
Wang et al.
EURASIP Journal on Information Security (2023) 2023:5
https://doi.org/10.1186/s13635-023-00139-y

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

EURASIP Journal on
Information Security

Network intrusion detection
based on multi-domain data
and ensemble-bidirectional LSTM
Xiaoning Wang1, Jia Liu2 and Chunjiong Zhang3*

Abstract

Different types of network traffic can be treated as data originating from different domains with the same objectives
of problem-solving. Previous work utilizing multi-domain machine learning has primarily assumed that data in differ-
ent domains have the same distribution, which fails to effectively address the domain offset problem and may not
achieve excellent performance in every domain. To address these limitations, this study proposes an attention-based
bidirectional long short-term memory (Bi-LSTM) model for detecting coordinated network attacks, such as malware
detection, VPN encapsulation recognition, and Trojan horse classification. To begin, HTTP traffic is modeled as a series
of natural language sequences, where each request follows strict structural standards and language logic. The Bi-LSTM
model is designed within the framework of multi-domain machine learning technologies to recognize anomalies of
network attacks from different domains. Experiments on real HTTP traffic data sets demonstrate that the proposed
model has good performance in detecting abnormal network traffic and exhibits strong generalization ability, ena-
bling it to effectively detect different network attacks simultaneously.

Keywords Anomaly detection, Attention mechanism, Bidirectional LSTM, Multi-domain learning

1 Introduction
The Ethernet protocol has been widely used in recent
decades. One of the most significant properties of Ether-
net protocols is that they are partially open source and
designed with security policy flaws [1], which means
that network equipment is vulnerable to serious security
threats such as viruses, Denial of Service (DoS) attacks,
and port cracking access. As software systems and appli-
cations become increasingly complex, more and more
vulnerabilities have emerged, causing great harm to
network security [2]. Network intrusion detection is a
means of network protection, which aims to analyze the

network traffic, log data, and related information and
discover abnormal traffic data from a large set of data
streams. Once the network traffic is recognized as abnor-
mal, it can be considered as an attack on the network so
that related measures must be taken in advance to avoid
catastrophic loss [3].

Basically, existing network anomaly detection methods
can be divided into two categories: one is based on fea-
ture distribution [4, 5], and the other is based on content
detection [6, 7]. However, these methods often lack the
ability to distinguish between different types of attacks,
leading to inaccurate detection of some anomalies.
Recent studies have proposed using machine learning
techniques to discover abnormal behavior from HTTP
server logs and cluster HTTP session processes using a
non-parametric hidden Markov model with explicit state
duration [8]. Additionally, some researchers have used
unsupervised deep belief networks (DBNs) to extract
low-level features and trained single-class support vec-
tor machines (SVMs) to perform anomaly detection and

*Correspondence:
Chunjiong Zhang
gip_1986@126.com
1 Chongqing Vocational Institute of Tourism, Chongqing 409099, China
2 Chongqing College of Electronic Engineering, Chongqing, China
3 College of Electronics and Information Engineering, Tongji University,
Shanghai 201804, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-023-00139-y&domain=pdf

Page 2 of 14Wang et al. EURASIP Journal on Information Security (2023) 2023:5

diagnosis from network traffic [9]. These methods usually
only involve the detection of a single type of traffic and
cannot automatically extract and identify the key features
of multiple types of traffic [10].

These models can automatically discover key features
in HTTP traffic before learning complex attack patterns,
making them particularly useful for detecting malicious
network traffic. However, many network attackers often
conduct coordinated attacks between different types
of traffic due to the complexity of the network environ-
ment. To address this challenge, researchers have pro-
posed using multi-domain machine learning techniques
to improve the detection efficiency by sharing solving
processes across different domains. This approach has
shown acceptable anomaly detection capabilities for
diverse types of attacks, making it a promising area of
research for improving network security [11].

However, most deep learning models simply assume
that data captured from different domains have the same
distribution, which can neither effectively address the
domain offset problem, nor achieve excellent perfor-
mance in every domain [12]. One reason why this hap-
pens is that it is difficult for most models to automatically
detect hidden abnormal traffic from a large amount of
network traffic. The other reason is that the lack of an
integrated end-to-end system makes it impossible to dis-
cover the characteristics of traffic in different domains at
the same time. To this end, we firstly propose a bidirec-
tional long-short-term memory (Bi-LSTM) model based
on the embedded attention mechanism to simultaneously
detect different types of coordinated network attacks (i.e.,
malware detection, VPN encapsulation recognition, and
Trojan Horse classification). Then, we designed a multi-
domain neural network to detect abnormal traffic pro-
cesses from different domains. The elements in the traffic
are modeled as vocabulary, and the semantic relationship
between vocabularies can be learned by the proposed
Bi-LSTM. Experiments demonstrate that the model pro-
posed in this study has high precision and generalization
ability on the real HTTP traffic data set.

2 Related work
For the purpose of network intrusion detection, machine
learning approaches such as cluster analysis, Bayesian
networks, particle algorithms, and other shallow struc-
ture algorithms are commonly used [10, 11]. Most of the
algorithms can learn enriched features of the data, but
they are difficult to be used in practical scenarios due to
different means of intrusion and heterogeneous distribu-
tions of the data. Network intrusion detection based on
deep learning is independent of feature engineering and
can automatically learn complex features from raw traffic

data [13]. Therefore, many scholars have applied neural
networks to network intrusion detection tasks. Due to
the improvement of the traffic classification accuracy,
network anomaly detection based on neural networks
has become a hot research topic in academia. Repre-
sentative examples with respect to these studies are as
follows. The authors in the literature [14] first mapped
network traffic features to strings and translated the net-
work traffic classification problem to text classification in
natural language processing. They used recurrent neural
networks (RNN) to learn temporal features of network
traffic and further used it for malicious network traffic
detection. The authors in the literature [15] proposed a
malware traffic classification algorithm based on convo-
lutional neural networks (CNN) for intrusion detection
by mapping traffic features to generate grayscale pixel
images. They processed network intrusion detection with
network traffic image classification. The authors in the
literature [16] made a relevant summary of deep learning
models, focusing on traffic data simplification, dimen-
sionality reduction, and classification techniques. They
proposed fully convolutional networks, which proved the
effectiveness in analyzing the network traffic. In addition,
the authors in the literature [17] proposed an anoma-
lous traffic detection method based on long-short-term
memory (LSTM) with improved residual neural network
optimization, which addressed the disadvantages such
as overfitting and gradient disappearance in deep neural
networks. As a result, the proposed model improved the
accuracy of network anomalous traffic detection.

As a matter of fact, the CNN and RNN sequence mod-
els that combine attention mechanism with deep learn-
ing have played a critical role in the field of anomaly
detection [9–11]. CNN has a generalization ability to a
variety of classification tasks and can obtain the spatial
characteristics of data during intrusion detection. How-
ever, the poor convergence of model training speed usu-
ally results in low accuracy and high false alarm rate [18].
RNN extracts time series and semantic information using
temporal information as input; however, the training pro-
cess costs too much compared to the shallow structure
algorithms [19]. Although the auto-encoder can be used
to capture the nonlinear information in the data by tra-
ditional dimension-reduction methods, the model evalu-
ation index is too simple to improve the error rate of
detection [20].

Network intrusion detection based on multi-domain
network traffic considers the multi-domains of data.
Because few classes of samples are likely to make the
model overfitting during the training process and the
model prediction is more biased to the majority of sam-
ples, the previous multi-domain method is less accurate

Page 3 of 14Wang et al. EURASIP Journal on Information Security (2023) 2023:5

for malicious attack identification than existing CNN
and RNN-based approaches. Therefore, many scholars
are motivated to study the multi-domain distribution
of network traffic data. For example, the authors in the
literature [21] proposed a method to improve the accu-
racy of minority class classification. The method com-
bines the minority oversampling technique (SMOTE)
and complementary neural network (CMTNN) to solve
the multi-domain problem caused by network traffic dis-
tribution. Experiments on the UCI data set report that
the proposed method can improve the intrusion detec-
tion accuracy and identification of multi-domains. The
authors in the literature [22] proposed an improved local
adaptive composite minority sampling algorithm (LA-
SMOTE) to deal with the network traffic multi-domain
problem and then detect network traffic anomalies based
on a gated recurrent unit neural network. The authors in
the literature [23] combined upsampling and downsam-
pling methods to deal with the multi-domain data set
CIDDS-001 and evaluated the data set with classifiers
such as deep neural networks, random forests, and vari-
ational autoencoders. Recently, deep autoencoders are
used to build data generation models to form balanced
data sets [24]. However, the authors in the literature [25]
proposed a Siamese intrusion detection system based
on twin neural networks to detect R2L and U2R attacks
without using traditional class balancing techniques. The

use of a generative adversarial network (GAN) model is
proposed to generate samples with different attack labels
(e.g., blacklisting, anomalous spam, SSH brute force
cracking) for balancing the data set, which improves the
classification accuracy [26]. To summarize, although the
related works contribute to network anomaly detection,
the heterogeneous data distribution caused by the multi-
domain problem makes the proposed algorithms little
effective, especially in the detection of attacks with few
class samples.

3 Proposed model
The structure of the proposed model is shown in Fig. 1.
The left side of Fig. 1 is the Bi-LSTM module based on
the attention mechanism, which consists of four parts,
i.e., the input layer, the embedding layer, the Bi-LSTM
layer, and the attention layer. The Bi-LSTM module pro-
vides specific knowledge for the individual layer. We train
the content sequence and adopt an exit strategy to avoid
overfitting before it comes to the output layer. The right
side of Fig. 1 shows three Bi-LSTM modules that con-
nect the output of the attention layer to multi-domain
learning and jointly train a Bi-LSTM hybrid model with
integrated attention in the multi-domain learning frame-
work. The three-domain tasks share the parameters of
the lower layers and provide prior knowledge for the
public layer.

Fig. 1 Structure of the proposed model

Page 4 of 14Wang et al. EURASIP Journal on Information Security (2023) 2023:5

3.1 Ensemble Bi‑LSTM
3.1.1 Input layer
This study selects common vocabulary in the training set
to build a vocabulary based on term frequency-inverse
document frequency (TF-IDF) [27] and generates a
unique index for each vocabulary. The final input vector
consists of a unique word identifier of a fixed length Z,
where Z is a hyperparameter. The redundant part of the
data is removed, and the insufficient part is filled with
zeros. For example, given a series of content: {‘/’, ‘admin’,
‘/’, ‘caches’, ‘/’, ‘error_ches’, ‘.’, ‘php’}, its input vector can be
represented by [23, 3, 23, 56, 23, 66, 0, 0, …, 0] because
the index of “/” in the vocabulary is 23. Since the length of
the input vector is less than the fixed value, the remaining
part is filled with zeros.

3.1.2 Embedding layer
We convert the original input sequence into an input vec-
tor, denoted as si = {w1,w2,w3, . . . ,wz} , and obtain an
embedding vector v = {v1, v2, v3, . . . , vz} . Then, the vec-
tor of each word is represented as Eq. (1).

where wk ∈ R1, (k = 1, 2, . . . , z) is the input vector,
We ∈ Rm×1 is the weight matrix, be ∈ Rm is the bias vec-
tor, and m is the size of the embedding dimension and
ReLU is the activation function [18].

3.1.3 Bi‑LSTM layer
Bi-LSTM is composed of forward LSTM and backward
LSTM, which can use previous and future information to
improve prediction performance. Given the embedding
vector v = {v1, v2, v3, . . . , vz} of request Ri , the forward
LSTM

→
f reads the input sequence from v1 to vz , and calcu-

late the forward hidden state sequence
(

�h1, �h2, . . . , �hz
)(

�hi ∈ Rp
)

 , where p is the number of
dimensions of the hidden state. The backward LSTM

←
f

reads the input sequence in reverse order and generates a

backward hidden state sequence
(←
h
1
,
←
h
2
, . . . ,

←
h
z

)(←
h
i
∈ Rp

)

 .

Concatenating the forward hidden state
→
hi and the back-

ward hidden state
←
h
i

 , the final latent vector can be repre-

sented as hi =
[→
hi;

←
hi

]T
(

hi ∈ R2p
)

.

3.1.4 Attention layer
The attention mechanism usually only considers the hid-
den state information of the individual and cannot cap-
ture the relationship between the current hidden state
and previous hidden states. This study uses location-
based attention to capture the relationship between hz

(1)vk = ReLU(Wewk + be) ∈ Rm

and hi(1 ≤ i < z) . The attention weight is calculated as
Eq. (2):

where Wα ∈ R2p and bα ∈ R are model parameters and
bias, respectively.

The weight vector αz is expressed as Eq. (3):

where αzi = vTα tanh (Wα[hz; hi]) . The context vector cz
[19] is represented as Eq. (4):

The hidden state h̃ can be calculated as Eq. (5):

where Wc ∈ Rr×4p is the weight matrix in the attention
layer, and r is the number of dimensions of the state in
the attention layer.

3.2 Multi‑domain learning
3.2.1 Proof of feasibility
To some extent, the feasibility of multi-domain learning
is determined by its ability to prevent overfitting. Over-
fitting means that the model can accurately learn the
information on the training data set but cannot handle
the random test set. Generally speaking, a more complex
model may suffer from more severe overfitting.

For a single learning task, its cost function J (·) can be
represented by Eq. (6):

where F(·) represents the objective function of multi-
domain machine learning, y is the label, h̃ represents the
use of hidden state of different channels as the input of
the multi-domain, θs is the shared parameter set with the
best value �s , and θi is the parameter set with the best
value �i for the single task.

Minimizing the weighted sum of J (·) , we get �i and �s ,
formulated as Eq. (7):

where αi is the discount factor of θi and l is the number of
domains.

(2)vk = ReLU(Wewk + be) ∈ Rm

(3)αz = softmax αz1,αz2, . . . ,αz(z−1)

(4)cz =
z−1
∑

i

αzihi

(5)h̃ = tanh (Wc[cz; hz])

(6)J
(

𝜃s, 𝜃i

)

=
1

2n

n
∑

i=1

(

F
𝜃s
(h̃) + F

𝜃i
(h̃) − y

)

= F
(

h̃;𝜃s, 𝜃i
)

(7)(�s,�i) = argminθs ,θi

l
∑

i=1

αiF
(

h̃; θs, θi
)

Page 5 of 14Wang et al. EURASIP Journal on Information Security (2023) 2023:5

Since multi-domain learning uses different θi , the loss
function Ri of tasks in different domains can be regarded
as the regularization function of Eq. (8):

Regularization is the most common and effective method
to deal with overfitting. Adding a regularization func-
tion to the loss function can simplify its high-dimensional
structure. Therefore, the optimal shared parameters are
restricted to a smaller solution, making the learner �s
equally effective for other tasks.

3.2.2 The loss functions for different attacks
Since malware detection and VPN encapsulation identifi-
cation are processed in a common fully connected layer,
and the data of Trojan Horses needs to be fed to an addi-
tional layer, this study designs different loss functions for
different network attacks.

Since the amount of data detected by malware is small,
it can be treated as a binary classification problem. The
loss function based on cross-entropy is suitable for this
task. For VPN encapsulation identification, it can be
regarded as a regression problem in different scenarios.
The loss function of the binary classification problem is
shown in Eq. (9):

where m = 1 represents VPN encapsulation, m = 0 rep-
resents normal data, and pm represents the predicted
probability that the data segment will be encapsulated by
the VPN.

The loss function of the regression problem is shown in
Eq. (10):

where py is the suspicious degree of VPN encapsulation
attacks, s is the actual degree of suspiciousness, σ 2 is the
variance of the suspicious degree between py and s ,
1
2 (y− s)2 is the loss of Euclidean function, and
1− exp

(

−(y−s)2

2σ 2

)

 is the loss of Gaussian function. When
the initial prediction value is far from the actual value,
the loss effect of the Euclidean function is better than the
loss of the Gaussian function. By contrast, the loss of the
Gaussian function is more useful when σ 2 degrades dra-
matically [28]. We obtain a better learning ability and

(8)

(

Θs ,Θi

)

= argmin
𝜃s ,𝜃i

[

𝛼iF
(

h̃;𝜃s , 𝜃i
)]

+

n
∑

j≠i

𝛼jF
(

h̃;𝜃s , 𝜃j
)

= argmin
𝜃s ,𝜃i

[

𝛼iF
(

h̃;𝜃s , 𝜃i
)]

+ 𝜆Ri

(

h̃;𝜃s
)

(9)f1 = mlog

(

1

pm

)

+ (1−m) log

(

1− 1

pm

)

(10)

f2 = �
1

2
(py − s)2 + (1 − �)

[

1 − exp

(

−(py − s)2

2�2

)]

anomaly detection performance of the VPN encapsula-
tion model by changing values of �.

For the Trojan Horse program, the multi-type cross-
entropy is used as the loss function, as shown in Eq. (11):

Let F be the total loss of multi-domain machine learn-
ing. The loss functions of anomaly detection tasks in dif-
ferent domains can be unified by Eq. (12):

where βi is the discount factor corresponding to the
task i . Since the loss gradient of regression tasks in the
learning process is often smaller than that of classifi-
cation tasks, we set β2 to a large value constrained to
β1 + β2 + β3= 1.

3.3 Convergence analysis
Regarding the convergence of the model, it can be ana-
lyzed by the parameter update process of the incoming
gradient. Since the batch data normalization layer nor-
malizes the input, it needs the trainable parameters in the
layer to maintain the expressiveness of the network. By
updating the trainable parameters in the batch data nor-
malization layer using local gradients, the degradation of
model expressiveness caused by sparse gradients can be
prevented. The model is updated with sparse gradients in
a way that makes full use of the data to prevent the loss of
model accuracy due to sparsity [29].

During model training, the gradient sparsity is updated
in such a way that each domain data is sparse locally for
the current generated gradient gt uploaded and averaged
by the parameter server. The gradient is adaptively com-
puted by the optimizer and multiplied by the learning
rate α for updating the parameters. This process can be
expressed by Eq. (13).

where α represents the average of the sparse gradient of
all domain data uploads, i.e.:

After using the gradient correction, the domain data
is computed by the optimizer for the complete gradient.

(11)f3 =
z

∑

i=0

yi log

(

1

pi

)

(12)F = β1f1 + β2f2 + β3f3

(13)

�k
t+1

= �k
t
− � ⋅

�t

(√

sparse
(

�1
)

, sparse
(

�2
)

,… , sparse
(

�t
)

)

√

�t

(

sparse
(

�1
)

, sparse
(

�2
)

,… , sparse
(

�t
))

(14)sparse
(

gt
)

= 1

N
·

N
∑

k=1

sparse
(

gk ,t
)

Page 6 of 14Wang et al. EURASIP Journal on Information Security (2023) 2023:5

The sparse result for that gradient is uploaded and col-
lected by the neural network layer with shared param-
eters. So, the parameter updates after using the gradient
correction can be expressed by Eq. (15).

where mt = φt
(

g1, . . . , gt
)

 and Vt = ϕt
(

g1, . . . , gt
)

 , N is
the number of samples.

The update is performed with sparse gradients for all
trainable parameters in the model. For the output chan-
nels of the neural network layers, the group normaliza-
tion is formed as a group to further improve the batch
normalization. The batch normalization, layer normali-
zation, instance normalization, and group normalization
differentiate the range of the set Si. We use T to denote
the number of feature maps, C to denote the number
of channels, and H × W to denote the size of the feature
map. Then, we have Eq. (16).

The layer normalization is the set of all feature maps in
which only the points on the same feature map constitute
can participate in the calculation of the mean and stand-
ard deviation of the current point. The set is represented
by Eq. (17):

The instance normalization is the set of all features that
only the set of points on the same feature map can par-
ticipate in the calculation of the current point mean and
standard deviation. The set is represented by Eq. (18):

The group normalization is caused by grouping in the
channel dimension. Suppose that the number of channels
C is divided into G groups, then the set is represented by
Eq. (19):

where
⌊

kC
CG

⌋

=
⌊

iC
CG

⌋

 indicates the points in the same
group.

While training the model, the parameters to be syn-
chronized in the batch data normalization layer consist
of the mean µB and the variance σ 2

B . Since they refer to
the results of the current batch, it is necessary to commu-
nicate with each other to transmit the results calculated
from the local data. The optimal solution is to trans-
mit the square of the mean to each other because it can

(15)θkt+1 = θkt − α

N
·

N
∑

k=1

sparse

(

mk ,t
√

Vk ,t

)

(16)Si =
{

k|kC = iC
}

(17)Si =
{

k|kT = iT
}

(18)Si =
{

k|kT = iT , kC = iC
}

(19)Si =
{

k|kT = iT ,

⌊

kC

CG

⌋

=
⌊

iC

CG

⌋}

compute the mean and variance of the overall batch data
accurately with minimal communication overhead.

In the gradient-efficient update method, all trainable
parameters in the model are updated with sparse gradi-
ents, which results in a forced delay in the update of most
gradients. In order to alleviate the delay, the full set of
gradient update parameters is considered to be utilized.

where θkt+1 is a parameter on the kth domain when t + 1
training iterations are performed. At this moment, the
parameter update uses the complete result computed by
the optimizer and the flatness transmitted by the other
domains. Compared with the original update method,
the sparse gradient is not used in the part of the gradient
generated by the node itself. Herein, the complete gradi-
ent is used instead [30].

It should be noted that, when the data distribution is
changed, the true distribution of the training data is not
well presented. To solve this problem, the batch data nor-
malization layer has two trainable parameters, which are
used to change the magnitude of the local variance and
the mean position of the data. The changed distribution
can be more consistent with the real distribution to facili-
tate the nonlinear expression of the model. The two train-
able parameters are closely related to the current input,
so we consider adjusting the parameter update method
with Eq. (21).

For those parameters that are not in the batch data
normalization layer, each node updates the param-
eters using the average sparse gradient sent down from
the shared neural network layer. For those parameters
that belong to the batch data normalization layer, dif-
ferent domains use the local complete gradient instead
of the sparse gradient generated by themselves, which
is computed together with the sparse gradient passed
from other nodes. The gradient of the in-domain part
that is used to update the parameters in the batch data
normalization layer is always complete without delay.
The sparse and accumulative process only serves other
domains besides itself.

In the sparse case, we find that the multi-domain
approach proposed in this paper performs better in the
model enriched with batch data normalization layers
compared to the traditional approach of using sparse

(20)�k
t+1

= �k
t
−

�

N
⋅

�

�j,t
√

Vj,t

+

N (k≠j)
�

k=1

sparse

�

�k ,t
√

Vk ,t

��

(21)

�k
t+1

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�k
t
−

�

N
⋅

N
∑

k=1

sparse
�

�k ,t
√

�k ,t

�

, for � ∉ BN

�k
t
−

�

N
⋅

�

�j,t
√

�j,t+
+

N (k≠j)
∑

k=1

sparse
�

�k ,t
√

Vk ,t

�

�

, for � ∈ BN

Page 7 of 14Wang et al. EURASIP Journal on Information Security (2023) 2023:5

gradients from all nodes. The parameters of the batch
data normalization layer of the domain itself can be
applied directly and locally mitigating the convergence
bias caused by delayed updates.

4 Experiment
4.1 Data set
4.1.1 HTTP traffic data set
The dataset used in this experiment, the HTTP traffic
data set, is a collection of real traffic generated during
vulnerability scanning [31]. The dataset includes 685,147
abnormal traffic events, which are categorized into six
types: file inclusion, SQL injection, webshell, cross-site
scripting (XSS), sensitive data exposure, and Struts2 vul-
nerabilities, as shown in 1. Additionally, the dataset also
includes 1 million normal and unmarked traffic samples
for testing purposes. This diverse range of traffic patterns
allows researchers to evaluate the performance of their
proposed models on different types of network traffic and
identify patterns that may be specific to certain types of
attacks or vulnerabilities.

4.1.2 CTU‑13 data set
CTU-13 data set [21], developed in 2011 by cyber secu-
rity researchers at the Czech Technical University in
Prague, is a comprehensive dataset that includes various
types of malware traffic. The study focuses on evaluat-
ing the performance of the proposed model by selecting
eight representative malwares from the CTU-13 data

set and analyzing their behavior patterns, as shown
in Table 2. This approach allows for a more detailed
assessment of the model’s capabilities in detecting and
mitigating malware attacks, which are increasingly preva-
lent in today’s digital landscape.

4.1.3 ISCX data set
ISCX [22] was developed by Draper Gil et al. in 2015 and
comprises seven common traffic types as well as their
corresponding VPN encapsulations, totaling a staggering
fourteen categories. In this study, a selection of eight
categories from the aforementioned list was chosen, as
evidenced by Table 3.

4.1.4 KDDcup99
This dataset was utilized in the third International
Knowledge Discovery and Data Mining Tools Competi-
tion, which took place concurrently with the 5th Inter-
national Conference on Knowledge Discovery and Data
Mining (KDD-99). The competition task involved build-
ing a network intrusion detector, which is a predictive
model that can differentiate between "bad" connections
(referred to as intrusions or attacks) and "good" normal
connections. The database contains a set of standard data
for auditing purposes, including various types of simu-
lated intrusions in a military network environment. Its
multi-domain division can be categorized into R2L, U2B,
DoS, and Probe.

Table 1 Data of HTTP abnormal traffic

Categories Number of entries

File inclusion 46,438

SQL injection 163,776

Webshell 288,050

XSS 127,750

Sensitive data exposure 166,56

Struts2 vulnerabilities 42,477

Total 685,147

Table 2 Eight typical malwares in CTU-13

CTU serial number Name of software Explanation

43 Neris Famous malware captured in August 2011

114–3 Emotet Banking Trojan malware, captured from April to June 2015

116–1 Kazy A widely spread Trojan Horse, captured in May 2012

119–2 Geodo Banking Trojan malware, captured from April to June 2015

127–1 Miuref Troian captured in June 2015 for Windows

142–1 Shifu Japanese Banking Trojan Horse, captured in September 2015

147–1 Avzhan DDOS robot, taken in September 2015

158–1 Tinna Trojan Banking taken in April 2016

Table 3 Data selected from ISCX

Way of communication Content

VPN chat AIM, Facebook, ICQ, and Skype

Chat

VPN e-mail Gmail

E-mail

VPN traffic Inetflix, Spotify, Sopcast, and Skype

Traffic

VPN-P2P Bittorrent and uTorrent

P2P

Page 8 of 14Wang et al. EURASIP Journal on Information Security (2023) 2023:5

4.1.5 CCCS‑CIC‑AndMal2020
TheAndroid malware dataset, designated as CCCS-CIC-
AndMal-2020,comprises 200,000 benign and 200,000
malicious software samples. Thisvast collection of
data includes a total of 4 million Androidapplications,
spanning across 14 renowned malware categories and
191famous malware programs. The multi-domain nature
of this dataset canbe effectively represented using differ-
ent types of malware.

4.2 Experimental settings
This experiment utilizes the Windows 10 64-bit operating
system, equipped with a 18GB RAM and a quad-core Intel
Core i7-10900 processor, as well as Nvidia GTX1080 GPU
acceleration. The Python framework for implementation
is TensorFlow and Keras [5]. The optimization algorithm
employed is ADAM [12], with a batch size of 200, input
training dataset size of 96,000 samples, and flow rate per
type of traffic set at 6,000. Additionally, another 64,000
samples were selected for testing purposes, with each type
of abnormal traffic having 4,000 samples.

In this experiment, each entry in the dataset is treated
as an array and converted into text for LSTM learning.
Initially, we train our model using a labeled HTTP traffic
dataset. Our evaluation metrics include precision, recall,
and F1 score, which enable us to assess the model’s abil-
ity to detect anomalies in HTTP traffic. Subsequently, we
validate the model’s performance on an additional 1 mil-
lion unlabeled HTTP traffic datasets. Furthermore, this
experiment demonstrates the effectiveness of our model
for detecting network anomalies across multiple domains
using the CTU-13 and ISCX datasets. The evaluation
metrics used are precision and recall.

4.3 Comparison algorithms
This experiment uses the following comparison algo-
rithms for HTTP traffic anomaly detection.

(1) Deep feed-forward artificial neural networks
(CNN), which is widely used in image processing

(2) RNN, often used for time series prediction and
speech recognition

(3) Bi-LSTM, which can predict each feature of the
sequence based on the previous state and context

(4) The following comparison algorithms are used in
multi-domain anomaly detection

(5) Parallel cross-CNN [22] (PCCN), fusing different
domain characteristics from branches of CNN

(6) A hybrid of feed-forward neural networks (FNN)
and CNN [23] (HDCM), where FNN is used to pro-
cess formatted data, thereby reducing the overall
complexity of learning

(7) Decision tree which is an integrated learning
scheme

(8) Single-task learning (STL) of the basic layer of the
model proposed in this study.

5 Results

5.1 Detection of labeled data sets
The results of the labeled HTTP data set indicate that the
recall rate and F1 score of the sequence model (LSTM
and Bi-LSTM) are superior to those of CNN. In par-
ticular, Bi-LSTM has a better performance than LSTM.
The model proposed in this study outperforms both the
sequence model and CNN in terms of precision, recall,
and F1 score, as illustrated in Fig. 2. These findings demon-
strate that the proposed model has significant advantages
in supervised learning and is capable of identifying signifi-
cant differences between normal and abnormal traffic.

5.2 Detection of unlabeled data sets
Table 4 shows the results of the unlabeled data set.
CNN and the model proposed in this paper recog-
nized more abnormal samples than the LSTM-based
approach. Specifically, MT_MODEL refers to model
validation-based data, i.e., unlabeled data, which exists
in multi-domain form; MT_RULE is rule-based data
containing category imbalanced data to validate the
robustness of the model; MT_NEW is based on meta-
learning, where new samples are continuously added
during the training of the model to validate the scal-
ability of the model; TP naturally ground is the one
that is classified as positive samples and positive sam-
ples, which discriminates the sample correctly. From
Table 4, it is clear that the MT_MODEL indicator of
the proposed model is larger than other indicators,
which means that most of the traffic that is marked as
abnormal. Similarly, the performance of our model for
MT_RULE and MT_NEW is also the best, which can be
attributed to our application of multi-domain machine
learning to effectively solve the heterogeneous problem
of distribution. In particular, the use of attention mech-
anisms allows the model to focus on certain classes of
attacks with few samples. Compared with LSTM and
Bi-LSTM, the proposed model can find more abnormal
traffic. The FP value of the proposed model is the low-
est, which illustrates the superiority of the attention-
based model.

5.3 Weight distribution of attention
By extracting the attention weight of abnormal traf-
fic, three HTTP traffic entries are obtained that belong

Page 9 of 14Wang et al. EURASIP Journal on Information Security (2023) 2023:5

to cross-site scripting attacks with similar requests.
Figure 3 shows the attention weight distribution. The
depth of the color corresponds to the importance of the
words in the sentence given by the model. The darker
the color, the more important the word, vice versa.
Obviously, the valid words detected by the model are
“textarea”, “ < ”, “ > ”, “script”, “alert”, and “adminDir,”
which are consistent with the ground truth.

Fig. 2 Results on HTTP-labeled data sets

Table 4 Results on the unlabeled data sets

Model MT_MODEL MT_RULE MT_NEW FP

CNN 48,270 16,809 4973 33,910

LSTM 38,689 10,276 2527 25,886

Bi-LSTM 40,621 13,302 3835 23,466

Proposed model 55,692 18,917 5974 23,379

Fig. 3 Weight distribution of attention

Page 10 of 14Wang et al. EURASIP Journal on Information Security (2023) 2023:5

5.4 Malware detection
Figure 4 illustrates the precision and recall rates of the
model in malware detection. Compared to PCNN, STL,
and the proposed model, they have achieved higher preci-
sion and recall rates. The precision and recall of the pro-
posed model surpass those of STL for Neris and Emotet,
which exhibit clear patterns. Avzhan’s ambiguity signifi-
cantly reduces the overall performance of the proposed
model to 0.93. Although Tinba’s dimensionality is high,
its pattern is also clear. STL and the proposed model can
achieve high precision. The proposed model leverages
the information of the integrated module, allowing tasks
in different domains to share lower-level parameters. The
individual level learns specific knowledge, while the public
level learns shared knowledge across different domains.

Table 5 presents a comparison of the performance
of various models in terms of precision and recall. The
"average" column indicates the average performance of
each model as shown in Figs. 4 and 5. The results dem-
onstrate that the proposed model exhibits superior sta-
bility, with minimal reduction in precision and significant
improvement in recall rate.

5.5 Identification of VPN encapsulation
The results of the performance comparison between the
proposed model and the decision tree in Table 6 indicate
a significant improvement in precision and recall rate for
both VPN and non-VPN data, with an average improve-
ment of 9.25%. This demonstrates that the proposed
model is more effective in detecting network attacks
than the decision tree, which may struggle to distinguish
between normal and abnormal traffic due to the often-
disguised nature of network attacks. Overall, these find-
ings suggest that the proposed approach is a promising
method for improving network security and mitigating
the risks associated with cyber threats.

5.6 Trojan Horse classification
Table 7 presents the overall performance of different models
on the CTU-13 data set. The proposed model outperforms
PCNN and HDM in terms of precision and recall rate,
while also saving almost one-third of the training time
compared to PCNN and HDCM. This is due to the ability
of the proposed model to learn three domain tasks simul-
taneously through parameter sharing among domains.

Fig. 4 The precision of each malware detection

Table 5 Performance of models

Precision (%) Recall (%)

PCNN STL Proposed model PCNN STL Proposed
model

Average 94.6 96.7 97.9 94.9 96.6 98.0

Optimal 94.7 96.9 98.2 95.2 95.3 98.6

Difference 0.1 0.2 0.3 0.3 0.7 0.6

Page 11 of 14Wang et al. EURASIP Journal on Information Security (2023) 2023:5

The confidence interval shown in Table 8 was obtained
using paired sampling t test with a 90% confidence level.
The subscripts 1, 2, and 3 refer to PCNN, HDM, and the
proposed model, respectively. The degrees of freedom
were 24 (the abnormal category was 9, and there were
three models). The results demonstrate that the pro-
posed model outperforms both PCNN and HDM models
in terms of recall rate, and is better than HDM in preci-
sion. Furthermore, the results show that the proposed
model can handle three different domain tasks simul-
taneously without compromising performance in any
single domain.

5.7 KDDcupmulti detection
Table 9compares the performance of the PCNN model,
which is a lightGBM-based network traffic anomaly detec-
tion model that utilizes dataoptimization and Focal loss
optimization, with our model, which onlyutilizes data opti-
mization. The recall values for all four attacktypes have
improved, with Normal decreasing by only 2% and Dos,
U2R,R2L, and Probe increasing by 5%, 2%, 8%, and 6%
respectively. Amongthese improvements, the recall value
for the R2L attack type has beenthe most significant.
Ourmodel is a multi-classifier network traffic anomaly
detection modelthat uses data balancing and feature selec-
tion after optimization.Compared to the PCNN model,

Fig. 5 The recall of each malware detection

Table 6 Comparison between the decision tree and the
proposed model

Models VPN (%) Non‑VPN (%)

Precision Recall Precision Recall

Decision tree 89.0 92 91.6 87.8

Proposed model 99.3 99.5 99.7 98.6

Performance improvement + 10.9 + 6.8 + 9.3 + 10.0

Table 7 Overall performance of the models

Measures PCNN HDCM Proposed
model

Precision (%) 97.5 94.8 99.4

Recall (%) 94.7 94.7 98.0

Training time (s) 25.42 21.75 9.19

Table 8 Confidence interval

µ1 − µ3 µ2 − µ3

Precision (%) (− 3.561, 1.316) (− 6.711, − 1.985)

Recall (%) (− 6.671, − 0.482) (− 6.735, − 0.281)

Table 9 Comparison of Recall values of PCNN and our model on
KDDcup99

Recall

PCNN Our model

Normal 0.94 0.92

Dos 0.81 0.87

U2R 0.13 0.15

R2L 0.29 0.37

Probe 0.87 0.93

Page 12 of 14Wang et al. EURASIP Journal on Information Security (2023) 2023:5

which is solely based on CNN without anyoptimization,
our model has achieved an average recall improvement
of14% across all attack types.It is worth noting that the recall
value for U2Rand R2L is quite low, indicating that these types
of malware may beless common or more difficult to detect
than other types. The recallvalue for Probe is also lower than
the other types, which suggeststhat our model may need
further improvement in detecting this type ofmalware.

5.8 Multi‑domaindetection on CCCS‑CIC‑AndMal2020
data set

Androidmalware is one of the most serious threats on the
internet, and hasseen an unprecedented surge in recent
years. This presents a publicchallenge to cybersecurity
experts. There are many techniquesavailable for identifying

and classifying Android malware based onmachine learn-
ing, but recently, multi-domain machine learning hase-
merged as a prominent classification method for such
samples.Table10presents the results of a malware detec-
tion experiment, with eachcategory of malware listed
along with the number of families andsamples detected, as
well as the F1 score.Itappears that the most common types
of malware detected were adware,backdoor, file infec-
tor, riskware,ransomware, and Trojan. These categories
accounted for a significantportion of the total number of
families and samples detected.Itis worth noting that there
are some differences in the F1 scoresbetween different
categories. For example, the F1 score forransomware was
relatively high (0.9775), while the F1 score fortrojan was
relatively low (0.7868). This suggests that differenttypes of
malware may require different approaches for detection and-
classification. As can be seen from Table 10,the F1scorefor
each category of Android malware detection in this paper is
veryhigh, averaging 0.92, meeting the requirements of real-
worldscenarios and providing strong protection for Android
phones.Moreover, the efficiency and accuracy of the multi-
domain detectionsystem have been greatly improved.

5.9 Model convergence
The convergence validation of the proposed model is
shown in Fig. 6. According to Fig. 6, the weight search
space of the neural network is smaller than that of a single
structure LSTM. The network structure and the number
of neurons in the combination of attention mechanism

Table 10 DetectionEffectiveness of Different Types of Malware

Category Number of
families

Number of
samples

F1 score

Adware 48 47,210 0.8595

Backdoor 11 1,538 0.9627

File Infector 5 669 0.8963

No Category - 2,296 0.9756

PUA 8 2,051 0.9786

Ransomware 8 6,202 0.9775

Riskware 21 97,349 0.9555

Scareware 3 1,556 0.9788

Trojan 5 2351 0.7868

Fig. 6 Convergence of the proposed model

Page 13 of 14Wang et al. EURASIP Journal on Information Security (2023) 2023:5

and multi-domain machine learning affect the conver-
gence of the model. The attention mechanism corrected
by weighted summation is independent of the output of
the multi-domain learning [32]. Auto-regressive infor-
mation is incorporated in the model, which improves the
accuracy of the proposed algorithm. Besides, the lower
panel of Fig. 6 also shows that the objective function
converges rapidly and tends to smooth out (i.e., the con-
vergence speed of weights degrades shapely from 50 to
around 0) during both the testing and training processes.
Because the feedback information of the model struc-
ture restricts the weight search space of the LSTM-based
neural network, it is easier for the proposed algorithm to
obtain the optimal value and fast convergence speed.

6 Conclusion
In this study, we propose a multi-domain machine learning
model for network attack anomaly detection by combin-
ing Bi-LSTM and attention mechanism. Our approach has
been tested on several public large-scale traffic data sets,
and the results demonstrate that integrating multiple mod-
ules does not lead to additional overfitting. The proposed
model is able to accurately detect different types of network
anomalies, including HTTP traffic anomaly detection, mal-
ware detection, VPN encapsulation identification, and Tro-
jan horse classification. One key advantage of our approach
is its ability to adapt to different scenarios and optimize
the learning system accordingly. In future work, we plan to
explore the internal structure of various neural networks
further in order to achieve even better performance. This
could involve analyzing the strengths and weaknesses
of different models, as well as experimenting with new
training techniques and algorithms. Overall, our research
demonstrates the potential of using advanced machine
learning techniques for network security. By combining
multiple modules and optimizing the learning system, we
can develop more effective methods for detecting and pre-
venting network attacks. As such, our work has important
implications for both individuals and organizations looking
to protect their online assets from malicious actors.

Abbreviations
Bi-LSTM Bi-directional long-short-term memory
DBN Deep belief network
TF-IDF Term frequency-inverse document frequency
XSS Cross-site scripting
CNN Deep feedforward artificial neural networks
RNN Recurrent neural networks
PCCN Parallel cross-convolutional neural network
HDCM Hybrid of FNN (feed-forward neural networks) and CNN
STL Single task learning of the basic layer of the proposed model

Authors’ contributions
XW provided the original idea, completed the experiments, and formed the
document. JL completed the experiments and visualized the results. CZ imple-
mented the algorithms and reviewed and revised this paper.

Funding
This work was supported by Research on the Construction of Practical Teach-
ing System Based on “Five Talents Training Standards” – Taking Big Data Tech-
nology Application Specialty As an Example (YJJG2021007) and Research on
the Dilemma of Building Morality and Cultivating Talents in Higher Vocational
School-Enterprise Cooperation—Taking Big Data Technology as an Example
(XJ2223).

Availability of data and materials
All the data are available publicly.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 20 March 2022 Accepted: 23 May 2023

References
 1. L. Deng, G. Xie, H. Liu, Y. Han, R. Li, K. Li, A survey of real-time ethernet

modeling and design methodologies: from AVB to TSN. ACM Comput.
Surv. (CSUR) 55(2), 1–36 (2022)

 2. C. Zhang, X. Costa-Pérez, P. Patras, Tiki-Taka: attacking and defending
deep learning-based intrusion detection systems, in Proceedings of the
2020 ACM SIGSAC Conference on Cloud Computing Security Workshop.
(2020), pp.27–39

 3. B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, B.Y. Zhao, Neural
cleanse: identifying and mitigating backdoor attacks in neural networks,
in 2019 IEEE Symposium on Security and Privacy (SP). (IEEE, San Francisco,
2019), pp. 707–723

 4. Z. Shi, J. Li, C. Wu et al., DeepWindow: an efficient method for online
network traffic anomaly detection, in 2019 IEEE 21st International Confer-
ence on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS). (IEEE, Zhangjiajie, 2019),
pp. 2403–2408

 5. N. Moustafa, B. Turnbull, K.K.R. Choo, An ensemble intrusion detection
technique based on proposed statistical flow features for protecting
network traffic of internet of things. IEEE Internet Things J. 6(3), 4815–4830 (2018)

 6. N. Moustafa, K.K.R. Choo, I. Radwan et al., Outlier Dirichlet mixture mecha-
nism: adversarial statistical learning for anomaly detection in the fog. IEEE
Trans. Inf. Forensics Secur. 14(8), 1975–1987 (2019)

 7. B. Mbarek, M. Ge, T. Pitner, Enhanced network intrusion detection system
protocol for internet of things, in Proceedings of the 35th Annual ACM
Symposium on Applied Computing. (2020), pp.1156–1163

 8. A. Juvonen, T. Sipola, T. Hämäläinen, Online anomaly detection using
dimensionality reduction techniques for HTTP log analysis. Comput.
Netw. 91, 46–56 (2015)

 9. Z. Zhang, Q. He, J. Gao et al., A deep learning approach for detecting traf-
fic accidents from social media data. Trans. Res. Part C Emerg. Technol. 86,
580–596 (2018)

 10. H. Zhang, I. Goodfellow, D. Metaxas et al., Self-attention generative adver-
sarial networks, in International conference on machine learning. (PMLR,
Long Beach, 2019), pp. 7354–7363

 11. M. Joshi, M. Dredze, W. Cohen et al., Multi-domain learning: when do
domains matter?, in Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Lan-
guage Learning. (2012), pp.1302–1312

 12. H. Nam, B. Han, Learning multi-domain convolutional neural networks for
visual tracking, in Proceedings of the IEEE conference on computer vision and
pattern recognition. (2016), pp.4293–4302

 13. M.A. Ferrag, L. Maglaras, S. Moschoyiannis et al., Deep learning for cyber
security intrusion detection: approaches, datasets, and comparative
study. J. Inform. Secur. Appl. 50, 1–19 (2020)

 14. G. Liu, J. Guo, Bidirectional LSTM with attention mechanism and convolu-
tional layer for text classification. Neurocomputing 337, 325–338 (2019)

Page 14 of 14Wang et al. EURASIP Journal on Information Security (2023) 2023:5

 15. Y. Wang, J. An, W. Huang, Using CNN-based representation learn-
ing method for malicious traffic identification, in 2018 IEEE/ACIS 17th
International Conference on Computer and Information Science (ICIS). (IEEE,
Singapore, 2018), pp. 400–404

 16. D. Kwon, K. Natarajan, S.C. Suh, H. Kim, J. Kim, An empirical study on
network anomaly detection using convolutional neural networks, in
2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). (IEEE, Vienna, 2018), pp. 1595–1598

 17. Y. Yan, L. Qi, J. Wang, Y. Lin, L. Chen, A network intrusion detection
method based on stacked autoencoder and LSTM, in ICC 2020–2020 IEEE
International Conference on Communications (ICC). (IEEE, The Convention
Centre Dublin, 2020), pp. 1–6

 18. Z. Wu, J. Wang, L. Hu, Z. Zhang, H. Wu, A network intrusion detection
method based on semantic re-encoding and deep learning. J. Netw.
Comput. Appl. 164, 102688 (2022)

 19. J. Zhang, Y. Ling, X. Fu, X. Yang, G. Xiong, R. Zhang, Model of the intrusion
detection system based on the integration of spatial-temporal features.
Comput. Secur. 89, 101681 (2020)

 20. E. Mushtaq, A. Zameer, M. Umer, A.A. Abbasi, A two-stage intrusion
detection system with auto-encoder and LSTMs. Appl. Soft Comput. 121,
108768 (2022)

 21. P. Jeatrakul, K.W. Wong, C.C. Fung, Classification of imbalanced data by
combining the complementary neural network and SMOTE algorithm, in
Neural information processing. Models and applications: 17th International
Conference, ICONIP 2010, Sydney, Australia, November 22-25, 2010, Proceed-
ings, Part II 17. (Springer Berlin Heidelberg, 2010), pp.152–159

 22. B. Yan, G. Han, LA-GRU: building combined intrusion detection model
based on imbalanced learning and gated recurrent unit neural network.
Secur. Commun. Netw. 2018, 13 (2018). https:// doi. org/ 10. 1155/ 2018/
60268 78. (Article ID 6026878)

 23. N. Gupta, V. Jindal, P. Bedi, LIO-IDS: handling class imbalance using LSTM
and improved one-vs-one technique in intrusion detection system.
Comput. Netw. 192, 108076 (2021)

 24. I. Yahav, O. Shehory, D. Schwartz, Comments mining with TF-IDF: the
inherent bias and its removal. IEEE Trans. Knowl. Data. Eng. 31(3),
437–450 (2018)

 25. P. Bedi, N. Gupta, V. Jindal, Siam-IDS: handling class imbalance problem
in intrusion detection systems using siamese neural network. Procedia.
Comput. Sci. 171, 780–789 (2020)

 26. T. Bai, J. Zhao, J. Zhu, S. Han, J. Chen, B. Li, A. Kot, Ai-gan: attack-inspired
generation of adversarial examples, in 2021 IEEE International Conference
on Image Processing (ICIP). (IEEE, Anchorage, 2021), pp. 2543–2547

 27. F. Ma, R. Chitta, J. Zhou et al., Dipole: diagnosis prediction in healthcare
via attention-based bidirectional recurrent neural networks, in Proceed-
ings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. (Long Beach, 2017), pp. 1903–1911

 28. S. Shamshirband, A.T. Chronopoulos, A new malware detection system
using a high performance-ELM method, in Proceedings of the 23rd interna-
tional database applications & engineering symposium. (2019), pp.1–10

 29. S. Soheily-Khah, P.F. Marteau, N. Béchet, Intrusion detection in network
systems through hybrid supervised and unsupervised machine learning
process: a case study on the ISCX dataset, in 2018 1st International Confer-
ence on Data Intelligence and Security (ICDIS). (IEEE, South Padre Island,
2018), pp. 219–226

 30. Y. Zhang, X. Chen, D. Guo et al., PCCN: parallel cross convolutional neural
network for abnormal network traffic flows detection in multi-class
imbalanced network traffic flows. IEEE Access 7, 119904–119916 (2019)

 31. H. Huang, H. Deng, Y. Sheng et al., Accelerating convolutional neural
network-based malware traffic detection through ant-colony clustering.
J. Intell. Fuzzy. Syst. 37(1), 409–423 (2019)

 32. P. An, Z. Wang, C. Zhang, Ensemble unsupervised autoencoders and
Gaussian mixture model for cyberattack detection. Inf. Process Manag.
59(2), 102844 (2022)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1155/2018/6026878
https://doi.org/10.1155/2018/6026878

	Network intrusion detection based on multi-domain data and ensemble-bidirectional LSTM
	Abstract
	1 Introduction
	2 Related work
	3 Proposed model
	3.1 Ensemble Bi-LSTM
	3.1.1 Input layer
	3.1.2 Embedding layer
	3.1.3 Bi-LSTM layer
	3.1.4 Attention layer

	3.2 Multi-domain learning
	3.2.1 Proof of feasibility
	3.2.2 The loss functions for different attacks

	3.3 Convergence analysis

	4 Experiment
	4.1 Data set
	4.1.1 HTTP traffic data set
	4.1.2 CTU-13 data set
	4.1.3 ISCX data set
	4.1.4 KDDcup99
	4.1.5 CCCS-CIC-AndMal2020

	4.2 Experimental settings
	4.3 Comparison algorithms

	5 Results
	5.1 Detection of labeled data sets
	5.2 Detection of unlabeled data sets
	5.3 Weight distribution of attention
	5.4 Malware detection
	5.5 Identification of VPN encapsulation
	5.6 Trojan Horse classification
	5.7 KDDcupmulti detection
	5.8 Multi-domaindetection on CCCS-CIC-AndMal2020 data set
	5.9 Model convergence

	6 Conclusion
	References

