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Abstract 

Operational steganalysis contends with a major problem referred to as the cover-source mismatch (CSM), which 
is essentially a difference in distribution caused by different parameters and settings over training and test data. 
Despite it being of fundamental importance in an operational context, the CSM problem is often overlooked in the lit-
erature. With the goal to increase the visibility of this problem and attract the interest of the community, the present 
paper proposes a systematic review of the literature. It summarizes gathered knowledge and major open questions 
over the last 20 years of active research on CSM: terminology, methods of measurement, known causes, and mitiga-
tion strategies. Over 100 papers exploring, mitigating, assessing, or discussing steganalysis under train-test mismatch 
were collected by sampling scholar databases, and tracing references, cited and generated. For image steganaly-
sis, the literature provided enough evidence to quantify the impact of causes, and the effectiveness of mitigation 
strategies.

1 Introduction
Steganography is often referred to as the art and tech-
niques of cover communication. It aims at secretly 
exchanging sensitive information by hiding it in a so-
called cover-object. This creates a stego-object which, 
to preserve the furtiveness of the secret communication, 
should look as inconspicuous as possible.

To ease this process, the cover-object ought to be com-
monly encountered, in order not to raise suspicion. It 
should be easy to modify and carry enough entropy to 
accommodate the secret message; good examples of such 
suitable cover-objects include digital media—images, 
audio, or video—texts, computer network packets, or 
even program executable codes [24, 44].

As for any secured communication, the stego-object is 
sent over an insecure channel which, in the worst case, 

is assumed monitored or controlled by an adversary 
referred to as the steganalyst. Unlike the other scenario 
of communication security, the steganalyst aims, in the 
very first place, at detecting the presence of a hidden 
secret message either by thorough statistical analysis or 
by searching for trademarks or “signatures” of a specific 
technique.

Steganography and steganalysis, thus, constitute a 
game of cat and mouse. In academic studies, the Ker-
ckhoffs’ principle1 is often advocated to justify that the 
steganalysis is carried out with knowledge on all nec-
essary properties of the inspected objects. This also 
includes the potential embedding method as well as 
access to large representative datasets [71, 83]. Of course, 
steganography has been developed in this setting, which 
is the most stringent.

On the opposite, in a real-world operational context, 
the steganographer and the steganalyst only have very 
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limited access to each other’s information. The stegana-
lyst selects a detector, and the steganographer picks the 
steganographic embedding and the cover [29]. The exact 
original cover-object is unknown to the steganalyst, but 
it is generated from a noisy process which is defined as 
the cover-source. As advocated in [53], the steganalyst can 
hardly know this cover-source; it can only, at best, be esti-
mated with an accuracy that depends on the nature and 
number of objects the steganographer provided.

This scenario naturally raises the problem, for the 
steganalyst, of “designing” or “training” a detector on a 
cover-source that differs from the one used by the steg-
anographer: this is referred to as the cover-source mis-
match (CSM).

In the broad field of statistical learning, this phenome-
non is known as the distribution shift and it occurs when 
the statistical properties of training and testing data differ. 
The main symptom is a deterioration of the model perfor-
mance in the production environment. Distribution shift 
occurs in all possible applications of statistics and machine 
learning, such as to cite a few, medical imaging [33], com-
puter vision [79], reinforcement learning [111], natural 
language processing [8], and speech recognition [32].

However, it should be noted that the tasks in the afore-
mentioned fields operate mostly on a semantic level. In 
other words, while the acquisition and processing setting 
do matter, they have a limited impact as compared to the 
presence of the pattern of interest. In addition, it is often 
possible to adjust the training for a specific source.

The peculiarity of steganography, and the related field 
of digital forensics [68], is that the signal of interest is 
extremely weak while the CSM has a much stronger 
impact; this often yields catastrophic performance drops, 
which make the steganalysis merely ineffective. In [28], 
using different capturing devices increased the error rate 
from 15% to random guessing. According to [44],  “CSM 
is one of the main factors negatively affecting the deploy-
ment of steganalysis in the real world.”

1.1  Related work on CSM
The symptoms of the CSM problem have been identified 
for a little less than 20 years, as image steganalysis was in 
its infancy [52, 82]. It has been empirically observed that 
steganalysis techniques perform differently over different 
datasets [14, 54]. The significance of the CSM impact on 
steganalysis was clearly acknowledged for the first time in 
2010 during the BOSS open contest (Break Our Stegano-
graphic System) as the organizers added in the testing set 

data generated with a different source.2 This period also 
coincided with the increasing use of machine learning in 
steganalysis, which requires a training phase after which 
the classifier can be used and evaluated on a different 
testing set.

While this problem was unanimously recognized as an 
important deadlock for practical applications of steganal-
ysis  [47], it has been only seldom studied. In particular, 
it was only in 2018 that the causes of the CSM problem 
were thoroughly studied  [9, 27, 28] by comprehensive 
evaluations of the contribution of each step of a generic 
image processing pipeline (IPP) to CSM. Even the most 
successful deep learning (DL) models [11, 103] were 
shown to be prone to the CSM [17, 26].

In the meantime, several strategies have been suggested 
to mitigate the impact of CSM on steganalysis perfor-
mance [5, 49, 64, 70, 78].

Despite its severity on modern steganalysis, the CSM 
remains largely unexplored; existing steganalysis survey 
papers discuss the CSM problem only briefly [42, 91]. To 
the authors’ best knowledge, the present paper is the first 
systematic review of the literature on CSM and its impact 
on steganalysis.

1.2  Organization of the paper
To structure the knowledge gathered over 20 years of lit-
erature on the CSM, the present systematic review aims 
at addressing the following research questions:

Research question 1: What are the studied causes of 
CSM in the literature?

We list the known causes of CSM studied in the litera-
ture and look into the research trend over time.

Research question 2: How impactful are the known 
causes of CSM?

We quantitatively assess the impact of CSM causes 
identified by answers to RQ 1.

Research question 3: What are the existing mitiga-
tion strategies against CSM?

Similar to RQ 2, we assess the relative effectiveness of 
the existing mitigation strategies.

At the time of writing of this survey, RQ  2 and RQ  3 
can only be meaningfully answered for image media, 
which constituted the vast majority of the literature sam-
pled using the strategy from Sect. 4.1. While the present 
paper aims at encompassing all forms of steganalysis, it 
only considers digital images in Sects. 5 and 6.

The rest of this survey is organized as follows: Sect. 2 
describes the train-test mismatch problem in steganalysis 
and its implications. Section  3 presents the methods of 
measuring the CSM. Section 4 explains the bibliometric 

2 More precisely, the training set of BOSS was made of raw images pro-
cessed with the very same script. On the opposite, the testing set included 
out-of-camera JPEG compressed images. For all competitors, an important 
drop in performance was observed on this testing subset.
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methodology for literature collection and result aggre-
gation. Section  5 surveys identified causes of CSM and 
quantifies their impact. Section  6 reviews strategies to 
mitigate CSM and quantifies their impact. Section  7 
describes the game-theoretical interpretation of CSM. 
Section  8 discusses the findings, answers the research 
questions, and poses still open questions. Section 9 pre-
sents similar works in other applications of machine 
learning, and Sect. 10 concludes.

2  Background on mismatches
This section introduces different types of mismatches: 
mismatch in cover-sources (Sect. 2.1), mismatch in steg-
anography (Sect.  2.2), and mismatch in the context of 
pooled steganalysis (Sect. 2.3).

2.1  Mismatch of cover‑sources
Steganography is carried out in two main phases: first the 
steganographer generates a cover from a cover-source, 
which is a non-deterministic acquisition process followed 
by a processing pipeline. Both the acquisition and the 
processing pipeline consist of several steps that can be 
highly parametrized [3]. Then, this cover-object is used 
as an input for a steganographic algorithm, also charac-
terized by a set of parameters, to hide a secret message 
into the so-called stego-object.

A problem of train-test set mismatch can occur when 
any parameter of any step, from the acquisition of the 
cover-objects to the generation of the stego-objects, dif-
fers. In practice, however, two objects are never gener-
ated in the exact same manner. In addition, different 
changes yield different impacts, with more or less impor-
tant effects [4].

Adopting the same practical point of view that is used 
in almost all prior works, we shall define these concepts 
in relation to their use in steganography and their impact 
on steganalysis.

Definition 1 A cover-source is entirely defined by the 
steps both the acquisition and processing pipeline are 
made of, the order of these steps, and the parameters 
used therein.

As a consequence, a cover-source is a noisy pro-
cess producing cover-objects with common statistical 
characteristics.

While this definition of the cover-source is rather 
straightforward, it is hardly related to practical uses and 
applications. Even the second part, the corollary that 
objects from the same cover-source share similar proper-
ties, remains rather impractical; indeed, it is still unclear 
which property has a significant impact on the usage 

of steganography and/or steganalysis. From a practical 
point of view, the cover-source has little or no impact 
on steganography, which very often operates over each 
object independently. On the opposite, steganalysis gen-
erally exploits a detector that is trained and evaluated 
over a set of objects with specific properties resulting 
from the cover-source. Because there has been a confu-
sion in the literature between the cause and the conse-
quence of cover-source mismatch, it is proposed to adopt 
the following definition from [28].

Definition 2 The causes of cover-source mismatch 
(CSM) lies in the discrepancy between distributions of 
samples generated by two cover-sources.

Note that, in the existing literature, the term CSM can 
refer to both the discrepancy between distributions and 
its measurable impact of this discrepancy in steganalysis. 
Therefore, to prevent the confusion between cause and 
consequence of CSM, Definition  2 dissociates the CSM 
from its impact on steganalysis.

For the sake of clarity, the present paper proposes a 
novel terminology to the problem, referring to CSM as 
being the discrepancy between cover-sources, and to the 
CSM problem as its impact on steganalysis.

Definition 3 The cover-source mismatch problem 
(CSM problem) is the degradation of a steganalyser per-
formance observed when the training and the testing 
samples come from different cover-sources.

Figure 1 depicts an illustrative scenario of three cover-
sources, C1 , C2 , and C3 , and exemplifies the preceding 
definitions. The geometric proximity corresponds to the 
CSM: C2 and C3 are more similar to each other than to C1 . 
Additionally, a given steganographic embedding at rate α 
is performed, which shifts C1 to stego S1 and C2 to stego 
S2 . Note that the figure also illustrates that the embed-
ding shift is often smaller and similar in direction3 as 
compared to the wide diversity between cover-sources, 
hence the critical impact that CSM may have. These ele-
ments illustrate a typical configuration of cover-source 
mismatch.

Two steganalysis detectors, shown in blue and red 
respectively, were then trained to distinguish between 
the same cover-source C1 and corresponding stego-
objects S1 . The difference between the two can come 
from the selected model, hyperparameters, and ini-
tial weights. Both detectors discriminate well C1 from 
S1 . However, the one illustrated in red is not subject 

3 This is usually referred to as the shift hypothesis [19, 20, 46].



Page 4 of 19Mallet et al. EURASIP Journal on Information Security         (2024) 2024:26 

to the CSM problem when applied to cover-source C2 . 
On the opposite, both detectors perform poorly over 
C3 because of the CSM problem: cover-objects erro-
neously belong to decision region “stego” resulting in 
a very high false-positive detection rate (also referred 
to as type I error): this is the cover-source mismatch 
problem.

We believe that Fig. 1, along with Definition 2, illus-
trates an important—and often overlooked—fact: 
the CSM problem, as a degradation of a detector’s 

performance, depends on two things: the CSM config-
uration itself, but also the settings of the detector. We 
further discuss ways of measuring CSM in Sects.  3.1 
and 3.2.

The reader might also wonder how to generalize bet-
ter to a very large amount of cover-sources, possibly 
unseen. Mitigation strategies and their assessment are 
addressed in detail in Sect. 6.

Let us conclude this definition section with a real-world 
example shown in Figs.  2 and 3 taken from [28]. First, 

Fig. 1 Illustration of cover-source mismatch for detectors distinguishing C1 and S1 . C2 is misclassified by the blue detector, and C3 by both. The 
embedding shift is much smaller than the distance of cover-sources

Fig. 2 Scatter plots that show the empirical joint distribution of unquantized DCT coefficients (0, 7) and (7, 0) for images corrupted with only i.i.d 
Gaussian noise and then developed with three different software
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Fig.  2 shows a scatter plot of co-occurrence (i.e., joint 
empirical distribution) between two randomly selected 
DCT coefficients resulting from JPEG cover-sources. The 
images come from the same sources with the exception 
that they are converted from RAW files to uncompressed 
TIFF images using different software. More precisely, we 
note that the simplest development was used (essentially 
made of demosaicing, white balance, and gamma-cor-
rection). It can be clearly seen from Fig. 2 that the cor-
relation between the selected DCT coefficients is almost 
in complete opposition. In addition, one can note that 
the variance of marginal distribution also changes sig-
nificantly, especially for RawTherapee, see green dots on 
Fig. 2.

Last, Fig. 3 exemplifies how the CSM can have a dra-
matic impact on detector performance. Depending on 
the detector and the sources, the CSM problem can be 
either barely noticeable or make a detector no better than 
a random guesser.

2.2  Mismatch in steganography
The cover-source generation process is not the only 
source of mismatch in steganalysis, as detectors must 
also face heterogeneity in the steganography in training 

and testing sets [82]. As the steganographer’s choice of 
cover-sources and steganographic embedding are inde-
pendent, they are separate types of mismatches influenc-
ing steganalysis.

In addition, as we shall explain in Sect. 3.2, measur-
ing the CSM problem via a feature space representation 
inherently separates the two. However, both mis-
matches exhibit similar symptoms, and extending exist-
ing mitigation strategies against CSM can be applied to 
both.

The literature uses either the names stego-source mis-
match [22, 59] or stego-algorithm mismatch [90]. We 
suggest a new name, stego-scheme mismatch (SSM), as 
it is more general and hence encompasses the few pos-
sible causes of the mismatch of this kind.

Definition 4 The stego-scheme mismatch (SSM) is a 
mismatch of the distributions of stego-objects stemming 
from a given cover-source. It is caused either by using dif-
ferent stego-schemes or different settings to embed data 
in cover-objects.

SSM has two known causes: steganographic embed-
ding [12, 59, 82, 86] and embedding rate α [80], 

Fig. 3 Results from [28] depicting steganalysis error rate for different camera models at the lowest ISO sensitivity

Fig. 4 Stego-source mismatch between schemes S1 and S2 , and embedding rates α1 < α2 < 1 . Detector for S1 does not generalize to S2 , 
because different schemes cause different shifts. Embedding at α = 1 leads to the same stego
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illustrated in Fig.  4 by orientation and length of the 
stego-shift. Embedding into a cover-source C(0) with 
two schemes S1 and S2 and payload α < αmax causes 
different stego-shifts. The dotted trajectories of both 
schemes suggest that for α = αmax the embedding is 
equivalent to LSB matching, denoted S(1).4

Note that the shift hypothesis [19, 46] states that, 
roughly speaking, the trajectory is the same regardless of 
the cover-sources. The same embedding causes the same 
impact (the same “shift”) on the stego-distribution.

SSM is more important for test sets with (1) lower α or 
(2) less detectable embedding scheme [15].

A universal detector is capable of generalizing to any 
steganographic method [73].

2.3  Mismatch in pooled steganalysis
Pooled steganalysis is the relevant technique when one 
tries to inspect a group of several objects over which one 
sole decision must be made (typically “all these objects are 
covers” vs. “some objects are stegos”). Pooled steganalysis 
either indirectly addresses CSM or is affected by it.

On the one hand, several works addressed the problem 
of pooled steganalysis when it aimed at identifying guilty 
actors, in which case this framework can lift the problem 
of CSM provided that “each actor used a source of cover-
objects, different from sources used by other actors”  [48]. 
However, this means that the steganalyst needs to know 
the source of each actor which is hardly possible in real 
life, “unless the suspected steganographer is considerate 
enough to supply [...] the cover-source” [53].

Under the same assumption, a similar approach was 
adopted in [61] by detecting inconsistencies in the classi-
fier in order to identify the suspect(s).

Another look at the mismatch was studied from pooled 
steganalysis when the strategy of the steganographer is 
not known: that is how the payload is spread over sev-
eral objects. In this case, the steganalyst typically faces a 
stego-scheme mismatch as the embedding rate for each 
object is unknown.

A robust statistical sequential method based on 
CUSMU (Cumulative Sum) was proposed in  [16] while 
the method developed in [85] is based on the histogram 
of the classifier “soft-output” (before thresholding). The 
problem was also leveraged in  [19, 45]: in an adversar-
ial setting, it has been proposed to spread the payload 
in order to create the hardest stego-scheme mismatch 
hence reducing detectability.

Comparison of the mismatches CSM relates to the mis-
match in the processing steps prior to the embedding. 
SSM relates to the mismatch in the embedding step, the 
steganographic key, or the message. Pooled steganalysis is 
a technique particularly sensitive to both CSM and SSM, 
and contains a new factor of SSM, payload spreading.

3  Measuring the CSM problem
In Definitions 2 and  3, we have taken particular care to 
separate the CSM from the problem it generates through 
its impact on steganalysis. Thus, measuring severity is 
critical for the very definition of the CSM problem but 
also in order to study its causes (RQ 2) and for success-
ful mitigation of CSM (RQ 3). In this section, we describe 
the two main approaches that have been used for the 
assessment of the CSM problem. First, and most obvious, 
in Sect.  3.1, the mismatch problem is measured via the 
performance of a detector. Second, Sect. 3.2 describes the 
studies measuring the CSM problem using a distance in 
feature spaces.

3.1  Measuring a mismatch via detectors
One way to measure the CSM is through comparison of 
the detector error ǫ in matched and mismatched scenar-
ios. Within the framework of modern steganalysis, based 
on machine learning, the clairvoyant scenario is the one 
in which training datasets perfectly match the testing 
datasets over which the detection performance is meas-
ured5.  This case, without CSM, represents the “ideal” 
baseline error of steganalysis and is referred to as the 
intrinsic difficulty of a given source (see Definition 5).

With these notations, we can now formally define the 
notions that have been adopted in the literature for meas-
uring CSM using detector error rate:

Definition 5 The intrinsic difficulty ǫXX or ǫX of a 
source X is the error rate of a detector that is trained and 
tested on X. It expresses how difficult it is for a detector 
to detect a steganographic scheme of embedding rate α in 
covers from a cover-source X.

The intrinsic difficulty represents the error rate of 
steganalysis on a given source without any mismatch. 
Therefore, this criterion is not related to the CSM prob-
lem, but it must be taken into account, serving as a base-
line, to quantify the CSM problem.

4 Note that in practice the maximal achievable payload αmax depends on the 
coding method. With LSB matching, ternary embedding allows embedding 
up to log2(3) ≈ 1.585 bit per element.

5 Note that some steganalysis methods do not use machine learning. How-
ever, these statistical detection methods  [21, 97] generally include some 
parameters (weights, detection threshold, etc.) whose settings require some 
cover and stego-examples and hence may be subject to the CSM prob-
lem [14, 54].
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Note that the intrinsic difficulty can vary greatly, even 
for similar sources: Fig.  3 shows that the camera model 
can impact the error rate by almost 10%.

The mismatched scenario error is the one when the 
training is performed over a dataset that presents some 
statistical differences from the testing dataset. This cor-
responds to Definition 2 of a CSM scenario. The ensuing 
degradation of detector performance is referred to as the 
inconsistency between sources, see Definition 6.

Definition 6 The source inconsistency ǫXY  is the 
error-rate of a detector, trained on source X and evalu-
ated on source Y.

To illustrate these concepts as clearly as possible, 
Table  1 shows a toy example with two sources. Note 
that, just like in Fig.  3, rows represent the dataset used 
for training the detector while columns are for the test-
ing dataset, on which detection performance is meas-
ured. In Table 1, the detection error rate on the diagonal 
measures the intrinsic difficulty as in those cases training 
and testing datasets match. On the opposite, the out-of-
diagonal results report the detection error rate in case of 
mismatches hence the degradation error rate due to the 
mismatches. In the rest of the present section, we will 
use the following notations: ǫXX represents the detection 
error rate when training on the dataset X and testing on 
the same dataset X. In this case without a mismatch, the 
intrinsic difficulty is measured and is sometimes denoted 
ǫX for short. On the opposite, ǫYX represents the case 
when training the detector on the source Y while testing 
on the source X (since training is carried out first, it is 
the first variable in the notation we adopt). In this case 
of CSM, the detection performance reveals the CSM 
problem.

The source inconsistency alone carries little informa-
tion and should be accompanied by the correspond-
ing intrinsic difficulty. This reference can be made more 
explicit by reporting the regret [3, 4, 94]:

Definition 7 The regret RXY ,Y  is the difference 
between the inconsistency ǫXY  and the intrinsic difficulty 
ǫY  , as shown in Eq. 1,

To exemplify this concept, one can have a look back 
at Table  1. The inconsistency is higher when testing 
on the source Y, ǫX ,Y = 0.38 , than when testing on the 
source X, ǫY ,X = 0.33 . However, the intrinsic difficulty 
is also much higher on the source Y, ǫY = 0.35 , than on 
the source X, ǫX = 0.2.

Therefore, the “empirical measurement of the degra-
dation due to the CSM,” which is defined as the regret 
by Definition 7, is actually much lower when testing on 
the source Y, RXY ,Y = 0.03 , as contrast to when testing 
on the source X, RYX ,X = 0.13.

Note that these numbers represent a general obser-
vation that the regret is asymmetric, see for instance 
Fig. 3 and prior works [9, 27, 28, 56].

Regret informs us about the severity of the CSM 
problem since it assesses, given 2 datasets, how much 
the detection performance can be impacted by training 
a detector on one dataset and testing on the other.

Interestingly, when the sources differ in a single pro-
cessing step, the regret allows evaluation of the impact 
of this step on the CSM problem.

The regret reports about the test source and is com-
puted using two detectors. Cover-source generaliza-
tion error is an alternative metric, computed with one 
detector trained on one single source, tested over two 
sources.

(1)RXY ,Y = ǫXY − ǫY .

Table 1 An illustrative example of presenting mismatched scenario results measured via a detector error rate. The diagonal contains 
intrinsic difficulties, and off-diagonal values are the inconsistencies. Inconsistencies can be replaced by the difference with the 
corresponding diagonal element, column-wise (regret) or row-wise (cover-source generalization error)
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Note, that machine learning uses the term “gener-
alization error” to express the performance difference 
between train and test set. In steganalysis, this term is 
used to describe the perfromance drop between test set 
with matched and mismatched cover source. We use 
the name “cover-source generalization error” to better 
distinguish between them.

Definition 8 The cover-source generalization error 
RXY ,X is the difference between the inconsistency ǫXY  and 
the intrinsic difficulty ǫX , as shown in Eq. 2,

The cover-source generalization error tells us how 
much a given detector is sensitive to a mismatch in the 
test source. On the opposite, the regret reports how 
much a given test source is sensitive to the mismatch in 
the training source. But their nature and their uses are 
different.

To compare mismatch between sources of different 
intrinsic difficulties, we can normalize the regret by the 
intrinsic difficulty. We define this in Definition 9 as rela-
tive regret.

Definition 9 The relative regret is the regret normal-
ized by the intrinsic difficulty, shown in Eq. 3:

Our definitions, based on [27, 94], aim to solve the dis-
crepancy of the terms “inconsistency” and “regret” [3, 4, 
27, 28].

Metrics Reporting the regret depends on the chosen 
performance metric. In machine learning, the detection 
error is usually measured with the misclassification. In 
steganalysis, the popular metrics are the total probability 
of error PE (assuming equal prior) and the miss-detection 
rate for a prescribed false alarm. Using convertible met-
rics throughout the studies would facilitate the cross-
study comparison of results.

Limitations Measuring the CSM problem via detec-
tor error focuses on the symptoms of CSM, but heavily 
depends on a type of detector used. This makes regret-
based mitigation difficult to generalize to different detec-
tors. Indeed, as shown in [2], using different detectors 
produces different regrets.

(2)RXY ,X = ǫXY − ǫX .

(3)
ǫXY − ǫY

ǫY
.

3.2  Measuring a mismatch via proximity in a feature space
The second option to quantify the CSM is to project the 
cover-sources onto a lower-dimensional feature space 
and measure their proximity or difference there. Closer 
cover-sources are expected to produce smaller degrada-
tion of steganalyser performance.

Definition 10 A feature space is a collection of n vari-
ables, extracted using the same function φ(·) , from differ-
ent objects and carefully designed for a specific goal of 
analysis. Indeed, features aim at preserving the statistical 
properties of objects while normalizing their representa-
tion, reducing the dimensionality and hence helping the 
desired analysis.

The feature spaces can be defined manually, for 
instance, handcrafted steganalysis features DCTR 
[36] or GFR [96], or constructed ad-hoc by a trainable 
component.

Types of metrics The difference of cover-sources can 
be quantified by aggregating each cover-source, e.g., by 
its center of gravity (mean), and using common metrics, 
such as the Euclidean norm ℓ2 or Mahalanobis distance 
[3, 56].

Another approach is to measure the proximity of hypo-
thetical distributions of cover-sources using probabilistic 
measures, such as the Kullback-Leibler divergence (KLD) 
[75], used in Cachin’s security [13], the maximum-mean 
discrepancy (MMD), popular for domain adaptation 
(Sect.  6.4), or the Wasserstein distance, used in genera-
tive steganography [95]. Despite popularity in theoretical 
works, the KLD presents a challenge, as it is asymmetric, 
and the cover-sources must have the same support.

New approaches to quantify the proximity between 
cover-sources, based on the chordal distance [3] and the 
KLD [75], were recently proposed.

Limitations In order to successfully mitigate CSM, the 
measure in the feature space should be related to the 
steganalysis regret of a chosen detector [3, 75]. This is 
clearly not the case for metrics such as MMD or ℓ2 , which 
are symmetric, while the regret is asymmetric, as shown 
in Fig.  3. Recent works addressed the metric selection 
by empirically measuring the correlation of the feature-
space metrics with the regrets. This approach, however, is 
still in its infancy and faces fundamental challenges.
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4  Bibliometry
This section introduces the methods used to answer 
the research questions from Sect.  1. Section  4.1 pre-
sents the collection of literature (RQ 1). Section  4.2 
describes measuring the research trend (RQ 1). Sec-
tion  4.3 depicts how the literature results were aggre-
gated (RQ 2, RQ 3).

From now on, the survey focuses on the specific case 
of image steganalysis. Indeed, the state of the art in other 
types of covers, such as video, audio, and text files, is much 
less developed. In particular, the CSM problem, even 
though it is studied by some papers, for instance in video 
steganalysis [58] or audio steganalysis [67], is not enough 
covered.

4.1  Collection of literature
The collection strategy consists of (1) initial sampling, 
(2) identification of relevant papers, and (3) breadth-first 
search using forward and backward references.

Sampling The initial samples were acquired with a 
query “cover-source mismatch steganalysis” from two 
metasearch engines, namely Google Scholar (GS) and 
DBLP, and independently from the editor or publisher. 
We take the first 50 results, sorted by relevance with no 
additional filters.

Identification Each paper was proofread to identify 
whether it is relevant. Relevant papers fit into at least one 
of the following criteria:

• Paper discusses the effects of CSM.
• Paper reports results with CSM.
• Paper investigates the impact of factors on CSM.
• Paper attempts to mitigate CSM.

Only a few papers mentioning the CSM were excluded, 
for instance, when CSM is a future work.

Reference search For each relevant paper, we searched 
its references (forward search) as well as papers citing 
it using the GS feature “Cited by” (backward search). 
On the newly found papers, we applied the same refer-
ence search, proceeding in the breadth-first order until 
exhaustion.

In the end, we collected and annotated 102 papers. 
The complete annotated bibliography is presented in 
Appendix A.

4.2  Measuring the research trend
Each paper in the bibliography is labeled with tags, denot-
ing assumed or explored topics. The tags allow for measur-
ing the trends of CSM research, separately for causes and 
mitigation. The number of citations is acquired from GS, as 
of 5 October 2023. For each paper, we compute the topic 
coverage (Eq. 4),

4.3  Aggregation of results
Although a comparison of the results in the literature 
is hardly possible due to different experimental setups, 
a relative measure may account for it to some extent. 
We convert the results to the relative regret (Eq. 3), and 
aggregate by taking the expectation across the cover-
sources, according to Eq. 5,

The relative regret marginalizes differences in experi-
mental setups and can be extracted from the existing 
literature, when inconsistency or regret is reported 
together with the source’s intrinsic difficulty.

However, the statistics should match in the choice of 
error metrics; problematic is also the dynamic thresh-
old used in PE . Furthermore, the relative regret assumes 
that the CSM affects performance proportionally.

5  Causes of CSM
In this section, we answer RQ 2 for image covers.

5.1  Image cover‑source
A cover is defined by the whole imaging pipeline, which 
consists of the acquisition (from the scene up to the 
electrical signal) and processing (from the electrical sig-
nal to the image file) [35, 88]. The diversity of the cover-
sources stems from the variety of acquisition devices 
and parameters, processing software and their specific 
operations and parameters. But it is also enriched by 
the initial captured content and the later compressions 
applied by specific software, such as social networks.

This diversity makes it hard to give a proper all-
encompassing model of the cover-source. However, it 
is possible to measure the impact of each operation. To 
get their impact, we gather the intrinsic difficulties and 
the source inconsistencies from [7, 9, 28, 66, 100]. We 
use them to compute the relative regrets using Eq.  3. 
We then compute the expected relative regrets using 
Eq. 5 gathering every cause into 6 categories: content, 
device, color, filter, resize, and JPEG.

(4)
1

#tags
.

(5)EX ,Y
ǫXY − ǫY

ǫY
.



Page 10 of 19Mallet et al. EURASIP Journal on Information Security         (2024) 2024:26 

The distribution of the relative regrets for each step is 
reported in Fig. 5. As expected, the JPEG compression 
step has the biggest impact on the CSM problem. The 
impact of processing steps tends to be higher the later 
they are in the pipeline.

Section 5.2 summarizes the state of the art using this 
6-step categorization of the cover-source steps.

5.2  Coverage of causes
Each step discussed below is an arbitrary division of all 
the gathered causes of CSM. Readers should be aware, 
for instance, that filtering operations can be performed 
at different steps of the pipeline. Equally, color opera-
tions can be performed at a later stage. Finally, while 
we generally assume that the JPEG compression comes 
last, it does not guarantee that later processing will not 
induce CSM.

Despite these nuances, we chose, for the sake of clar-
ity in answering RQs 1–2, to present a summary in the 
general order in which each cause appears in the overall 
pipeline. We strongly recommend reading the studies to 
get a full explanation of the reported findings.

Content While not properly a part of the processing 
pipeline, the content has long been recognized as a cause 
of heterogeneity in steganalysis [55]. The level of texture, 
also called texture complexity (TC), allows quantification 
of image similarity. Such a metric was proposed in [40], 
where datasets with high TC are harder to train on [28, 
105], but generalize better on testing sets with low TC 
than the other way around [40, 41].

The amount of textures depends on the captured scene, 
but later processings, such as filtering or resampling, 
greatly impact the final textures as well.

Device The device model is a common source of diver-
sity in the literature [6, 17]. Research also covers the 
impact of individual devices [66], and acquisition param-
eters: ISO sensitivity (moderate impact), aperture, and 
exposure time (low impact) [28].

Color Color processing involves demosaicking, i.e., 
removing the Bayer grid from the raw image by interpo-
lating colors, and color balancing, rendering white and 
gray shades. Optional steps are linear color correction 
and non-linear gamma correction. Diversity in demo-
saicking algorithm is common in the literature [17], even 
though its impact is lower than filtering or resampling [4, 
28]. On the other hand, relative excess regrets extracted 
from [9] are high. This study reports noticeably low ǫXY  , 
which explains the high relative impact of the color step 
in Fig.  5. For all these processings, in particular, Fig.  5 
would benefit from having more results.

Filter Filtering encompasses neighborhood-based pro-
cessings, such as denoising [77], unsharpening [87], blur-
ring, sharpening, or edge enhancement. These operations 
are shown to have a strong impact on the CSM [4, 10, 
26, 28]. Due to the large number of filtering parameters, 
measuring the CSM quickly becomes a computationally 
overwhelming task.

Resize Resizing can be carried out with two very dis-
tinct operations: cropping and resampling. Cropping 
consists merely of removing pixels rows or columns with-
out any additional modification. While this may induce a 
shift in the grid, such as the Bayer or JPEG ones, it com-
pletely preserves statistics in the pixel domain. On the 
opposite, resampling requires a low-pass digital filtering 
operation (to interpolate missing values) hence reduc-
ing the texture complexity and is a strong CSM factor. 

Fig. 5 Generic schema of image processing pipeline (IPP), together with the impact of each step on CSM. The most impactful is JPEG compression. 
Later processing has generally more impact
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Downsampling can reduce the CSM problem between 
mismatching cover-sources [107]. Both cropping and res-
ampling were used in ALASKA [17].

JPEG JPEG compression is indisputably the most 
impactful cause of CSM. The constant attention from the 
community [18, 30, 56, 57] focused mostly on the qual-
ity factor (QF) controlling the distortion-rate tradeoff. 
CSM is also induced by double compression [92] or JPEG 
implementation [7].

Figure  6 answers RQ 2. It shows the evolution of the 
number of papers, from 2006 onward, studying the 
causes of CSM. To the 6 categories that we consider in 
the paper, we added 3 others, often found in studies. 
First, “IPP” designates studies with unspecified cover-
source processes, but that still use them as a cause of 
CSM. Then, “Stego” refers to papers dealing with SSM, 
and “Dataset” to CSM between datasets. Additionally, 
when a paper dealt with more than one cause, we chose 
to split its weight evenly.

Note that the number of papers used in Fig.  6 is 
less than the total number used in the survey. This is 
because not all papers accurately discuss the causes of 
CSM.

Heuristics for the CSM problem To conclude this sec-
tion, let us mention some complementary papers that 
use heuristics to approximate the impact on CSM. A 
heuristic close enough to the detector error can facilitate 
mitigation of the CSM caused by the parameter whose 
impact is being approximated. For instance, [40] designs 
a similarity measure for texture complexity in images. 
[104] suggests a metric for JPEG quantization tables 
(QT).6

Fig. 6 Area chart capturing timeline of CSM causes. The number of papers on CSM and the diversity in causes is increasing, especially in the last 10 
years

Fig. 7 Effect of existing mitigation strategies on CSM, compared to clairvoyant scenario. Holistic mitigation performs the best. Holistic and DA reach 
below clairvoyant because some results report improvement in presence of CSM

6 QT metric weights high frequencies unintuitively. E.g., standard QF75 is 
closer to QF76 than to QF75 with incremented DC, although 90% values 
differ.
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6  Mitigation of CSM
This section summarizes the approaches to mitigate the 
effect of the CSM and answers RQ 3. We start by the ide-
alistic case—clairvoyant scenario (Sect. 6.1), followed by 
major mitigation schools: atomistic (Sect.  6.2), holistic 
(Sect. 6.3), and domain adaptation (Sect. 6.4), followed by 
other miscellaneous techniques (Sect.  6.5). In Sect.  6.6, 
we analyze the current trends in the research.

The distribution of the relative regrets for different 
mitigation techniques is reported in Fig.  7. The y-axis 
contains the relative regret from Eq.  3, aggregated over 
results reported in [26, 39, 49, 56, 63, 69, 84, 94]. Clair-
voyant is shown as a solid horizontal line at relative 
regret 0. Holistic steganalysis appears to be the most per-
formant, followed by atomistic steganalysis and domain 
adaptation. Other techniques perform worse and have 
the most varying relative regret. Holistic and DA mitiga-
tion reach below the clairvoyant, because some studies 
report better mismatched values than matched values, 
i.e., improvement in the presence of CSM.

6.1  Clairvoyant scenario
Perfect mitigation of the CSM is possible, if the stegana-
lyst gets to know the cover-source, and trains the detector 
on it. Such a simple strategy, referred to as the clairvoy-
ant scenario [80], comes from a conservative interpreta-
tion of Kerckhoffs’ principle, according to which what is 
not secret is assumed to be public.

Limitations However, knowing the cover-source is 
applicable only sometimes in practice. It assumes the 
steganographer publishes the cover-source, either delib-
erately, unintentionally, or forced by an active stegana-
lyst. Otherwise, CSM is present, and the steganalyst must 
seek different ways to mitigate it. The current state of 
the art has three major schools: atomistic, holistic, and 
domain adaptation.

6.2  Atomistic steganalysis
A natural extension of the clairvoyant scenario to 
unknown cover-sources is to train multiple detectors on 
different cover-sources and choose the correct detector 
for the input image. Such an atomistic detector, shown in 
Fig. 8a, involves two steps: 

1. The forensic step (select), which identifies the cover-
source from the input image

2. The steganalysis step (detect), a pool of detectors 
trained on different cover-sources

The training consists of selecting the cover-sources and 
training the selector and one detector per cover-source. 
During the testing, the input cover-source is determined, 
and the input is fed into the associated detector. If the 
detector for the input cover-source is available, the atom-
istic detector performs as well as in the clairvoyant sce-
nario [37, 106].

Selector A major question is how to construct the newly 
introduced selector component. Cover-source identifica-
tion typically uses a feature space and an unsupervised 
[38, 78, 106] or non-parametric [31] construction. The 
cover-source can also be partially reconstructed using the 
means of forensic analysis [5, 37].

Figure 7 displays that the majority of the results reported 
for the atomistic approach are up to relative regret 1.

Limitations The first limitation is that the number of 
possible cover-sources is intractable. The selector must 
be able to deal with the situation when the cover-source 
is not present in the pool.

The second problem is that the success of the atomistic 
detector relies on the selector. Errors of the selector add 
up with the errors of the detectors [94].

Fig. 8 Strategies to mitigate cover-source mismatch. In the atomistic strategy, the selector chooses the best detector for each input to minimize 
CSM. In the holistic strategy, the detector is trained on a heterogeneous set of cover-sources
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The third issue is the selection of the cover-sources to 
train on. The aim of the steganalyst is to ensure a good 
coverage of the source domain, but the more detectors 
one wants, the longer the training time becomes [3].

6.3  Holistic steganalysis
A detector performs the best on the cover-source seen 
during the training. When trained on multiple cover-
sources, the performance is usually slightly worse than 
that of the dedicated per-source detectors. By contrast, 
the performance degrades far more on unseen cover-
sources.The amount of degradation depends on the CSM.

A holistic approach gives up on matching the clair-
voyant performance and training a large number of 
dedicated detectors. Instead, one detector is trained on 
a heterogenous dataset with a large number of cover-
sources, as shown in Fig. 8b. The idea is that a sufficient 
coverage over sources ensures a good performance of 
the detector on unseen sources and leads to the mitiga-
tion of CSM.

Heterogeneity The major challenge in the holistic 
approach is the construction of the training database. The 
number of sources certainly relates to the robustness of the 
dataset. Research suggests that training on fewer, carefully 
chosen cover-sources yields better results, than on a huge 
number of blindly collected cover-sources [4, 98].

Model selection The architecture of a holistic detector 
is critical for model performance. Not only is the detec-
tor expected to detect steganography, but it also needs to 
do so in a heterogeneous environment [25]. Increasing 
the flexibility of a model can lead to greater overfitting, 

which can be mitigated by increasing the dataset size, or 
by regularization techniques [74, 76].

Limitations The first limitation is that the holistic train-
ing requires a very large dataset [70, 78]. The second 
problem is that the holistic approach performs worse 
than the atomistic approach on a fixed set of cover-
sources [37, 106]. The third issue is that the performance 
is very sensitive to the cover-sources covered in the 
training set. The success of the mitigation also strongly 
depends on the selection of the detector architecture.

6.4  Domain adaptation
The mitigation of atomistic and holistic approaches is 
limited by the number of sources used during train-
ing. The idea of domain adaptation (DA) is to train on 
a single cover-source, called source domain, and use the 
learned knowledge to adapt to an unseen cover-source 
called target domain. This is done by aligning the 
domains, illustrated in Fig. 9a by colored circles, so that 
the detector can better generalize to a diverse domain.

The general DA workflow illustrated in Fig. 9b is (1) 
converting the test sample to the adapted feature space 
and (2) passing them to a detector, trained in this fea-
ture space.

Adaptation The feature space should align different 
cover-sources closely, yet maximize the shift caused by 
steganography. A simple adaptation method is matching 
the moments of the source and the target domain, e.g., 
using standardization. The advanced solutions presented 
in the literature are unsupervised techniques, such as 

Fig. 9 Domain adaptation strategy
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clustering or manifold alignment [1, 23, 43, 57, 63, 65], 
possibly aided by guiding features and pseudo-label pre-
diction [108, 110]. Often, the construction is challenging, 
because the labels for the target domain are not available.

Limitations Existing methods only extract specific sta-
tistics, such as means or higher moments, which may be 
insufficient to mitigate CSM over different cover-sources. 
Moreover, using handcrafted steganalysis features for 
domain adaptation may lead to unsuccessful mitigation, 
because although sensitive to steganography, they are 
also affected by CSM [101].

6.5  Other techniques
Apart from the three major approaches, we identify 
other, marginally explored, techniques.

Re-embedding Re-embedding into the test images 
increases the spread of the stego-shift directly in the tar-
get domain. Training multiple detectors, similar to diffu-
sion models, i.e., on cover-stego, stego-double stego, etc., 
may further improve the detection performance [60, 62, 
64, 105].

Feature projection The second limitation of DA men-
tioned in Sect. 6.4 may be tackled by modifying the fea-
tures, so that the projected features are insensitive to 
cover-source heterogeneity [84, 99]. Feature engineering 
w.r.t. CSM is not trivial, for instance, fusing feature sets, 
which helps in the matched scenario, may degrade per-
formance in the presence of CSM [25].

One-class detector Figures  1, 4  and 9a depict linear 
detectors, but there is a variety of detectors, which in 
some cases may perform better or be more robust to 
CSM, such as non-linear classifiers or one-class classifi-
ers [81].

Unsupervised learning A steganographic embedding 
may be treated as an outlier and detected using unsu-
pervised learning. This is particularly common in pooled 
steganalysis, where the steganalyst looks for a guilty steg-
anographer among a pool of communicating actors. The 
techniques used are outlier detection, clustering based 
on MMD [50, 51], or k-nearest neighbors [39].

6.6  Trends in research on CSM mitigation
In a similar fashion to the CSM causes in Fig. 6, we show 
the trend of the mitigation strategies in Fig. 10, in terms 
of the number of papers per year. The number of papers 
has been growing until peak in 2018–2020, and descend-
ing since.

The holistic and atomistic strategies appear consistently 
and dominate most of the entire time period. The unsu-
pervised approach appears mainly in early 2010s in the 
pooled steganalysis literature [49, 50]. The domain adap-
tation first appeared around 2015 and has been growing 
ever since, which coincides with the boom of deep learn-
ing. In the recent years, DA is the dominant mitigation 
strategy, used both with neural networks [1, 105, 108, 
110] and with feature-based steganalysis [3, 4, 110].

Fig. 10 Area chart capturing the timeline of the CSM mitigation strategies. The number of papers grows, with a peak in 2018–2020. Currently, 
the most popular mitigation strategy is DA
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7  Countermeasures of steganographer
CSM is usually understood as a challenge for the stega-
nalyst, which he overcomes by choosing a detector that 
minimizes the CSM and increases the chance of catch-
ing the steganographer. The optimal choice can be made 
if the steganalyst knows the exact cover-source.

In the real world, however, the knowledge of both 
actors is limited: the steganographer does not know the 
steganalyst’s detector, and the steganalyst does not know 
the cover-source. Thus, the steganographer and the 
steganalyst play a game.

The steganographer chooses the cover-sources which 
presumably maximizes the CSM error to increase the 
chance of evading detection, because the steganalyst 
increases the detection threshold to reach the accept-
able false positive rate. The game resembles a modified 
rock-paper-scissors, where the steganalyst wins with 
the match and the steganographer with the mismatch 
of the shapes.

A game-theoretical interpretation of the CSM prob-
lem was first drafted in [24], and later formalized in 
[29]. It has been tested in very constrained scenar-
ios so far and requires additional research to push it 
toward the main stream of research on CSM, which still 
describes CSM as a problem of the steganalyst only.

8  Discussion
Steganalysis competitions BOSS and ALASKA had a 
profound impact on the field and stimulated a lot of 
new energy. Their experimental setups were followed 
by the research long after they ended. Future compe-
titions should be carefully designed to facilitate com-
parisons, such as the one carried out in this survey; 
of importance to the CSM are the factors of diversity, 
steganographic schemes, and performance metrics.

Open question 1: Have all the causes of CSM and 
SSM been clearly identified? Are their effects well 
measured?

Pushing forward in this direction, the steps of the IPP 
are usually studied in isolation, but their order might 
impact the CSM. Interactions between the steps exist, 
e.g., between resampling and sharpening [4] or between 
SSM and the cover source [90].

Open question 2: How can we measure the crossed 
effect of different causes on the CSM?

Answering this question, among others, challenges 
the community to build methods that will need to deal 
with the computational complexity of the task.

We detailed the different approaches to measure 
CSM, highlighting the limitations in each one, but the 

question is still mostly an open one. As the current 
tools are symmetric, a “theoretical” measure of CSM 
can only poorly relate to the practical regret. Design-
ing better tools, in order to avoid the bias of training a 
detector, is probably one of the most promising steps at 
characterizing the CSM in the short term.

Open question 3: How is CSM related with statis-
tical properties of the cover sources?

Finally, as already mentioned, this survey is focused 
on the case of steganalysis natural images. One ques-
tion that we can naturally draw from our present 
research would be to see if the same observations can 
be made for other types of digital media.

Open question 4: How does CSM impact steganaly-
sis of other types of covers (audio, video, ...)?

Existing methods to measure the CSM impact depend 
on the detector, or on the feature space. Suitability of 
these assumptions, as well as possible alternatives, is to 
be investigated. Meta-research, such as result aggrega-
tion in Fig.  5, would benefit if future studies provided 
intrinsic difficulties and inconsistencies.

Existing mitigation strategies may aid at solving 
the problem, yet fail in pessimistic scenarios, such as 
unknown processing history. The atomistic approach 
is suitable for a closed set of cover sources, but fails on 
open-set problems where holistic performs better. The 
increased popularity of domain adaptation correlates 
with the introduction of deep learning in steganalysis.

We strive to sample and aggregate the existing lit-
erature on CSM objectively. However, we are aware of 
potential biases: (1) sampling bias due to search engine 
ranking, isolation of papers from the rest of literature, 
or incorrect assessment of relevance, (2) bias due to 
incorrect annotation of the paper, and (3) bias of impact 
estimates, when the paper results cannot be used for 
aggregation, e.g., when reported via graph.

Adversarial scenario for CSM CSM is usually under-
stood as a problem for steganalyst. It can also be inter-
preted as a game between the steganographer and the 
steganalyst, a modified rock-paper-scissors, where the 
steganalyst wins on match and steganographer on the 
mismatch of the shapes [24, 29]. This approach has been 
tested in a very constrained scenario so far.

9  Related work on data heterogeneity
Essentially, CSM is a form of data heterogeneity, which 
is a common problem in many fields of application of 
ML. Studying the causes of data heterogeneity and the 
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mitigation strategies in the literature of other fields 
might prove beneficial to understanding the causes 
of CSM and mitigating its impact on steganalysis. We 
selected surveys focusing on data heterogeneity from 
5 fields: medical imaging (MI) [33, 113], mechanical 
components monitoring (MCM) [102], speech recogni-
tion (SR) [109], natural language processing (NLP) [89, 
93], and temporal reasoning (TR) [72, 112], and we look 
to what extent each survey covers RQ 1 and 3, in their 
respective field. The summary of our readings is shown 
in Table 2.

Causes of heterogeneities Regarding RQ 1, although 
each field has identified its causes of heterogeneity, 
some causes appear conceptually similar from one field 
to another. Patients in MI, components in MCM, and 
authors in NLP can be understood as similar causes of 
mismatch; to image steganalysis, it could relate to the 
captured content. Similarly, the working conditions 
in MCM and the noise environment in SR are close 
to each other but are harder to relate to an identified 
cause of CSM (see Sect.  5 for details). On the other 
hand, languages are conceptually rather specific to the 
field of NLP. Finally, mismatch caused by the acquisi-
tion devices and their calibration is expected to occur 
in every field but seems to be foremost studied in MI 
and steganalysis, where they both play an important 
role.

Mitigation strategies Within the broad framework 
of ML, there are currently two main approaches for 
dealing with data heterogeneity: transfer learning and 
domain adaptation. Transfer learning is based on trans-
ferring knowledge from one task to another and has 
been shown effective in many computer vision appli-
cations via fine-tuning. Large models dedicated to MI 
were shown to have good transferability to several of its 
tasks. Domain adaptation involves learning an invariant 

space for samples coming from different distributions. 
It provides tools like shallow and deep ML models for 
feature matching such as correlation alignment, used in 
MCM, or transfer component analysis, in MCM, MI, and 
steganalysis.

As we have shown, steganalysis faces similar issues (e.g. 
acquisition device and content) and uses similar mitiga-
tion strategies (domain adaptation and transfer learning). 
The peculiarity of steganalysis is that it operates on sig-
nals of interest of low amplitudes, compared to the other 
fields that mostly operate on a semantic level. Perhaps 
due to this, the CSM in steganalysis has many diverse 
causes, which are covered in Sect. 5.

10  Conclusion
The research in the last 20 years has been looking 
into the cover-source mismatch problem from various 
directions. Many strategies to suppress CSM exist, but 
the core of the problem is still present. Successful miti-
gation must go hand in hand with understanding of the 
causes. Reliable mitigation of CSM and SSM is essential 
for operational universal steganalysis.

Abbreviations
AUC   Area under curve
BOSS  Break Our Steganographic System
CORAL  Correlation alignment
CSM  Cover-source mismatch
DA  Domain adaptation
DBLP  Digital bibliography and library project
DCT  Discrete cosine transform
DCTR   DCT residual
GFR  Gabor filter residual
GS  Google Scholar
IPP  Image processing pipeline
KLD  Kullback-Leibler divergence
LSB  Least-significant bit
MCM  Mechanical component monitoring
MI  Medical imaging
ML  Machine learning
MMD  Maximum-mean discrepancy
NLP  Natural language processing

Table 2 Summary of the answers to the proposed RQs in other fields of application of ML: medical imaging (MI), mechanical 
component monitoring (MCM), speech recognition (SR), natural language processing (NLP), and temporal reasoning (TR)

ML field Surveys Causes of mismatch Mitigation strategies

MI [33, 113] Difference of acquisition device, parameters, and patients 
between datasets

Domain adaptation to cope with the low number of available 
labels. Transfer learning from MI-specific models

MCM [102] Different working conditions. Different monitored compo-
nents. Transfer from simulations to the real world

Transfer learning; domain adaptation, e.g., shallow and deep 
feature matching, GANs, ...

SR [109] Noisy environments Preprocessing, features extraction. Using acoustic/language 
models

NLP [89, 93] Cross-lingual learning. Writers, contexts, and dates also cause 
mismatches

Data-centric (pre-training, pseudo-labeling) and model-centric 
(adversarial networks, autoencoders) DA

TR [72, 112] Difference in the datasets’ origins, e.g., time granularity, or dif-
ference between temporal textual expressions

Temporal data management, e.g., data integration, or NLP-based 
methods
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QF  Quality factor
ROC  Reciever-operating characteristic
RQ  Research question
SR  Speech recognition
SSM  Stego-scheme mismatch
TC  Texture complexity
TCA   Transfer component analysis
TR  Temporal reasoning
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