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Abstract 

In the recent years, the copy detection patterns (CDP) attracted a lot of attention as a link between the physical 
and digital worlds, which is of great interest for the internet of things and brand protection applications. However, 
the security of CDP in terms of their reproducibility by unauthorized parties or clonability remains largely unexplored. 
In this respect, this paper addresses a problem of anti-counterfeiting of physical objects and aims at investigating 
the authentication aspects and the resistances to illegal copying of the modern CDP from machine learning perspec-
tives. A special attention is paid to a reliable authentication under the real-life verification conditions when the codes 
are printed on an industrial printer and enrolled via modern mobile phones under regular light conditions. The 
theoretical and empirical investigation of authentication aspects of CDP is performed with respect to four types 
of copy fakes from the point of view of (i) multi-class supervised classification as a baseline approach and (ii) one-class 
classification as a real-life application case. The obtained results show that the modern machine-learning approaches 
and the technical capacities of modern mobile phones allow to reliably authenticate CDP on end-user mobile phones 
under the considered classes of fakes.
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1 Introduction
In the modern world of globally distributed economy, it 
is extremely challenging to ensure a proper production, 
shipment, trade distribution, consumption, and recycling 
of various products and goods of physical world. These 
products and goods range from everyday food to some 
luxury objects and art. Creation of digital twins of these 
objects with appropriate track and trace infrastructures 
complemented by cryptographic tools like blockchain 
represents an attractive option. However, it is very impor-
tant to provide a robust, secure, and unclonable link 
between a physical object and its digital representation 

in centralized or distributed databases. This link might 
be implemented via overt channels, like personalized 
codes reproduced on products either directly or in a form 
of coded symbologies like 1D and 2D codes or covert 
channels, like invisible digital watermarks embedded in 
images or text or printed by special invisible inks. How-
ever, many codes of this group are easily copied or can 
be regenerated. Thus, there is a great need in unclonable 
modalities that can be easily integrated with the printable 
codes. This necessity triggered the appearance and grow-
ing popularity of Printable Graphical Codes (PGC). Dur-
ing the last decade, the PGC attracted many industrial 
players and governmental organizations. One of the most 
popular nowadays type of PGC is a union of traditional 
2D codes and copy detection patterns (CDP) [1–4].

General scheme of the CDP life cycle is shown in Fig. 1. 
The CDP security is based on a so-called information loss 
principle: each time the code is printed or scanned, some 
information about the original digital template is inevi-
tably lost. In the case of printable codes, the information 
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loss principle is based on physical phenomena of random 
interaction between the ink or toner with a substrate [5]. 
As a result, any dot undergoes a complex unpredictable 
modification and changes its shape accordingly to a dot 
gain effect. Generally, the black dot increases in its size. A 
white hole on a black background accordingly decreases 
its area due to the dot gain of nearest black dot surround.

In the case of image acquisition, the information loss 
principle refers to a loss of image quality due to vari-
ous factors that include variability of illumination, finite 
and discrete nature of sampling in CCD/CMOS sensors, 
non-linearity in sensor sensitivity, sensor noise and vari-
ous sensor defects, etc. All together, the enrolled image is 
characterized by some variability that degrades the qual-
ity of image in terms of its correspondence to the original 
digital template from which the code was printed.

Nowadays, there exists a big variety of different 
approaches aiming to combine CDP and widely used tra-
ditional 2D codes. Without pretending to be exhaustive 
in the presented overview, some of the most representa-
tive approaches are mentioned below.

In general, it is possible to distinguish the standard 
one-level PGC and more advanced multi-level PGC. 
Examples of these codes are given in Fig.  2. The one-
level PGC is shown in Fig. 2a. According to the presented 

design, a CDP central part is inserted into a structure of 
2D QR-code [6]. Originally, the multi-level PGC aimed 
at increasing the storage capacity of the regular PGC [7]. 
Recently, the multi-level PGC are considered as a tool to 
increase the security of standard PGC. Without loss of 
generality, it is possible to identify the multi-level PGC 
with a modulation of the main black symbols as shown 
in Fig. 2b and a background modulation as illustrated in 
Fig. 2c.

The most well known multi-level PGC of the first type 
are so-called two level QR (2LQR) codes proposed in [8, 
9], where the standard black modules are substituted by 
special modulated patterns. The general principles of 
modulation of multi-level codes were initially considered 
and theoretically analyzed in [7]. The public level of this 
code is read as normal standard QR code. The texture 
patterns are chosen to be sensitive to the print and scan 
process. At the same time, the modulation pattern can 
carry out private message. Furthermore, the idea of 2LQR 
was extended in [10] by the use of different encrypting 
strategies. The anti-counterfeiting performance of these 
codes was mainly tested based on desktop printers and 
scanners [8, 9]. Thus, there is a great interest in validation 
of these codes under the industrial printing and mobile 
phone authentication.

Fig. 1 General scheme of the CDP life cycle starts from the generation of the digital templates by the defender and their following printing. 
The produced codes go to the public domain. An attacker has an access to the publicly available printed codes and can produce different type 
of fakes that are then also distributed in the public domain. A verifier should digitize the printed codes from the public domain and validate them 
via some classifier. As it is shown by the dashed line, the validation might be produced with or without taking the digital templates into account. 
For the defender-verifier pair, the main goal is to minimize the probability of error. In contrast, the attacker aims at maximizing the probability 
of error
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The second type of multi-level PGC is so-called 
W-QR codes proposed in [11], where the authors sub-
stitute the background of a standard QR code by a spe-
cific random texture. The embedded texture does not 
affect the readability of the standard code, but it should 
be sensitive to the print and scan process in such a way 
to give a possibility to authenticate the original code 
from the counterpart. The authors propose a particu-
lar random textured pattern, which has a stable statisti-
cal behavior. Thus, the attacker targets to estimate the 
parameters of the used textured pattern.

Despite the differences in ways how the traditional 
QR codes and CDP are combined, in general case, the 
authentication of digital artwork based on the CDP 
is done by comparing the reference template with the 
printed version scanned using a scanner or camera of 
mobile phone. As a reference template, there can be 
used either a digital template or enrolled printed ver-
sion of the same artwork. The comparison can be done 
in different ways either in the spatial or frequency 
domain using a correlation, distance metrics, or a com-
bined score of different features, etc., [2, 12]. Alter-
natively, one can also envision an authentication in a 
transform domain using latent space of pretrained clas-
sifiers or auto-encoders [13].

Despite a great interest, the robustness of CDP, used 
in PGC, to the copy attacks remains a little studied 
problem. Therefore, the current work is dedicated to 
the investigation of the authentication aspects of CDP 
under industrial settings from the perspective of mod-
ern machine learning.

The main contributions of this paper are:

• We provide the extended representation of produc-
tion and enrollment procedures and settings of the 
Indigo mobile dataset of CDP created under the 

regular industrial settings and briefly presented in 
[14].

• We provide an extention of the multi-class super-
vised classification results presented in [14]. Namely, 
in addition to the supervised classifier trained in the 
binary (or two classes) setup with respect to the dif-
ferent types of the fakes, we provide new results of 
the performance of supervised classifier trained in 
three and five classes classification setups.

• We investigated the authentication aspects of the 
CDP from the perspective of one-class classification 
in the spatial domain with respect to the different 
type of reference codes: the digital templates and the 
physical references.

• For the one-class classification in the deep process-
ing domain, we provide more detailed mathematical 
explanation of the model under investigation.

• In addition to the five basic scenarios of the one-class 
classification based on the one-class SVM, we pro-
vide more deep investigation of the problem under 
investigation with respect to the Hamming distance 
decision criteria. Also, we provide more detailed 
analysis of the latent space of the deep models under 
investigation.

• Finally, we investigate the complexity of the main 
models under investigation.

Notation We use the following notations: t ∈ {0, 1}m×m 
denotes an original digital template; x ∈ R

m×m corre-
sponds to an original printed code, while f ∈ R

m×m is 
used to denote a printed fake code; y ∈ R

m×m stands for 
a probe that might be either original or fake. pt(t) and 
pD(x) correspond to empirical data distributions of the 
digital templates and original printed codes, respectively. 
The discriminators corresponding to Kullback-Leibler 

Fig. 2 Examples of different types of modern PGC with CDP modulations
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divergences are denoted as Dx , where the subscript indi-
cates the space to which this discriminator is applied to.

2  Datasets
2.1  State‑of‑the‑art datasets
The majority of the research experiments in the domain 
of CDP are performed either on synthetic data or on 
small private datasets. The production of datasets of real 
CDP is a very time consuming and quite costly process. It 
requires the printing and acquisition of the original CDP, 
the production and acquisition of fakes preferably on the 
equipment close to the industrial one.

Up to our best knowledge, there are only few publicly 
available datasets that were created to investigate the 
clonability aspects of CDP: 

(1) The DP0E [15] and its extension DP1E & DP1C 
[13] are the datasets of real and counterfeited CDP 
based on DataMatrix modulation [16] printed at 
resolution 1200 dpi with four printers: two laser (a) 
Samsung Xpress 430 and (b) Lexmark CS310 and 
two Inkjet (c) Canon PIXMA iP7200 and (d) HP 
OfficeJet Pro 8210. The enrollmen was performed 
by using the high resolution scanners at resolution 
1200 ppi: Canon 9000F and Epson V850 Pro. The 
DP1E & DP1C dataset contains 6528 codes pro-
duced from 384 digital templates with symbol size 
6× 6 elements, with 3072 printed original codes 
and 3072 fake codes printed on the same printers as 
original codes.

(2) The CSGC dataset [17] consists of 3800 codes pro-
duced from 950 digital templates with symbol size 
1× 1 elements and 2850 original codes printed on 
the Xerox Phaser 6500 laser at resolution 600 dpi 

and scanned by the Epson V850 Pro scanner under 
three resolutions: 2400 ppi, 4800 ppi, and 9600 ppi.

(3) Indigo mobile dataset [14] contains the CDP 
printed on the industrial printer HP Indigo 5500 
DS at resolution 812 dpi. This dataset was created 
to investigate the authentication capabilities of CDP 
under conditions closer to the real-life environ-
ment. In this respect, instead of high quality scan-
ners, the printed codes were enrolled by a mobile 
phone iPhone XS under regular room light condi-
tions. The dataset contains 300 digital templates 
with symbol size 5× 5 elements, 300 printed origi-
nal codes, and 1200 typical copy fake codes.

As an example of the real-life scenario, the Indigo mobile 
dataset presents a particular interest for the detailed 
practical investigation.

2.2  Indigo mobile dataset
Indigo mobile dataset includes 300 distinct digital Data-
Matrix templates t ∈ {0, 1}330×330 with the symbols of 
size 5× 5 elements1. An example of the digital template is 
given in Fig. 3a. The digital templates consist of the cen-
tral CDP and four synchro-markers that allow to make 
an accurate synchronization and cropping of the code of 
interest. To simulate the real-life scenario, the generated 
digital templates were printed on the industrial printer 

Fig. 3 Examples of a a binary digital template used for printing and b the printed original code from the Indigo mobile dataset enrolled 
by the mobile phone

1 To ensure accurate symbol representation, each printed symbol should 
be represented by at least 3× 3 pixels. Taking into account the difference 
between the industrial printing resolution (about 812 dpi) and the average 
resolution of the mobile phones (about 600–900 ppi) especially in the devel-
opment countries, where the problem of counterfeiting is particularly impor-
tant, one can estimate the symbol size from about 4× 4 till 5× 5 pixels.
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HP Indigo 5500 DS at the resolution 812 dpi2. The acqui-
sition of the printed codes is performed under regular 
room light using mobile phone iPhone XS (12 Mpixels) 
under the automatic photo shooting settings in Light-
room application3. The mobile phone is held parallel to 
the printed code at height 11 cm as schematically shown 
in Fig. 4. The photos are taken in DNG format to avoid 

built-in mobile phone image post-processing. An exam-
ple of obtained photo is shown in Fig. 3b. The following 
cropping of the code is performed in an automatic way 
by applying a geometrical synchronization with four 
squared synchro-markers. Finally, the cropped codes are 
converted to the RGB format4. The obtained codes are 
x ∈ R

330×330 with symbols’ size 5× 5 elements. Examples 
of the obtained code is shown in Fig. 5b.

To simulate typical scenario for an unexperienced 
counterfeiter, the copy fakes were produced based 
on standard copy machines. The two different copy 
machines in copy regime “text” were used: (1) RICOH 
MP C307 and (2) Samsung CLX-6220FX. The fakes were 
produced on two types of paper: white paper 80 g/m2 and 
gray paper 80 g/m2.

Thus, as it is mentioned in [14], the four fake codes for 
each original printed code were produced, namely:

• Fakes #1 white: made by the copy machine (1) on the 
white paper.

• Fakes #1 gray: made by the copy machine (1) on the 
gray paper.

• Fakes #2 white: made by the copy machine (2) on the 
white paper.

• Fakes #2 gray: made by the copy machine (2) on the 
gray paper.

Fig. 4 The schematic representation of the mobile phone acquisition 
setup

Fig. 5 Examples of original and fake codes with symbol size 5× 5 elements taken by a mobile phone from the Indigo mobile dataset

2 It should be pointed out that the native printing resolution of HP Indigo 
5500 DS is 812.8 dpi. The impact of printing resolution and the symbol size 
is a subject of our ongoing research.
3 https:// apps. apple. com/ us/ app/ adobe- light room- photo- editor/ id878 
783582

4 https:// docs. opencv. org/4. 5.2/ d8/ d01/ group__ imgpr oc__ color__ conve 
rsions. html# ga397 ae87e 1288a 81d23 63b61 574eb 8cab

https://apps.apple.com/us/app/adobe-lightroom-photo-editor/id878783582
https://apps.apple.com/us/app/adobe-lightroom-photo-editor/id878783582
https://docs.opencv.org/4.5.2/d8/d01/group__imgproc__color__conversions.html#ga397ae87e1288a81d2363b61574eb8cab
https://docs.opencv.org/4.5.2/d8/d01/group__imgproc__color__conversions.html#ga397ae87e1288a81d2363b61574eb8cab
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To be coherent with the enrolled original printed codes, 
the acquisition of the produced fakes is performed in the 
same way using the same mobile phone under the same 
photo and light settings as for the original printed codes.

In total, the Indigo mobile dataset contains 1800 codes: 
300 distinct digital templates, 300 enrolled original 
printed codes, and 1200 enrolled fake printed codes: 300 
originals × 4 type of fakes.

Examples of the obtained digital, original, and fake 
codes are shown in Fig. 5. Due to a built-in morphologi-
cal processing of the Ricoh copy machine, the fakes #1 
are more accurate with a dot gain close to the original 
codes. In the case of the fakes #2, the dot gain is much 
higher and, as a result, the symbols contain more black 
ink and look darker. Visually, the difference between the 
two types of used paper is not evident.

For the empirical evaluation, the Indigo mobile dataset 
was split into three sub-sets: training with 40% of data, 
validation with 10% of data, and 50% of data is used for 
the test. To avoid the bias in the choice of training and 
test data, each investigated model was trained five times 
under randomly splitting data between these subsets. 
Moreover, the following data augmentations were used: 
(i) the rotations on 90◦ , 180◦ and 270◦ ; (ii) the gamma cor-
rection with variable function (.)γ , where γ ∈ [0.5, 1.2] 
with step 0.1 is the parameter of gamma correction.

3  Multi‑class supervised classification
3.1  Theoretical analysis
The supervised multi-class classification is chosen as a 
base-line to validate the authentication efficiency of CDP. 
The complete availability of fakes at the training stage 
for the classification gives the defender an information 
advantage over the attacker. Such a scenario is an ideal 
case for the defender and the worst case for the attacker. 
It assumes that, besides the original digital templates 
{ti}

M
i=1 and the corresponding printed codes {xi}Mi=1 , the 

defender has an access to the fake codes {fi}
Mf

i=1.
From the information-theoretic point of view, the 

problem of a supervised classifier training given the 
labeled data {yi, ci}Ni=1 generated from a joint distribu-
tion p(y, c)5 is formulated as a training of a param-
eterized network pφ(c|y) that is an approximation of 
p(c|y) originating from the chain rule decomposition 
p(y, c) = pD(y)p(c|y) . The training of the network 
pφ(c|y) is performed based on the maximization of a 
mutual information Iφ(Y;C) between y and c via pφ(c|y):

(1)φ̂ = argmax
φ

Iφ(Y;C),

that can be rewritten as:

where LSupervised(φ) = −Iφ(Y;C).
As it was shown in [18] the mutual information in (1) 

can be defined as:

where H(C) = −Epc(c)[log pc(c)] is the entropy of c and it 
is a constant that does not depend on φ.

Therefore, the optimization problem (2) reduces to:

1  Remark 1

In practice, the Dcĉ term is optimized with respect to the 
cross-entropy loss.

3.2  Experimental results
The performance of the presented model (4) was empiri-
cally evaluated on the Indigo mobile dataset. The super-
vised multi-class classification is performed in two 
scenarios: (1) multi-class classification and (2) binary 
classification.

3.2.1  Multi‑class classification
The multi-class supervised classification aims at inves-
tigating the performance of the supervised classifica-
tion scenario, where the model is trained on all classes 
of the data. Therefore, it corresponds to the case of 
the informed defender who knows all types of fakes in 
advance. At the inference stage, three validation scenar-
ios are evaluated:

• 5-class classification: the ability of the model to dis-
tinguish all classes of the data, i.e., originals and four 
types of fakes

• 3-class classification: the ability of the model to dis-
tinguish the originals, fakes from the first (fakes #1) 
and the second (fakes #2) groups

• 2-class classification: the ability of the model to dis-
tinguish the originals from all types of fakes consid-
ered as a joint class

(2)φ̂ = argmin
φ

LSupervised(φ),

(3)

Iφ(Y;C) �Ep(y,c) log
pφ(c|y)

pc(c)

=Ep(y,c) log pφ(c|y)

Dcĉ

−Epc(c)[log pc(c)]

=constant

,

(4)φ̂ = argmin
φ

LSupervised(φ) = argmin
φ

−Dcĉ.

5 y might be either the original code x or one of the fakes fk , k = 1, ..., 4.
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Due to the relatively small amount of the codes in the 
Indigo mobile dataset and to avoid the bias in the selec-
tion of data for training and testing, the classification 
model is trained five times on the randomly chosen sub-
set of data.

At the inference stage, the query sample y , which 
might be either the original code x or one of the fakes 
fk , k = 1, ..., 4 , is passed through a deterministic classi-
fier gφ such that pφ(c|y) = δ(c− gφ(y)) and δ(.) denotes 
the Dirac delta-function or simply c = gφ(y) . Each 
class is encoded as one-hot-encoding with the class 
ith represented as ci = [0, ..., 1, ..., 0]T , with “1” in the 
position of ith . Herewith, gφ is trained with respect to 
the term Dcĉ in (4). The term Dcĉ represents the cross-
entropy in this case. The obtained classification error 
Pe = Pr[ĉ �= C|C = c] is given in Table  1. It is easy to 
see that the investigated model is capable to authenti-
cate the original codes without mistakes in all considered 
scenarios.

The classification error about 0.28% in the two classes 
validation setup (“2-class” label in Table 1) indicates that 
despite the visual similarity the classifier is capable to dis-
tinguish original and fakes with high enough accuracy. 
From the three classes validation scenario (“3-class” label 

in Table 1), one can notice that the model confuses more 
the fakes #1 than fakes #2. The last validation scenario 
(“5-class” label in Table  1) shows that for both groups 
of fakes the most difficult is to distinguish between the 
white and gray paper type of fakes. In addition, in Fig. 6 
the t-SNE visualization [19] of the latent space (the last 
layer before an activation function) of the classifier 
trained in 5-class classification scenario is illustrated. 
From that visualization one can easily see the same phe-
nomena: three main classes (originals, fakes #1 and fakes 
#2) are well separated while the samples printed on the 
white and gray papers overlap. This indicates that the 
substrate identification is a difficult problem even for the 
supervised classifier under the considered imaging setup.

Table 1 The classification error of the supervised multi-class classifier (in %)

a Pe corresponds to the Pmiss for the originals and to the Pfa for the fakes

Classification type Originals Fakes #1 white Fakes #1 gray Fakes #2 white Fakes # 2 
gray

2-classa 0.00 0.28

3-class 0.00 0.78 0.35

5-class 0.00 23.26 21.56 16.88 11.35

Fig. 6 T-SNE of the latent space (the last layer before an activation function) of the supervised classifier trained on originals and all type of fakes. 
A horizontal axis denotes t-SNE dimension 1 and the t-SNE dimension 2 is on the vertical axis

3.2.2  Binary classification
The supervised binary classification aims at investigat-
ing the influence of the fakes’ type used for the train-
ing on the model efficiency at the inference stage. In 
this respect, the training is performed separately on 
each type of fakes. Similarly to the multi-class classifi-
cation scenario, in each case, the model is trained five 
times on the randomly chosen subset of data to avoid 
the bias in the training data selection. The difference 
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between the 2-class classification and the considered 
binary classification consists in the assumption about 
the fakes available at the training. The 2-class classifica-
tion assumes that all types of fakes are available at the 
training stage whereas the binary classification assumes 
that only one type of fakes is available and the rest fakes 
are unknown. Obviously, the binary classification is 
more challenging and the results will highly depend on 
the type of fakes chosen for training. At the test stage 
all fakes are present for the classification.

The binary classification accuracy is evaluated with 
respect to the probability of miss Pmiss and the probability 
of false acceptance Pfa defined as:

where c1 = [1, 0]T denotes a class of original codes, H1 
corresponds to the hypothesis that the query y is an orig-
inal code and H0 is the hypothesis that the query y is a 
fake code.

From the obtained results presented in Table 2 one can 
note that both models trained on the originals and fakes 
#1 provide high classification accuracy on all type of 
data, including the fakes #2, unseen during the training. 
That is expected and can be explained by the fact that, 
as it is discussed in Section  2.2, the fakes #1 are closer 

(5)
{
Pfa = Pr{gφ(Y) = c1 | H0},
Pmiss = Pr{gφ(Y) �= c1 | H1},

Fig. 7 The latent space (the last layer before an activation function) t-SNE visualization of the supervised binary classifier trained on the originals 
and a fakes #1 white, b fakes #1 gray, c fakes #2 white, d fakes #2 gray. A horizontal axis denotes t-SNE dimension 1 and the t-SNE dimension 2 
is on the vertical axis

Table 2 The classification error of the supervised binary classifier (in %)a

a Presented binary classification is close to the multi-class classification scenario with 2 classes considered in Section 3.2.1. The difference in the obtained results is 
related to the presence of all types of fakes during the training in case of multi-class setup and randomly chosen training data

Setup on Originals Fakes #1 Fakes #1 Fakes #2 Fakes # 2
(Pmiss) White ( Pfa) Gray ( Pfa) White ( Pfa) Gray ( Pfa)

Fakes #1 white 0 0 0.14 0 0

Fakes #1 gray 0 0 0 0 0

Fakes #2 white 0 99.43 100 0 0

Fakes # 2 gray 0 99.29 99.86 0 0
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to the originals, while the fakes #2 are the coarser cop-
ies of the original codes. In this regard, when the train-
ing is performed on the fakes #2, no model is capable to 
distinguish the originals from the fakes #1, unseen dur-
ing the training. That is confirmed by the probability of 
false acceptance close to 100%. Nevertheless, the models 
are capable to distinguish the originals from the fakes #2 
with 100% accuracy. The t-SNE visualization of the latent 
space of each model illustrated in Fig.  7 confirms these 
observations. From Fig. 7a and b that present the latent 
space of models trained on the originals and the fakes #1, 
one can see the good separability between the originals 
and fakes while all classes of fakes overlap. The latent 
space visualization of models trained on the originals and 
fakes #2 illustrated in Fig. 7c and d shows the overlapping 
between the originals and the fakes #1 preserving the 
fakes #2 in well separable cluster.

4  One‑class classification
4.1  Spatial domain data analysis
In Section 3, it is shown that according to results obtained 
for the Indigo mobile dataset, the original and fake codes 
are well separable in the latent space of the multi-class 

supervised classifier (Fig. 6). To answer the question how 
these data behave in the direct image domain (hereinafter 
also referred to as a spatial domain), the 2D t-SNE visu-
alizations of the data in the spatial domain are shown in 
Fig. 8.

Figure  8a shows the direct visualization of the RGB 
images. One can note that the data do not form any 
clusters corresponding to originals or fakes. Instead, the 
data are allocated into small groups that are formed by 
the originals and fakes corresponding to the same digital 
template. Such a behavior is expectable and is explainable 
by the data nature.

Figure  8b demonstrates a visualization based on the 
xor difference between the digital templates and the cor-
responding printed codes binarized via a simple thresh-
olding method with an optimal threshold determited 
individually for each printed code via the Otsu’s method 
[20]. In general, one can observe a kind of rings that con-
sist of the original and fakes but no clusters specific to the 
data types are observed. These rings are explainable by 
the fact that both originals and fakes can have bigger or 
smaller difference with the digital template due to the dot 
gain in the different group of black and white symbols as 

Fig. 8 The 2D t-SNE visualization of the original and fake codes in the spatial domain (a horizontal axis denotes t-SNE dimension 1 and the t-SNE 
dimension 2 is on the vertical axis): a presents the direct RGB images’ visualization; b is based on the xor difference between the corresponding 
digital templates and printed codes binarized via a simple thresholding method with an optimal threshold determined individually for each printed 
code via the Otsu’s method [20]; c visualizes the differences between the physical references and the corresponding printed original and fake codes

Fig. 9 Examples of the dot gain effect: a a black symbol surrounded by white symbols increases its size but remains well detectable; b a white 
symbol surrounded by black symbols might disappear under strong dot gain
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shown in Fig. 9: a white symbol surrounded by the black 
symbols results in a bigger binarization error, while the 
black symbol surrounded by the white symbols is more 
likely to survive after binarization.

To better understand the role of the digital templates 
as a references, the Indigo mobile dataset was specially 
extended by the printed references (hereinafter also 
referred to as physical references6). It is easy to note the 
central dense cluster formed by the original codes (in 
blue) and two surrounding clusters from the fakes #1 
(mostly on the right-hand side) and fakes #2 (mostly 
on the left-hand side) from Fig.  8c that illustrates the 
t-SNE of the differences between the physical reference 
and the corresponding printed original and fake codes. 
Despite this, the overall mixing of individual samples 
from the different classes is quite significant. This indi-
cates that the reliable direct spatial authentication might 
be complicated.

As a next stage we performed the analysis of distances 
between the references (digital or physical) and the cor-
responding printed codes (original and fakes) in different 
metrics: ℓ1 , ℓ2 , Pearson correlation and Hamming dis-
tance. Whenever needed the binarization is applied via 
a simple thresholding with an optimal threshold deter-
mined individually for each code via the Otsu’s method. 
The performed analysis demonstrates that besides some 
rare exceptions, it is impossible to separate the original 
and fake codes neither with respect to the digital template 
nor with respect to the physical reference based only 

on one metric. At the same time, the separability with 
respect to the two metrics is much better. The best two-
metric separability we obtained is based on the Pearson 
correlation [21] and Hamming distance [22] between the 
printed codes and the corresponding digital or physical 
references as shown in Fig. 10a, b. Encouraged by these 
results, we apply the one-class support vector machines 
(OC-SVM) [23] in the space of the Pearson correlation 
and Hamming distance between the printed codes and 
the corresponding digital or physical references.

To better understand the role of used reference and 
the influence of color information during the acquisition 
of black and white codes as opposed to their conversion 
to only grayscale images, the OC-SVM is applied with 
respect to four types of training data:

• With respect to the digital templates on:

– The grayscale original codes x;
– The RGB original codes x.

• With respect to the physical references on:

– The grayscale original codes x;
– The RGB original codes x.

To avoid the bias in the training data selection, the OC-
SVM was trained five times on randomly chosen original 
printed samples x and either digital templates or physi-
cal references. The OC-SVM was trained to minimize the 
Pmiss on the validation sub-set. The obtained classifica-
tion error is represented in Table 3. The visualization of 
the OC-SVM decision boundaries is illustrated in Fig. 11.

Fig. 10 The CDP separability in the 2D space of Pearson correlation (the horizontal axis) and Hamming distance (the vertical axis)

6 The physical references correspond to the original codes acquired for the 
second time on the same equipment as the first case scenario. It assumes 
the probable presence of small geometrical (rotation) and illumination devi-
ations between the original codes and corresponding physical references.
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Analyzing the obtained results, at first, it should be 
pointed out that the OC-SVM classification error based 
on the Pmiss and Pfa is relatively high. At the same time, 
two important conclusions can be done:

• With respect to the chosen metrics, the use of the 
digital templates is preferable than the printed refer-
ences.

• Despite the visually grayscale nature of the CDP, 
the authentication based on codes taken by the 
mobile phone in color mode is more efficient com-
pared to the grayscale mode due to the fact that the 
different color channels have different sensitivity 
and due to the information loss while converting 
a three-channels color image into a single-channel 
grayscale one.

Table 3 The OC-SVM classification error in spatial domain (in %)a

a The python OneClassSVM method from the sklearn package is used with the next training parameters: kernel = “rbf”; gamma = 0.1; nu = 0.03 for the digital 
templates and nu = 0.1 for the physical references

Train on Originals Fakes #1 Fakes #1 Fakes #2 Fakes #2
(Pmiss) White ( Pfa) Gray ( Pfa) White ( Pfa) Gray ( Pfa)

With respect to the digital templates:

    - Grayscale x 3.1 2.54 3.82 0 0

    - RGB x 2.82 2.1 1.4 0 0

With respect to the physical references:

    - Grayscale x 11.44 35.86 40.58 1.72 1.12

    - RGB x 11.16 31.84 39.54 1.44 0.98

Fig. 11 The decision boundaries of OC-SVM trained with respect to the Pearson correlation and Hamming distance between the reference (digital 
or physical) and the corresponding original printed codes
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4.2  Deep processing domain data analysis
To further investigate the authentication performance, 
we consider an one-class classification based on the fea-
tures extracted via DNN processing. In a particular case 
of the CDP authentication, where the reference templates 
t are given, we consider a feature extractor based on a 
DNN auto-encoder model x → t̂ → x̂ , where t̂ is consid-
ered as a latent space representation as shown in Fig. 12. 
The difference with a generic auto-encoder consists in 
the fact that the latent space is represented by a space of 
digital templates in contrast to some generic low-dimen-
sional representation in a generic auto-encoder.

The loss-function for the considered feature extract-
ing system is defined as:

where β controls the relative importance of the two 
objectives.

The first mutual information term Iφ(X;T) in (6) con-
trols the mutual information between the estimate of 
template t̂ produced from x based on the mapper pφ(t|x) 
and original template t and is defined as:

According to [24], the variational decomposition is 
applied to decompose (7) into a form suitable for the 
practical calculations:

(6)LOne-class(φ, θ) = −Iφ(X;T)− βIφ,θ (T;X),

(7)

Iφ(X;T) =Ep(x,t)

[

log
p(x, t)

pD(x)pt(t)

]

=Ep(x,t)

[

log
pD(x)pφ(t|x)

pD(x)pt(t)

]

=Ep(x,t)

[

log
pφ(t|x)

pt(t)

]

.

where DKL

(
pt(t)�pφ(t)

)
= Ept (t)

[

log
pt (t)
pφ(t)

]

 is a Kullback-
Leibler divergences between the true pt(t) and the poste-
rior pφ(t) . H(pt(t), pφ(t)) = −Ept (t)

[
log pφ(t)

]
 is a 

cross-entropy.
Taking into account that the cross-entropy 

H(pt(t), pφ(t)) ≥ 0 , we get Iφ(X;T) ≥ ILφ (X;T) , where:

The second mutual information term in (6) determined 
as Iφ,θ (T;X) = EpD(x)

[

Epφ(t|x)

[

log
pθ (x|t)
pD(x)

]]

 can be 
decomposed and bounded in a way similar to the first term: 
Iφ,θ (T;X) ≥ ILφ,θ (T;X) , where:

(8)

Iφ(X;T) =Ep(x,t)

[

log
pφ(t|x)

pt(t)

pφ(t)

pφ(t)

]

=− Ept (t)

[

log
pt(t)

pφ(t)

]

− Ept (t)

[
log pφ(t)

]

+ EpD(x)

[
Epφ(t|x)

[
log pφ(t|x)

]]
,

(9)

ILφ (X;T) �EpD(x)

[
Epφ(t|x)

[
log pφ(t|x)

]]

︸ ︷︷ ︸

Dtt̂

− DKL

(
pt(t)�pφ(t)

)

︸ ︷︷ ︸

Dt

.

(10)

ILφ,θ (T;X) �EpD(x)

[
Epφ(t|x)[log pθ (x|t)]

]

︸ ︷︷ ︸

Dxx̂

− DKL(pD(x)�pθ (x))
︸ ︷︷ ︸

Dx

.

Fig. 12 General scheme of a deep model that aims at estimating the digital templates t̂ from the original printed codes x with the following 
mapping of the estimated digital templates t̂ back to the printed codes x̂
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1  Remark 2

The term Dt in (9) and the term Dx in (10) can be imple-
mented based on the density ratio estimation [25]. 
The terms Dtt̂ and Dxx̂ can be defined explicitly using 
Gaussian or Laplacian priors. In the Gaussian case, 
one can define pφ(t|x) ∝ exp(−�1�t − gφ(x)�2) and 
pθ (x|t) ∝ exp(−�2�x − fθ (t)�2) with the scale param-
eters �1 and �2 , which lead to ℓ2-norm, and gφ(x) denotes 
the encoder and fθ denotes the decoder. It also corresponds 
to the model t = gφ(x)+ ex and x = fθ (t)+ et , where ex 
and et are the corresponding reconstruction error vectors 
following the Gaussian pdf.

Thus, Equation (9) reduces to:

and (10) reduces to:

The final optimization problem schematically shown 
in Fig. 13 is:

(11)

ILφ (X;T) =−�1EpD(x)

[
Epφ(t|x)

[
�t − gφ(x)�2

]]

︸ ︷︷ ︸

Dtt̂

− DKL

(
pt(t)�pφ(t)

)

︸ ︷︷ ︸

Dt

,

(12)

ILφ,θ (T;X) �−�2EpD(x)

[
Epφ(t|x)[�x − fθ (t)�2]

]

︸ ︷︷ ︸

Dxx̂

− DKL(pD(x)�pθ (x))
︸ ︷︷ ︸

Dx

,

where:

In practice, we considered four basic scenarios of fea-
tures extractors for the one-class classification: 

1 The reference templates estimation based on the 
term Dtt̂ : 

2 The reference templates estimation based on the 
terms Dtt̂ and Dt : 

3 The estimation of the reference templates and the 
printed codes based on terms Dtt̂ and Dxx̂ : 

(13)
(φ̂, θ̂) =argmin

φ,θ

L
L
One-class(φ, θ)

=argmin
φ,θ

− (Dtt̂ −Dt)− β(Dxx̂ −Dx).

(14)

Dtt̂ �EpD(x)

[
Epφ(t|x)

[
log pφ(t|x)

]]
,

Dt �DKL

(
pt(t)�pφ(t)

)
,

Dxx̂ �EpD(x)

[
Epφ(t|x)[log pθ (x|t)]

]
,

Dx �DKL(pD(x)�pθ (x)).

(15)L
1
One-class(φ, θ) = −Dtt̂ .

(16)L
2
One-class(φ, θ) = −Dtt̂ +Dt.

(17)L
3
One-class

(φ, θ) = −D
tt̂
− βDxx̂.

Fig. 13 The feature extraction for the one-class classification based on the estimation of the reference templates via Dtt̂ and Dt and the printed 
codes via Dxx̂ and Dx terms
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4 The estimation of the reference templates and the 
printed codes based on terms Dtt̂ , Dt , Dxx̂ and Dx : 

In general case, to be comparable with the one-class clas-
sification in the spatial domain discussed in Section 4.1, 
the one-class classification model based on the OC-SVM 
is used.

The OC-SVM training procedure shown in Fig. 14 uses 
the pre-trained and fixed encoder and decoder parts of 
the auto-encoder model that serves as a features extrac-
tor. As an input, the OC-SVM might take different com-
binations of outputs of four main terms: Dtt̂ , Dt , Dxx̂ and 

(18)
L
4
One-class(φ, θ) = −D

tt̂
+Dt − βDxx̂ + βDx.

Dx . The exact scenarios are discussed in Sections  4.3.1, 
4.3.2, 4.3.3, and 4.3.4 below.

4.3  Experimental results
4.3.1  First scenario
The optimization problem based on 
L1
One-class

(φ, θ) = −D
tt̂

 aims at producing an accurate 
estimation t̂ of the corresponding binary digital tem-
plate t for each input printed original code x . Taking 
into account that due to the nature of the used trained 
model the output estimation is real valued but not 
binary, at the inference stage, to measure the Hamming 
distance the final estimation t̂ is obtained by the thresh-
olding with a threshold 0.5.

Fig. 14 The one-class classification training procedure: the encoder and decoder parts of the auto-encoder model shown in Fig. 13 are pre-trained 
and fixed (as indicated by a “*”); the OC-SVM is trained on the outputs of Dtt̂ and Dt terms that are the results of ILφ(X; T) decomposition and the Dxx̂ 
and Dx terms that are the results of ILφ,θ (T;X) decomposition

Fig. 15 The first scenario results’ visualization: the histogram of symbol-wise Hamming distance (horizontal axis) between the original digital 
templates t and the corresponding estimations t̂ obtained via the encoder model trained with respect to the term Dtt̂  
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Figure  15 illustrates the distributions of the symbol-
wise Hamming distance between the original digi-
tal templates t and the corresponding estimations t̂ 
obtained from the printed original and fake codes. Tak-
ing into account that the extracted feature vector con-
sists only of one value, the OC-SVM is not used and the 
classification is performed based on the decision rule:

where Pmiss is a probability of miss and Pfa is probability 
of false acceptance. The hypothesis H0 corresponds to 
the hypothesis that the input code is fake and the H1 cor-
responds to the hypothesis that the input code is origi-
nal. Aiming to have Pmiss = 0 , the decision threshold γ1 
is determined on the validation sub-set to be equal to 2. 
The obtained classification error is given in Table 4.

According to the obtained results, the one-class classi-
fication based on the encoder model trained with respect 
to the Dtt̂ term as shown in Fig. 13 allows to distinguish 
the originals and the fakes #2 with 100% accuracy. The 
obtained Pmiss and Pfa are confirmed by the distribution 
of the Hamming distance shown in Fig. 15. In case of the 
fakes #1, the corresponding distributions overlap and the 
Pfa is about 6 - 8%.

(19)
{
Pfa = Pr{dHamming(t, t̂) ≤ γ1 | H0},

Pmiss = Pr{dHamming(t, t̂) > γ1 | H1},

4.3.2  Second scenario
The optimization problem based on 
L2
One-class(φ, θ) = −Dtt̂ +Dt is an extension of the sce-

nario 4.3.1 with the discriminator part Dt that aims to 
distinguish between the distribution of original digital 
templates and its corresponding estimate.

Figure  16 presents the 2D distribution of (i) the sym-
bol-wise Hamming distance between the original digital 
templates t and the corresponding estimations t̂ obtained 
based on the encoder model trained with respect to the 
Dtt̂ term and (ii) the corresponding responses of the dis-
criminator trained with respect to the Dt term as shown 
in Fig.  13. It is easy to see that the obtained results are 
very close to those in Fig.  15 with respect to the Ham-
ming distance, namely, the results for the original codes 
are close to zero and overlap with the fakes #1, while the 
fakes #2 are well separable. With respect to the Dt dis-
criminator decision the situation is similar, namely, the 
fakes #2 are well separable by the decision ratio smaller 
then 0.5 - 0.6. At the same time, for the the fakes #1 the 
decision ratio is bigger than 0.7 - 0.8 as well as for the 
originals.

The obtained authentication error based on the Pmiss 
and Pfa calculated with respect to the decision rule (19) 
and given in Table  4 shows that the regularization via 

Table 4 The OC-SVM classification error in deep processing domain (in %)a

a The python OneClassSVM method from the sklearn package is used with the following training parameters: kernel = “rbf”; gamma = 0.1; nu = 0.0005

Model Originals Fakes #1 Fakes #1 Fakes #2 Fakes #2
(Pmiss) White ( Pfa) Gray ( Pfa) White ( Pfa) Gray ( Pfa)

Based on the Eq. (19)

     L1
One-class

: 0 6.38 8.23 0 0

     −Dtt̂  

     L2
One-class

: 0 6.81 7.09 0 0

     −Dtt̂ +Dt  

     L3
One-class

: 0 1.56 0.99 0 0

     −Dtt̂ − βDxx̂  

     L4
One-class

: 0 2.41 2.13 0 0

     −Dtt̂ +Dt − βDxx̂ + βDx  

Based on the Eq. (20)

     L3
One-class

: 0 0.28 0 0 0

     −Dtt̂ − βDxx̂  

     L4
One-class

: 0.57 0 0.14 0 0

     −D
tt̂
+Dt − βDxx̂ + βDx  

Based on the OC-SVM

     L3
One-class

: 0.28 0 0 0 0

     −Dtt̂ − βDxx̂  

     L4
One-class

: 0.14 0 0 0 0

     −Dtt̂ +Dt − βDxx̂ + βDx  
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the discriminator Dt does not have any significant influ-
ence and does not allow to improve the authentication 
accuracy.

4.3.3  Third scenario
In the third scenario L3

One-class(φ, θ) = −Dtt̂ − βDxx̂ , the 
term Dxx̂ is in charge of the printed codes reconstruction 
and plays a role of a learnable regularization.

Figure  17a demonstrates the obtained distribution 
of two metrics: (i) the symbol-wise Hamming distance 

introduced in the Section  4.3.1 and (ii) the ℓ2 error 
between the printed codes and the corresponding recon-
structions obtained as an output of the decoder model 
trained with respect to the Dxx̂ term as shown in Fig. 13 
without any additional post-processing.

The obtained authentication results based on the deci-
sion rule (19) are given in Table 4. It is easy to see that the 
learnable regularization via Dxx̂ term preserves the Pmiss 
and Pfa on the fakes #2 to be zero, similar to the previous 
scenarios. At the same time, it allows to decrease the Pfa 

Fig. 16 The second scenario results’ visualization: the 2D distribution of (i) the symbol-wise Hamming distance between the original digital 
templates t and the corresponding estimations t̂ obtained via the encoder model trained with respect to the Dtt̂ term and (ii) the corresponding 
responses of the discriminator model trained with respect to the Dt term

Fig. 17 The third scenario results’ visualization: a the distribution of (i) the symbol-wise Hamming distance between the digital templates and its 
corresponding estimations via the encoder model trained with respect to the Dtt̂ term and (ii) the ℓ2 distance between the printed codes and its 
corresponding reconstructions by the decoder model trained with respect to the Dxx̂ term; b the OC-SVM decision boundaries
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for the fakes #1 from 7% till 1-1.6%. Additionally, Table 4 
presents the authentication results obtained based on the 
two metrics decision rule:

that allows to significantly reduce the Pfa for the fakes #1 
to about 0.28%. Aiming to have the Pmiss = 0 , the deci-
sion constant γ2 is determined on the validation sub-set 
to be equal 0.0017 and γ1 equals to 2.

In addition, Table 4 includes the results of OC-SVM 
trained with respect to the metrics under investigation 
(the symbol-wise Hamming distance between the digi-
tal templates and its corresponding estimations via the 
encoder model trained with respect to the Dtt̂ term and 
the ℓ2 distance between the printed codes and its corre-
sponding reconstructions by the decoder model trained 
with respect to the Dxx̂ term). The OC-SVM is trained 
only on the train sub-set of the original printed codes x 
and its corresponding templates t . The example of OC-
SVM decision boundaries is illustrated in Fig. 17b. The 
OC-SVM reduces Pfa to 0% for all types of fakes. How-
ever, Pmiss increases to about 0.28% in contrast to the 
previously obtained results with Pmiss = 0%.

4.3.4  Fourth scenario
The last considered scenario 
L4
One-class(φ, θ) = −Dtt̂ +Dt − βDxx̂ + βDx includes 

four terms: the main term Dtt̂ , the discriminator Dt on 
the digital template estimation space, the printed code 

(20)







Pfa = Pr{dHamming(t, t̂) ≤ γ1 &
dℓ2(x, x̂) ≤ γ2 | H0}

Pmiss = Pr{dHamming(t, t̂) > γ1 &
dℓ2(x, x̂) > γ2 | H1},

reconstruction space regularization Dxx̂ and the dis-
criminator Dx . Similarly to the third scenario, the OC-
SVM is trained with respect to the two features: (i) the 
symbol-wise Hamming distance between the original 
digital templates and their estimations and (ii) the ℓ2 dis-
tance between the printed codes and their reconstruc-
tions. A visual representation of the jount distribution of 
these metrics is shown in Fig.  18a. Table  4 includes the 
obtained one-class classification error based on three cri-
teria: the decision rules (19) and (20) and the OC-SVM. 
The example of OC-SVM decision boundaries is illus-
trated in Fig. 18b.

From the obtained results, one can note that in terms 
of decision rule (19), the regularization via Dt and Dx 
discriminators is counter-productive and makes the clas-
sification error bigger in comparison with the third sce-
nario. In case of the decision rule (20), the regularization 
leads to a significant increase of Pmiss . At the same time, 
the OC-SVM allows to decrease Pmiss in two times, from 
0.28% to 0.14% preserving Pfa equals to zero for all types 
of fakes.

Fig. 18 The fourth scenario results’ visualization: a the distribution of (i) the symbol-wise Hamming distance between the digital templates and its 
corresponding estimations via the encoder model trained with respect to the Dtt̂ term and (ii) the ℓ2 distance between the printed codes and its 
corresponding reconstructions by the decoder model trained with respect to the Dxx̂ term; b the OC-SVM decision boundaries

Table 5 Execution time (hours) per 100 epochs on one NVIDIA 
GPU with a learning rate 1e−4 for the considered scenarios

Model Execution time, hours

L
1
One-class

: −Dtt̂  2.78–3.05

L
2
One-class

: −Dtt̂ +Dt  5.12–5.25

L
3
One-class

: −Dtt̂ − βDxx̂  5.56–5.83

L
4
One-class

: −Dtt̂ +Dt − βDxx̂ + βDx  11.11–11.39
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In summary, it should be pointed out that despite the 
great performance of the fourth scenario’s model its com-
plexity is times higher compared with the other consid-
ered scenarios. The execution time complexity in hours 
per 100 training epochs is given in Table  5 for each 
scenario.

5  Conclusion
In this work, we investigate the authentication aspects 
of modern CDP with respect to the typical hand-crafted 
copy fakes. To simulate the real-life conditions, we cre-
ated the Indigo mobile dataset of CDP printed on the 
industrial printer and enrolled it via the mobile phone 
under regular light conditions.

The performed analysis of the multi-class super-
vised classification of CDP reveals two important 
observations:

• In the general case, the model trained in a supervised 
way is capable to distinguish with a high accuracy the 
original CDP from the fakes produced on modern 
copy machines, which use built-in smart morpholog-
ical processing enhancing image quality and reducing 
the dot gain for further reproduction.

• The quality of the fakes used for the training plays a 
very important role. The superior quality fakes closer 
to the original codes are of preference for the train-
ing and allow the model to authenticate the inferior 
quality fakes, even when the model does not see 
them during the training. In contrast, if the classifier 
is trained on the inferior quality fakes, then it is not 
capable to authenticate the superior quality fakes.

The performed analysis of CDP authentication based 
on the one-class classification shows that:

• In view of the great similarity between the original 
and fake codes, the authentication in the spatial 
domain (i) is difficult with respect to the finding of 
right metrics and (ii) is not reliable enough due to 
the high overlapping between the classes.

• The authentication with respect to the digital tem-
plates is more efficient compared to the authentica-
tion with respect to the physical references.

• Despite the original black-and-white nature of the 
CDP, the authentication based on codes taken by 
the mobile phone in color mode is more efficient 
compared to the grayscale mode.

• The authentication with respect to the DNN esti-
mation of the digital templates and printed codes 

reconstruction is more efficient than the direct 
authentication with respect to the digital and 
printed codes in spatial domain.

The main disadvantage of the DNN-based models is 
its high training complexity compared to the direct 
authentication in spatial domain. At the same time, at 
the inference stage, the trained models are equivalent 
in terms of authentication complexity to the authenti-
cation in spatial domain.

Besides the impressive performance of the one-class 
classification on real samples and mobile phone verifi-
cation, it should be pointed out that the above analysis 
is done with respect to the typical HC copy attacks. In 
view of the widespread use of the ML technologies, the 
question about the robustness to the ML attacks is an 
important problem that we aim at investigating in our 
future work.
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