, the adversary would rather resort
to an exhaustive search on the seed given the large size of N .
Suppose the seed length for KHS generator is r1 and r2 for
partition and rotation key generator. Then the complexity is
clearly 2r1 + 2r2 .

In the chosen plaintext attack, the adversary has the addi-
tional freedom to select any plaintext M of his/her choice and
study the corresponding ciphertext C. Note that RPB is ba-
sically a simple bit-reordering scheme. If we allow the input
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to the RPB module, A, to be arbitrarily manipulated, then
the partition and rotation keys could be determined by ap-
plying inputs of a particular pattern. One such attack algo-
rithm was suggested by Chia-Mu Yu at the Institute of In-
formation Science, Academia Sinica, Taiwan, to the authors
through personal communication. This algorithm requires
O(N) chosen plaintexts and O(N) time complexity. Thus,
the RPB encryption as a stand-alone module cannot with-
stand the chosen plaintext attack. This is however not the
case in the joint REC/RPB model as emphasized in the begin-
ning of Section 7. Although the adversary can freely choose
M, he/she still does not have the capability to manipulate the
value of actual A directly due to the random KHS used in the
REC encryption and the fact that the value of A is not acces-
sible. Therefore, a chosen plaintext attack does not bring in
much advantage as compared to the known plaintext attack.

In summary, inaccessibility of the internal ciphertext due
to the joint REC/RPB model as a black box inside the entropy
coder has played a crucial role in the strength of the proposed
encryption scheme to resist attacks. This is an inherent ad-
vantage of the joint REC/RPB encryption paradigm. As a re-
sult the attack complexity is exponential to the length of the
seed. Therefore, using a sufficiently long seed (> 80 bits) en-
sures the security of the proposed encryption scheme.

7.3. More on equivalent key

Having made the above discussion, let us assume a scenario
where the adversary is able to observe the value of A for a
given ciphertext C by whatever means. We study the security
of our joint REC/RPB encryption under this attack.

As pointed out earlier in Section 5.2, there exist multiple
equivalent keys that encipher an input A to the same cipher-
text C. Thus, an adversary cannot differentiate these equiva-
lent keys given only a few A/C pairs. Instead lots of pairs are
required in order to uniquely determine the correct key. Of
course, the larger the number of equivalent keys for a general
ciphertext, the more pairs are needed and hence the greater
the complexity to determine the correct key. Security under
this attack thus directly relies on the number and characteris-
tics of equivalent keys for a general plaintext/ciphertext pair.

It is shown in Lemma 2 that the number of equivalent
keys Equiv (A,C) is larger than

√
πN/2 for at least one cipher-

text C′. This is however a conservative worst-case estimate
for two reasons. First, the actual size of C(N) is strictly less
than ( N

N/2 ), yet ( N
N/2 ) was used in the derivation. Second, it is

implicitly assumed (by the pigeon hole principle) that equiv-
alent keys of different ciphertexts do not overlap. In fact, we
can show by plausible reasoning that the number of equiva-
lent keys far exceeds

√
πN/2. It also grows exponentially with

respect to the ciphertext length N .
In analysis below, we denote the statistical average num-

ber of equivalent keys for a general N-bit plaintext by E(N).
We have the following property regarding E(N).

Lemma 3. E(N)∼cN for sufficiently large N , where c > 1 is a
constant.

The key to prove this conclusion is the observation that if
k1 is any one of the E(N) equivalent keys for a general plain-
text A1 and k2 is any one of the E(N) equivalent keys for an-
other plaintext A2, then a concatenation key k = k1 ‖ k2 is
an equivalent key for the plaintext concatenation A1 ‖A2. A
function E(N) satisfying this property must be of the form
cN . Appendix A.3 gives a detailed proof.

We emphasize that cN is not an accurate formula of E(N)
but it depicts the asymptotic behavior of E(N) with respect
to N . For a sufficiently large value of N (a long enough plain-
text), the average number of equivalent keys for a general
plaintext quickly becomes intractable since it is exponential
with the plaintext length. This exponential growth rate of the
number of equivalent keys, E(N), plays a key role in RPB en-
cryption’s ability to withstand this attack.

Due to the large amount of equivalent keys, an adver-
sary cannot determine the correct key given only few plain-
text/ciphertext pairs. However, it is interesting to ask, when
a sufficient number of plaintext/ciphertext pairs are available
for analysis, whether it is possible to exclude wrong equiv-
alent keys and determine the correct key uniquely. Thus,
we study this problem and estimate the number of plain-
text/ciphertext pairs needed to launch a known plaintext at-
tack. The total computational cost of this attack is analyzed.

Given a sufficient number of plaintext/ciphertext pairs,
an adversary can proceed as follows. At first, he/she can select
a given pair and calculate E(N) equivalent keys for this pair
using a certain algorithm. Then, he can check all these E(N)
keys against each available pair (Ai,Ci). If RPB(Ai, k) = Ci,
then k is counted as one possible key. Otherwise, k must be a
wrong equivalent key, which can be discarded. As more and
more pairs are examined, the number of possible keys de-
creases. This process is repeated until only one key is left,
which must be the correct key. For a general N-bit plaintext,
let P(N) denote the expected number of plaintext/ciphertext
pairs needed to uniquely determine the correct key. The fol-
lowing lemma offers an estimate for P(N).

Lemma 4. With R(N), E(N), and P(N) defined in the above
description, one has the following relationship:

P(N) = R(N)
R(N)− E(N)

ln R(N). (8)

Then, a rough estimate of P(N) is given by

P(N) ≈ N ln 2. (9)

To solve this problem, we may examine it from another
angle. That is, X containing only one key is equivalent to say-
ing that X , the complementary set of X , contains R(N) − 1
keys. By treating X , we can convert this problem to a vari-
ant of the classical coupon collector problem. Please refer to
Appendix A.4 for a complete proof.

Although the number of plaintext/ciphertext pairs
needed to uniquely determine the correct key is linear with
N , the total complexity to mount such an attack is still
formidable due to the exponential growth rate of equivalent
key number E(N) with plaintext length N . Remember that
the adversary needs a certain algorithm to first find out all
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E(N) equivalent keys and then has to check for each plain-
text/ciphertext pair in order to eliminate wrong keys. It was
assumed before that in this attack, an adversary is only al-
lowed to observe A but prohibited from directly manipu-
lating A. In other words, it is difficult for an adversary to
produce certain A with an arbitrarily desired characteris-
tics for advanced attacks. Thus, we can claim that, for suffi-
ciently large N , which is true for multimedia data, the cas-
caded REC/RPB scheme provides strong resistance against
the known/chosen plaintext attack even when the adversary
is allowed the extra capability to observe the internal cipher-
text A.

7.4. RPB’s impact on statistical randomness ofA andC

In the above sections, we study the security of the joint
REC/RPB encryption scheme under several attack modes
from a cryptographic viewpoint. In this section, the secu-
rity of our scheme is examined from another angle. We study
RPB’s impact on the statistical randomness of input A and
output C. It is apparent that our encryption should not
weaken the statistical randomness of its input A. In other
words, the output C should be at least as random as the in-
put stream A under some statistical measure. For binary se-
quences, a commonly used measure of their randomness is
the entropy. Thus, we would like to study the relationship be-
tween the entropies of A and C. This is stated in the following
lemma.

Lemma 5. Let A be a general input bitstream of length N and
et C be the output bitstream of the RPB encryption module.
Then, for a sufficiently large value of N , the first-, second- , and
third-order entropies of A and C are equal, that is,

H(1)(A) = H(1)(C),

H(2)(A) = H(2)(C),

H(3)(A) = H(3)(C).

(10)

It is straightforward to show that H(1)(A) = H(1)(C)
since the number of 0 or 1 in a binary sequence remains
the same under the RPB operation. The number of digrams
(2-bit subsequence) and trigrams (3-bit subsequence) will
fluctuate under the RPB operation due to the rotation of bit
blocks. However, we can show that for a sufficiently long se-
quence, the rise and fall cancel out and the average number
of digrams and trigrams remains the same. Thus, the second-
and third-order entropies of A and C are still the same. A de-
tailed proof is given in Appendix A.5.

The above lemma demonstrates that RPB encryption
does not affect the overall statistical distribution of single
bit, 2-bit, and 3-bit subsequences for a sufficiently long in-
put stream A. For orders higher than the partitioned block
length of RPB, the entropies of A and C are no longer equal
each other. However, it should be noted that the high-order
entropies may not be so important in evaluating the statisti-
cal properties and redundancy of an information source.

The fact that H(A) = H(C) shows an excellent property
of the RPB encryption scheme: the randomness structure of
input stream A is retained so that output stream C is statis-
tically as random as A. In terms of information theory, this
means that the RPB operation does not increase or decrease
the redundancy of output stream C as compared to input
stream A.

8. EXPERIMENTS AND PERFORMANCE EVALUATION

Experiments were conducted to evaluate the encryption ef-
fect of the joint REC/RPB scheme and reported in this sec-
tion. We also examine RPB’s impact on the statistical ran-
domness of its input A and output C by measuring and com-
paring entropies of A and C.

8.1. Experimental setup

Our experiments were conducted using an H.264 software
encoder/decoder. It was based on the reference code (in the
C programming language) from the H.264 standard work-
group. We made some slight modifications and used cer-
tain optimization techniques (such as the assembly language
routine for DCT) to improve its performance. The H.264
baseline profile (BP) was used. A single reference frame was
adopted for motion estimation in encoding.

H.264 at the BP level supports the CAVLC entropy cod-
ing and 13 Huffman tables are provided in the draft stan-
dard. The RHT encryption was implemented with our own
software encoder/decoder. Sixteen different tables were con-
structed for each of the 13 original Huffman tables. When a
symbol was input to the entropy coder, one of the 16 corre-
sponding tables were randomly selected to encode that sym-
bol. The RPB encryption was used to process the output of
entropy coding afterwards. In our implementation, the tem-
porary output buffer size was set to B = 32 bits. The KHS in
the RHT encryption and the partition and rotation key se-
quence in the RPB encryption were generated by repeatedly
hashing s, s+1, s+2, . . . , where s is the initial key value, using
the 128-bit MD5 hash function.

8.2. Encryption effect of joint REC/RPB scheme

We used a test video clip called “Foreman” from the H.264
workgroup, of the YUV 4 : 2 : 0 format and the CIF size.
The first 10 frames were compressed and encrypted using
the aforementioned H.264 encoder. The key value was cho-
sen to be 0x246CCA6B103C95. To evaluate the encryption
effect, the following 3 experiments were conducted. (1) At
the decoder side, the encrypted bitstream was decoded nor-
mally without applying any decryption algorithm. This test
demonstrates the effect of decoding an encrypted bitstream
using the normal H.264 decoding process.

(2) At the decoder side, the encrypted bit-
stream is decrypted using a randomly generated key
0x17460FD05B9EDF. This test simulates the scenario where
an adversary attempts an attack by decrypting the bitstream
using a randomly picked key.
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(3) At the decoder side, the encrypted bitstream is de-
crypted using the key 0x246CCA6B103C94, which is differ-
ent from the correct key by one (the last digit being 4 instead
of 5). This is to illustrate the extreme case where an attacker
was able to discover most parts of the correct key value.

As shown by images given in Figures 6–8, all 3 tests yield
totally scrambled, meaningless video content, indicating sat-
isfactory encryption results. Needless to say, decrypting the
bitstream using the correct key produces the same image as
that of standard H.264 encoding/decoding result.

8.3. Entropymeasurement of bitstreamsA andC

As discussed in Section 7.4, the RPB encryption module does
not alter the entropy of input stream A. In this section, we
measure the entropies of the coded video bitstream A and
the encrypted bitstream C. First, counts of subsequences in
A and C are listed in Tables 4∼6.

The entropies of order up to 4 are calculated and com-
pared in Table 7. Note that the entropy measure is normal-
ized by dividing the ith entropy by i for the ease of compar-
ison. Several important observations about these empirical
statistics are summarized as follows.

(1) Entropies of input stream A are all very close to
1 bit/symbol, which is the entropy of an ideal ran-
dom binary sequence. This provides a proof that A is a
nearly random sequence.

(2) For the test bitstream, the RPB operation has led to a
more even distribution of subsequences (of length up
to 4) in C as compared to that of A. For instance, the
number of 3-bit subsequence “000” in A is 2843 while
it is 2588 in C, which is closer to the average number
20000/8 = 2500. As a result, entropies of C are actually
higher than that of A and more closer to 1 bit/symbol,
which means that C maintains a higher level of ran-
domness than A. This is because A has certain regular
patterns, that is, it contains a highly biased number of
byte value 0x00 and 0xFF as mentioned in the FIPS
140-1 poker test.

Thus, for an input with some regular structures, the
RPB encryption scheme actually increases its randomness as
demonstrated by this particular test bitstream. This corrob-
orates our claim that the RPB encryption in general does not
weaken the randomness of its output.

9. CONCLUSION

A joint REC/RPB encryption paradigm for efficient multi-
media data protection is presented in this work. By exploit-
ing the structure of entropy coder, the proposed scheme
demands very low computation and can be easily imple-
mented at negligible cost. In terms of security strength, our
scheme remains secure under ciphertext-only attack and
known/chosen plaintext attack. We also demonstrate from
information theory’s point of view that our scheme does not
weaken the statistical randomness of compressed bit stream.
Being efficient and secure, our proposed scheme is suitable
to encrypt and decrypt multimedia data in highly demand-

Table 4: Counts of 1-bit and 2-bit subsequences in A and C.

0 1 00 01 10 11

A 10152 9848 5403 4749 4748 5099

C 10152 9848 5057 4920 4919 5103

Table 5: Counts of 3-bit subsequences in A and C.

3-bit 000 001 010 011 100 101 110 111

A 2843 2560 2324 2424 2559 2189 2424 2675

C 2588 2469 2473 2446 2468 2451 2446 2657

Table 6: Counts of 4-bit subsequences in A and C.

4-bit 0000 0001 0010 0011 0100 0101 0110 0111

A 1487 1356 1286 1274 1229 1095 1210 1214

C 1345 1243 1249 1219 1237 1236 1216 1230

4-bit 1000 1001 1010 1011 1100 1101 1110 1111

A 1355 1204 1038 1150 1330 1094 1214 1461

C 1242 1226 1224 1227 1231 1215 1230 1427

Table 7: The entropy values of A and C with the order equal to 1,
2, 3, and 4.

Entropy H (1) H (2)/2 H (3)/3 H (4)/4

A 0.99983 0.99893 0.99895 0.99826

C 0.99983 0.99990 0.99979 0.99967

ing applications where large amount of data needs to be pro-
cessed.

APPENDIX

A. PROOF OF LEMMAS

A.1. Proof of Lemma 1

Let A = (a1a2 · · · aN ) be a stream of N bits. Assume B is
the maximum block size allowed in, partitioning A. Notice
that this restriction implies that any rotation in partition can-
not start with bit beyond aB. Thus, all R(N) possible rotation
in partition RP(A, p, r) can be classified into the following B
categories:

(1) those starting with a1;
(2) those starting with a2;

...
(3) finally, those starting with aB.

We denote the total number of each category by R1(N),
R2(N),. . . , RB(N). Note this classification is mutually exclu-
sive and all inclusive, meaning that any possible resultant bit-
stream A′ = RP(A, p, r) must belong to one and only one of
the above categories. Thus, we have

R(N) =
B∑

i=1

Ri(N). (A.1)
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#0-testout

(a)

#8-testout

(b)

Figure 5: Frames 1 and 9 of the test video clip “Foreman”.

#0-testout

(a)

#8-testout

(b)

Figure 6: Frames 1 and 9 obtained by the normal H.264 decoding process.

Now let us look at each of the above categories. In cat-
egory (1), a1 is fixed and we are left with N − 1 bits after
a1 which we can freely partition and rotate. Thus, R1(N) =
R(N − 1). In category (2), it must be true that the first
2 ≤ k ≤ B bits are chosen as a block and a 1-bit left rotation is
performed. This is the only way A′ can start with a2. If k = 2
(A′ starts with a2a1), we have N − 2 bits left over and total
number of possible rotation in partition is clearly R(N − 2).
k = 3 (A′ starts with a2a3a1) corresponds to R(N − 3). Fi-
nally, for k = B we have the number R(N − B). Notice that
this classification with different values of k is again mutually
exclusive and all inclusive. Hence, we end up with

R2(N) =
N−2∑

k=N−B
R(k). (A.2)

Continuing the same line of reasoning we have the following
equation:

Ri(N) =
N−i∑

k=N−B
R(k). (A.3)

Finally, summing up Ri(N), we arrive at

R(N) =
B∑

i=1

Ri(N)

= R(N − 1) +
B∑

i=2

N−i∑

k=N−B
R(k)

= R(N − 1) +
N−2∑

k=N−B
(N − 1− k)R(k).

(A.4)

Rearranging the terms of the above equation, we obtain an-
other recursive relationship of R(N):

R(N) = 2R(N − 1) +
N−3∑

k=N−B
R(k). (A.5)

If we define the following recursive sequence

S(N) =
{

2S(N − 1) N > 0,

1 N = 0,
(A.6)

the solution is apparently S(N) = 2N .
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Figure 7: Frames 1 and 9 obtained through decryption using key 0x17460FD05B9EDF.

#0-testout

(a)
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(b)

Figure 8: Frames 1 and 9 obtained through decryption using key 0x246CCA6B103C94.

From the above definitions of R(N) and S(N), it is
clear that if R(N0) > S(N0) for some N0, then R(N) >
S(N) for all N > N0. Now, it is readily checked that
R(6) = 65 > S(6) = 64. Thus, we come to the conclusion that
R(N) > 2N for N ≥ 6. This completes the proof.

A.2. Proof of Lemma 2

Let C(N) denote the number of different ciphertexts by ap-
plying all different RPB operations to A. There are R(N) pos-
sible ways to do an RPB operation and the range size is C(N).
Thus, by the pigeon hole principle, there must exist a cipher-
text C′ such that at least �R(N)/C(N)� RPB operations trans-
form A to C′. That is, we have

Equiv (A,C′) ≥ ⌈R(N)/C(N)
⌉
. (A.7)

Now, let us estimate the size of C(N). Note that an RPB oper-
ation only alters the order of bits in plaintext A as a result of
random rotation. Since the total number of 0’s in ciphertext
C′ remains the same after any RPB operation, any cipher-
text C also contains Z 0’s. The total number of N-bit binary

sequences containing Z 0’s is ( N
Z ). However, we claim that

C(N) must be strictly less than ( N
Z ) due to the upper bound

of partitioned block’s length pi < B.
Suppose that the first 0 of A occurs at bit position z1, and

the ith 0 at bit position zi. Because pi < B, the first 0 cannot
appear at a bit position after z1 +B in ciphertext C′. Thus, be-
ginning from bit position z1 +B to the end, C′ can contain at
most Z−1 0’s. Likewise, C′ can contain at most Z− i 0’s after
bit position zi+B. This limitation prohibits many bit patterns
from being produced as a result of an RPB operation. An ac-
curate analysis of C(N) becomes a quite complicated combi-
natorial problem since it requires complete knowledge of all
zi’s of the particular A. In this study, we take C(N) < ( N

Z )
as an upper bound estimate. From Lemma 1, we know that
R(N) > 2N . Hence, we conclude

Equiv (A,C′) ≥ ⌈R(N)/C(N)
⌉
>
⌈

2N
/(

N
Z

)⌉

, (A.8)

which is (6).
A typical random bitstream A contains half 0’s and

half 1’s on the average. By substituting N = 2Z into the
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above equations and using Sterling’s formula for factorial
n! ≈ √2πn(n/e)n, we obtain

C(N)<

(
2Z
Z

)

= 2Z!
Z!Z!

=
√

4πZ(2Z/e)2Z

2πZ(Z/e)2Z = 22Z
√
πZ

= 2N√
πN/2

.

(A.9)

Finally, we end up with

Equiv
(
A,C′

)
> 2

N
/

2N√
πN/2

=
√
πN/2. (A.10)

This completes the proof.

A.3. Proof of Lemma 3

First, we can arbitrarily pick two random N-bit plaintexts,
A1 and A2, and two N-bit ciphertexts, C′1 and C′2. By defi-
nition of A(N), there are roughly A(N) keys k1 ∈ K1 that
encrypt A1 to C′1 and A(N) keys k2 ∈ K2 that encrypt A2

to C′2. Now, consider the plaintext concatenation A1 ‖A2 and
ciphertext concatenation C′1 ‖ C′2. It is obvious that a con-
catenation key k = k1 ‖ k2 of any k1 ∈ K1 and any k2 ∈ K2

would encipher the plaintext A1 ‖ A2 to ciphertext C′1 ‖ C′2.
In other words, all such k’s are equivalent keys for the 2N-
bit plaintext A1 ‖ A2, while the average number of a general
2N-bit plaintext is by definition A(2N). Hence, we end up
with

A(2N) ≥ # of such k = k1 ‖ k2 = A2(N). (A.11)

By repeatedly applying the above reasoning to m plaintexts,
we have

A(mN) ≥ Am(N), m is an integer. (A.12)

It is a well-known result that a function satisfying the above
equation must be of the form cN . In addition, we have already
demonstrated in Lemma 2 that A(N) >

√
πN/2 for at least

one ciphertext. Therefore, c > 1 when N is sufficiently large
(otherwise, A(N)→0). This completes the proof.

A.4. Proof of Lemma 4

LetKi denote the set of equivalent keys corresponding to each
plaintext/ciphertext pair (Ai,Ci), i = 1, 2, . . . . According to
Lemma 3, each Ki contains about A(N)∼cN keys out of all
possible R(N) keys. Denote by Xi the set of possible keys. At
the first step, it is clear that X1 = K1. For each pair (Ai,Ci)
checked afterwards, the set of possible keys is the intersection
of current set and Ki,

Xi = Xi−1 ∩ Ki (A.13)

or equivalently

Xi = K1 ∩ K2 ∩ · · · ∩ Ki. (A.14)

We are asked to find out the index i such that |Xi|@ = 1, that
is, Xi contains only one element: the correct key.

Instead of directly treating Xi we consider its comple-
mentary set Xi = R − Xi, where R denotes all possible R(N)
keys as in Lemma 1. According to set operation law, we have

Xi = K1 ∩ K2 ∩ · · · ∩ Ki = K1 ∪ K2 ∪ · · · ∪ Ki,
(A.15)

where Ki = R− Ki is the complementary set of Ki. Note that
|Xi| = 1 is equivalent to |Xi| = R(N)−1. Since R(N) > 2N �
1 we can take |Xi| = R(N) which means Xi = R. Since crypt-
analyst cannot arbitrarily manipulate the input stream A, we
can assume that each equivalent key set Ki is a random draw-
ing of A(N) keys out of a bin of R(N) keys. Conversely, Ki

is a random drawing of R(N)− A(N) keys. The attack above
can thus be considered a random test. Each step constitutes
drawing a random set Ki from R and joining the element
in Ki into the set Xi. The random test is terminated when
Xi = R, that is, when Xi contain all the elements in R. The
problem amounts to find the expected number of trials be-
fore this random test can terminate.

Apparently, we can see that this problem is a variant of
the classic coupon collector problem, where one randomly
draws one coupon at a time from a total of N coupons un-
til all N coupons have been collected. It is a well-known
fact that the expected number of draws to collect all N
coupons is N lnN . The difference is that here the draw size is
R(N)−A(N) instead of 1. Due to the randomness of available
plaintexts (cryptanalyst cannot manipulate input stream A
due to black box structure), all keys in each Ki can be viewed
as independently drawn from all R(N) keys with equal prob-
ability. Therefore, we can treat one step in our test as an ag-
gregation ofR(N)−A(N) tests in the coupon collection prob-
lem. The expected number of tests is equal to R(N) lnR(N)
divided by R(N)− A(N), that is,

P(N) = R(N)
R(N)− A(N)

lnR(N). (A.16)

It is already shown that R(N) > 2N and A(N)∼cN for
some constant 1 < c < 2. For sufficiently large N we have
R(N) � A(N) and R(N)/(R(N) − A(N))→1. Finally, taking
2N as a rough estimate of R(N) we end up with

P(N) ∼= N ln 2. (A.17)

This completes the proof.

A.5. Proof of Lemma 5

A general binary sequence s can be treated as output of an bi-
nary information source S, which emits 0 and 1 according to
its statistical structure. Thus, statistical property of s reflects
the statistical structure of the information source S. The nth
order entropy for S is defined as follows:

H(n)(S) =
∑

d

p(d)
1

log p(d)
, (A.18)

where the summation is over all possible n-bit subsequence
d. For a sufficiently long sequence s, the probability of
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x0 . . . xm

y0 . . . yn

y0 . . . yn

x0 . . . xm

Before block rotation: b

After block rotation: b

a

a

Figure 9: Change of digram under RPB due to bit block rotation.

a particular subsequence d can be calculated as the number
of occurrence of d divided by the length of s, that is,

p(d) = # of occurrence of d in s

length of s
. (A.19)

For instance, the first- and second-order entropy is com-
puted by

H(1)(S) = p(0) log
1

p(0)
+ p(1) log

1
p(1)

,

H(2)(S) = p(00) log
1

p(00)
+ p(01) log

1
p(01)

+ p(10) log
1

p(10)
+ p(11) log

1
p(11)

(A.20)

Now let us look at the input binary sequence A and out-
put binary sequence C as results of RPB encryption. Since
RPB operation only reorders certain bit blocks, the total
number of 0 and 1 remains the same after passing the RPB
unit. It is clear that p(0) and p(1) of output C equal that of
input A. Hence, by definition of first-order entropy we have
H(1)(A) = H(1)(C).

Things become a little bit complicated for second-order
entropy. The number of digrams 00, 01, 10, 11 will vary un-
der RPB operation due to rotation of bit blocks. The change
of digrams after a bit block rotation is illustrated in Table 8.

The bit block x0 · · · xm is rotated behind bit block
y0 · · · yn. b and a are the bits before and after the rotation,
either 0 or 1. If we look at all occurrences of digrams, we can
find the following changes:

bx0 −→ by0, xmy0 −→ ynx0, yna −→ xma. (A.21)

For example, if (x0, xm, y0, yn) = (0, 0, 1, 1), then the changes
are

b0 −→ b1, 01 −→ 10, 1a −→ 0a. (A.22)

From the changes of digrams, it can be easily seen that there
exists a symmetry between x0, xm and y0, yn. That is, if we
exchange the value of x0 with y0, and xm with yn, then the
effect to the change of digrams will be reversed. In the above
example, if we take (x0, xm, y0, yn) = (1, 1, 0, 0), the changes
become

b1 −→ b0, 10 −→ 01, 0a −→ 1a (A.23)

which is clearly the opposite of change corresponding to
(x0, xm, y0, yn) = (0, 0, 1, 1) as in (A.22). The changes
of digram for all 16 possible values of the quadruple
(x0, xm, y0, yn) are tabulated below.

Table 8: Change of digram counts under RPB operation.

x0xmy0yn Change of digram

0 0 0 0 No change

1 1 1 1 No change

0 1 0 1 No change

1 0 1 0 No change

0 0 0 1 00→10 1a→0a

0 1 0 0 10→00 0a→1a

0 0 1 0 b0→b1 01→00

1 0 0 0 b1→b0 00→01

0 0 1 1 b0→b1 01→10 1a→0a

1 1 0 0 b1→b0 10→01 0a→1a

0 1 1 0 b0→b1 11→00 0a→1a

1 0 0 1 b1→b0 00→11 1a→0a

0 1 1 1 b0→b1 11→10

1 1 0 1 b1→b0 10→11

1 0 1 1 01→11 1a→0a

1 1 1 0 11→01 0a→1a

x0x1 . . . xmxm+1

y0 y1 . . . yn yn+1

y0 y1 . . . yn yn+1

x0x1 . . . xmxm+1

Before block rotation: b0b1

After block rotation: b0b1

a0a1

a0a1

Figure 10: Change of trigram under RPB due to bit block rotation.

It is clear from this table that the 16 values of
(x0, xm, y0, yn) can be grouped into 6 pairs with opposite
change effect and 4 values with no change (because x0 = y0

and xm = yn). It is reasonable to claim that these 16 values
occur with equal probability due to the following two rea-
sons.

(1) Input stream A, as the result of high performance
multimedia compression, can be regarded an almost
redundancy-free and nearly random sequence.

(2) In the RPB encryption scheme, the partition size and
rotation size are both determined by a pseudorandom
sequence. Thus, bit positions of partition boundary
and rotation boundary also occur evenly with equal
probability.

For a sufficiently long sequence, the rise and fall in num-
ber of digrams 00, 01, 10, 11 will cancel out. Hence, we
come to the conclusion that in statistical average sense, RPB
operation does not change the counts of digrams in a se-
quence. By probability calculation equation (A.19), the prob-
abilities of digrams for inputs A and C are equal. It follows
directly from the definition of second-order entropy that
H(2)(A) = H(2)(C).

Now let us go a step further to the third-order entropy.
The changes of trigram (3 bit subsequence) due to a bit block
rotation is shown in Figure 10.

Again the bit block x0x1 · · · xmxm+1 is rotated behind bit
block y0y1 · · · ynyn+1. b0b1 and a0a1 are two bits before and
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after the rotation, either 0 or 1. We can note the following
changes of trigrams:

b0b1x0 −→ b0b1y0, b1x0x1 −→ b1y0y1,

xmxm+1y0 −→ ynyn+1x0, xm+1y0y1 −→ yn+1x0x1,

ynyn+1a0 −→ xmxm+1a0, yn+1a0a1 −→ xm+1a0a1.
(A.24)

Similar to the digram case, we can see that here there is a
symmetry between xi and yi as well. If we exchange the value
of all xi’s with all yi’s, then the effect to change of trigrams
will be reversed. Again due to the reason discussed above, we
conclude that in statistical average, RPB operation does not
change the counts of trigrams in for a sufficiently long se-
quence. Hence, the third-order entropy of input A and out-
put C are equal, that is, H(3)(A) = H(3)(C). This completes
the proof.
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