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Abstract 

Recently, biometric recognition has become a significant field of research. The concept of cancelable biometrics (CB) 
has been introduced to address security concerns related to the handling of sensitive data. In this paper, we address 
unconstrained face verification by proposing a deep cancelable framework called BiometricNet+ that employs ran-
dom projections (RP) to conceal face images and compressive sensing (CS) to reconstruct measurements in the origi-
nal domain. Our lightweight design enforces the properties of unlinkability, revocability, and non-invertibility 
of the templates while preserving face recognition accuracy. We compare facial features by learning a regularized 
metric: at training time, we jointly learn facial features and the metric such that matching and non-matching pairs are 
mapped onto latent target distributions; then, for biometric verification, features are randomly projected via random 
matrices changed at every enrollment and query and reconstructed before the latent space mapping is computed. 
We assess the face recognition accuracy of our framework on challenging datasets such as LFW, CALFW, CPLFW, 
AgeDB, YTF, CFP, and RFW, showing notable improvements over state-of-the-art techniques while meeting the criteria 
for secure cancelable template design. Since our method requires no fine-tuning of the learned features, it can be 
applied to pre-trained networks to increase sensitive data protection.
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1 Introduction
Biometric signals have long been used in applications 
such as surveillance, access control, and behavior analy-
sis, which typically rely on the acquisition and analysis of 
faces, fingerprints, palmprints, irises, and speech. Bio-
metric recognition is defined as the verification of the 
identity of a person through a chosen biometric signal. 
Recently, concerns have been raised on how to protect 
sensitive biometric data against malicious attackers or 
external agencies, for example in a transmitter-receiver 
scenario where information needs to be exchanged on an 

unsecured channel. To this end, the concept of cancela-
ble biometrics (CB) has been introduced [1] and defined 
as repeatable, intentional distortions obtained using a 
specific transformation of biometric signals which are 
then compared in the transformed domain [2]. The goal 
of CB is to provide a framework to ensure the security 
of the transformed signals, referred to as secure tem-
plates, within existing biometric systems. Much like a 
traditional biometric system, the CB recognition process 
is composed of an enrollment and verification phase, 
which respectively consists of extracting significant fea-
tures from the acquired biometric signal and compar-
ing previously unseen templates to verify whether they 
match already enrolled ones. We refer to [2] and [3] for 
a survey of existing methods to generate CB templates. 
Most importantly, a CB design should exhibit the follow-
ing characteristics: (i) unlinkability: there are no methods 
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to decide whether two templates are extracted from the 
same biometric instance or not; (ii) revocability: com-
promised templates need to be immediately deleted, and 
new secure ones issued; (iii) non-invertibility: the origi-
nal biometric signal should be very difficult to recover by 
observing the correspondent template; (iv) performance 
preservation: the CB system needs to perform as close as 
possible to the initial, non-secured one.

In this scenario, considering face images are among 
the most widespread biometric signals, we specifically 
tackle the problem of unconstrained face verification, 
which consists of establishing whether a pair of properly 
aligned face images refer to the same person or not. In 
recent approaches based on deep learning, discrimina-
tive features (embeddings) are learned and then com-
pared with a fixed distance metric within an end-to-end 
trainable framework. In this work, we propose a CB face 
verification framework based on deep learning, called 
BiometricNet+, which employs compressive sensing (CS) 
[4] techniques. More in detail, we use random projec-
tions (RP) to project learned features of the face images 
in dedicated random spaces, thus obtaining secure tem-
plates. Then, we operate reconstruction back to the origi-
nal domain at the verification step via a very efficient 
deep learning CS technique. Indeed, RP has recently 
attracted interest due to its potential ability to provide 
an easily implemented security layer [5–8]. However, 
while works in the literature typically employ CS as a 
standalone framework, we effectively employ RP within 
the deep learning framework to implement a lightweight 
encryption method providing CB whose reconstruction 
performance can be tuned according to the shape of the 
projection matrices, provided they are different for each 
sensitive biometric signal and changed at every query 
and enrollment. The method we use to reconstruct the 
projected features is ISTA-Net [9], a fast and accurate 
deep algorithm developed for CS reconstruction of natu-
ral images here deployed to recover one-dimensional fea-
ture vectors, as further explained in Section 3.3.

In recent deep approaches for face verification, it 
has been shown that the choice of the distance metric 
is a very crucial aspect [10–14]. Typically, a fixed dis-
tance metric is employed to compute distances between 
embeddings, and a loss function is devised so that a large 
margin is enforced on non-matching pairs (NMP), while 
distances are low for matching pairs (MP). In this paper, 
we introduce a different approach by which the most 
discriminative features and the best distance metric are 
jointly learned. Specifically, we regularize the output of 
the distance metric so that the values follow two separate 
statistical distributions, one for NMP and one for MP. To 
achieve this, we employ a deep architecture composed of 
two parts: the first one, called FeatureNet+, is a Siamese 

network that learns discriminative features that are then 
combined and given as input to the second one, namely 
MetricNet+, which is, in turn, responsible for the map-
ping of the feature onto output points in the regularized 
latent space. This joint deep design allows for the learn-
ing of a distance metric by minimizing a novel loss func-
tion that takes into account triplets of input pairs [15]. As 
detailed in Section 4.4, the proposed approach is used to 
learn a metric for the face recognition task allowing for 
a significant improvement over the state of the art also 
in the case of large-scale, challenging datasets. We would 
like to highlight the fact that the idea behind Biometric-
Net+ can go beyond face verification and could be gener-
ally applied to any biometric signals such as fingerprints 
or retina images, as well as any other deep learning archi-
tectures. Further investigations of this matter are left as 
future work.

1.1  Contributions
The contributions we bring with this paper are as follows:

• We introduce the deep CB framework Biometric-
Net+ based on RP and CS; our novel contribution is 
bringing security to the field of unconstrained face 
verification where the handling of sensible data can 
be a major concern; our approach is robust against 
similarity attacks and ensures unlinkability, revoca-
bility, and non-invertibility of the templates, as high-
lighted by our robustness analysis (Section 5.1) where 
we also evaluate security in the stolen-token sce-
nario; at the same time, BiometricNet+ significantly 
outperforms competing face verification methods 
that often do not offer techniques for the protection 
of the templates; moreover, the CB feature requires 
very little computational overhead, hence it can 
potentially be embedded into any pre-trained net-
work when in need of protecting sensitive data;

• We expand on our previous contribution [16] where 
we presented the concept of learning output distribu-
tions by mapping features onto a regularized latent 
space. Specifically, we employ an improved deep 
architecture based on depthwise separable convolu-
tion layers [17] which enables us to use fewer fully 
connected layers than [16], ensuring faster con-
vergence and also improved regularization of the 
latent space. Furthermore, during training, we use 
an improved selection strategy of the input sam-
ple triplets based on a different threshold in the 
input space. Finally, the discriminative features are 
combined differently, as we compute the difference 
between them instead of the concatenation, result-
ing in a lighter aggregated feature vector. As a result, 
BiometricNet+ ensures a significant verification per-
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formance over [16], especially on the most challeng-
ing test datasets, as explained in the following;

• We extensively evaluate the face recognition perfor-
mance of the proposed framework by experiment-
ing on wide and challenging datasets such as LFW, 
CALFW, CPLFW, AgeDB, YTF, CFP, and RFW; we 
report notable improvements over existing unpro-
tected methods, achieving state-of-the-art recogni-
tion accuracy while meeting the criteria for a secure 
cancelable template design.

2  Related works
2.1  Cancelable biometrics in deep learning
Over the years, the concept of projecting signals using a 
transformation matrix has been used on several occasions 
within the deep learning framework. Initially, deep net-
works have been employed as tools to improve over stand-
ard CS techniques for recovering measurements of sparse 
signals such as natural images [18–23]. However, recent 
works attempted to use RP to build privacy-preserving 
systems able to perform biometric recognition [3, 24], also 
in mobile face verification scenarios [25]. In [26], authors 
propose a system that relies on deep networks and error-
correction coding to generate a secure template from each 
user’s multiple biometrics fused at a feature level. [27] 
expands on the previous design by presenting an archi-
tecture composed of a deep hashing framework followed 
by a deep decoder used to refine the intermediate binary 
hashing codes and to compensate for the discrepancies 
between probe biometrics and previously enrolled data 
caused by illumination and pose variations. Also, [28] pro-
poses a plug-and-play method to generate templates that 
employs a significant bit-based representation and a fuzzy 
commitment scheme. Finally, [29] presents a modular 
template design based on an angular distance metric that 
can be used in face verification systems. All these meth-
ods suffer from computational overhead and increased 
complexity brought by error-correction decoding, which 
also causes a decrease in recognition accuracy. In particu-
lar, they mainly work in domains limited to small-scale 
test datasets that are scarcely representative of real-life 
applications or within specific networks or loss functions. 
For this reason, existing techniques are not easily scalable 
to state-of-the-art, large-scale natural image datasets for 
face verification. Instead, our method can potentially be 
employed on any pre-trained network. Moreover, the cho-
sen CS recovery technique (i.e., ISTA-Net [9] ensures high 
performance on very challenging datasets while enabling 
scalability of the template size thanks to the tunable recon-
struction error which depends on the size of the random 
matrices, as better explained in the following.

2.2  Face verification
Face verification has a great number of possible appli-
cations, such as robotics [30–32], forensics [33, 34], 
and security [35–37], both with images [38] and vid-
eos [39–41]. The problem is still very far from being 
marked as solved, as its complexity also extends to 
image acquisition technological issues such as camera 
specifics and skin reflectance [42]. Early techniques 
employed handcrafted facial feature detectors that 
could find the most discriminative traits that are sup-
posedly unique in a person’s face [43]. These methods 
relied on heavy pre-processing and illumination nor-
malization of the images, but could not handle the non-
linear variations face pictures can exhibit. Recently, 
remarkable advancements have been made in the 
field thanks to new deep learning techniques such as 
DeepID [10] and DeepFace [11]. In deep methods, fea-
tures are computed for each face image in a pair, and 
then the measure of the distance between them is com-
puted (usually the ℓ2 norm). The distance is used in the 
verification stage: if the value is over a certain thresh-
old, the two images depict the same individual. How-
ever, deep techniques do not rely on ad-hoc knowledge 
of the input image distribution but instead try to mini-
mize a given loss function (typically the softmax cross-
entropy) with respect to the target output. Works such 
as [12, 13] discovered that deep learning generalization 
capacity could be boosted by minimizing the intra-class 
variance and maximizing the inter-class variance of the 
output distributions. In particular, they enforced large 
margins in the Euclidean distance space between out-
put distributions using contrastive loss functions. The 
pivotal FaceNet made further advances [14], in which a 
triplet loss function was introduced to account for the 
distance between embeddings in relative terms rather 
than absolute. However, more recent works like [44] 
reported that the improvements in the feature space 
are often hindered by complex and demanding train-
ing. For this reason, the following research focused on 
the employment of distance metrics different from the 
ℓ2 norm that could allow for even more strict margins 
and better embeddings. Yang [45] and Liu et  al. [46] 
introduced an angular distance able to decrease the 
number of false positives by enforcing a large distance 
margin between non-matching pairs. Furthermore, 
[47] and [48] proposed novel angular distance met-
rics that confirmed the shift from Euclidean to angular 
ones, reporting a remarkable performance increase. 
However, differently from these approaches, we do not 
rely on a fixed metric but we instead learn the most 
suitable function within a deep end-to-end trainable 
framework.
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2.3  Latent space regularization
The notion of improving the discriminative capability of 
the distance metric between learned features by analyz-
ing their distributions has first been discussed in [49]. 
The overlap between the histogram of the distances of 
MP and NMP is minimized to obtain more regularized 
embeddings. However, while working well with cluster-
ing problems, this approach is unsuited for face verifica-
tion as the decision boundary between the histograms 
depends on the specific dataset and tends not to gener-
alize well to other input data distributions. Conversely, 
our BiometricNet+ approach aims at regularizing the 
latent feature space by imposing a desired target behavior 
to the output distributions, based on a highly non-linear 
learned metric. In turn, we enable a straightforward deci-
sion boundary between matching and non-matching 
embeddings ensuring better generalization. The idea of 
enforcing target distributions was introduced in [50, 51] 
to solve one-against-all classification problems. In these 
works, the latent space is regularized to map the biomet-
rics of a single individual onto a given output distribution, 
while all the other possible users fall onto another one. 
However, this design suffers from the major drawback 
of requiring user-specific training for each enrolled user. 
On the contrary, the proposed BiometricNet+ avoids any 
user-specific training by mapping feature differences, and 
not single features, on different distributions in a latent 
space.

3  Proposed method
The proposed BiometricNet+ CB design employs RP 
to create the secured templates from the discriminative 
representation of the input biometrics, jointly learned 
together with a suitable distance metric used to compare 
pairs of features. Specifically, we project feature vectors 
via the multiplication with a random matrix changed at 
every iteration, as further illustrated in Section 3.1. Our 
design enjoys several advantages. The enforcing of tar-
get distributions ensures the decision boundaries are 
straightforward and easily interpretable, in contrast with 
the typical behavior of deep networks which tend to 
yield highly complex, non-linear boundaries. By enforc-
ing same-variance, different-mean Gaussian distribu-
tions, the optimal decision boundary in the latent space 
is exactly a hyperplane. Hence, the decision threshold 
can be tuned to obtain the required level of genuine 
acceptance rate (GAR) or false alarm rate (FAR), as the 
most difficult pairs of images are mapped onto the tails 
of the target distributions. Furthermore, Gaussian distri-
butions are also amenable to writing the loss function in 
closed form which is a key point in the definition of the 
employed loss function.

As reported in Fig. 1, our structure is composed of two 
jointly trained sub-networks, namely FeatureNet+ and 
MetricNet+. The former is a siamese neural network [52] 
that receives as input pairs of face images x = [x1, x2] and 
outputs pairs of features [f1, f2] ( f1 ∈ R

d , f2 ∈ R
d ). Then, 

MetricNet+ maps the difference between the features 
f = f1 − f2 ( f ∈ R

d ) onto a z point in a p-dimensional, 
regularized latent space where the output decision is 
made. The distance metric between f1 and f2 is learned 
through the loss function, which forces it to take val-
ues onto two latent target distributions ( z ) according 
to whether the input pair is made of matching or non-
matching features. In the test phase, we assume that a 
secure biometric template f1−proj has been enrolled in the 
system by projecting the features f1 through a random 
matrix W1 . A query template f2−proj is obtained similarly 
by projecting the query features f2 via a random matrix 
W2 . The two secure templates are then reconstructed at 
a trusted matching device that has access to both W1 and 
W2 , and the reconstructed features f1−rec , f2−rec are fed 
to the trained MetricNet+ to compute the decision score. 
In the following sections, we describe the different design 
choices of the proposed scheme.

3.1  Cancelable templates and reconstruction design
As anticipated, we generate cancelable templates by 
employing independent random matrices, re-generated 
at every enrollment to project the learned feature vec-
tors. At testing time, query templates are computed 
similarly by using a different set of independent ran-
dom matrices generated at every query. We consider a 
scenario where enrolled and query feature vectors are 
transmitted over an unsecured channel that is located 
between the FeatureNet+ and MetricNet+ subnetworks. 
More specifically, protected templates are computed in a 
secure area within the sensor and then either stored in 
an unprotected database or sent over an insecure chan-
nel to a remote server where the verification phase takes 
place in a secure area. In order to provide independent 
random matrices, a shared secret key may be available 
both at the sensor and at the remote server, and a new 
random matrix can be generated by combining the secret 
key with a random public initialization vector, in a way 
similar to common modes of operation of standard block 
ciphers. In this setting, the proposed design is neces-
sary as unprotected templates are vulnerable to inversion 
attacks that might enable attackers to recover a version 
of the face image showing relevant features of the biom-
etric signal, leading to privacy concerns. With the pro-
posed solution, every query is independent of previous 
queries, even when associated with the same identity. In 
such a fashion, collecting multiple queries from the same 
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identity does not leak any information on the protected 
identity [53].

According to our design choice, our CB scheme pro-
jects one-dimensional feature vectors fk at the output of 
FeatureNet+ ( fk ∈ R

d ) via the multiplication with a r × d 
random matrix Wk ∈ R

r×d , such that:

where fk−proj indicates the projected features 
( fk−proj ∈ R

r ), and · indicates matrix multiplication. For 
generating the entries of the random matrices Wk , we 
sample a random Gaussian distribution N (0, 1) and then 
normalize the columns to unitary energy, ensuring the 
security of the projected templates as further illustrated 
in Section 5.1. When an enrolled template must be com-
pared with a query template, the original feature vec-
tors can be approximately recovered from fk−proj using a 
reconstruction function R(Wk) , such that:

where fk−rec is the reconstructed vector ( fk−rec ∈ R
d ). 

In our implementation, we employed as R a modified 
ISTA-Net [9] network with np steps previously trained on 
50000 fk feature vectors at the output of FeatureNet+.

Our approach allows for independent random matri-
ces at enrollment and query time, which is instrumental 

(1)fk−proj = Wk · fk ,

(2)fk−rec = R(Wk) · fk−proj ,

in providing the unlinkability and non-invertibility of the 
proposed templates. In our experimental evaluation, we 
assess performance by changing the number of rows of 
the random matrices r. We define the compression ratio 
as r/d, i.e., the ratio between the projection size and the 
feature dimensionality. The compression ratio of the 
framework determines a trade-off between the accuracy 
and the complexity of the system. In more detail, lower 
compression ratios correspond to secured templates of 
smaller size but lower accuracy.

3.2  Target distributions and loss selection
Let us refer to the chosen target distributions for MP and 
NMP as Pm and Pn , respectively. We set Pm and Pn to be 
p-variate Gaussian distributions:

where �m = σ 2
mIp and �n = σ 2

n Ip are the diagonal covari-
ance matrices, and µm = µm1

T
p  , µn = µn1

T
p  denote the 

expected values. We enforce two same-variance Gauss-
ian distributions with far enough expected values so that 
separability is ensured. Our choice is motivated by the 
fact that different variances could cause their optimal val-
ues to be dependent on the considered input dataset, as 
the training would need to match the specific intra-class 
and inter-class variances.

(3)Pm = N (µm,�m), Pn = N (µn,�n),

Fig. 1 (Top) BiometricNet+ during training: after face detection and alignment, pairs are given as input to FeatureNet+ which extracts 
discriminative features fi ∈ R

d . The feature vectors are subtracted f = f1 − f2 ( f ∈ R
d ) and passed to MetricNet+ which maps f  onto the target 

distributions z ∈ R
p in the latent space. (Bottom) BiometricNet+ during the test (i.e., authentication) phase: given a pair of aligned face images, we 

obtain 4 image pairs, i.e., P1, P2, P3 and P4 by accounting for all the possible horizontal flip combinations; then, features are projected in separated 
random spaces and reconstructed using ISTA-Net [9], simulating the transmission of sensitive data over an unsecured channel; the corresponding 
output vectors in the latent space are computed and then aggregated to z̄ ; finally, aggregated features are compared to a threshold τ
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In general, any desired target distribution could be 
enforced. However, Gaussian distributions are arguably 
the best fit for multiple reasons. First, according to the 
central limit theorem, the output of the fully connected 
layers typically employed in deep networks tends to 
follow a Gaussian distribution [54]. Secondly, when 
�m = �n , Gaussian distributions ensure the optimal 
decision boundary is a linear hyperplane in the deci-
sion space. Finally, Gaussian distributions enable the 
loss function to be written in closed form. Hence, in the 
following, we will refer only to the Gaussian case.

Let us define xm and xn as the generic pairs of match-
ing and non-matching face images, respectively. Simi-
larly, let us denote by fm and fn the corresponding 
FeatureNet+ output features. MetricNet+ can be repre-
sented as a generic encoding function H(·) of the input 
feature pairs, i.e.,  z = H(f) , where z ∈ R

p such that 
zm ∼ Pm if f = fm , and zn ∼ Pn if f = fn . By our design, 
the Kullback-Leibler (KL) divergence between the input 
and target distributions can be written in closed form 
and easily minimized. More specifically, the KL diver-
gence for multivariate Gaussian distributions is a func-
tion of only first-order and second-order statistics:

where the S indicates the input statistics.
In particular, we can compute the KL divergence 

batch-wise. During training, the network receives as 
input a set of b image face pairs (where b is the batch 
size). From this set, we extract two subsets of b/2 diffi-
cult matching and b/2 difficult non-matching face pairs, 
as explained in detail in Section 3.4. Furthermore, given 
b pairs in the batch X ∈ R

b×r , where r is the size of a 
face pair, these are mapped onto the set of latent space 
points Z ∈ R

b×p . Then, we can compute the 1st and 2nd 
order statistics of the embeddings Zm,Zn , respectively 
referring to matching ( µSm,�Sm ) and non-matching 
( µSn,�Sn ) input faces. The loss as written in Eq. (4) cap-
tures the MP statistics and enforces the target distribu-
tion Pm . In a similar fashion, we can derive Ln for NMP, 
enforcing the target distribution Pn . Hence, the final 
loss function L minimized end-to-end across the whole 
network is defined as:

As explained, the loss as in Eq.  5 is based on the 
Kullback-Leibler (KL) divergence and offers the advan-
tage of being written in closed form, efficiently enforc-
ing the target distribution onto the MP and NMP one, 

(4)
Lm =

1

2
log

|�m|

|�Sm|
− p+ tr(�−1

m �Sm)

+ (µm − µSm)
⊺�−1

m (µm − µSm) ,

(5)L = Lm + Ln.

and ensuring fast convergence. However, a potential 
drawback might appear in  situations where training 
with very large batch sizes is required. Specifically, the 
complexity of the batch-wise computation as in Eq.  4 
increases linearly with the batch size. Even if it does 
not affect the proposed method in the considered sce-
narios, further investigations on how to efficiently deal 
with large batch sizes are left as future work.

3.3  Architecture
In the following, we discuss the architecture and the 
implementation of FeatureNet+ and MetricNet+.

3.3.1  FeatureNet+
As said, obtaining discriminative features from input 
face pairs is of pivotal importance. Hence, we employ 
a siamese version of the state-of-the-art architecture 
Inception-ResNet-V1 [55], which also exhibits fast con-
vergence. In more detail, the Inception-ResNet stem 
block has an output size of 35× 35× 256 , and it is fol-
lowed by 5 blocks of Inception-ResNet-A, 10 blocks of 
Inception-ResNet-B, and 5 blocks of Inception-ResNet-
C. After the Inception-ResNet blocks, we employ a fully 
connected layer with output size d, i.e., the feature vector 
dimensionality.

3.3.2  MetricNet+
MetricNet+ receives as input the difference between the 
FeatureNet+ feature vectors f = f1 − f2 ∈ R

d of size d. 
To learn the best metric according to the target distribu-
tions in the latent space, we employ 7 fully connected lay-
ers and ReLU activations at the output of the first 6 layer, 
while the last one is left without an activation function. 
The feature output size decreases by a factor of 2 for each 
layer, starting from the first fully connected layer with an 
output size equal to d. In particular, our design ensures 
the final layer exhibits an output size equal to the latent 
space dimensionality p.

3.4  Pairs selection during training
To improve convergence during training, we select 
the most difficult MP and NMP. These pairs are far 
from the mean values of the target distributions and 
therefore close to the decision boundary and prone 
to misclassification. At the end of the forward pass, 
we identify at the mini-batch level the subset of MP 
defined as ||zm − µm||∞ ≥ (µm + µn)/2 , which repre-
sents the matching pairs whose output zm is sufficiently 
distant from the Pm center of mass. In a similar fashion, 
we choose NMP such that ||zn − µn||∞ ≤ (µm + µn)/2 . 
Consequently, in the backward pass, we minimize the 
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loss as in Eq.  (5) over a subset of b/2 difficult match-
ing and b/2 difficult non-matching pairs. However, to 
ensure stable training, the backward pass is executed 
only when b/2 difficult pairs can be found for both 
matching and non-matching pairs. If not, the mini-
batch is discarded. This procedure ensures that diffi-
cult pairs are mapped onto regions of the latent space 
that are progressively separated as the training pro-
ceeds, contributing to a decrease in the uncertainty 
for pairs lying near the decision boundary in the latent 
space.

3.5  Verification
During the verification phase, an enrollment template 
and a query template are given as input to the network 
which outputs the corresponding metric value z , which 
is then compared against the threshold τ . The choice 
of Gaussian target distributions ensures a hyperplane 
is the optimal decision boundary. Hence, the following 
conditions can be evaluated:

In particular, when p = 1 , Eq. (6) boils down to com-
paring the scalar z with the threshold τ = (µm + µn)/2 . 
However, to improve upon this design, we employ 
flipped images to improve the ability of the network to 
capture discriminative information, inspired by recent 
approaches in the literature such as [46, 47]. In more 
detail, given a pair of aligned face images, we compute 
the corresponding metric output z for all the 4 pairs 
resulting from all possible combinations of horizontally 
flipped and non-flipped images. In practice, this means 
that for every face we enroll two different templates 
obtained from the original image and the flipped ver-
sion, while in the verification phase, we compute two 
different query templates using the same strategy. The 
system then computes all possible distances between an 
enrollment template and a query template.

We employ horizontal flipping defined as 
(x, y) −→ (width− x − 1, y) , where width is the width of 
the aligned face image in the pair, and (x, y) represents 
the spatial coordinates. Thus, given the 4 obtained met-
ric outputs, the decision is performed based on the 
value z̄ = 1

4

(

∑4
i=1 zi

)

 , where zi refers to the output of 
the i-th image flip combination. The expected value of z̄ 
for matching and non-matching pairs is respectively 
equal to µm and µn . Hence, Eq.  (6) still holds and we 
can compare the z̄ metric output against the hyper-
plane decision boundary in the latent space. Figure  1 
(Bottom) illustrates the proposed BiometricNet+ archi-
tecture during testing, where P1 represents the input 

(6)(µm − µn)
T
z ≶ (µm − µn)

T (µm + µn)/2.

image pair, and P2, P3, and P4 represent the three hori-
zontal flip combinations.

4  Experiments
In this section, we evaluate the proposed approach over 
multiple challenging datasets and compare it against 
state-of-the-art face verification techniques. First, we 
establish a baseline temporarily disregarding the protec-
tion of the templates and analyze the effect of the param-
eters on verification accuracy. We refer to the baseline as 
unsecured baseline  or BiometricNet+NOCB. Secondly, 
we introduce the protection of the templates in the test-
ing phase and show how performance is preserved while 
ensuring the required security properties (Section 5.1).

4.1  Pre‑processing and datasets
To validate our method, we use different datasets for 
training and testing. Specifically, we train on Casia [56], 
which is composed of 0.49M images for a total of 10k 
individuals, and MS1M-DeepGlint [57], made of 3.9M 
images referring to 87k individuals. On the other hand, 
we test our design over six popular unconstrained face 
datasets built for 1:1 verification (i.e., only a single image 
template per subject is available), which is the specific 
problem we tackle with BiometricNet+. For this reason, 
we do not consider large-scale datasets such as Mega-
Face [58] and IJB [59] that are instead used for set-based 
face recognition (i.e., to verify whether two sets of face 
images refer to the same person). The most widespread 
datasets for unconstrained face verification are Labeled 
Faces in the Wild (LFW) [60] and YouTube Faces (YTF) 
[61], respectively composed of 13233 face images col-
lected from 5749 people and 3425 videos of 1595 indi-
viduals. However, late state-of-the-art techniques have 
reached almost perfect accuracy on these two datasets. 
For this reason, we also evaluate four more challenging 
datasets: (i) Cross-Age LFW (CALFW) [62], constructed 
by selecting 3000 positive face pairs from LFW and 
including images of the same individual taken at different 
moments in time: the introduced age gap increases the 
intra-class variance of the image set belonging to the per-
son; (ii) Cross-Pose LFW (CPLFW) [63], based on 3000 
face pairs from LFW taken with different facial poses, 
hence also accounting for increased intra-class variance; 
(iii) Celebrity Dataset in Frontal and Profile Views (CFP) 
[64], mounting up to 7000 images from 500 individuals; 
(iv) In-the-wild age database (AgeDB) [65], containing 
16488 images of 568 different people.

As a first step, we pre-process input images by employ-
ing the MTCNN [66] alignment technique to generate 
normalized facial crops of size 160× 160 . Then, follow-
ing [46–48], we mean-normalize the cropped images and 
constrain them in the range [−1, 1] . Finally, for all the 
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considered datasets, we test on 3000 matching and 3000 
non-matching pairs, for a total of 6000 test image pairs. 
We report the performance of the proposed approach 
following the standard evaluation protocol unrestricted 
with labeled outside data used in [14, 47, 48].

4.2  Parameters evaluation
Initially, we investigate how the design parameters influ-
ence performance. First, we explore the impact of the 
feature vector dimensionality d as given as output by Fea-
tureNet+ while keeping the latent space dimensionality 
fixed at p = 1 . Secondly, we set d to the best value found 
in the previous step and vary p to determine the pair of 
values leading to maximum verification accuracy. Finally, 
we analyze the effect of the enforced target distribution 
parameters, namely σm and σn . Having two same-vari-
ance target distributions ( σm = σn = σ = 1 ), and assum-
ing µm = 0 , we can restrict the analysis to the single free 
parameter µn , which indicates as to how far apart the 
learned distributions are in the latent space. Despite the 
sensible improvements over our previous contribution 
[16], the proposed deep network design leads to the same 
optimal values of d, p, and µn well across the considered 
datasets. Hence, for the sake of brevity, we do not report 
this experimental validation. In the following, if not dif-
ferently specified, we employ d = 512 , p = 1 , µn = 40 . 
This particular choice, while it enables to capture of the 
most discriminative facial features and to avoid overfit-
ting, also ensures the balance between the enforceability 
of the target distributions and latent space complexity. 
Performance comparison between [16] and the proposed 
BiometricNet+ is presented later in the manuscript.

4.3  Experimental settings
We train BiometricNet+ using stochastic gradient 
descent (SGD) [67, 68] with the Adam optimizer [69]. 
Each epoch runs over images of 720 different faces, with 
at least 5 images per individual, to ensure enough MP and 
NMP are available at training time. We set the batch size 
b to 210 pairs, chosen as explained in Section  3.4. Our 
choice ensures a sufficiently high amount of pairs per 
batch so that significant first-order and second-order sta-
tistics can be computed by the network. Also, we balance 
the batches so that they each contain the same amount 
of MP and NMP. The learning rate is first set to 0.01, and 
then it decreases with an exponential decay factor of 
0.98 every 5 epochs. The network is trained for a total of 
500000 iterations, with a weight decay fixed to 2× 10−4 . 
We also employ dropout with a keep probability of 0.8. 
Finally, we employ data augmentation via horizontal flip-
ping of the input images. The experiments have been 
implemented using TensorFlow [70] and run on NVIDIA 
GeForce GTX Titan X GPUs.

4.4  Cancelable template performance assessment
In this section, we proceed to evaluate performance 
when deploying the secured templates in the verifica-
tion phase and also compare results with the unsecured 
framework and other competing methods for uncon-
strained face verification. Besides verification accuracy, 
we also take into account the genuine acceptance rate 
(GAR) as a function of the false acceptance rate (FAR), 
which is respectively the relative amount of correctly 
accepted MP and the relative amount of incorrectly 
accepted NMP. In such a fashion, we analyze how Biom-
etricNet+ can generalize across different datasets on the 
1:1 verification task. Specifically, we compute verification 
accuracy, GAR at FAR = 10−2 , and GAR at FAR = 10−3 
at test time when employing RP with random matrices 
Wi ∈ R

r×d and ISTA-Net reconstruction with np = 3 , 
where the feature vector dimensionality is d = 512 , and 
np denotes the number of ISTA-Net phases [9]. Unlink-
ability and non-invertibility are ensured by assigning a 
different random matrix Wk to each feature vector and 
re-generating them at every encryption. The results, 
shown in Tables 1 and 2, are computed for projection size 
r ∈ 64, 128, 256 , corresponding to a compression ratio 
equal to 1/8, 1/4, and 1/2 of the size of the embeddings 
( d = 512 ), and compared against the unsecured baseline. 
To perform the reconstruction of projected signals, we 
employ a pre-trained ISTA-Net network with np = 3 and 
4 channels of 1× 3 kernels, accounting for a total num-
ber of parameters just short of 1K. This design allows the 
reconstruction process to be extremely lightweight as it 
can run on GPU with very limited resource consumption. 
For the sake of completeness, it is worth mentioning that 
we tested our framework using ISTA-Net reconstruction 
with a number of phases rp taking integer values in the 
range 1− 10 , with no significant improvement in recon-
struction performance when np > 3 . For this reason, we 
only report results for np = 3.

Results in Tables  1 and 2 show that verification accu-
racy and GAR obtained when employing the cancela-
ble templates are comparable to the ones yielded by an 
unsecured framework. As a consequence of the improved 
separability of the learned output distributions in the 
latent space, our method achieves high GAR values at 
low FAR values even for the most complex datasets. In 
particular, the gap between the unsecured baseline and 
the secured design is almost negligible when r = 256 (i.e., 
compression ratio equal to 1/2, given d = 512 ) and rea-
sonably low when r = 64 (i.e., compression ratio equal 
to 1/8). The choice of r determines a trade-off between 
verification performance and compression. Hence, it is of 
pivotal importance in determining the most suitable con-
figuration for the security layer according to the applica-
tion and its required work point, typically specified by 
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FAR requirements. Our security framework allows for 
maximum flexibility while preserving the discriminative 
power of the underlying deep structure, at the expense of 
limited computational overhead.

Table  3 reports the maximum verification accuracy 
achieved by several state-of-the-art techniques over the 
six considered large-scale datasets. We compared Biom-
etricNet+ with the competing methods that reach the 
highest accuracy in the face verification field but often 
do not offer the protection of the templates. The com-
parison is however fair since unprotected models offer 
an upper bound on the verification performance of the 
system. As shown, the BiometricNet+ method signifi-
cantly outperforms the other methods, especially for 
the most challenging datasets where we remarkably 
improve over the baseline methods CosFace, ArcFace, 
and SphereFace. In particular, the performance gain we 
obtain over other competitors is the highest on the most 
challenging CPLFW dataset. To summarize, Table  3 
shows how the proposed technique consistently obtains 
higher accuracy, hence proving that the discriminative 

capacity of deep networks for facial verification can be 
boosted by learning the best metric to compare facial 
features in a regularized latent space. It is also important 
to notice how the proposed method is extremely com-
petitive with the state of the art even for very low projec-
tion ratios (r = 64).

To further substantiate our claims, we also computed 
and compared the verification accuracy of the proposed 
BiometricNet+ over the RFW dataset [79], recently 
introduced to study the effects of racial bias in the field 
of deep face recognition. Results in Table 4 show that the 
proposed approach outperforms competing methods by 
a large margin.

5  Security and robustness analysis
In this section, we discuss the properties of non-
invertibility and unlinkability ensured by the proposed 
CB design. Also, we analyze the characteristics of the 
learned distributions in the latent space and their 
robustness against perturbations. Compared to other 
CB approaches, the proposed design has different 

Table 1 Verification accuracy, GAR @ FAR = 10−2 , and GAR @ FAR = 10−3 at test time when employing the CB framework with random 
matrices Wi ∈ R

r×dand ISTA-Net reconstruction with np = 3 , where the feature vector dimensionality is d = 512 , and np denotes the 
number of ISTA-Net phases [9]. Results are computed for projection size r ∈ 64, 128, 256 , corresponding to a compression ratio equal to 
1/8, 1/4, and 1/2 of the size of the embeddings ( d = 512 ), and compared against the unsecured baseline (NOCB)

Proj. size Measure LFW YTF CALFW CPLFW CFP AgeDB

r = 64 Verification Acc. 99.28 97.08 96.17 94.18 97.73 94.45

GAR@FAR=10−2 99.53 93.97 92.00 83.25 94.83 82.20

GAR@FAR=10−3 92.83 82.77 79.03 61.12 85.07 63.53

r = 128 Verification Acc. 99.62 97.78 96.67 95.33 99.13 95.57

GAR@FAR=10−2 99.80 96.17 93.43 86.70 99.17 87.40

GAR@FAR=10−3 98.37 90.53 86.77 65.87 96.83 73.67

r = 256 Verification Acc. 99.72 97.85 96.70 95.67 99.18 95.82

GAR@FAR=10−2 99.83 96.47 93.63 87.63 99.33 88.20

GAR@FAR=10−3 98.50 91.43 87.57 66.73 97.07 74.07

NOCB Verification Acc. 99.82 98.16 97.10 95.85 99.43 96.24

GAR@FAR=10−2 99.80 96.93 94.63 88.53 99.43 89.23

GAR@FAR=10−3 99.20 92.20 89.50 68.27 97.57 74.70

Table 2 Equal error rate (EER, %, the lower the better) for BiometricNet+ as a function of the template projection size (r). For 
comparison, we also report the best EER obtained by the competing method SoftmaxOut [24]

Proj. size LFW YTF CALFW CPLFW CFP AgeDB

r = 64 1.13 4.20 6.17 8.56 3.00 10.33

r = 128 0.87 3.54 5.40 6.69 1.78 8.11

r = 256 0.76 3.31 4.22 6.19 1.33 6.67

NOCB 0.56 3.02 4.00 5.72 1.03 6.13

SoftmaxOut [24] 3.73 9.12 - - - -
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security requirements, since the matching of protected 
templates is assumed to be performed in a secure area. 
Nevertheless, the different matching domain does not 
affect the security of the scheme in terms of non-invert-
ibility and unlinkability of the protected templates, as 
shown in the following.

5.1  Cancelable templates security evaluation
The security of the proposed CB scheme is evaluated 
according to the two following properties:

• Unlinkability: it is computationally infeasible to 
determine whether two protected templates f1−proj 
and f2−proj are derived from two images of the same 
subject or images of different subjects;

• Non-invertibility: it is computationally infeasible to 
reconstruct the enrollment image x from the protected 
template fproj without the corresponding key W.

To evaluate security, we can refer to the literature on the 
security properties of random projections. Starting from 
the seminal work of [5], authors in [6] investigate the 
secrecy properties of RP matrices with entries drawn from 
Gaussian distributions. They demonstrate that, if the sens-
ing matrix is independently drawn at each encryption and 
the acquired signals have the same energy, then it is pos-
sible to achieve perfect secrecy assuming that the matrix 
is unknown to the adversary, i.e.:

(7)P{x|fproj} = P{x}.

Table 3 Verification accuracy (%) of different methods on LFW, YTF, CALFW, CPLFW, CFP, and AgeDB. BiometricNet+ outperforms the 
state of the art on all the considered datasets. The # Images column indicates the dimension of the training set for each approach. The 
numbers in brackets for the BiometricNet+ entries represent the verification accuracy obtained without the four flips at inference time

Method # Images LFW YTF CALFW CPLFW CFP AgeDB

DeepID [10] 0.2M 99.47 93.20 - - - -

SphereFace [46] 0.5M 99.42 95.0 90.30 81.40 94.38 91.70

SphereFace+ [71] 0.5M 99.47 - - - - -

CenterLoss [72] 0.7M 99.28 94.9 85.48 77.48 - -

Baidu [73] 1.3M 99.13 - - - - -

UniformFace [74] 2.21M 99.80 97.70 - - - -

VGGFace [11] 2.6M 98.95 97.30 90.57 84.00 - -

MarginalLoss [75] 3.8M 99.48 95.98 - - - -

DeepFace [76] 4.4M 97.35 91.4 - - - -

RangeLoss [77] 5M 99.52 93.7 - - - -

CosFace [47] 5M 99.73 97.6 - - 95.44 -

ArcFace [48] 5.8M 99.82 98.02 95.45 92.08 98.37 95.15

FaceNet [14] 200M 99.63 95.10 - - - 89.98

BiometricNet [16] 3.8M 99.80 98.06 97.07 95.60 99.35 96.12

BiometricNet+ r=64 4.4M 99.28 97.08 96.17 94.18 97.73 94.45

(99.11) (96.98) (96.03) (94.02) (97.59) (94.21)

BiometricNet+ r=128 4.4M 99.62 97.78 96.67 95.33 99.13 95.57

(99.32) (97.39) (96.29) (95.11) (99.01) (95.27)

BiometricNet+ r=256 4.4M 99.72 97.85 96.70 95.67 99.18 95.82

(99.41) (97.56) (96.41) (95.27) (99.04) (95.43)

BiometricNet+ NOCB 4.4M 99.82 98.16 97.10 95.85 99.43 96.24

(99.75) (98.01) (96.88) (95.30) (99.37) (96.17)

Table 4 Verification accuracy (%) of different state-of-the-art 
methods on RFW. BiometricNet+ outperforms the state of the 
art on all the considered datasets. The numbers in brackets for 
the BiometricNet+ entries represent the verification accuracy 
without the four flips at inference time

Method Caucasian Indian Asian African

CenterLoss [72] 87.18 81.92 79.32 78.00

SphereFace [46] 90.80 87.02 82.95 82.28

VGGFace2 [78] 89.90 86.13 84.93 83.38

ArcFace [48] 97.37 95.68 94.55 93.87

CosFace [47] 96.63 94.68 93.50 92.17

IMAN-A [79] - 94.15 91.15 91.42

RL-RBN [80] 97.08 95.63 95.57 94.87

BiometricNet+ NOCB 99.33 98.75 98.33 98.12

(99.12) (98.41) (98.13) (97.98)
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In our framework, since different random matrices 
are generated for every enrollment and every query, the 
above property immediately implies non-invertibility 
under ideal generation of random matrices. This is a 
strong theoretical guarantee, often not available in cur-
rent CB schemes. Moreover, it is easy to show that, for a 
generic observed template fproj and any possible pair of 
enrollment images x1 and x2 , we have:

which also implies perfect unlinkability.

5.1.1  Unlinkability analysis
However, practical systems cannot deal with infinite 
precision representations for which the above theoreti-
cal results would hold. Also, feature vectors do not have 
constant energy, meaning that an adversary may have a 
small advantage in solving the unlinkability problem. 
To address the first concerns, different works such as 
[7] and [8] consider more practical projection matrices 
such as those with entries drawn from Bernoulli distri-
butions (the former) and quantized Gaussian distribu-
tions (the latter). In [8], it is shown that the probability 
of distinguishing RP obtained with different quantized 
sensing matrices decreases exponentially with the num-
ber of bits used to represent the entries of the projection 
matrix. Hence, by choosing a suitable precision for the 
random matrix entries, we can achieve any desired level 
of unlinkability. Regarding the second concern, even if 
feature vectors do not have constant energy, we can safely 
assume that they have the same energy on average. For 
feature vectors having a large number of dimensions, this 
implies that most vectors have very similar energy. In this 
case, an adversary has a very small advantage in distin-
guishing templates of different subjects from templates of 
the same subject.

As in most recent CB schemes [24, 25], we employ 
the evaluation framework proposed in [81] to measure 
the unlinkability of the templates, so that results can be 
directly compared with other CB schemes. In particular, 
[81] introduces two unlinkability metrics for the evalua-
tion of biometric template protection systems. The first 
is a local score-wise measure, D↔(s) , based on the likeli-
hood ratio between the score distributions obtained with 
a given score function computed between matching and 
non-matching distributions of secure templates, and the 
second is a global measure, Dsys

↔  , independent of the score 
domain, which allows for a fair evaluation of the unlink-
ability of each system. Both measures yield values in the 
[0, 1] range, where 0 indicates perfect unlinkability and 1 
perfect separability of the secure template distributions. 
We first generated two distributions of 100000 match-
ing and 100000 non-matching pairs of secure templates 

(8)P{fproj|x1} = P{fproj|x2},

and computed the scores for each of the pairs using the 
normalized crossed-correlation function. The consid-
ered number of pairs is high enough to give a statisti-
cally meaningful estimate of the two unlinkability metrics 
[81]. We repeated the experiment for different projec-
tion sizes r ∈ 64, 128, 256 . The results are reported in 
Fig. 2, which presents the local unlinkability plots and the 
global unlinkability measure. As no significant difference 
between different r values has been observed, only the 
r = 128 plot has been reported.

The plots of the matching (green) and non-matching 
(red) scores distribution between the secure template 
pairs are completely overlapped, making it impossible for 
an attacker to assume whether two secure templates are 
matching or not. One may notice that the D↔(s) meas-
ure across the normalized cross-correlation score range 
(blue curve) exhibits two spikes in the correspondence of 
the tails of the distributions. However, this does not have 
to be attributed to a decreased local unlinkability of the 
templates but rather to the low number of pairs with that 
particular score which causes the D↔(s) computation to 
be noisy in that region. Overall, the unlinkability of the 
secure templates generated by our method is conclusively 
confirmed by the value of the global unlinkability meas-
ure Dsys

↔ = 0.01 which is very close to perfect unlinkabil-
ity ( Dsys

↔ = 0).

5.1.2  Non‑invertibility in the stolen‑token scenario
We now assess the security of our approach when the 
random matrix and the projected features are disclosed 
to the public. Only a handful of works [82–86] have pre-
viously tackled the problem of reconstructing face images 
from deep features. These methods are usually based on 
convolutional neural networks, reformulated minimiza-
tion problems, or generative adversarial network (GAN) 
mappings. Specifically, GANs are showing promise in 
recent works in the development of new inversion attacks 
like in the case of [87] where authors reformulate the face 
reconstruction task as a constrained optimization prob-
lem solved using the genetic algorithm. In this paper, we 
evaluate the non-invertibility of the templates by simu-
lating a worst-case white-box pre-image attack based on 
the state-of-the-art NbNet [88] network. In particular, 
NbNet is based on specific de-convolution blocks aimed 
at reconstructing face images from deep templates. In 
NbNet, the output channel of each layer consists of 
fewer repeated and noisy channels, hence containing 
more details for face image reconstruction than the typi-
cal de-convolution blocks. In our evaluation, we assume 
that the attacker has access to the fully trained Biom-
etricNet+ model and a pre-trained ISTA-Net model. The 
attacker is also able to observe a significant amount of 
protected templates fi,...,k −proj and their corresponding 
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projection matrices Wi,...,k . The attacker is then able to 
estimate a certain amount of FeatureNet+ embeddings 
fi,...,k −est reconstructed using ISTA-Net from the secure 
templates. Furthermore, these estimated embeddings 
are used to train NbNet [88] to recover face pre-images 
that would possibly allow the attacker to obtain access to 
the system, effectively breaking security. In such a fash-
ion, we bypass NbNet’s shortcoming of requiring a GAN 
to generate images for training by relying directly on the 
feature vectors extracted from the training dataset at the 
output of MetricNet+. We simulate the attack by training 
NbNet on 1000000 embeddings fi,...,k −rec reconstructed 
with ISTA-Net from secure templates fi,...,k −proj . Once 
convergence is reached, we are now able to obtain a sig-
nificant number of NbNet [0, 1] normalized pre-images 
that will be used by the attacker to attempt to access the 
BiometricNet+ system. For this experiment, we consid-
ered random matrices Wi,...,k with projection size r = 128 , 
i.e., we trained NbNet on embeddings that are recon-
structed via ISTA-Net from 128-dimensional templates. 
However, our findings also extend to r = 64 and r = 256.

Figure 3 illustrates some examples of pre-images gen-
erated with an NbNet model trained on r = 128 recon-
structed embeddings, compared against the original 
image in the pixel domain (first column). In particular, 
the figure shows pre-images generated from recon-
structed embeddings with different projection sizes 
(third to fifth column). We evaluate how the different 
pre-images correlate to the original images from which 
the secured templates have been derived. We measure 

the average distance between the pre-images and the 
original images using the LPIPS perceptual similar-
ity metric [89], which is known to be more informa-
tive in evaluating how face images correlate in the pixel 
domain than traditional metrics such as MSE or PSNR. 
Results in Table 5 show that matching and non-matching 
pairs of original images and pre-images generated from 
NbNet inferred embeddings of size r = 64, 128, 256 are 
not separable from one another. For reference, Fig.  3 
and Table 5 also include the pre-images generated from 
clean embeddings taken at the output of FeatureNet+ 
(second column), which are assumed to be unavailable 
to the attacker. In this clean case, the LPIPS similarity 
yields a lower average score for matching pairs than for 
non-matching pairs (0.37624 against 0.52557). Indeed, 
these pre-images appear to be structurally similar to their 
original corresponding images. Hence, it would be pos-
sible for an attacker to have an advantage in inferring key 
features of the original face image from the reconstructed 
pre-images. This result confirms the necessity of employ-
ing secure templates to avoid a potential privacy breach.

As shown, the face pre-images in the third to fifth col-
umns in Fig.  3, generated from reconstructed embed-
dings ( r = 64 , r = 128 , r = 256 ) appear to be very 
distant from the original image, both from a qualitative 
point of view and in terms of LPIPS similarity. However, 
it is necessary to quantitatively assess whether the pre-
images would allow the attacker to access Biometric-
Net+ as a legitimate user. To verify whether the attack 
will prove successful, we assess performance over a set 

Fig. 2 Unlinkability plots for 100000 matching and 100000 non-matching secure templates obtained with BiometricNet+; the scores between each 
of the pairs of templates are computed as the normalized cross-correlation between the one-dimensional template vectors of projection size 
r = 128 ; there are no significant differences when varying the value of r 
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of 30000 matching face image pairs composed of the 
original image and the corresponding NbNet pre-image. 
Similarly, we run BiometricNet+ over the same amount 
of non-matching face image pairs generated by pairing 
NbNet pre-images with non-matching original images. 
Hence, we can produce matching accuracy, FAR, and 
GAR over the pairs to verify whether the attacker could 
use NbNet pre-images to access the system. Results in 
Fig.  4 show how a pre-trained BiometricNet+ network 
reaches approximately 50% accuracy (random guess) on 
the considered dataset and close to zero FAR and GAR. 

Specifically, the verification accuracy sets to 50.55%, 
while the GAR@FAR=10−1 and the GAR@FAR=10−2 are 
equal to 8.33% and 0.67%, respectively. In other words, 
BiometricNet+ is unable to separate matching original/
pre-image pairs from non-matching ones as the learned 
distributions in the latent space do not allow for pairs of 
features that are not discriminative enough to be mapped 
onto the matching distribution, hence strictly limiting 
the success of the attack. Our findings demonstrate the 
attacker would not be able to effectively access the sys-
tem as a legitimate user even in the case of the consid-
ered worst-case white-box attack scenario. We also argue 
that conventional encryption would not provide an alter-
native solution to the proposed protected templates. Bio-
metric templates are similar to passwords hashed with a 
random salt. A biometric template should guarantee that 
the original biometric data cannot be retrieved even if 
the template and the random token used to generate the 
template are available to the adversary. Simply encrypting 
the biometric template using the token as the secret key 
does not work in this scenario. As shown in our results, 
an adversary who is able to recover the projection matrix 

Fig. 3 Examples of pre-images generated with a NbNet model (trained on r = 128 reconstructed embeddings) from reconstructed embeddings 
with different projection sizes (third to fifth column) and from clean embeddings taken at the output of FeatureNet+ (second column), compared 
against the original image in the pixel domain (first column)

Table 5 Average LPIPS perceptual similarity over 30000 pairs of 
images composed of original images and their corresponding 
NbNet pre-image (matching pairs) and 30000 pairs of images and 
pre-images generated from unrelated templates (non-matching 
pairs), as a function of the size of the secured templates from 
which the pre-images have been derived

Pairs Clean r = 64 r = 128 r = 256

Matching 0.37624 0.51812 0.50773 0.50107

Non-matching 0.52557 0.50843 0.50893 0.504596
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would still be unable to reconstruct face images that are 
similar to the original template. Conversely, an adversary 
who can decrypt a template that has been protected with 
conventional encryption will have access to clean embed-
dings and hence be able to obtain a high-quality estimate 
of the original template.

5.2  Analysis of the feature distribution in the latent space
In this section, we analyze the effects of the regulariza-
tion of the latent space on the learned distributions. For 
the sake of brevity, we refer to the unsecured baseline 
only but all our findings straightforwardly extend also to 
the CB design.

Fig. 4 ROC curve for the BiometricNet+ performance at inference time on 30000 matching and 30000 non-matching pairs of original and NbNet 
pre-images recovered from r = 128 embeddings; the curve, which exhibits an almost perfect diagonal behavior (e.g., GAR = FAR ), confirms 
that an attacker would not be able to use NbNet pre-images to access the system even when the projection matrix and the secure templates are 
disclosed to the public

Fig. 5 (Top) a–e Histograms of the distributions of the z decision variable for matching (blue) and non-matching (red) pairs, obtained 
with the proposed method, over different datasets. (Bottom) f–j Histogram of the distribution of the z̄ decision variable for matching (blue) 
and non-matching (red) pairs, obtained with the proposed BiometricNet+, over different datasets
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5.2.1  Histograms of the z and z̄ distributions
We start by looking at the histograms of the distributions 
of z and z̄ calculated over different test datasets. Results 
are respectively shown in Fig. 5 (Top) (a–e) and Fig. 5 (Bot-
tom) (f–j), where blue curves refer to the matching pairs, 
and red curve to the non-matching pairs. The curves 
exhibit the enforced Gaussian shape for both MP and 
NMP. As expected, the histograms of the NMP distribu-
tions are centered around µn = 40 , i.e., the µn target value 
we set initially for Pn . The different pairs are well-separated 
in the latent space with almost no overlap of the histo-
grams, accounting for the reported improved accuracy 
over the state-of-the-art. It can be observed that the MP 
distributions tend to exhibit a lower variance than the tar-
get one. This is particularly evident when testing on more 
difficult datasets such as CALFW (Fig. 5c–h) and CPLFW 
(Fig.  5d–i), where MP distributions exhibit heavier tails 
than the target. A way to explain this behavior lies in the 
large difference in variability between MP and NMP input 
distributions, which can lead to difficulties in enforc-
ing the same variance on both of them at the same time. 
Indeed, given a fixed number of individuals, the amount 
of possible NMP is much larger than the amount of pos-
sible MP. Moreover, due to the lack of symmetry of the 
KL divergence employed in the loss function as in Eq. (4), 
the training phase tends to promote the learning of out-
put distributions with a smaller variance than the target 
one. Hence, the target variance should be considered as an 
upper bound and the training ends up being conservative.

Furthermore, by comparing the histograms for the z̄ 
scores as in Fig.  5 (Bottom) against the z histograms in 
Fig. 5 (Top), we can observe that the variance of both the 
MP and NMP distributions is slightly lower compared to 
that of z . This substantiates that it is indeed preferable to 
employ the averaged output z̄ over the simple z . At the 
same time, since the optimal decision boundaries in the 
latent space depend only on the 1st order statistics which 
are indeed preserved, we can conclude that the slight 
decrease in the variance of the learned output distribu-
tions in the latent space does not affect the accuracy of 
the proposed method.

5.2.2  Confidence Intervals
We now proceed to analyze the confidence intervals of 
the learned distributions. In particular, we are interested 
in the percentage of pairs belonging to the high-confi-
dence region. We define as belonging to this region those 
pairs that fall within an interval of 3σ around the target 
mean, both for MP and NMP, with respective decision 
variables zm and zn . The greater the percentage of pairs 
falling in this region, the lower the probability of having 
pairs that are mapped onto the tails of the distributions 
in the latent space, allowing for lower misclassification 
rates. We compute these percentages on the LFW data-
set in testing and report the results in Table  6 which 
also shows GAR values at FAR={10−2, 10−3}). As previ-
ously shown, the proposed method achieves very high 
accuracy on LFW, learning an output distribution that 
is very close to the target one. Our method maps 99.33% 
of the matching pairs and 95.60% of the non-matching 
pairs onto the high confidence region within the 3σ band 
around the mean. The same conclusions can be drawn 
for the CFP and YTF datasets, where the output distri-
butions exhibit very light tails ensuring high confidence. 
Considering instead the more challenging CALFW and 
CPLFW datasets, the percentage of MP mapped onto the 
high confidence region of the latent space is considerably 
lower as compared to NMP. This behavior accounts for 
the great intra-class variance introduced within the data-
sets by adding age and pose variations. The above results 
suggest that the position of a pair in the latent space 
directly relates to the confidence the network has in such 
a choice. This is particularly useful for biometric authen-
tication systems as the authentication threshold has to be 
set according to some expected confidence measure.

6  Conclusions
In this work, we propose a CB framework based on deep 
learning with application to the problem of unconstrained 
face verification. Our method employs random projec-
tions to project face images onto dedicated random 
spaces and compressive sensing to reconstruct the signals. 
Our lightweight technique can potentially be employed 

Table 6 Scores for the high confidence region for matching pairs ( zm ) and non-matching pairs ( zn ) together with the maximum 
accuracy obtained for LFW, YTF, CALFW, CPLFW, CFP, and AgeDB datasets

Dataset (µ− 3σ ≤ zm ≤ µ+ 3σ) (µ− 3σ ≤ zn ≤ µ+ 3σ) Max accuracy

LFW 99.33% 95.60% 99.82

YTF 95.37% 86.23% 98.16

CALFW 91.67% 95.80% 97.10

CPLFW 85.27% 84.30% 95.85

CFP 98.40% 94.73% 99.43

AgeDB 86.27% 83.03% 96.24
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on any pre-trained network in need of securing sensi-
tive data. To generate templates, we use different random 
matrices for each signal, re-generated at each encryption. 
In this way, our design ensures the unlinkability, revoca-
bility, and non-invertibility of the templates, while pre-
serving the face recognition accuracy of the unsecured 
design. Our method relies on the mapping of discrimina-
tive learned facial features onto a regularized latent space, 
where an effective distance metric between matching and 
non-matching pairs can be learned. For this reason, we 
enable the learning of a complex metric as opposed to the 
typical complex partitioning of the feature space achieved 
by deep methods, so that BiometricNet+ employs simple 
linear decision boundaries in the latent space. Significant 
accuracy improvements over the state of the art have been 
found for the resulting face verification system, both in 
secure and unsecured cases. As reported in our extensive 
experimental evaluation, BiometricNet+ consistently out-
performs existing techniques over large-scale challenging 
datasets, while ensuring the security of the templates.

Abbreviations
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