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Abstract 

The Internet of Things (IoT) is now an essential component of our day-to-day lives. In any case, the association of vari-
ous devices presents numerous security challenges in IoT. In some cases, ubiquitous data or traffic may be collected 
by certain smart devices which threatens the privacy of a source node location. To address this issue, a hybrid DL 
technique named Deep Q Learning Neural network (DQ-NN) is proposed for the Source Location Privacy (SLP) in IoT 
networks based on phantom routing. Here, an IoT network with multiple sources and destinations is considered first, 
and then the phantom node is chosen by analyzing neighbor list, energy, distance, and trust heterogeneity parame-
ters. After that, multiple routes are created from the source node to the sink node via the phantom node. Finally, path 
selection is performed by the proposed DQ-NN. Moreover, DQ-NN is obtained by merging the Deep Q Learning Net-
work (DQN) and Deep Neural Network (DNN). A simulation environment consisting of 150 nodes is created to study 
the effectiveness of performance and scalability. The proposed novel DQ-NN outperforms other existing algorithms, 
by recording a high network lifetime is 111.912, a safety period of 664970.7 m, an energy is 0.034 J, and a distance 
is 56.594 m.

Keywords Internet of things, Source location privacy, Deep Q learning network, Phantom routing, Deep Q learning 
neural network

1 Introduction
The IoT is an assorted network, which contains a num-
ber of interconnected devices with computing power 
from minimal to average. These devices persist to per-
vade deeper in our private platform and industrial and 
commercial fields, through processing, storing, and sens-
ing whole types of data [2]. The key component of IoT is 
huge deployments of wireless sensor networks (WSNs), 

which are used for various purposes, such as tracking and 
observing [7, 15]. In addition, the information aggregated 
through the structure of IoT is utilized by a number of 
providers to maximize the rate of application or services 
offered. Consequently, numerous IoT-based applications 
are utilizing the position data tailoring its features to the 
position of a user or object it concerns.

However, there are a number of barriers that the delay 
next to evolution and promotion of the IoT, named as 
processes like user acceptance, security, and privacy. 
Having been incorporated into their everyday process 
and being able to gather and allocate huge volumes 
of data, IoT has concerned the interest of malevolent 
attackers that repeatedly attack IoT structures to obtain 
potentially important data [11]. The SLP is significant 
because the initiating node position of the message for-
warded by the sourcenode in the IoT sensor network 
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includes private data that is required to be saved from 
various kinds of adversaries, like network loop methods, 
directed random paths, and undirected random paths. 
The data-oriented technique motivates the privacy of 
data [27] gathered by the sensor nodes and queries 
located in a network. Context-oriented privacy can be 
characterized as uncertainties with regard to contextual 
information, similar to the position and timings of net-
work hubs [20, 27].

Phantom routing has been devised to guard SLP by 
changing a flooding routing process to contain the pri-
mary directed random walk continued by the flooding 
[10, 13]. However, based on random techniques can keep 
SLP in theory, it encounters the problem of failure link, 
and messages cannot be effectively received to a sink. The 
scheme of the fake sources utilizes the sensor nodes in a 
network as the fake resources to broadcast fake messages, 
in such a way that the challenger cannot detect which 
resource is actual. This technique has been effective in 
protecting the SLP; however, it results in higher energy 
usage of sensor nodes. Another scheme appropriate in 
the delay-tolerant networks alters the message delay algo-
rithm to attain near-ideal SLP but at a high cost of receiv-
ing latency [5, 13]. Despite these frameworks, only a few 
studies have been performed with the purpose of fake 
source schemes in networks with various sources and des-
tinations. Moreover, there are several applications, which 
require to analyze the position privacy of communicating 
nodes [10]. The necessity to conserve the source position 
of various assets can be handled before the utilization of 
WSNs can become prevalent in screening purposes, not 
least because a single benefit scene can occasionally sub-
stantiate the significant expense of deploying large-scale 
WSNs [14, 16, 17]. Here Angle-based Dynamic Routing 
Scheme (ADRS) is devised in [6], which utilizes the notion 
of visible region and defines the path by the visible region 
during the phantom routing, named as failure path.

The protocol of credit routing has ensured the source of 
location privacy, but it did not take the power of a visible 
region. Phantom routing with a locational angle (PRLA) 
role measures the self-assured probability by an offset 
angle of a sensor node to minimize the probability of rout-
ing by visible region. Considering the disadvantages of the 
PRLA method, two schemes utilizing phantom nodes were 
devised to protect the SLP. Through utilizing imperfect 
flooding, nodes away from the source are chosen as phan-
tom nodes that importantly enlarged the position diver-
sity of phantom nodes in SLP Preservation Protocol in the 
WSN Utilizing Source-Based Restricted Flooding (PUS-
BRF). Here, in comparison to the PUSBRF protocol, the 
Enhanced SLP Preservation Protocol Using Source-based 
Restricted Flooding (EPUSBRF) avoids the visible region in 
a routing operation, and network security time is increased.

The SLP protection routing technique under a random 
virtual ring (PRVR) was devised for extending the rout-
ing way to virtualize the range of a source node, mak-
ing it complex for adversaries to apply effective reverse 
tracking. Moreover, the techniques [9, 10] utilize directed 
random walks to protect the SLP. In these methods, the 
phantom resources are so long from source node. When 
the forwarding node transfers the packets, it gradu-
ally chooses a obtaining node from the set of parent or 
child nodes to transfer packets to the sink node. More-
over, phantom nodes accumulated by a directed rout-
ing scheme will collect in several fixed areas that cannot 
attain the use of the geographical diversity of the phan-
tom nodes and difficult routes in transmission [9, 22].

The challenges faced by existing techniques that are 
collected based on SLP in IoT under multiple sources and 
destinations are described as follows. 

1. In [15], the Hybrid phantom scheme ensured SLP 
and generated more accurate query responses with 
minimum communication costs. However, packets’ 
overhead was not decreased because of the absence 
of a timing technique.

2. SLPRR was developed in [27] for SLP protection in IoT. 
This method improved the safety time without affect-
ing the network lifetime, but it failed to reduce the nec-
essary time to transfer fake packets and actual packets 
to more powerful adversaries such as global adversary.

3. In [28], HASHA was developed to protect location 
privacy in IoT, and this algorithm performed well 
in real-world applications; it failed to investigate 
the times’ of each node participating in the routing 
owing to the overlapping issue.

4. The EBBT model [29] had a better performance even 
in real-world applications. However, this method was 
not generalized for other datasets and caused ineffec-
tive routing.

5. SLP process is an emerging research area in IoT 
because source position can provide attackers with 
valuable data about the target being observed and 
tracked. However, it is still challenging to solve prob-
lems such as accurate paths between the nodes, 
improving the centralized distribution of the phan-
tom nodes near source nodes, and reducing network 
communication overhead.

The emerging IoT has become an essential component 
of the daily activities. In any case, the association of vari-
ous devices presents numerous security challenges in IoT. 
So, several traditional route selection papers are analyzed 
with their benefits and shortcomings, which implement 
better path selection and conquer the issues of existing 
techniques.
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The primary aim of this paper is better path selection 
based on the phantom routing protocol in IoT with mul-
tiple sources and destinations, which is done by DQ-NN. 
Here, IoT network is simulated initially with multiple 
sources and destinations, and then phantom node selec-
tion is processed under the energy, neighbor list, dis-
tance, and trust heterogeneity parameters. Then, the 
multiple routes are created from source node to the sink 
node by the phantom node. At last, path selection is per-
formed by the proposed DQ-NN, which is obtained by 
merging DQN and DNN.

The key contribution of this article is listed below.

• Proposed DQ-NN for path selection: Here, a DQ-NN 
model is proposed for selecting an ideal path for 
transmission based on the phantom routing protocol 
in IoT. The selection of the path is done by DQ-NN, 
which is obtained by merging DQN and DNN.

The remnant sections of this work include the fol-
lowing: part 2 indicates the review of the existing route 
selection schemes along with their shortcomings. Part 3 
illustrates the path selection using the proposed DQ-NN. 
Part 4 discusses the effectiveness of DQ-NN in contrast 
to the traditional techniques, and part 5 gives the conclu-
sion of this research.

2  Related work
Hussain et  al. [15] devised a Hybrid phantom method 
for improving SLP in IoT. This technique had improved 
privacy, but sensor operation in an open platform was a 
major problem for prediction and classification.  Wang 
et  al. [27] devised a SLP protection scheme under ring 
loop routing (SLPRR) for IoT. This technique resulted 
in minimum energy consumption, but it required more 
time for transmitting the data packets.

Zhang and Zhang  [28] developed a HASHA for pro-
tecting location privacy in IoT WSNs, and it offered the 
best location privacy with minimum communication 
overheads, although HASHA consumed more power 
than phantom routing since the hash operation was 
required for both the transmitter and receiver. Zhou 
et  al. [29] developed an energy-efficient SLP protec-
tion scheme (EBBT) for path selection and achieved a 
very low delay in delivering the packets. However, it was 
unable to process a data privacy protection technique for 
protecting the position of the source node.

Mutalemwa and Shin [21] devised a new relay ring 
routing (ReRR) protocol for achieving the reliability of 
WSN communications. Here, the routing path in this 
model had high path diversity, but energy distribution 
was not balanced in this model. Chen et al. [9] developed 
a Privacy Protection Scheme Based on Sector Phantom 

Routing (PSSPR) for addressing the SLP problems. The 
communication overhead of the technique was low, 
although the network had a much higher security time.

Gu et al. [13] leverages silent nodes that become peri-
odically silent and do not participate in data transmis-
sion. The silent periods as assigned on a random basis to 
the nodes. Even though this technique enhances SLP by 
confusing the adversary, additional energy is consumed 
to keep the random activation and deactivation and deac-
tivation of nodes.

Shukla et  al. [25] devised random rings and a limited 
hop fake packet routing scheme (SLP-RRFPR) for SLP, 
and the source node’s safety period was high, but it failed 
to perform well in network typologies such as elliptical 
and circular. Gu et al. [13] introduced a routing scheme 
based on silent nodes for selecting an optimal path for 
proving SLP. A high level of privacy was achieved at the 
expense of negligible overhead, but it addressed the SLP 
problem in different network configurations.

George et al. [12] presented an innovative approach that 
combines the foraging behavior of coot birds with shep-
herd’s herding behavior during the initialization process 
to optimize the network boundary. SS-COOT algorithm 
improves the diversification phase and avoids premature 
convergence. Although there are significant performance 
improvements, the computational cost is high.

Arunachalaperumal et al. [3] introduced a unique tech-
nique to improve SLP in WSN. This approach creates a 
false packet-forwarding scheme (FPFS) by combining a 
sequential assignment routing (SAR) strategy with an 
improved reptile search algorithm (IRSA). Although 
there is an improvement in PDR and throughput, energy 
consumption is more due to the introduction of dual 
routing of dummy packets, and since it is for the WSN 
network, it may not scale well for IoT considerations.

Table  1 presents each approach’s routing techniques, 
objectives, metrics, and limitations.

Following an extensive literature survey on SLP in IoT 
exists many advanced methods, like hybrid optimiza-
tion, metaheuristic-based routing, federated learning, and 
proxy node selection that are intended to enhance privacy, 
efficiency, and energy conservation. Although these tech-
niques have demonstrated advances in terms of improving 
energy usage, privacy, and efficiency, they frequently con-
centrate on certain cases or have drawbacks in terms of 
computing overhead, adaptability to various IoT contexts, 
or defense against sophisticated adversaries. The lack of a 
more robust, flexible, and effective method to fully handle 
SLP in IoT with low computational costs, good network 
performance, and balanced energy consumption is the 
research gap. Therefore, our novel proposed work com-
prehensively addresses SLP in IoT combining phantom 
routing to resist adversaries by generating multiple paths 
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from source to destination and DQNN approach to opti-
mize path selection based on dynamic network conditions 
among multiple paths generated.

3  System model
The IoT [15] model used in this work is elucidated using 
the system model. The IoT encompasses various nodes, 
such as source node, phantom node, and sink node as 
shown in Fig. 1. The attacker in a model has higher com-
puting power and minimum storage space. It can choose 
the position of the source node and regularly creates 
encrypted packets about panda and transfers it to the 
sink hop-by-hop in a reverse angle, and it consists of the 
following conditions:

• Sensor nodes are positioned uniformly in a network 
to consequently see the activities and positions of 
character of a source node, where every node is allo-
cated resources and has minimum computation of 
the capacity and energy.

• All the sensor nodes are linked, and every node has 
data about its neighborhood node, the position of 
the sink node, and its equivalent position in the 
network.

• The relative position information is broadcast to 
keep an updated network.

3.1  Phantom node
It is utilized to generate the operation of a source 
node with the aim of confusing adversary. Here, the 
source node transmits the data in a random manner to 
the phantom node, which in turn receives the data to 
sink node utilizing the shortest path technique. Here, 
the packets will be delivered to a phantom node that 
is randomly found, and from phantom node, the data 
is transferred to sink node by selecting a random path 
based on certain criteria. While data is transmitted in 
this manner, the adversary finds it difficult to track the 
source location, thereby ensuring SLP. The rate of pri-
vacy is directly associated with the length of random 
walk and the lengthier the random walk, the higher the 
rate of privacy preservation. Figure 1 displays the sys-
tem model of IoT.

4  Proposed DQ‑NN for location privacy in IoT 
with multiple sources and destinations

The major aim of this paper is to develop a proposed 
DQ-NN for protecting location privacy in IoT with mul-
tiple sources and destinations. IoT network is simulated 
at first with multiple sources and destinations, and then 
the phantom node is chosen by considering the neigh-
bor list, energy, distance, and trust heterogeneity param-
eters. Then, multiple routes are created from source node 
to phantom node. Consequently, multiple routes are 

Table 1 Summary of related existing works

Reference Strategy Objectives Merits Limitations

Chenet al. [9] PSSPR Better Safety time that exist-
ing

Safety time, communication 
overhead

High energy dissipation

Arunachalaperumalet al. [3] MSAR-FPFS Better SLP using dual rout-
ing and SAR technique

Optimal route selection, 
prevents adversary detec-
tion

High computation cost 
while optimization

Hussainet al. [15] Hybrid phantom method Low energy consumption Safety period, energy con-
sumption, network lifetime

High packet overhead

Li et al. [18] Proxy source node selection 
+ shortest path routing

SLP protection and improve 
efficiency

Reduced network overhead May not be suited for IoT 
scenarios

Georgeet al. [12] SS COOT Optimization Enhance SLP routing Improved throughput, PDR 
and energy efficient

May not be suited for vast IoT 
scenarios

Saguet al. [24] Metaheuristic optimization 
with CNN+DBN and Bi-
LSTM+GRU 

Optimized DL models for IoT 
security

Better accuracy, diverse 
dataset

High computational com-
plexity

Almuqrenet al. [1] Modified Firefly Optimiza-
tion + Hybrid CNN-QRNN

Botnet threat detection 
and classification for cloud-
based IoT

High detection precision, 
better feature selection

Limited to botnet detection

Mutalemwaand Shin [22] Proxy node routing Generation of random 
routes for each packet

Energy consumption, safety 
period, attack success rate

More packet delivery cost, 
high energy dissipation

Mutalemwaand Shin [21] ReRR protocol Diversified routing path Energy consumption, net-
work lifetime

Unbalanced energy distribu-
tion, high end to end delay

Zhouet al. [29] EBBT Low delay in packet delivery Average hops, energy con-
sumption, security period

Absence of data privacy 
protection method

Chenet al. [9] PSSPR Better Safety time that exist-
ing

Safety time, communication 
overhead

More energy consumption
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generated from phantom node to sink node. Finally, path 
selection is processed by DQ-NN. In addition, DQ-NN is 
formed by incorporating DQN [19] and DNN [26]. Here, 
Fig. 2 represents a structure of DQ-NN for location pri-
vacy in IoT with multiple sources and destinations.

4.1  Phantom node selection
A selection process of a phantom node is performed 
with respect to elements such as energy, distance, trust, 
neighbor list, and the heterogeneity. During the com-
munication among nodes, new phantom nodes are 
selected randomly and consider the above parameters. 
The fitness solution for each node is estimated.

4.1.1  Energy model
Energy consumption plays an essential role in estimat-
ing the performance of the routing method. It records the 
statistical output in every simulation [27]. The following 
expression is utilized to measure energy consumption.

where Celec indicates the transmitting circuit loss, f  rep-
resents the distance of nodes, CB represents the transmit-
ted energy, D indicates the packet length and illustrates 
the two modes of two system parameters, and fO indi-
cates the distance threshold.

(1)CB(D, f ) =
D ∗ Celec + D ∗ αfs ∗ f

2 if f ≤ f0
D ∗ Celec + D ∗ αamp ∗ f

4 if f > f0

Cr indicates receiving energy.

4.1.2  Distance
The distance is calculated based on the distance between 
the panda node and sink node and is expressed as,

where Fa denotes the source node a , and Fb indicates the 
sink node b.

4.1.3  Heterogeneity
IoT networks may be structured in a heterogeneous form, 
so the source node needs to know the heterogeneity of a 
node during the phantom node selection. The source node 
is considered the heterogeneous node for selecting the 
phantom node or if it does how much the node is depend-
able with trust, mobility, energy, and so on. The value of 
heterogeneity is denoted as L.

4.1.4  Neighbor identification list
It contains various data, such as neighbored sensor 
nodes, and node IDs. The more amount of neighbors in 

(2)f0 =

√

αfs

αamp

(3)Cr = D ∗ Celec

(4)G(a, b) = �f (a)− f (b)�

Fig. 1 System model of IoT with multiple source and destinations
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the list decreases the probability for a challenger to back-
track the source node and the neighbor identification list 
is indicated as M.

4.1.5  Trust factor
The trust factor [8] refers to the trust of a node in another 
while transmitting data, and the various kinds of trust con-
sidered are direct trust, indirect trust, and historical trust, 
defined as,

where ED
c,d(t) represents the direct trust at time t, EI

c,dD(t) 
indicates the indirect trust at time t, and EH

c,d(t) denotes 
the historical trust at time t. Here, c indicates the agent 
and d signifies the upon agent.

i) Direct trust.   Direct also called local trust indicates 
the part of a trust, where the agent calculates the trust 
from their own experience with a target agent.

where  Sat indicates the satisfaction value. n represents 
the number of transactions.

ii) Indirect trust. The calculation of indirect trust is based 
on the analysis of the direct trust elements and neigh-
borhood for obtaining the trust rate of a trustee, and the 
trustee gets the trust value data through a recommender. 
The indirect trust measures also vary under the node as a 
direct trust measurement is utilized as an element.

(5)Ec,d = −
1

3

[

ED
c,d(t)+ Ec,dI

D(t)+ EH
c,d(t)

]

(6)ED
c,d(t) = Satn(c, d)

(7)EID
(c,d)(t) = ft

(

ED
(c,d)(t),E

D
(c,d)(t)

)

where EID
(c,e)(t) indicates the indirect trust between a node 

and c , e, ft(.) is estimated based on the network needs.
iii) Histological trust.  The historical trust is con-

structed from the last experience, which is reflected in 
the long-term behavior of the pattern [16]. Although it 
measures the length between the source and destination 
beyond the one hop, the packet might be felt by inter-
mediate nodes owing to unexpected processes, and is 
expressed as,

where ERT
(n−1)(c,d) indicates the recent factor, and η denotes 

the forgetting factor. The path parameters are split into 
two and are given by,

The calculation of fitness is defined as,

The process of phantom node selection is detailed in 
Algorithm 1. Phantom node selected dynamic based on 
the network conditions. Once the hello packet is broad-
casted, network parameters like energy, distance, hetero-
geneity, trust, and neighbor are updated. The node with 
high fitness is selected as phantom node.

(8)EH
(c,d)(t) =

ηEH
(n−1)(c,d)(t)E

RT
(n−1)(c,d)(t)

2

(9)I1 = {Cr ,E(c,d)}

(10)I2 = {G(a,b),M, L}

(11)Fitt =
[

(1− Cr)+ G(a,b) +M + (1− E(c,d))
]

Fig. 2 Structure of DQ_NN for location privacy in IoT with multiple sources and destinations
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Algorithm 1 Phantom node selection algorithm

 

4.2  Multiple path creation
Once the phantom node is selected, and phantom nodes 
obtain the message, it sends a message to the destination 
through multiple random pathways, thereby preventing 
the adversary from identifying the position of the source 
node. The creation of multiple paths [15] is processed 
under the following conditions: 

1. Generate the multiple routes from a source node to a 
phantom node

2. Generate multiple routes from the phantom to the 
sink node

Multiple route creation from the source to phan-
tom node and phantom node to sink node is performed 
depending on parameters like energy, heterogeneity, dis-
tance, trust, and neighbor identification list, and is elabo-
rated in Algorithm 2. The best path is selected according 
to DQ_NN routing.

Algorithm 2 Route selection algorithm

 

4.3  Path selection
Here, path selection is based on the phantom routing 
protocol in IoT under multiple sources and destinations, 

which is done by DQ_NN that is formed by combining 
DQN [26] and DNN [19]. The DQ_NN employs three 
sections: DQN, DQ_NN layer, and DNN. At first, the 
DQN technique is applied, where the selected param-
eter I1 acts as input, and its output is denoted as ̟1 . In 
the DQ_NN layer, the merging of DQN output ̟1 and 
selected path parameter output I2 is accomplished by 
regression modeling. To develop the regression mod-
eling, the fractional calculus (FC) [4] concept is used as it 
effectively preserves the information. The DQ_NN layer’s 
output is represented as ̟2 . The output of the DQ_NN 
layer ̟2 is fed to the DNN, and its output is denoted as 
̟3 , and Fig. 3 signifies the structure of DQ_NN for path 
selection.

4.3.1  DQN model
The input of DQN [19] is the selected parameter I1 , and 
the process of path selection is elaborated as follows. The 
DQN is a feed-forward network based on Q-learning, 

which is a kind of Deep Reinforcement Learning (RL) 
[23], and it depends on the action-value function to gen-
erate the cumulative output. The maximum capacity to 
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process the high-dimensional inputs makes the DQN an 
appealing option for real-world problems. This technique 
also performs better in large-scale inputs. The Reinforce-
ment Learning (RL)-based value of action function is 
defined as,

where E indicates the expectation, the ideal action-value 
function is expressed as  A∗(g , h) = maxπ (g , h) , φ indi-
cates the discount factor, i signifies the state, g represents 
the action selection, h signifies the action function, and it 
is verified the Bellman ideal equation,

The RL technique is to select an ideal policy 
π∗(g) = arg maxA∗(g , h) , which increases the ideal 
action-value functions maxh A

∗(g , h).
One of the popular RL techniques is Q-learning which 

evaluates the ideal action value function by the upgraded 
iteration value, and its rule is defined as,

where �j(gj , hj) denotes the learning rate.
Q-learning employs a table to save whole performance 

values that perform well on RL issues with small-scale 
action space and discrete state space. Meanwhile, more 
practical problems are on a high scale and continuous, and 
a tabular format is not effective in this case. Thus, the oper-
ation of approximation parameterized through θ is utilized 

(12)Aπ
j (gj , hj) = E

[

∞
∑

l=0

φl i(j+l) | gj = g , hj = h;π

]

(13)A∗(gt , ht) = E

[

i + φmax
h

A∗(g(j+1), h) | gj , hj

]

(14)

Aj+1(gj , hjt ) = Aj(gj , ht )+�j(gj , hj)(ij + φmax
h

Ajt (g(jt+1), h)

− Aj(gj , hj))

to evaluate the action value function. Commonly, value θ 
can be optimized by minimizing the given loss function

where Jj is the objective function. Then, the rule θ is 
upgraded through gradient descent and is expressed as,

DNN is used to approximate the action value function 
for DQN. In DQN, two different networks are used: the 
online network and the target network, which is used 
for supplying the objective solution. The element θt of an 
online network is upgraded in every step, while param-
eter θ−j  is copied from an online network in each step, 
which is the target network. The DQN’s objective func-
tion is expressed as

Moreover, the above Eq. (17) is transformed into

where ̟1 indicates the output of DQN, and Fig. 4 repre-
sents the overview of DQN.

4.3.2  DQ_NN layer
The DQN’s output ̟ 1 and selected parameter I2 are fed to 
the DQ_NN layer, where integration of ̟ 1 , I2 is employed 
by fusion, and fusion is performed by the regression 
modeling. For developing the regression modeling, FC 
[4] is added to attain better performance. The function-
ing of the DQ_NN layer is described below.

(15)Hj(θj) = E

[

(Jj − A(gjt , hj; θj))
2
]

(16)θj+1 = θj +�j(Jj − A(gj , ht; θj))∇θt A(gj , hj; θj)

(17)J
DQN
j = ij + φmax

h
A
(

gj+1, h; θ
−
j

)

(18)̟1 = ij + φA

(

kj , arg max
h

A(gj+1, h; θ
−
j ); θ−j

)

Fig. 3 Structure of DQ_NN for path selection
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Considering the time interval t, the output is modeled 
based on the selected path parameter I2 as

FC [8] is employed for improving the performance of 
DQ_NN, and from FC,

Then, the equation changes to

Here, m represents the output from the t-th interval, 
m1 indicates the output from the (t − 1)-th interval, and 
applying equation is expressed as

where β indicates the constant, and weight is indicated as 
K. ̟2 is the output of the DQ_NN layer which is applied 
to the DNN model for path selection.

4.3.3  DNN model
The output of DQ_NN ̟ 2 is subjected to the DNN [26], 
which is a composition of a number of layers of nodes 
that obtains the input from the other layers and gener-
ate an output until an exceptional output is obtained. 
The network is called so because there is a similarity 
between this programming method and the way the 

(19)m =

n
∑

o=1

I2o · Ko

(20)m(t + 1) = βm(t)+
1

2
βm(t − 1)

(21)̟2 = β ·m+
1

2
β ·̟1

(22)̟2 = β ·

n
∑

o=1

I2o · Ko +
1

2
β ·̟1

brain processes. This scheme is processed better in 
complex methods, and is expressed as

where P is the group of layers, N indicates the group of 
connections between the layers, and ψ denotes the group 
of functions. DNN has an input layer, output layer, and 
hidden layers. Every layer contains a number of nodes. 
Here, two values are recorded, and its value before and 
after an activation function correspondingly. The recti-
fied linear unit (ReLU) is the most famous activation 
employed in DNN, and the activation value of each node 
in the hidden layer is expressed as

where the output node is associated with a variable pq,r 
for 1 < q < Q and 1 ≤ r ≤ tq , Q indicates the layers, and 
tq represents the node. Other than the input node, each 
node is linked to nodes in the consequent layer by the 
pre-trained elements in such a way that for all q and r 
with 2 ≤ q ≤ Q and 1 ≤ r ≤ tq , which is expressed as,

where  vq−1,u,r indicates the weight for connection 
between nq−1,u and nq,r , nq−1,u is the u-th node of layer 
q − 1 , nq,r denotes the r-th node of layer q, and sq,r indi-
cates the bias for node nq,r . Due to the utilization of 
ReLU in expression (25), the character of a NN is greatly 
non-linear. Finally, for each input, DNN allocates a label, 

(23)O = (P,N ,ψ)

(24)ReLU(pq,r) =

{

pq,r if pq,r ≥ 0
0 otherwise

(25)pq,r = sq,r +
∑

1≤u≤tq−1

vq−1,u,r · xq−1,u

Fig. 4 Framework of DQN
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which is the index of an output layer with the maximum 
value, and Fig. 5 demonstrates the DNN structure.

Here pq,r = ̟2 , the output of the DNN can be 
expressed as,

Here, ̟3 is an output of DQ-NN and is selected as the 
new path for routing. Figure 5 portrays the structure of 
the DNN.

5  Results and discussion
The experimental result obtained by DQ-NN for path 
selection based on the phantom routing protocol in IoT 
under multiple sources and destinations is briefly elabo-
rated below.

5.1  Experimental set‑up
The devised DQ-NN method for path selection based 
on the phantom routing protocol in IoT is implemented 
using MATLAB tool with network simulation. The sys-
tem is evaluated for three cases: using 50 nodes, 100 
nodes, and 150 nodes. These scenarios help to provide 

(26)̟3 = arg max
1≤l≤tq

pq,r

(27)̟3 = arg max
1≤r≤tq

̟2

reasonable and diverse points to analyze the system’s per-
formance and scalability.

5.2  Evaluation measures
The devised DQ-NN technique’s performance is meas-
ured utilizing several performance indicators, which 
are detailed below.

• Distance: Equation (4) is used for discovering the 
minimum distance between the nodes.

• Energy: Equation (1) is used for measuring the total 
amount of energy received by this DQ-NN method.

• Network lifetime: The time required for transfer-
ring the amount of packets in the IoT before the 
first node is dead is the network lifetime.

• Safety period: It is a time period that permits the 
attackers to discover the source. The safety period 
is calculated by the amount of effectively transmit-
ted packets, which are transferred from the source 
node to the sink node.

5.3  Experimental simulation result
Figure 6 represents the simulation result of the DQ-NN 
method under varying nodes. Figure  6a displays the 
simulation result with 50 nodes, Fig.  6b reveals simu-
lation output with 100 nodes, and Fig. 6c indicates the 
simulation output with 150 nodes.

Fig. 5 Structure of DNN with its input as ̟ 2 and output as ̟ 3
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5.4  Comparative techniques
The conventional techniques, such as the Hybrid phan-
tom method [15], SLPRR [7], HASHA [11], and EBBT 
[27], are compared with the designed DQ-NN model to 
analyze the effectiveness of the devised approach.

5.5  Comparative assessment
The superiority assessment of DQ-NN during the rout-
ing for selecting the best path between the nodes is done 
by varying amounts of nodes as 50, 100, and 150 and is 
elaborated below.

5.5.1  Varying 50 nodes
Figure  7 represents a comparative investigation of 
DQ-NN based on the routing in terms of various met-
rics and the number of rounds. Figure  7 indicates the 
assessment of DQ-NN with distance. While considering 
the number of rounds as 1000, the distance of DQ-NN is 
57.795 m, and the value attained by other conventional 
methods Hybrid phantom method, SLPRR, HASHA, and 
EBBT is 83.911 m, 67.994 m, 60.685 m, and 61.899 m, 
respectively.

The energy-based comparative evaluation of DQ-NN 
is displayed in Fig.  8. The energy of various techniques 
Hybrid phantom method, SLPRR, HASHA, EBBT, and 
the proposed DQ-NN is 0.006 J, 0.011 J, 0.013 J, 0.012 J, 
and 0.013, respectively, with the number of rounds being 
800. Figure  9 displays the assessment of DQ-NN con-
cerning the network lifetime.

The network lifetime of the various existing schemes 
Hybrid phantom method, SLPRR, HASHA, and EBBT is 
99.512, 100.317, 99.792, and 97, respectively. The network 
lifetime of DQ-NN is 101.828 with the number of rounds 
being 1000. Figure  10 demonstrates the safety period-
based comparative evaluation of DQ-NN. Taking the 
number of rounds as 800, the safety period of DQ-NN is 
664,970.7 m, and the conventional method’s safety period 
of the Hybrid phantom method, SLPRR, HASHA, and 
EBBT is 212,688 m, 554,640 m, 302,537.1 m, and 425,376 
m, respectively.

5.5.2  Varying 100 nodes
Figure  11 indicates analysis of DQ-NN for 100 nodes 
by various rounds utilizing the various metrics. The 

Fig. 6 Simulation result of DQ-NN method under varying nodes. a Simulation result under varying 50 nodes. b Simulation result under varying 100 
nodes. c Simulation result under varying 150 nodes
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Fig. 7 Comparative assessment of DQ_NN model based on distance for varying 50 nodes

Fig. 8 Comparative assessment of DQ_NN model based on energy for varying 50 nodes



Page 13 of 20T. et al. EURASIP Journal on Information Security         (2024) 2024:29  

Fig. 9 Comparative assessment of DQ_NN model based on network lifetime for varying 50 nodes

Fig. 10 Comparative assessment of DQ_NN model based on safety period for varying 50 nodes
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analysis under various techniques utilizing distance is 
exhibited in Fig. 11. The value of distance obtained by 
the routing models Hybrid phantom method, SLPRR, 
HASHA, EBBT, and the proposed DQ-NN is 84.236 m, 
87.587 m, 59.424 m, 60.612 m, and 56.594 m, respec-
tively, for 1000 rounds. The analysis of DQ-NN shows 
that it has achieved minimum distance compared to the 
other schemes.

The analysis concerning the energy of DQ-NN is por-
trayed in Fig.  12. The obtained energy of DQ-NN is 
0.096 J for 800 rounds, and the energy of the conven-
tional routing techniques Hybrid phantom method, 
SLPRR, HASHA, and EBBT is 0.044 J, 0.001 J, 0.094 
J, and 0.096 J, respectively.  Here, compared to other 
existing techniques, DQ-NN achieved better energy. 
The evaluation of routing schemes in terms of network 
lifetime is represented in Fig.  13. For analyzing 1000 
rounds, the network lifetime of various techniques 
Hybrid phantom method, SLPRR, HASHA, EBBT, and 
DQ-NN is 106.146, 105.589, 106.209, 104.085, and 
108.377, respectively. Figure 14 displays the assessment 
of various routing methods in terms of safety time. The 
value recorded by the safety time of various techniques 
Hybrid phantom method, SLPRR, HASHA, EBBT, 
and devised DQ-NN is 160,596.000 m, 255,429.474 m, 
192,765.600 m, 184,450.286 m, and 366,349.567 m, for 
1000 rounds.

5.5.3  Varying 150 nodes
Figure  15 signifies the analysis of DQ-NN utilizing the 
various metrics when the number of nodes is 150. The 
assessment of DQ-NN based on distance measurement 
is revealed in Fig.  15. Here, considering the number 
of rounds as 1000, the distance of multiple techniques 
Hybrid phantom method, SLPRR, HASHA, EBBT, and 
proposed DQ-NN is 83.911 m, 67.994 m, 60.685 m, 
61.899 m, and 57.795 m, respectively.

Figure  16 displays DQ-NN assessment with energy 
using various routing algorithms. Here, energy gained by 
conventional routing methods Hybrid phantom method, 
SLPRR, HASHA, and EBBT with the number of rounds 
of 800 is 0.006 J, 0.011 J, 0.013 J, and 0.012 J, respec-
tively. The devised DQ-NN attained an energy value of 
0.013J. Figure 17 represents the assessment of DQ-NN in 
terms of network lifetime. The network lifetime obtained 
by varying routing schemes Hybrid phantom method, 
SLPRR, HASHA, EBBT, and the proposed DQ-NN is 
105.790, 107.047, 109.674, 107.481, and 111.912, for tak-
ing 1000 rounds. Figure 18 shows the safety period-based 
analysis of various methods. When considering 800 
rounds, the safety period of DQ-NN is 331,497.564 m, 
and the safety period of the other conventional methods 
Hybrid phantom method, SLPRR, HASHA, and EBBT 
is 143,888.400 m, 207,442.286 m, 242,196.000 m, and 
193,665.600 m, respectively.

Fig. 11 Comparative assessment of DQ_NN model based on distance for varying 100 nodes
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Fig. 12 Comparative assessment of DQ_NN model based on energy for varying 100 nodes

Fig. 13 Comparative assessment of DQ_NN model based on network lifetime for varying 100 nodes
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Fig. 14 Comparative assessment of DQ_NN model based on safety period for varying 100 nodes

Fig. 15 Comparative assessment of DQ_NN model based on distance for varying 150 nodes
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Fig. 16 Comparative assessment of DQ_NN model based on energy for varying 150 nodes

Fig. 17 Comparative assessment of DQ_NN model based on network lifetime for varying 150 nodes
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5.6  Comparative discussion
Table  2  presents the results obtained by the proposed 
DQ-NN for path selection based on phantom routing pro-
tocol in IoT. Here, the devised DQ-NN method evaluated 
better results when compared with other conventional 
techniques with a minimum distance of 56.594 m, higher 
energy of 0.034J, greater network lifetime of 111.912, and 
higher safety period 664970.7 m with a number of rounds 

of 1000. The other conventional methods Hybrid phantom 
method, SLPRR, HASHA, and EBBT gained a distance of 
84.236 m, 87.587 m, 59.424 m, and 60.612 m, respectively. 
The energy obtained by Hybrid phantom method, SLPRR, 
HASHA, and EBBT is 0.003 J, 0.001 J, 0.033 J, and 0.033 
J, respectively. The network lifetime is recorded to be 
105.790 for Hybrid phantom method, 107.047 for SLPRR, 
109.674 for HASHA, and 107.481 for EBBT. The safety 

Fig. 18 Comparative assessment of DQ_NN model based on safety period for varying 150 nodes

Table 2 Comparative discussion

No. of nodes Evaluation parameters Hybrid phantom 
method

SLPRR HASHA EBBT Proposed DQ_NN

50 Distance (m) 83.911 67.994 60.685 61.899 57.795

Energy (J) 0.002 0.005 0.007 0.007 0.007

Network lifetime (sec) 99.512 100.317 99.792 97.796 101.828

Safety period (m) 212688 554640 302537.1 425376 664970.7
100 Distance (m) 84.236 87.587 59.424 60.612 56.594

Energy (J) 0.003 0.001 0.033 0.033 0.034
Network lifetime (s) 106.146 105.589 106.209 104.085 108.377

Safety period (m) 160596.000 255429.474 192765.600 184450.286 366349.567

150 Distance (m) 83.911 67.994 60.685 61.899 57.795

Energy (J) 0.002 0.005 0.007 0.007 0.007

Network lifetime (sec) 105.790 107.047 109.674 107.481 111.912
Safety period (m) 143888.400 207442.286 242196.000 193665.600 331497.564



Page 19 of 20T. et al. EURASIP Journal on Information Security         (2024) 2024:29  

period of Hybrid phantom method, SLPRR, HASH, and 
EBBT is 212,688 m, 554,640 m, 302,537.1 m, and 425,376 
m, respectively. Moreover, the fusion of DQN and DNN 
achieved higher convergence speed, thereby enabling the 
DQ-NN to attain a better performance while selecting a 
path using phantom routing.

6  Conclusion
The research work significantly enhances location pri-
vacy and reduces consumption of energy in IoT. A novel 
hybrid DQ-NN is proposed for SLP in IoT with multiple 
source and destination nodes. Initially, IoT nodes are 
simulated with multiple sources and destinations, and 
then the phantom node is chosen dynamically based on 
several parameters. After that, multiple routes are cre-
ated from the source node to the phantom node. Then, 
multiple routes are generated from the phantom node 
to the sink node. Finally, path selection is performed by 
the proposed DQ-NN. Using DQ-NN model for dynamic 
adjustment of network parameters improved optimiza-
tion efficiency. Moreover, DQ-NN is obtained by merg-
ing DQN and DNN. Moreover, the effectiveness of the 
DQ-NN model in selecting a path is measured, and the 
DQ-NN model achieved the minimum distance of 56.594 
m, higher energy of 0.034 J, maximum network lifetime 
of 111.912, and higher safety period of 664,970.7 m.

The work’s limitation is that just backtracking is taken 
into consideration; more attacks may be considered. In 
the future dimension, we intend to add more metrics like 
task value, for analyzing the effectiveness of the DQ_NN 
technique in the IoT environment.
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