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Abstract 

Because the JPEG recompression in social networks changes the DCT coefficients of uploaded images, applying 
image steganography in popular image-sharing social networks requires robustness. Currently, most robust steg-
anography algorithms rely on the resistance of embedding to the general JPEG recompression process. The opera-
tions in a specific compression channel are usually ignored, which reduces the robustness performance. Besides, 
to acquire the robust cover image, the state-of-the-art robust steganography needs to upload the cover image 
to social networks several times, which may be insecure regarding behavior security. In this paper, a robust steganog-
raphy method based on the softmax outputs of a trained classifier and protocol message embedding is proposed. In 
the proposed method, a deep learning-based robustness classifier is trained to model the specific process of the JPEG 
recompression channel. The prediction result of the classifier is used to select the robust DCT blocks to form 
the embedding domain. The selection information is embedded as the protocol messages into the middle-frequency 
coefficients of DCT blocks. To further improve the recovery possibility of the protocol message, a robustness enhance-
ment method is proposed. It decreases the predicted non-robust possibility of the robustness classifier by modify-
ing low-frequency coefficients of DCT blocks. The experimental results show that the proposed method has better 
robustness performance compared with state-of-the-art robust steganography and does not have the disadvantage 
regarding behavior security. The method is universal and can be implemented in different JPEG compression chan-
nels after fine-tuning the classifier. Moreover, it has better security performance compared with the state-of-the-art 
method when embedding large-sized secret messages.
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1 Introduction
Steganography is the technology of hiding secret mes-
sages in multimedia files, such as images, audio, or vid-
eos, without introducing the trace of modification. Its 
counterpart, steganalysis, is the technique of detecting 
whether the testing multimedia files have been modified 
to carry secret messages. Currently, the most advanced 

steganography algorithm is adaptive steganography. The 
latest steganalysis algorithms are based on high-dimen-
sional feature sets and the ensemble classifier [1–5] or 
deep learning methods [6–10], which are able to detect 
adaptive steganography. Adaptive steganography usu-
ally contains two parts: the cost function and the infor-
mation embedding algorithm. The design of the cost 
function is related to the impact of embedding to its 
counterpart, steganalysis, so that the pixels or coefficients 
that are hard to detect by steganalysis after modification 
have low costs. The design of the cost function could be 
divided into two disciplines. One is defined empirically 
by assigning low-cost values to pixels or coefficients in 
the complex content areas without considering the spe-
cific steganalysis features [11–15]. Another method tries 
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to attack a specific steganalysis by setting the pixels or 
coefficients that weaken detection power as small costs 
[16–18]. After the cost function is calculated, the infor-
mation embedding algorithm, e.g., the syndrome trellis 
codes (STC) [19], is used to realize information embed-
ding with modifications introducing minimal costs.

Adaptive steganography can achieve information 
embedding with high-security performance, but it is 
based on the assumption that the transmission channel 
is error-free. In e-mail and lossless file sharing scenarios, 
adaptive steganography could be directly used. With the 
development of social networks, e.g., Facebook or Twitter, 
sharing photos on social networks becomes more conven-
ient and popular. Unfortunately, the compression process 
in social networks changes the extraction domain of steg-
anography. Adaptive steganography could not be directly 
applied for the failure of information extraction.

Researchers have recently proposed robust steganogra-
phy to achieve information embedding in the lossy chan-
nels. In Zhang’s methods [20–22], several techniques of 
watermarking technology are used to achieve steganogra-
phy with robustness. In [23], Yu et al. introduced the gen-
eralized dither modulation-based robust steganography 
(GMAS), which uses ternary embedding and expands the 
embedding domain of the dither modulation-based method 
proposed in [22]. In [24], Kin-Cleaves et al. invented a dual 
STC method that reduces the channel error in stego images 
before information extraction. In [25], the authors studied 
that when the embedding processing is fully known to the 
embedder, the 100% correct information embedding and 
extraction can be achieved; however, the embedding pro-
cess in the work does not include the lossy operation in 
the spatial domain, which is frequently used by social net-
works. In [26], the authors proposed a method that uses an 
auto-encoder to learn the reverse compression process. In 
[27], Zhao et al. proposed the transport channel matching 
(TCM)-based robust steganography, which uploads and 
downloads images from websites several times. Then, adap-
tive steganography is used to embed the message. However, 
because the stego image does not experience recompression 
iterations, the modified coefficients could still be changed 
by recompression. To overcome the blindness of the embed-
ding process in the TCM robust steganography, Zhang et al. 
[28] proposed the robustness cost function, which reduces 
the modifications that break the robust domain formed by 
TCM. In [29], to minimize the error rate of channels, Zeng 
et al. proposed a method that uses the image after recom-
pression as the embedding domain. In the method, the cost 
function is adjusted to avoid embedding in the non-robust 
areas and non-robust coefficients.

In the robust steganography algorithms that have 
been proposed, most methods require the cover images 
to be uploaded to the channel at least once to improve 

the robustness. The supervisor may monitor the behav-
ior of uploading images with the same contents multiple 
times, which increases the likelihood of the sender being 
detected. Designing a robust steganography that does 
not need to upload cover images into channels before 
uploading stego images is critical. One approach to solve 
this problem is to utilize deep learning to construct the 
compression process locally. Then the channel-related 
characteristics can be used without uploading. Another 
way is that the embedding is robust enough to withstand 
unknown compression processes, which is called the gen-
eral robust steganography in [30]. However, it might per-
form poorly on a specific compression channel, for the 
specific compression process has not been considered.

The usage of deep learning in robust steganography to 
simulate the compression can be firstly found in [26]. The 
method utilizes an auto-encoder to learn the transforma-
tion relationship between the JPEG image after and before 
compression. The adaptive BCH encoding method that 
selects the coding parameter according to the content of 
cover images is proposed. In the method, the auto-encoder 
is employed to predict 64 DCT coefficients before compres-
sion in a DCT block. For embedding the secret information, 
the uploaded image is needed to generate robust images. 
For some, JPEG recompression channels may apply com-
plicated processes, and the prediction error is large, which 
restricts the improvement in robustness of this method.

The main contribution of our method is that we utilize 
deep learning to develop a protocol message sharing-
based robust steganography. To select the DCT blocks 
with good robustness, the deep learning-based classifier 
which learns the characteristics of the compression chan-
nel is used. The selected DCT blocks form the embedding 
domain of secret messages. The protocol message related 
to the selection information is generated and embedded 
using general robust steganography. To improve the pos-
sibility of correctly restoring important protocol mes-
sages, a robustness enhancement method is proposed. 
It performs modification in the low-frequency domain 
based on the prediction result of the learned classifier. By 
implementing the classifier that learns the specific pro-
cesses of compression for embedding, the robustness of 
proposed robust steganography is better compared with 
general robust steganography. The proposed method 
does not need to upload cover images to compression 
channels, which eliminates the behavior security issues 
existing in most robust steganography.

The rest of this paper is organized as follows. In Section 2, 
the preliminaries are presented. In Section 3, the proposed 
method is introduced, which includes the overall process 
of proposed methods, the architecture of the learning net-
work, the procedure of proposed robustness enhancement 
methods, and the process of protocol message embedding. 
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Section 4 is the experimental part of this paper, which gives 
experimental results and the discussions. The conclusion is 
given in Section 5.

2  Preliminaries
In this section, we give the preliminaries of this paper, 
which include the JPEG compression process, the STC 
embedding, and the error-correcting codes. The bold let-
ters refer to matrices and vectors, and the non-bold letter 
with subscripts refers to an element of matrices or vectors. 
The symbols utilized in this paper are listed in Table  1. 
The side information representing the position of message 
embedding blocks is called the protocol message.

2.1  JPEG recompression
There usually are two processes in JPEG recompression: 
spatial image restoration and JPEG image compression. 
Suppose an 8× 8 DCT block before JPEG recompres-
sion is Do , and the quality factor of the image is qo , which 
corresponds to the quantization table Qo . The process of 
restoring the spatial domain So can be denoted as

where IDCT(x) is the two-dimensional inverse DCT 
transform and [x] is the rounding operation. The multi-
plication here is the multiplication for the corresponding 
elements of two matrices. In this paper, we call the spatial 
values before the rounding operation as unquantized spa-
tial values.

After restoring the rounded spatial values, a clipping 
operation is performed to generate the spatial image S′o . 
The clipping operation sets the rounded spatial in the 
range of [0, 255] by clipping the outside value as the near-
est integer boundary value. Suppose the quality factor of 
the JPEG compressor in the channel is qc , which corre-
sponds to the quantization table Qc . The process of gen-
erating the quantized DCT coefficients Dc is

where DCT(x) is the two-dimensional DCT transform, 
and the division here is the division for the correspond-
ing elements of two matrices.

(1)So = [IDCT(Do ×Qo)+ 128],

(2)Dc = [DCT(S′o − 128)÷Qc],

To increase the compression quality, some social net-
works or JPEG compression toolboxes employ other 
complicated compression processes. For example, the 
JPEG compression library mozjpeg1 uses the trellis 
optimization method to decrease the file size of recom-
pressed JPEG while maintaining the quality of spatial 
content. The operation causes more changed DCT coef-
ficients after recompression and increases the errors of 
recompressed stego images, requiring further improved 
robustness in robust steganography.

2.2  The syndrome trellis codes
The syndrome-trellis codes (STC) [19] are convolution 
codes described in the dual domain. It solves the payload 
limited sender and the distortion limited sender embed-
ding problems with a small coding loss. The parity-check 
matrix H ∈ {0, 1}m×n of a binary syndrome-trellis code 
of length n and co-dimension m is obtained by placing a 
small submatrix Ĥ of size hs × w along the main dialog as 
in Fig. 1. The height hs of the submatrix is called the con-
straint height. The width of Ĥ is dictated by m/n. If m/n 
equals to 1/k for some k ≤ n , the value of w equals k. 
The codeword of an STC is represented as a unique path 
through the syndrome trellis. The syndrome trellis can be 
parameterized by message m and can present members of 
the coset C(m) = {z ∈ {0, 1}n,Hz = m} . The syndrome 
trellis with the Ĥ in Fig. 1 and a random m can be seen in 
Fig. 1. The binary embedding can be optimally solved by 
the Viterbi algorithm. The algorithm consists of two parts, 
the forward and the backward part. After the forward part, 
the shortest path through the entire trellis is perceived. In 
the backward part, the shortest path is traced back, and 
the parities of the closest stego object are recovered.

2.3  BCH codes and RS codes
The Bose, Chaudhuri, and Hocquenghem (BCH) codes 
are a class of random error-correcting cyclic codes. The 
code is a remarkable generalization of the Hamming codes 
for multiple-error correction. For any positive integers m 
(m ≥ 3) and t (t < 2m−1) , there exists a binary BCH code 
with parameters as follows: the block length n = 2m − 1 , 
the number of parity-check digits n− k ≤ mt . The code is 
capable of correcting any combination of t or fewer errors 
in a block of n = 2m − 1 digits. In this paper, the param-
eter (n, k) means that the length of the block digits is n, 
the number of bits of information is k, and the number of 
parity-check digits is n− k . The special subclass of q-ary 
BCH codes for which m = 1 are called Reed-Solomon (RS) 
codes. They have been widely used in both digital com-
munication and storage systems. For a Reed-Solomn code 

Table 1 The list of symbols used and their meanings

Symbol Meaning

X Quantized DCT coefficients

D Unquantized DCT coefficients

Q Quantization table

S Rounded spatial pixels 
restored from DCT coef-
ficients

1 https:// github. com/ mozil la/ mozjp eg

https://github.com/mozilla/mozjpeg
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with symbols from GF(q), the parameters are as follows: 
the maximum block length n = q − 1 , the number of par-
ity-check symbols n− k = 2t , and the code is capable of 
correcting t or fewer symbol errors. The length of symbols 
of RS encoding used in this paper is 8 bits. The parameter 
(n, k) means the length of symbols in a block of RS codes is 
n, and the number of parity-check symbols is n− k . More 
detailed information about BCH and RS error-encoding 
codes can be found in [31].

3  Proposed method
This section is divided into four parts. Firstly, the frame-
work of the proposed robust steganography algorithm is 
presented in Section 3.1. Secondly, the network structure 
of the proposed robustness classifier and its training pro-
cess are described in Section  3.2. Thirdly, the proposed 
robustness enhancement method is explained in Sec-
tion 3.3. Finally, the process of protocol message embed-
ding is given in Section 3.4.

3.1  The framework of the proposed method
In this paper, with the output of the robustness classifier, a 
robust steganography based on the robust block selection 

and the protocol message embedding is proposed. The 
framework of the proposed method is shown in Fig. 2.

The embedding process can be described as follows. 
First, using a secret key shared by the steganographer and 
the receiver, all the DCT blocks in cover images are ran-
domly divided into two disjoint groups, which are named 
group1 and group2 separately. The length of the two groups 
is equal, which means each group contains half the number 
of all DCT blocks in cover images. Then, the DCT blocks 
in group1 are inputted into the trained classifier that can 
classify whether the input block is robust. The bit repre-
sentation is 1 if the block is predicted as non-robust and 0 
if it is predicted as robust. The bits result predicted by the 
classifier are concatenated into byte streams as protocol 
messages, which will be embedded into the DCT blocks 
in group2. To increase the success possibility of protocol 
message restoration, the DCT blocks in group2 experience 
the robustness enhancement operation that improves the 
robustness. After error-correcting code encoding, the pro-
tocol messages are embedded into robustness-enhanced 
DCT blocks in group2 with the general robust steganogra-
phy. The DCT blocks in group1 will be further grouped by 
the prediction results of the classifier. The secret message 

Fig. 1 The parity-check matrix of STC and its syndrome trellis

Fig. 2 The framework of the proposed method
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is encoded by the error-correcting code encoder and ran-
domly permutated. Then in group1, they are embedded 
into the DCT blocks predicted robust by the classifier with 
adaptive steganography. Finally, after embedding secret 
messages and protocol messages, the DCT blocks in 
group1 and group2 are combined to generate stego images.

The extraction process is described as follows. Firstly, 
the receiver receives the stego image recompressed by 
channels. Then, the DCT blocks of recompressed stego 
images are divided into two groups using the same key in 
the embedding process. The protocol message is extracted 
from DCT blocks in group2, and the prediction results of 
DCT blocks in group1 can be restored by the extracted 
protocol message. The DCT blocks in group1 with the 
bit representation as 0 are selected to form the extraction 
domain. After performing the STC extraction and inverse 
permutation, the error-correcting code encoded message 
is extracted. The message can be restored by performing 
error-correcting code decoding.

Aiming to improve the robustness, general robust steg-
anography usually introduces more distortion compared 
with non-robust steganography. The reason that we divide 
DCT blocks into two groups for embedding secret mes-
sages and protocol messages separately is as follows. The 
length of the protocol message is fixed and is related to 
the size of an image. In our methods, when the payload 
is large, the adaptive steganography which is more secure 
is used to embed the message. The robustness is ensured 
by selecting the robust DCT blocks as the embedding 
domain by a trained classifier. The length of the protocol 
message remains the same, and the protocol message is 
embedded by general robust steganography. Compared 
with only using general robust steganography for embed-
ding, the combination of two embedding processes can 
improve security performance when embedding large-
sized secret messages. At the same time, through a trained 
classifier, we select robust DCT blocks as the embedding 
domain and perform a robust enhancement method. The 
robust performance is improved, and a higher success 
extraction rate can be achieved.

3.2  The robustness classifier
The first usage of deep learning in robust steganography 
appears in [26], in which the auto-encoder is utilized to train 
the network to predict the DCT coefficients before the com-
pression operation. However, instead of obtaining the coef-
ficients before compression, the results in [27] demonstrate 
that implementing modification without predicting coeffi-
cients before compression can also improve the robustness. 
Moreover, predicting 64 DCT coefficients before compres-
sion is more difficult than learning one output of the robust-
ness possibility. The embedding process in [26] requires the 
image after the compression of channels. It increases the 

chance of being detected by analysts analyzing this behavior. 
Thus to improve the efficiency and robustness of machine 
learning-based robust steganography and improve behav-
ior security, studying the method that trains the classifier 
of non-robust possibility and embeds messages without 
uploading cover images is very meaningful.

From the result in [28], the spatial domain is more 
related to robustness. In mozjpeg, the trellis quantiza-
tion is performed to realize the optimal distortion rate, 
which is related to the distortion function defined in the 
spatial domain. Thus the input of the deep learning archi-
tecture proposed is unquantized spatial values, which are 
acquired from IDCT operations performed on DCT coef-
ficients in JPEG images. When designing the structure of 
deep learning, we find out that the structure with six lay-
ers of convolution can learn the robustness of the DCT 
block. Moreover, using residual learning structure [32] 
and increasing the depth of convolution layers can further 
increase the detection accuracy. The structure of the pro-
posed deep learning network is shown in Fig. 3. From it, 
we can see that to capture the spatial feature of unrounded 
spatial values from a DCT block, the proposed classifier 
involves at most eight convolution layers. The Type A and 
Type B structures in Fig.  3 are typical residual learning 
structures. The ReLU [33] is used for learning the non-
linear function determining whether the DCT block is 
robust. The last two fully connected layers and the softmax 
function convert the feature into the possibility that the 
DCT block is robust. The softmax function is defined as

where x1 and x2 are two outputs of the last fully connected 
layer. We define that if Softmax(x1) > Softmax(x2) , the 
classifier predicts the DCT block input as the robust 
block; otherwise, the DCT block is predicted as the non-
robust block.

The loss function used by the classifier is the cross-
entropy loss. Suppose the possibility of the input block is 
robust P1 = Softmax(x1) , and the possibility of the input 
is non-robust P2 = Softmax(x2) . The label equals zero 
means the input block is robust and one when the input 
is non-robust. The loss function can be calculated as

The introduction of w is to add weight to the training 
items where label = 1 . The reason is that the number of 
robust blocks is usually not equal to the number of non-
robust blocks. When the number of non-robust blocks is 
far less than the number of robust blocks, the loss will be 
small even though all the non-robust blocks are misclassi-
fied. In that case, the gradients are very small to increase 

(3)Softmax(xi) =
exi

ex1 + ex2
, i ∈ {1, 2},

(4)
loss = −w ∗ label ∗ log(P2)− (1− label) ∗ log(P1).
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the correction rate of detecting non-robust blocks. To over-
come this problem, the class whose sample size is smaller 
than another class should have a larger weight. On the other 
hand, the importance of the false-positive rate and the miss 
detection rate are different in robust steganography. In 
order to adjust the balance between the false-positive rate 
and the miss detection rate, the weight parameter is needed.

In this study, after the recompression, there are two kinds 
of situations. Suppose there is a DCT coefficient xi which is 
in the DCT block Xab . The xi is a robust coefficient and Xab 
is a robust DCT block if the DCT block Xab is not changed 
after recompression. And xi is a non-robust coefficient 
and Xab is a non-robust DCT block if the DCT block Xab 
is changed after recompression. The instance of xi being a 
robust coefficient is represented as xi = R . The instance of 
xi being a non-robust coefficient is represented as xi = NR . 
The instance of the classifier predicts the xi as a robust 
coefficient is represented as xi = CR . And the instance of 
the classifier predicts the xi as a non-robust coefficient rep-
resented as xi = CNR . The average possibility of a coeffi-
cient is predicted as non-robust by the classifier is

(5)

P{xi = CNR} = P{xi = CNR|xi = R}P{xi = R}

+ P{xi = CNR|xi = NR}P{xi = NR},

where P{xi = CNR|xi = NR} is the true-positive rate of 
the classifier, and P{xi = CNR|xi = R} is the false-pos-
itive rate of the classifier. If the xi is a non-robust coef-
ficient, P{xi = NR} is 1; otherwise, P{xi = NR} is 0. The 
possibility of non-robust coefficients being detected is 
equal to the true-positive rate P{xi = CNR|xi = NR} of 
the classifier. To ensure the non-robust coefficients are 
certainly detected, the true-positive rate of the classifier 
should be close to 1. To achieve this goal, we set w as a 
large value. The setting solves the problem of the sam-
ple imbalance and ensures that the miss detection rate, 
which equals 1− P{xi = CNR|xi = NR} , is lower than 
the false-positive rate. We count the ratio between the 
number of non-robust blocks and robust blocks in JPEG 
images from BOSSbase [34] after mozjpeg recompres-
sion. The result is that the ratios between the number of 
robust blocks and non-robust blocks are 16.3 and 10.89 
when the quality factors are 85 and 90 respectively. When 
the quality factor is 85, the detection accuracy, miss 
detection rate, and false-positive rate of the trained clas-
sifier with different w values are shown in Table  2. The 
reason that the detection accuracy is closer to the false-
positive rate than the miss detection rate is that there are 
more robust blocks than non-robust blocks. To increase 
the true-positive rate under the condition of increasing 

Fig. 3 The structure of the proposed deep learning network

Table 2 The detection accuracy, miss detection rate, and false-positive rate with different w 

w 1 25 50 75

Detection accuracy (%) 98.76 94.30 92.98 92.11

Miss detection rate (%) 20.46 1.57 0.71 0.41

False-positive rate (%) 0.37 5.92 7.35 8.27
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the false-positive rate and solve the problem of sample 
imbalance, we set the w as 50.

The training process is as follows. Firstly, 10,000 images 
are randomly selected from ImageNet [35] datasets. The 
images are cropped as squared with the minimum side 
between the height and width. Then, images are reshaped 
to the size of 512× 512 , and the imwrite function in Mat-
lab is used to generate JPEG images of specific quality fac-
tors. The reason that we train the classifier using a public 
dataset is to show the robustness of our classifier. It means 
that the performance is well even when the cover images 
come from a different dataset than the training dataset. In 
the training process, the images are randomly separated 
as the training set and the testing set with the numbers 
9000 and 1000. The optimizer is the Adam optimizer. The 
learning rate decay method is polynomial decay2 with the 
initial learning rate as 0.001. The decay step is set as 20 
epochs. The final learning rate is 0.0001, and cycling is 
enabled. Because the input size of the network is 8× 8 , 

a JPEG image is divided into DCT blocks. Supposing 
the width and the height of the input image are W and 
H, both divisible by 8, DCT coefficients are divided into 
W
8 × H

8  DCT blocks. The label of each block is acquired by 
recompressing the image with mozjpeg. The batch size of 
each iteration is 10, and the number of epochs is 40.

To illustrate the robustness improvement within the 
selected DCT blocks, we first generate JPEG images from 
BOSSbase using functions in Matlab. Then we use mozjpeg 
to recompress JPEG images. The quality factor used is 85. 
When embedding is performed separately in DCT blocks 
selected by the classifier and selected randomly, the error 
rate in STC extracted messages with different payloads is 
shown in Fig. 4. From the result, we can see that the rec-
ompression error in DCT blocks selected by the classifier is 
more robust than that in blocks selected randomly, which 
demonstrates the effectiveness of the proposed method. 
Besides, we can also observe that when embedding is per-
formed in the DCT blocks that are randomly selected, the 
error rate of messages decreases as the payload increases. 
This property can be used when we embed protocol mes-
sages, for the embedding domain of protocol message 
embedding are the DCT blocks randomly selected.
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Payload (bpnzac)

10-3

10-2
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Er
ro

r r
at

e o
f m
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ge
s

DCT blocks selected randomly
DCT blocks selected by the classifier

Fig. 4 The error rate of messages when embedding is performed in DCT blocks randomly selected and selected by the classifier

2 https:// www. tenso rflow. org/ api_ docs/ python/ tf/ compat/ v1/ train/ polyn 
omial_ decay

https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/polynomial_decay
https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/polynomial_decay
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3.3  Robustness enhancement method
When TCM operation is performed, the process of 
uploading and downloading cover images from websites 
causes the behavior security problem. The process of 
TCM can be considered as follows: the method detects 
the non-robust coefficients first, and then the coefficients 
modification process is performed to improve the robust-
ness of the JPEG image. Because we have the classifier 
which can predict whether the DCT block is robust, the 
TCM process can be simulated with the trained classifier.

To increase the robustness of cover images, we pro-
pose a robustness enhancement method named robust-
ness embedding. It functions by modifying the DCT 
coefficients, which is similar to TCM. The process can 
be described as follows. Supposing phasenum of the DCT 
coefficient xij with phase (i,  j) is i + j , we set the max 
phasenum value when performing robustness embed-
ding as phasemax . Supposing there are np coefficients in 
which phasenum is less than or equal to phasemax , we sep-
arately perform +1, −1, +2, −2, +3, −3 ... +h , −h opera-
tion to each DCT coefficient and keep other coefficients 
unchanged. The operations generate 2hnp changed DCT 
blocks. The robustness classifier is used to test the non-
robust possibility of each changed block. The unchanged 
DCT block is also tested. The non-robust possibility of 

the unchanged block is set as 0 if it is less than 0.5, for the 
unchanged DCT block is already robust, and the modifica-
tions are not needed. Subsequently, the possibility of the 
non-changed block is subtracted by the possibility of each 
changed block separately. The results with negative values 
are set to 0. Then, the results are divided by the x-th power 
of the J-UNIWARD cost ρx . The reason for the division 
is that we want the changes to be in the DCT coefficients 
with good security performance. Suppose the non-robust 
possibility of the DCT block before modification is z, and 
the non-robust possibility of the same DCT block after 
performing +m in the DCT phase (i, j) is z′ij . The value of 
the increment of robustness (RI) after modification is

For each DCT block, we select α modifications that 
have the highest non-zero RI values. When protocol mes-
sages are embedded, the influence of x on the robustness 
performance and distortion after robustness embedding 
is shown in Fig.  5. The embedding domain is 21 DCT 
coefficients in GMAS, and the embedding algorithm is 
the single-layered STC. The phasemax is set as 4, h is set as 
3, and α is set as 3. We can observe that the error rate of 

(6)RI =
z − z′ij

ρx
.
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Fig. 5 The error rate of messages and distortion after robustness embedding when different values of x are used
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messages is lowest when x = 0 , where only robustness is 
considered. But the distortion is also the highest. When 
x = 1 , the distortion value is reduced dramatically, and 
the error rate increases slightly. When x = 2 , the distor-
tion value reduces slowly, and the error rate increases sig-
nificantly. Combining the above result, we set x = 1.

The algorithm of robustness embedding can be seen 
in Algorithm  1. To improve the effect of robustness 
embedding, we iterate the process for r times. The error 
rate of protocol messages and the total distortion with 
the condition of times r is shown in Fig. 6. From it, we 
can observe that the number of errors in the embedding 
domain of GMAS is decreased with the performance of 
robustness embedding. More times of robust embed-
ding leads to more robust performance. So multiple 
times of robustness embedding can be used to increase 
the recovery possibility of protocol messages.

Algorithm 1 Procedure of robustness embedding

3.4  The embedding process of protocol messages
In Section  3.1 the architecture of the proposed method 
has been described, and the embedding domain of secret 
message embedding is introduced in Section  3.2. The 
details of protocol message embedding are explained in 
this part. To restore the protocol message successfully in 
DCT block group2, we need the embedding algorithm to 

be robust enough. In GMAS, the embedding domain are 
the 21 middle-frequency coefficients. Work [24] shows 
that the higher the embedding ratio is, the better the 
robust performance. So the part of DCT blocks in DCT 
block group2 are selected to embed the protocol mes-
sage. The selection satisfies the ratio between the length 
of protocol messages and the number of DCT coeffi-
cients in the embedding domain is 0.3. There comes the 
question of which blocks should be selected. There are 
two options we can choose from. One of them is that we 
randomly select part of the DCT blocks in DCT block 
group2 as the embedding domain. In the second method, 
for the blocks with higher frequency content are more 
secure to perform steganography, we want these blocks in 
group2 are selected. But the problem is how to make sure 
that the receiver can correctly recover the embedding 

domain. Based on the above two methods, we propose 
three methods to perform protocol message embedding.

To describe the motivation of the proposed methods, 
suppose the value of the DCT coefficient in the embed-
ding domain of GMAS is v, and the change step of v after 
recompression with mozjpeg is c. Counted from test-
ing images, the distribution of c in the condition of v is 
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shown in Table 3. We can see the most non-zero change 
steps after mozjpeg recompression are +1 and −1. And 
the changes are more easily happened in coefficients with 
|v| = 1 and |v| = 2.

The abstract values of most DCT coefficients are 0 and 
1, and DCT coefficients with the abstract value 1 are 
more easily changed after recompression. Thus, we use 
the number of DCT coefficients with the abstract value 
above 1 in the embedding domain of GMAS, called NAO 

in the paper, as the condition to construct the embed-
ding domain. The higher the NAO is, the more complex 
the DCT blocks are. Embedding the protocol message in 
DCT blocks with higher NAO can ensure security per-
formance. Meanwhile, to increase the ability to restore 
the embedding domain, we need to increase the distance 
between NAO in the embedding domain and that in the 
non-embedding domain.

The first proposed protocol message embedding 
method is performed as follows. To form the embedding 
domain, we count NAO in every DCT block in group2, 
which forms an array of NAO na . Then, we calculate the 
histogram of na as nh , and we use nh(i) as the number of 
DCT blocks in nh when NAO is i. Then supposing we 
need l blocks to embed the protocol message, we can find 
the max value n that satisfies

After calculating n, we traverse every DCT block in 
DCT block group2. The blocks whose NAO ≥ n are 

(7)
21

i=n

nh(i) ≥ l.
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Fig. 6 The error rate of messages and distortion with different times of robustness embedding

Table 3 The conditional possibility (%) of change step c based 
on the quantized DCT coefficient value v

v c

−2 −1 0 1 2

     −3 0 0.01 99.97 0.01 0

     −2 0 0.02 99.75 0.21 0.018

     −1 0 0.005 99.59 0.41 0

    0 0 0 100 0 0

    1 0 0.41 99.59 0.005 0

    2 0.025 0.21 99.74 0.02 0

    3 0 0.01 99.97 0.01 0
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selected as embedding blocks until we select l blocks. 
The last index when we choose the embedding block 
is indexlast . To increase the possibility of restoring the 
embedding domain, we modified NAO of DCT blocks 
whose value is n and n+ 1 as n+ 2 . And we also set 
the DCT blocks before indexlast whose NAO value is 
n− 1 and n− 2 as n− 3 . After that, to reduce the pos-
sibility of failure to restore the embedding domain and 
decrease the error rate of protocol messages, two kinds 
of DCT blocks need to perform robustness embedding: 
the selected embedding domain for protocol messages, 
and the DCT blocks satisfying the NAO value equals 
n− 3 and the possibility of non-robustness is higher 
than 0.5 before modification. After above operations, 
the smallest distance of NAO between DCT blocks in 
the embedding domain and the non-embedding domain 
becomes 4, and the maximal tolerable change of NAO 
becomes 2 in the same direction. In practical usage, the 
cyclic redundancy check (CRC) [36] code of the proto-
col message before error-correcting code encoding is 
generated. The generated CRC code is added to the end 
of the protocol message. The value of n does not need to 
be known on the receiver side. The receiver can try the 
value from large to small until the calculated CRC result 
of the extracted protocol message without the stored 
CRC value is equal to the stored value. After perform-
ing the robustness embedding, we embed the protocol 
message. To ensure that the receiver can successfully 
restore the embedding domain, when performing 
STC embedding with protocol messages, we chose the 
changing direction which does not generate more DCT 
coefficients with the abstract value as 1. It is achieved 
by limiting the modification direction when the abstract 
value of the coefficient before embedding is 2. We call 
the method as methodI.

To compare the performance of methodI, we proposed 
a simple method. We first randomly select l blocks from 
DCT block group2 as the embedding domain of proto-
col messages. Then, we perform robustness embedding 
and embed the protocol messages. We call this method 
as methodII. The case where the robustness embedding is 
not performed is named methodII0.

The third strategy is first randomly selecting l blocks 
from DCT block group2 as the embedding domain. Then, 
we also calculate n as (7), but we only perform robust-
ness embedding with DCT blocks in the protocol mes-
sage embedding domain whose NAO ≥ n . The method 
is called methodIII. The reason that the methodIII also 
has good robustness can be seen in Tables 4 and 5. They 
show the error rate in DCT blocks with different NAO 
before and after three times of robustness embedding. 
We can observe from Table 4 that as NAO increases, the 
error rate becomes higher. After three times of robust-
ness embedding, the error rate in the DCT blocks whose 
NAO is high decreases, which can be seen in Table 5. So 
compared with methodI, the method performs robust-
ness embedding to the DCT blocks with the same NAO 
and replaces some DCT blocks in methodI with DCT 
blocks that have smaller NAO. Although the robustness 
embedding is not performed in these blocks, because 
their robustness is better, the overall robustness can be 
improved. Because the robustness embedding happens 
only in the complex blocks, the distortion caused by 
robustness embedding is less than methodII.

4  Experimental results and analyses
In this section, the experiments are implemented to test 
the performance of the proposed robust steganography, 
and comparisons are made with other robust steganog-
raphy. In the first part, the settings of experiments are 
explained. In the second part, the influence of the set-
tings of parameters in the proposed methods is tested. 
In the third part, the robustness performance is tested, 
and the comparison is made with GMAS method. In the 
fourth part, the security performance is tested and com-
pared with GMAS. In the fifth part, the comparison of 
robustness with other state-of-the-art robust steganogra-
phy is presented. At last, the robustness performance is 
tested on the Matlab recompression channel.

4.1  Experimental settings
All the testing images come from BOSSbase1.01. The 
testing images are compressed to JPEG images with the 
imread and imwrite functions in Matlab with quality 

Table 4 The error rate in the DCT block with different NAO before robustness embedding

NAO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Error rate ( ×10−2) 0.17 1.19 2.18 2.65 2.68 2.98 3.19 3.64 4.09 4.20 4.72 5.00 5.71 6.35 6.68 6.68

Table 5 The error rate in the DCT block with different NAO after three times of robustness embedding

NAO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Error rate ( ×10−2) 0.15 0.62 1.26 1.45 1.51 1.63 1.76 2.23 1.53 1.62 1.41 1.76 2.00 3.01 2.23 3.95
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factors 75, 85, and 90 and named as BOSSbase75, BOSS-
base85, and BOSSbase90 separately. To test the robust 
performance, we use the mozjpeg to recompress images 
generated from Matlab. When we embed protocol mes-
sages, the single-layered STC embedding is used, and the 
embedding domain is the same as GMAS. To ensure that 
the protocol messages can be successfully extracted, we 
calculate the value of payloads with the length of protocol 
messages after RS [37] encoding and the number of DCT 
coefficients in the embedding domain. The payload is set 
as 0.3. When we perform error-correcting code encod-
ing on protocol messages, the parameter of RS codes is 
(200, 100) with 8-bit symbols. The submatrix height of 
binary STC for protocol message embedding is 3. When 
we embed secret messages, the ternary STC with the sub-
matrix height of 7 is used. The parameter of the BCH [38] 
encoder for secret message encoding is (127, 64). The 
BCH encoded message is permutated before embedding 
to avoid the error diffusion problem of STC extraction.

In methodI, because the NAO in every DCT block of 
the protocol message embedding domain is subtracted by 
3, the least NAO in images before embedding needs to 
be 3. So we first select the images satisfying the condition 
in the BOSSbase75, BOSSbase85, and BOSSbase90. The 
result is that 872, 2681, and 4422 images in BOSSbase75, 
BOSSbase85, and BOSSbase90 separately satisfy the con-
dition. In our experiments, we select 100 images from 
quantified images in BOSSbase85 to test the influence 
of parameters. Then 872 images in qualified images in 
BOSSbase75, 1000 images randomly selected from quan-
tified images in BOSSbase85, and 1000 images randomly 
selected from quantified images in BOSSbase90 are used 
to test the robustness and security performance.

4.2  The influence of the parameter settings
In this part, we aim to find the appropriate values for 
parameters phasemax , α , and h. The dataset consists of 
100 JPEG images randomly selected from BOSSbase85 
which satisfy the condition that the smallest NAO is at 
least 3. The embedding method is proposed methodIII. 
We use different settings of phasemax , α , and h to per-
form three times of robustness embedding. The results 
in terms of the error rate of extracted messages Pe and 
total distortion are shown in Tables 6, 7, and 8. From the 

results, the number of changes is more important than 
the max number of phases, which can be seen that the 
bigger α and h result in a lower error rate and more dis-
tortion. The parameter phasemax has less influence on 
the robustness, which can be seen in Table 8. To ensure 
robust and security performance, we set α = 3 , h = 3 , 
and phasemax = 4 in our following experiments.

We then test the relation between the average non-
robust possibility in the embedding domain of protocol 
messages and the error rate of extracted messages. Figure 7 
shows the relationship between the error rate of messages 
and the average non-robust possibility in the embedding 
domain of cover images and the image after one time of 
robustness embedding. The line in Fig. 7 is the best fit of 
the polynomial with degree 1 in a least-square method. 
From the result, we can observe that the error rate of mes-
sages and the average non-robust possibility are clearly 
positively correlated. More specifically, when the aver-
age of non-robust possibility is in the area of [0.15, 0.25], 
the max value of the error rate is 0.026. When the average 
of non-robust possibility is in the area of [0.25, 0.35], the 
max value of the error rate is 0.031. To reduce the error 
rate of messages and the number of modifications when 
performing robustness embedding, we test the average of 
the non-robustness possibility in the embedding domain 
before starting robustness embedding. If the value is less 
than 0.25, we stop robustness embedding; otherwise, we 
continue robustness embedding, and the iteration begins. 
The max times of robustness embedding is 5 in the experi-
ments. Because the robustness embedding is necessary for 
methodI to restore its embedding domain, the number of 
times of robustness embedding is at least three in methodI.

4.3  Robustness performance
As previously mentioned, the datasets used for training 
and testing the robustness classifier are images randomly 

Table 6 Pe and distortion between cover images and cover 
images after robustness embedding in methodIII with different α 
when h = 3 and phasemax = 4

α 1 2 3 4 5

Pe 0.0073 0.0073 0.0068 0.0068 0.0067

Distortion(×105) 1.1227 1.2595 1.6184 1.9863 2.4008

Table 7 Pe and distortion between cover images and cover 
images after robustness embedding of methodIII with different h 
when α = 3 and phasemax = 4

h 1 2 3 4 5

Pe 0.0077 0.0075 0.0068 0.0065 0.0063

Distortion(×105) 1.3750 1.3572 1.6184 1.9298 2.2211

Table 8 Pe and distortion between cover images and cover 
images after robustness embedding of methodIII with different 
phasemax when h = 3 and α = 3

phasemax 2 3 4 5 6

Pe 0.0073 0.0068 0.0068 0.0068 0.0068

Distortion(×105) 1.4080 1.5202 1.6184 1.6888 1.7449
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picked from ImageNet. We test the robustness of the pro-
posed robust steganography with BOSSbase. The robust-
ness against recompression with mozjpeg with quality 
factors as 75, 85, and 90 are tested in this part. To test the 
performance of different quality factors, we first train the 
classifier in the quality factor as 85, which generates the 
classifier C85 . Then we fine-tune the classifier C85 with the 
images with quality factors as 75 and 90 generated from 
ImageNet with another 20 epochs respectively, which 
generates the classifier C75 and the classifier C90 . We set 
the error rate of STC extracted messages before error-
correcting code decoding in stego images as pe . The Suc-
cess rate refers to the success rate of correctly restoring 
the secret messages. In the proposed methods, there is 
the error rate in protocol messages and secret messages; 
there is only the error rate in secret messages in GAMS. 
The experimental results of the robust performance of 
proposed methods with the classifier C85 , C75 , and C90 
testing on BOSSbase images with quality factors as 85, 
75, and 90 are shown in Tables 10, 9, and 11, respectively. 
The avg means the average of results, and var means the 
variance of results.

From the results, we can observe that the robustness 
performance of proposed methods is better compared 

with GMAS, which can be seen from the higher success 
rate. When the quality factors are 75 and 85, the error 
rate in the secret message embedding domain, which are 
coefficients in DCT blocks selected by the classifier, is 
lower than the embedding domain in middle-frequency 
DCT coefficients. It verifies that DCT blocks selected 
by the classifier are suitable for embedding secret mes-
sages. The reason is that a more efficient error-correcting 
code can be used, and the payload can be large. When the 
quality factor is 90, the error rate in DCT blocks selected 
by the classifier is comparable with the embedding 
domain of GMAS. It is because the error rate in middle-
frequency DCT coefficients is less when the quality factor 
is 90, while the error rate in DCT blocks selected by the 
classifier remains almost the same in different quality fac-
tors. When we embed the protocol messages, the embed-
ding domain is the same as the GMAS, but its error rate 
is lower. It is because compared with double-layered 
STC under the same error rate in stego images and the 
same message length, single-layered STC embedding has 
fewer errors when messages are extracted. And we calcu-
late the value of embedding payloads using the number 
of all DCT coefficients in the embedding domain, so the 
value of payloads is usually higher than that calculated 
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Table 9 Robustness performance of proposed methods and GMAS with the quality factor as 75

Note: Boldface highlights the best performance in a column with the same payload

Algorithm Payload Protocol messages 
avg(Pe)× 10−2

Protocol messages 
var(Pe)× 10−4

Secret messages 
avg(Pe)× 10−2

Secret messages 
var(Pe)× 10−4

Success rate (%)

GMAS 0.05 - - 19.21 2360.00 23.60

0.1 - - 12.82 12.80 28.60

0.2 - - 7.78 66.00 35.60

0.3 - - 5.93 45.00 39.30

methodI 0.05 1.35 4.55 0.30 0.13 96.79

0.1 1.35 4.50 0.18 0.05 96.67

0.2 1.35 4.54 0.21 0.12 96.56

0.3 1.33 4.33 0.45 0.73 94.15

methodII0 0.05 1.73 6.44 0.29 0.13 95.53

0.1 1.73 6.46 0.17 0.04 95.41

0.2 1.73 6.44 0.20 0.12 95.53

0.3 1.73 6.44 0.43 0.67 93.23

methodII 0.05 1.19 1.19 0.30 0.13 99.08
0.1 1.19 1.96 0.18 0.06 99.08
0.2 1.20 1.97 0.24 0.44 98.85
0.3 1.19 1.96 0.52 0.73 95.99

methodIII 0.05 1.36 3.31 0.30 0.16 98.05

0.1 1.36 3.33 0.18 0.05 98.05

0.2 1.36 3.32 0.22 0.15 98.05

0.3 1.36 3.31 0.47 0.09 95.41

Table 10 Robustness performance of proposed methods and GMAS with the quality factor as 85

Note: Boldface highlights the best performance in a column with the same payload

Algorithm Payload Protocol messages 
avg(Pe)× 10−2

Protocol messages 
var(Pe)× 10−4

Secret messages 
avg(Pe)× 10−2

Secret messages 
var(Pe)× 10−4

Success rate (%)

GMAS 0.05 - - 11.75 138.00 31.10

0.1 - - 7.35 73.00 38.20

0.2 - - 4.28 32.00 47.30

0.3 - - 3.22 20.00 53.50

methodI 0.05 0.81 3.16 0.37 0.21 98.20

0.1 0.81 3.16 0.20 0.06 98.30

0.2 0.81 3.16 0.15 0.05 98.20

0.3 0.81 3.13 0.25 0.24 97.90

methodII0 0.05 0.99 2.66 0.37 0.22 98.70

0.1 0.99 2.67 0.37 0.06 98.70

0.2 0.99 2.66 0.15 0.05 98.60

0.3 0.99 2.65 0.25 0.22 98.30

methodII 0.05 0.72 1.19 0.37 0.22 99.60
0.1 0.72 1.18 0.21 0.06 99.60
0.2 0.71 1.18 0.16 0.05 99.60
0.3 0.71 1.18 0.26 0.27 98.90

methodIII 0.05 0.79 1.51 0.37 0.22 99.40

0.1 0.79 1.51 0.21 0.06 99.40

0.2 0.79 1.51 0.15 0.05 99.30

0.3 0.79 1.50 0.26 0.28 98.60
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using non-zeros AC DCT coefficients. The error rate 
of protocol messages in methodII0 is higher compared 
with other proposed methods, showing that the robust-
ness embedding can improve the robustness. The success 
rate of methodI is sometimes lower than methodII0. The 
reason is that the embedding domain of methodI may be 
corrupted if the change of NAO in DCT blocks is above 
2, so that the protocol messages could not be extracted. 
Meanwhile, other methods do not need NAO to recon-
struct the embedding domain in the receiver side.

4.4  Security performance
Before testing the security performance of the proposed 
methods against the steganalysis, we first calculate the 
peak signal-to-noise ratio (PSNR) value of proposed 
methods and GMAS. The aim is to compare the influ-
ence of embedding to the image content. The result can 
be seen in Table  12. From it, we can first observe that 
methodI has the smallest PSNR value while metho-
dII0 has the largest PSNR value. This is because there 
are more modifications to form the embedding domain 
in methodI, and there is no robustness embedding in 
methodII0. Secondly, the PSNR value of GMAS drops 
dramatically compared with proposed methods. It is 

Table 11 Robustness performance of proposed methods and GMAS with the quality factor as 90

Note: Boldface highlights the best performance in a column with the same payload

Algorithm Payload Protocol messages 
avg(Pe)×10−2

Protocol messages 
var(Pe)×10−4

Secret messages 
avg(Pe)×10−2

Secret messages 
var(Pe)×10−4

Success rate (%)

GMAS 0.05 - - 8.20 92.00 44.10

0.1 - - 4.92 42.00 51.50

0.2 - - 2.85 17.00 60.70

0.3 - - 2.12 10.00 63.70

methodI 0.05 0.44 1.53 0.94 0.25 98.10

0.1 0.44 1.53 0.51 0.08 98.30

0.2 0.44 1.54 0.31 0.10 98.10

0.3 0.44 1.54 0.32 0.25 97.60

methodII0 0.05 0.69 1.60 0.94 0.25 99.00

0.1 0.70 1.61 0.51 0.08 99.20

0.2 0.69 1.61 0.31 0.09 99.00

0.3 0.69 1.60 0.32 0.25 98.60

methodII 0.05 0.30 0.30 0.95 0.26 99.70
0.1 0.30 0.29 0.52 0.08 99.90
0.2 0.30 0.30 0.32 0.11 99.70
0.3 0.30 0.30 0.33 0.26 99.20

methodIII 0.05 0.44 0.73 0.95 0.26 99.60

0.1 0.44 0.74 0.52 0.08 99.80

0.2 0.44 0.74 0.32 0.10 99.60

0.3 0.44 0.74 0.32 0.20 99.10

Table 12 The mean PSNR (dB) value of testing stego images 
embedded with proposed methods and GMAS with different 
payloads

Note: Boldface highlights the best performance in a column with the same 
quality factor

QF Algorithm Payload

0.05 0.1 0.2 0.3

75 GMAS 49.77 45.94 41.82 39.28

methodI 38.29 38.17 37.79 37.16

methodII0 43.57 43.19 42.49 42.45
methodII 42.66 42.34 41.43 40.11

methodIII 42.77 42.44 41.52 40.17

85 GMAS 53.21 49.45 45.44 42.97

methodI 43.27 43.10 42.59 41.73

methodII0 47.74 47.29 46.06 44.37
methodII 47.09 46.71 45.63 44.09

methodIII 47.02 46.64 45.58 44.06

90 GMAS 56.13 52.46 48.52 46.09

methodI 46.97 46.76 46.15 45.17

methodII0 51.12 50.60 49.24 47.47
methodII 49.67 49.29 48.26 46.80

methodIII 49.95 49.56 48.47 46.95



Page 16 of 19Zhang et al. EURASIP Journal on Information Security         (2023) 2023:11 

because although the embedding domain of GMAS and 
protocol message embedding are the middle-frequency 
DCT coefficients, the protocol messages of proposed 
methods keep the same length while secret messages 
of different sizes are embedded. Thus, the decreasing 
PSNR is only related to the secret message embedding in 
proposed methods. When embedding secret messages, 
the proposed methods embed in all DCT coefficients 
in DCT blocks selected by classifiers. The total distor-
tion after embedding is smaller compared with that of 
embedding in the middle-frequency domain. When 
the payload is 0.3 bpnzac, the PSNR value of proposed 
methodIII is higher than that of GMAS with different 
quality factors. It shows that when large payloads are 
embedded, the influence of embedding to image con-
tent of methodIII is less compared with that of GMAS. 
We can also observe that when the quality factor is 90, 
the difference between methodII and methodIII is obvi-
ously larger. It indicates that the difference in security 

performance between methodII and methodIII when the 
quality factor as 90 should be larger.

To test the security performance, we experiment on two 
situations. In the first situation, the cover images are the 
images before steganographic embedding that includes 
the embedding of protocol messages and secret messages, 
which are the images after robustness embedding. The 
result is shown in Fig. 8. In the second situation, the cover 
images are the images before robustness embedding. The 
result is shown in Fig. 9. Note that the cover images before 
robustness embedding in methodI refer to images with-
out any modifications, which means the modifications to 
form the embedding domain are not included. The stega-
nalysis algorithms used to test the security performance 
are DCTR [3] and GFR [4]. The images used for training 
and testing are images used for testing the robust perfor-
mance. The ĒOOB is the average detection error rate for 
ten times of testing. In each test, the dataset is randomly 
split into the equal-sized training set and testing set.

Fig. 8 The detection error rate using steganalysis algorithm DCTR and GFR with different quality factors when the cover images are images 
after robustness embedding

Fig. 9 The detection error rate using steganalysis algorithm DCTR and GFR with different quality factors when the cover images are images 
before robustness embedding



Page 17 of 19Zhang et al. EURASIP Journal on Information Security         (2023) 2023:11  

From the results, we can observe that when the cover 
images are images after robustness embedding, the secu-
rity performance of methodI is better compared with 
methodII0, methodII, and methodIII. It is because the 
protocol messages are embedded in the complex contents. 
When the cover images are images before robustness 
embedding, the security performance of methodI is lower 
compared with methodII0, methodII, and methodIII. The 
reason is that the modifications of DCT coefficients to 
construct the embedding domain in methodI introduce 
more distortion. The security performance of GMAS is 
better compared with the proposed methods when pay-
loads as 0.05 bpnzac, 0.1 bpnzac, and 0.2 bpnazc, for the 
value of payloads is high when we embed the protocol 
messages in proposed methods. The security performance 
of proposed methods should be between the security per-
formance of GMAS when the payload is 0.2 bpnzac and 
0.3 bpnzac. It can be seen from the security performance 
of the proposed methods when the embedding payload 
as 0.05 bpnzac from Fig. 9. The security performance of 
GMAS is lower compared with proposed methodIII when 
the payload is 0.3 bpnzac. It means that the anti-detection 
ability of the combination of robustness embedding, pro-
tocol message embedding, and adaptive embedding with 
a larger payload is better compared with embedding the 
same payload using GMAS. The reason can also be found 
in Table 12, which shows the PSNR decreases faster com-
pared with the proposed protocol message-based embed-
ding methods. The security performance of methodIII is 
better compared with methodII in Fig.  9 in most cases, 
because the modifications of robustness embedding are 
performed in complex areas.

We further explore the reason for the low-security 
performance in methodI by differentiating cover images 
after robustness embedding from the cover images before 
robustness embedding. The result is shown in Table 13. 
It demonstrates the detection error rate of the detec-
tor with DCTR features. From Table 13, we can observe 
when the cover images are images before robustness 
embedding, the low-security performance in methodI is 
more related to the robustness embedding process. We 
can also observe that as the quality factor increases, the 
difference in security performance between methodII 

and methodIII increases. It explains the lower secu-
rity performance of methodII in Fig. 9 when the quality  
factor as 90.

4.5  Robustness comparison with other methods
In this part, we compare the robustness performance 
with other state-of-the-art robust steganography, includ-
ing JCRISBE [27] method and MINICER method [29]. 
Because in our implementation scenario, the embedder 
does not need to upload the cover image to the channel. 
So when performing JCRIBSE method and MINICER 
method, the Matlab’s imread and imwrite functions are 
used to perform TCM process and generate channel pro-
cessed cove images. The compression channel of stego 
image is mozjpeg. The quality factor is 85. The images 
are from the dataset testing the robustness performance 
in Section 4.3. The same BCH parameters in Section 4.3 
are used in JCRIBSE and MINICER. The result of success 
rate in different payloads are shown in Table 14.

From the result, we can clearly see the advantage of 
the proposed method. In the method, we train a clas-
sifier that learns the robustness of the DCT block after 
recompression, and we use the classifier to improve the 
robustness without uploading the cover image to the 
compression channel. The JCRIBSE and the MINICER 
methods rely on acquiring the recompression process. 
The robust performance is unacceptable if the recom-
pression cannot be acquired. Compared with state-of-
the-art robust steganography, the proposed method has 
the benefit of satisfying robustness performance and 
can be implemented without knowing the exact result of 
channel compression. The method also removes the con-
cern of behavior security on the sender’s side.

4.6  The generality of proposed methods on the Matlab 
recompression channel

In this part, to test the proposed method’s generality, we 
examine the robustness performance of proposed methods 
in Matlab compression channel. The compression channel 
consists of imread and imwrite functions in Matlab. Firstly, 
the 10,000 images from ImageNet used for training and 
testing are recompressed with Matlab compression with 

Table 13 The detection error rate (%) on images after robustness 
embedding and images before robustness embedding using 
steganalysis algorithm DCTR 

Note: Boldface highlights the best performance in a row

QF methodI methodII methodIII

75 8.13 44.27 45.73
85 15.80 41.88 45.93
90 20.39 23.91 42.43

Table 14 The success rate (%) of JCRISBE, MINICER, and 
proposed methodIII with different payloads. The quality factor  
is 85

Note: Boldface highlights the best performance in a column

Algorithm Payload (bpnzac)

0.05 0.1 0.2 0.3

JCRISBE 0.20 0.80 4.60 9.00

MINICER 0.20 0.90 4.50 9.40

methodIII 99.40 99.40 99.30 98.60
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quality factor 85. Then, the classifier C85 is fine-tuned with 
another 20 epochs with those images. The cover images are 
100 images randomly picked from images satisfying the 
condition that the smallest NAO is 3 in BOSSbase85. After 
the stego images are recompressed by Matlab, the error 
rate and success rate are shown in Table 15.

From the results, we can see that the proposed meth-
ods still have the better robustness performance com-
pared with GMAS. The success rate of methodI is lower 
compared with other proposed methods. It is caused by 
the possibility of failing to restore the protocol messages 
embedding domain. And the lower average error rate of 
protocol messages in methodI comes from at least three 
times of robustness embedding in the protocol messages 
embedding domain. From the comparison in the average 
error rate of protocol messages, the robustness embed-
ding can also decrease the error rate when images are 
compressed by Matlab recompression. The above results 
clearly show the generality of proposed methods.

5  Conclusion
In this paper, a robust steganography method based on 
the robust block selection and protocol messages is pro-
posed. The deep learning-based classifier is trained to 
predict the possibility of non-robustness in a specific 
recompression channel and is used to select the robust 

embedding domain. To decrease the error rate of proto-
col messages indicating the selection information, we pro-
pose a robustness enhancement method called robustness 
embedding. The experimental result demonstrates that 
the proposed methods have a higher successful commu-
nication rate. When protocol messages are embedded, 
robustness is improved by the robustness embedding. The 
security performance and the robustness performance 
of proposed methods are better compared with GMAS 
when the embedding payload is large. The method does 
not need to upload the cover image to the compression 
channel, which increases the behavior security. The exper-
imental results also show that the proposed methods are 
universal, which can be used on different recompression 
channels. In further study, we will implement genera-
tive models to generate robust cover images with higher 
robustness and improve the security performance of the 
proposed robust steganography methods.

Abbreviations
STC  Syndrome trellis code
GMAS  Generalized dither modulation-based robust steganography
TCM  Transport channel matching
BCH  Bose-Chaudhuri-Hocquenghem
NAO  Number of DCT coefficients with the abstract value above one
CRC   Cyclic redundancy check
RS  Reed-Solomon codes

Table 15 Robustness performance of proposed methods and GMAS with the quality factor as 85 on the Matlab recompression 
channel

Note: Boldface highlights the best performance in a column with the same payload

Algorithm Payload Protocol messages 
avg(Pe)× 10−2

Protocol messages 
var(Pe)× 10−4

Secret messages 
avg(Pe)× 10−2

Secret messages 
var(Pe)× 10−4

Success rate (%)

GMAS 0.05 - - 0.23 0.25 98.00

0.1 - - 0.20 0.21 99.00

0.2 - - 0.18 0.17 98.00

0.3 - - 0.19 0.19 97.00

methodI 0.05 0.02 0.00 0.27 0.32 99.00

0.1 0.02 0.00 0.16 0.11 99.00

0.2 0.02 0.00 0.14 0.09 99.00

0.3 0.02 0.00 0.16 0.12 99.00

methodII0 0.05 0.18 0.18 0.27 0.31 100.00
0.1 0.18 0.18 0.21 0.11 100.00
0.2 0.18 0.18 0.14 0.09 100.00
0.3 0.18 0.18 0.17 0.12 100.00

methodII 0.05 0.12 0.07 0.27 0.31 100.00
0.1 0.12 0.07 0.16 0.11 100.00
0.2 0.12 0.07 0.14 0.09 100.00
0.3 0.12 0.07 0.17 0.12 100.00

methodIII 0.05 0.14 0.09 0.27 0.31 100.00
0.1 0.14 0.09 0.16 0.11 100.00
0.2 0.14 0.09 0.14 0.09 100.00
0.3 0.14 0.09 0.17 0.12 100.00
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