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Abstract 

Different types of network traffic can be treated as data originating from different domains with the same objectives 
of problem-solving. Previous work utilizing multi-domain machine learning has primarily assumed that data in differ-
ent domains have the same distribution, which fails to effectively address the domain offset problem and may not 
achieve excellent performance in every domain. To address these limitations, this study proposes an attention-based 
bidirectional long short-term memory (Bi-LSTM) model for detecting coordinated network attacks, such as malware 
detection, VPN encapsulation recognition, and Trojan horse classification. To begin, HTTP traffic is modeled as a series 
of natural language sequences, where each request follows strict structural standards and language logic. The Bi-LSTM 
model is designed within the framework of multi-domain machine learning technologies to recognize anomalies of 
network attacks from different domains. Experiments on real HTTP traffic data sets demonstrate that the proposed 
model has good performance in detecting abnormal network traffic and exhibits strong generalization ability, ena-
bling it to effectively detect different network attacks simultaneously.

Keywords Anomaly detection, Attention mechanism, Bidirectional LSTM, Multi-domain learning

1 Introduction
The Ethernet protocol has been widely used in recent 
decades. One of the most significant properties of Ether-
net protocols is that they are partially open source and 
designed with security policy flaws [1], which means 
that network equipment is vulnerable to serious security 
threats such as viruses, Denial of Service (DoS) attacks, 
and port cracking access. As software systems and appli-
cations become increasingly complex, more and more 
vulnerabilities have emerged, causing great harm to 
network security [2]. Network intrusion detection is a 
means of network protection, which aims to analyze the 

network traffic, log data, and related information and 
discover abnormal traffic data from a large set of data 
streams. Once the network traffic is recognized as abnor-
mal, it can be considered as an attack on the network so 
that related measures must be taken in advance to avoid 
catastrophic loss [3].

Basically, existing network anomaly detection methods 
can be divided into two categories: one is based on fea-
ture distribution [4, 5], and the other is based on content 
detection [6, 7]. However, these methods often lack the 
ability to distinguish between different types of attacks, 
leading to inaccurate detection of some anomalies. 
Recent studies have proposed using machine learning 
techniques to discover abnormal behavior from HTTP 
server logs and cluster HTTP session processes using a 
non-parametric hidden Markov model with explicit state 
duration [8]. Additionally, some researchers have used 
unsupervised deep belief networks (DBNs) to extract 
low-level features and trained single-class support vec-
tor machines (SVMs) to perform anomaly detection and 
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diagnosis from network traffic [9]. These methods usually 
only involve the detection of a single type of traffic and 
cannot automatically extract and identify the key features 
of multiple types of traffic [10].

These models can automatically discover key features 
in HTTP traffic before learning complex attack patterns, 
making them particularly useful for detecting malicious 
network traffic. However, many network attackers often 
conduct coordinated attacks between different types 
of traffic due to the complexity of the network environ-
ment. To address this challenge, researchers have pro-
posed using multi-domain machine learning techniques 
to improve the detection efficiency by sharing solving 
processes across different domains. This approach has 
shown acceptable anomaly detection capabilities for 
diverse types of attacks, making it a promising area of 
research for improving network security [11].

However, most deep learning models simply assume 
that data captured from different domains have the same 
distribution, which can neither effectively address the 
domain offset problem, nor achieve excellent perfor-
mance in every domain [12]. One reason why this hap-
pens is that it is difficult for most models to automatically 
detect hidden abnormal traffic from a large amount of 
network traffic. The other reason is that the lack of an 
integrated end-to-end system makes it impossible to dis-
cover the characteristics of traffic in different domains at 
the same time. To this end, we firstly propose a bidirec-
tional long-short-term memory (Bi-LSTM) model based 
on the embedded attention mechanism to simultaneously 
detect different types of coordinated network attacks (i.e., 
malware detection, VPN encapsulation recognition, and 
Trojan Horse classification). Then, we designed a multi-
domain neural network to detect abnormal traffic pro-
cesses from different domains. The elements in the traffic 
are modeled as vocabulary, and the semantic relationship 
between vocabularies can be learned by the proposed 
Bi-LSTM. Experiments demonstrate that the model pro-
posed in this study has high precision and generalization 
ability on the real HTTP traffic data set.

2  Related work
For the purpose of network intrusion detection, machine 
learning approaches such as cluster analysis, Bayesian 
networks, particle algorithms, and other shallow struc-
ture algorithms are commonly used [10, 11]. Most of the 
algorithms can learn enriched features of the data, but 
they are difficult to be used in practical scenarios due to 
different means of intrusion and heterogeneous distribu-
tions of the data. Network intrusion detection based on 
deep learning is independent of feature engineering and 
can automatically learn complex features from raw traffic 

data [13]. Therefore, many scholars have applied neural 
networks to network intrusion detection tasks. Due to 
the improvement of the traffic classification accuracy, 
network anomaly detection based on neural networks 
has become a hot research topic in academia. Repre-
sentative examples with respect to these studies are as 
follows. The authors in the literature [14] first mapped 
network traffic features to strings and translated the net-
work traffic classification problem to text classification in 
natural language processing. They used recurrent neural 
networks (RNN) to learn temporal features of network 
traffic and further used it for malicious network traffic 
detection. The authors in the literature [15] proposed a 
malware traffic classification algorithm based on convo-
lutional neural networks (CNN) for intrusion detection 
by mapping traffic features to generate grayscale pixel 
images. They processed network intrusion detection with 
network traffic image classification. The authors in the 
literature [16] made a relevant summary of deep learning 
models, focusing on traffic data simplification, dimen-
sionality reduction, and classification techniques. They 
proposed fully convolutional networks, which proved the 
effectiveness in analyzing the network traffic. In addition, 
the authors in the literature [17] proposed an anoma-
lous traffic detection method based on long-short-term 
memory (LSTM) with improved residual neural network 
optimization, which addressed the disadvantages such 
as overfitting and gradient disappearance in deep neural 
networks. As a result, the proposed model improved the 
accuracy of network anomalous traffic detection.

As a matter of fact, the CNN and RNN sequence mod-
els that combine attention mechanism with deep learn-
ing have played a critical role in the field of anomaly 
detection [9–11]. CNN has a generalization ability to a 
variety of classification tasks and can obtain the spatial 
characteristics of data during intrusion detection. How-
ever, the poor convergence of model training speed usu-
ally results in low accuracy and high false alarm rate [18]. 
RNN extracts time series and semantic information using 
temporal information as input; however, the training pro-
cess costs too much compared to the shallow structure 
algorithms [19]. Although the auto-encoder can be used 
to capture the nonlinear information in the data by tra-
ditional dimension-reduction methods, the model evalu-
ation index is too simple to improve the error rate of 
detection [20].

Network intrusion detection based on multi-domain 
network traffic considers the multi-domains of data. 
Because few classes of samples are likely to make the 
model overfitting during the training process and the 
model prediction is more biased to the majority of sam-
ples, the previous multi-domain method is less accurate 
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for malicious attack identification than existing CNN 
and RNN-based approaches. Therefore, many scholars 
are motivated to study the multi-domain distribution 
of network traffic data. For example, the authors in the 
literature [21] proposed a method to improve the accu-
racy of minority class classification. The method com-
bines the minority oversampling technique (SMOTE) 
and complementary neural network (CMTNN) to solve 
the multi-domain problem caused by network traffic dis-
tribution. Experiments on the UCI data set report that 
the proposed method can improve the intrusion detec-
tion accuracy and identification of multi-domains. The 
authors in the literature [22] proposed an improved local 
adaptive composite minority sampling algorithm (LA-
SMOTE) to deal with the network traffic multi-domain 
problem and then detect network traffic anomalies based 
on a gated recurrent unit neural network. The authors in 
the literature [23] combined upsampling and downsam-
pling methods to deal with the multi-domain data set 
CIDDS-001 and evaluated the data set with classifiers 
such as deep neural networks, random forests, and vari-
ational autoencoders. Recently, deep autoencoders are 
used to build data generation models to form balanced 
data sets [24]. However, the authors in the literature [25] 
proposed a Siamese intrusion detection system based 
on twin neural networks to detect R2L and U2R attacks 
without using traditional class balancing techniques. The 

use of a generative adversarial network (GAN) model is 
proposed to generate samples with different attack labels 
(e.g., blacklisting, anomalous spam, SSH brute force 
cracking) for balancing the data set, which improves the 
classification accuracy [26]. To summarize, although the 
related works contribute to network anomaly detection, 
the heterogeneous data distribution caused by the multi-
domain problem makes the proposed algorithms little 
effective, especially in the detection of attacks with few 
class samples.

3  Proposed model
The structure of the proposed model is shown in Fig. 1. 
The left side of Fig.  1 is the Bi-LSTM module based on 
the attention mechanism, which consists of four parts, 
i.e., the input layer, the embedding layer, the Bi-LSTM 
layer, and the attention layer. The Bi-LSTM module pro-
vides specific knowledge for the individual layer. We train 
the content sequence and adopt an exit strategy to avoid 
overfitting before it comes to the output layer. The right 
side of Fig.  1 shows three Bi-LSTM modules that con-
nect the output of the attention layer to multi-domain 
learning and jointly train a Bi-LSTM hybrid model with 
integrated attention in the multi-domain learning frame-
work. The three-domain tasks share the parameters of 
the lower layers and provide prior knowledge for the 
public layer.

Fig. 1 Structure of the proposed model
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3.1  Ensemble Bi‑LSTM
3.1.1  Input layer
This study selects common vocabulary in the training set 
to build a vocabulary based on term frequency-inverse 
document frequency (TF-IDF) [27] and generates a 
unique index for each vocabulary. The final input vector 
consists of a unique word identifier of a fixed length Z, 
where Z is a hyperparameter. The redundant part of the 
data is removed, and the insufficient part is filled with 
zeros. For example, given a series of content: {‘/’, ‘admin’, 
‘/’, ‘caches’, ‘/’, ‘error_ches’, ‘.’, ‘php’}, its input vector can be 
represented by [23, 3, 23, 56, 23, 66, 0, 0, …, 0] because 
the index of “/” in the vocabulary is 23. Since the length of 
the input vector is less than the fixed value, the remaining 
part is filled with zeros.

3.1.2  Embedding layer
We convert the original input sequence into an input vec-
tor, denoted as si = {w1,w2,w3, . . . ,wz} , and obtain an 
embedding vector v = {v1, v2, v3, . . . , vz} . Then, the vec-
tor of each word is represented as Eq. (1).

where wk ∈ R1, (k = 1, 2, . . . , z) is the input vector, 
We ∈ Rm×1 is the weight matrix, be ∈ Rm is the bias vec-
tor, and m is the size of the embedding dimension and 
ReLU is the activation function [18].

3.1.3  Bi‑LSTM layer
Bi-LSTM is composed of forward LSTM and backward 
LSTM, which can use previous and future information to 
improve prediction performance. Given the embedding 
vector v = {v1, v2, v3, . . . , vz} of request Ri , the forward 
LSTM 
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3.1.4  Attention layer
The attention mechanism usually only considers the hid-
den state information of the individual and cannot cap-
ture the relationship between the current hidden state 
and previous hidden states. This study uses location-
based attention to capture the relationship between hz 

(1)vk = ReLU(Wewk + be) ∈ Rm

and hi(1 ≤ i < z) . The attention weight is calculated as 
Eq. (2):

where Wα ∈ R2p and bα ∈ R are model parameters and 
bias, respectively.

The weight vector αz is expressed as Eq. (3):

where αzi = vTα tanh (Wα[hz; hi]) . The context vector cz 
[19] is represented as Eq. (4):

The hidden state h̃ can be calculated as Eq. (5):

where Wc ∈ Rr×4p is the weight matrix in the attention 
layer, and r is the number of dimensions of the state in 
the attention layer.

3.2  Multi‑domain learning
3.2.1  Proof of feasibility
To some extent, the feasibility of multi-domain learning 
is determined by its ability to prevent overfitting. Over-
fitting means that the model can accurately learn the 
information on the training data set but cannot handle 
the random test set. Generally speaking, a more complex 
model may suffer from more severe overfitting.

For a single learning task, its cost function J (·) can be 
represented by Eq. (6):

where F(·) represents the objective function of multi-
domain machine learning, y is the label, h̃ represents the 
use of hidden state of different channels as the input of 
the multi-domain, θs is the shared parameter set with the 
best value �s , and θi is the parameter set with the best 
value �i for the single task.

Minimizing the weighted sum of J (·) , we get �i and �s , 
formulated as Eq. (7):

where αi is the discount factor of θi and l is the number of 
domains.

(2)vk = ReLU(Wewk + be) ∈ Rm

(3)αz = softmax αz1,αz2, . . . ,αz(z−1)

(4)cz =
z−1
∑

i

αzihi

(5)h̃ = tanh (Wc[cz; hz])

(6)J
(

𝜃s, 𝜃i

)

=
1

2n

n
∑

i=1

(

F
𝜃s
(h̃) + F

𝜃i
(h̃) − y

)

= F
(

h̃;𝜃s, 𝜃i
)

(7)(�s,�i) = argminθs ,θi

l
∑

i=1

αiF
(

h̃; θs, θi
)



Page 5 of 14Wang et al. EURASIP Journal on Information Security          (2023) 2023:5  

Since multi-domain learning uses different θi , the loss 
function Ri of tasks in different domains can be regarded 
as the regularization function of Eq. (8):

Regularization is the most common and effective method 
to deal with overfitting. Adding a regularization func-
tion to the loss function can simplify its high-dimensional 
structure. Therefore, the optimal shared parameters are 
restricted to a smaller solution, making the learner �s 
equally effective for other tasks.

3.2.2  The loss functions for different attacks
Since malware detection and VPN encapsulation identifi-
cation are processed in a common fully connected layer, 
and the data of Trojan Horses needs to be fed to an addi-
tional layer, this study designs different loss functions for 
different network attacks.

Since the amount of data detected by malware is small, 
it can be treated as a binary classification problem. The 
loss function based on cross-entropy is suitable for this 
task. For VPN encapsulation identification, it can be 
regarded as a regression problem in different scenarios. 
The loss function of the binary classification problem is 
shown in Eq. (9):

where m = 1 represents VPN encapsulation, m = 0 rep-
resents normal data, and pm represents the predicted 
probability that the data segment will be encapsulated by 
the VPN.

The loss function of the regression problem is shown in 
Eq. (10):

where py is the suspicious degree of VPN encapsulation 
attacks, s is the actual degree of suspiciousness, σ 2 is the 
variance of the suspicious degree between py and s , 
1
2 (y− s)2 is the loss of Euclidean function, and 
1− exp

(
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2σ 2

)

 is the loss of Gaussian function. When 
the initial prediction value is far from the actual value, 
the loss effect of the Euclidean function is better than the 
loss of the Gaussian function. By contrast, the loss of the 
Gaussian function is more useful when σ 2 degrades dra-
matically [28]. We obtain a better learning ability and 
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anomaly detection performance of the VPN encapsula-
tion model by changing values of �.

For the Trojan Horse program, the multi-type cross-
entropy is used as the loss function, as shown in Eq. (11):

Let F be the total loss of multi-domain machine learn-
ing. The loss functions of anomaly detection tasks in dif-
ferent domains can be unified by Eq. (12):

where βi is the discount factor corresponding to the 
task i . Since the loss gradient of regression tasks in the 
learning process is often smaller than that of classifi-
cation tasks, we set β2 to a large value constrained to 
β1 + β2 + β3= 1.

3.3  Convergence analysis
Regarding the convergence of the model, it can be ana-
lyzed by the parameter update process of the incoming 
gradient. Since the batch data normalization layer nor-
malizes the input, it needs the trainable parameters in the 
layer to maintain the expressiveness of the network. By 
updating the trainable parameters in the batch data nor-
malization layer using local gradients, the degradation of 
model expressiveness caused by sparse gradients can be 
prevented. The model is updated with sparse gradients in 
a way that makes full use of the data to prevent the loss of 
model accuracy due to sparsity [29].

During model training, the gradient sparsity is updated 
in such a way that each domain data is sparse locally for 
the current generated gradient gt uploaded and averaged 
by the parameter server. The gradient is adaptively com-
puted by the optimizer and multiplied by the learning 
rate α for updating the parameters. This process can be 
expressed by Eq. (13).

where α represents the average of the sparse gradient of 
all domain data uploads, i.e.:

After using the gradient correction, the domain data 
is computed by the optimizer for the complete gradient. 
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The sparse result for that gradient is uploaded and col-
lected by the neural network layer with shared param-
eters. So, the parameter updates after using the gradient 
correction can be expressed by Eq. (15).

where mt = φt
(

g1, . . . , gt
)

 and Vt = ϕt
(

g1, . . . , gt
)

 , N is 
the number of samples.

The update is performed with sparse gradients for all 
trainable parameters in the model. For the output chan-
nels of the neural network layers, the group normaliza-
tion is formed as a group to further improve the batch 
normalization. The batch normalization, layer normali-
zation, instance normalization, and group normalization 
differentiate the range of the set Si. We use T to denote 
the number of feature maps, C to denote the number 
of channels, and H × W to denote the size of the feature 
map. Then, we have Eq. (16).

The layer normalization is the set of all feature maps in 
which only the points on the same feature map constitute 
can participate in the calculation of the mean and stand-
ard deviation of the current point. The set is represented 
by Eq. (17):

The instance normalization is the set of all features that 
only the set of points on the same feature map can par-
ticipate in the calculation of the current point mean and 
standard deviation. The set is represented by Eq. (18):

The group normalization is caused by grouping in the 
channel dimension. Suppose that the number of channels 
C is divided into G groups, then the set is represented by 
Eq. (19):

where 
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 indicates the points in the same 
group.

While training the model, the parameters to be syn-
chronized in the batch data normalization layer consist 
of the mean µB and the variance σ 2

B . Since they refer to 
the results of the current batch, it is necessary to commu-
nicate with each other to transmit the results calculated 
from the local data. The optimal solution is to trans-
mit the square of the mean to each other because it can 
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compute the mean and variance of the overall batch data 
accurately with minimal communication overhead.

In the gradient-efficient update method, all trainable 
parameters in the model are updated with sparse gradi-
ents, which results in a forced delay in the update of most 
gradients. In order to alleviate the delay, the full set of 
gradient update parameters is considered to be utilized.

where θkt+1 is a parameter on the kth domain when t + 1 
training iterations are performed. At this moment, the 
parameter update uses the complete result computed by 
the optimizer and the flatness transmitted by the other 
domains. Compared with the original update method, 
the sparse gradient is not used in the part of the gradient 
generated by the node itself. Herein, the complete gradi-
ent is used instead [30].

It should be noted that, when the data distribution is 
changed, the true distribution of the training data is not 
well presented. To solve this problem, the batch data nor-
malization layer has two trainable parameters, which are 
used to change the magnitude of the local variance and 
the mean position of the data. The changed distribution 
can be more consistent with the real distribution to facili-
tate the nonlinear expression of the model. The two train-
able parameters are closely related to the current input, 
so we consider adjusting the parameter update method 
with Eq. (21).

For those parameters that are not in the batch data 
normalization layer, each node updates the param-
eters using the average sparse gradient sent down from 
the shared neural network layer. For those parameters 
that belong to the batch data normalization layer, dif-
ferent domains use the local complete gradient instead 
of the sparse gradient generated by themselves, which 
is computed together with the sparse gradient passed 
from other nodes. The gradient of the in-domain part 
that is used to update the parameters in the batch data 
normalization layer is always complete without delay. 
The sparse and accumulative process only serves other 
domains besides itself.

In the sparse case, we find that the multi-domain 
approach proposed in this paper performs better in the 
model enriched with batch data normalization layers 
compared to the traditional approach of using sparse 
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gradients from all nodes. The parameters of the batch 
data normalization layer of the domain itself can be 
applied directly and locally mitigating the convergence 
bias caused by delayed updates.

4  Experiment
4.1  Data set
4.1.1  HTTP traffic data set
The dataset used in this experiment, the HTTP traffic 
data set, is a collection of real traffic generated during 
vulnerability scanning [31]. The dataset includes 685,147 
abnormal traffic events, which are categorized into six 
types: file inclusion, SQL injection, webshell, cross-site 
scripting (XSS), sensitive data exposure, and Struts2 vul-
nerabilities, as shown in 1. Additionally, the dataset also 
includes 1 million normal and unmarked traffic samples 
for testing purposes. This diverse range of traffic patterns 
allows researchers to evaluate the performance of their 
proposed models on different types of network traffic and 
identify patterns that may be specific to certain types of 
attacks or vulnerabilities.

4.1.2  CTU‑13 data set
CTU-13 data set [21], developed in 2011 by cyber secu-
rity researchers at the Czech Technical University in 
Prague, is a comprehensive dataset that includes various 
types of malware traffic. The study focuses on evaluat-
ing the performance of the proposed model by selecting 
eight representative malwares from the CTU-13 data 

set and analyzing their behavior patterns, as shown 
in  Table  2.  This approach allows for a more detailed 
assessment of the model’s capabilities in detecting and 
mitigating malware attacks, which are increasingly preva-
lent in today’s digital landscape.

4.1.3  ISCX data set
ISCX [22] was developed by Draper Gil et al. in 2015 and 
comprises seven common traffic types as well as their 
corresponding VPN encapsulations, totaling a staggering  
fourteen categories. In this study, a selection of eight 
categories from the aforementioned list was chosen, as 
evidenced by Table 3.

4.1.4  KDDcup99
This dataset was utilized in the third International 
Knowledge Discovery and Data Mining Tools Competi-
tion, which took place concurrently with the 5th Inter-
national Conference on Knowledge Discovery and Data 
Mining (KDD-99). The competition task involved build-
ing a network intrusion detector, which is a predictive 
model that can differentiate between "bad" connections 
(referred to as intrusions or attacks) and "good" normal 
connections. The database contains a set of standard data 
for auditing purposes, including various types of simu-
lated intrusions in a military network environment. Its 
multi-domain division can be categorized into R2L, U2B, 
DoS, and Probe.

Table 1 Data of HTTP abnormal traffic

Categories Number of entries

File inclusion 46,438

SQL injection 163,776

Webshell 288,050

XSS 127,750

Sensitive data exposure 166,56

Struts2 vulnerabilities 42,477

Total 685,147

Table 2 Eight typical malwares in CTU-13

CTU serial number Name of software Explanation

43 Neris Famous malware captured in August 2011

114–3 Emotet Banking Trojan malware, captured from April to June 2015

116–1 Kazy A widely spread Trojan Horse, captured in May 2012

119–2 Geodo Banking Trojan malware, captured from April to June 2015

127–1 Miuref Troian captured in June 2015 for Windows

142–1 Shifu Japanese Banking Trojan Horse, captured in September 2015

147–1 Avzhan DDOS robot, taken in September 2015

158–1 Tinna Trojan Banking taken in April 2016

Table 3 Data selected from ISCX

Way of communication Content

VPN chat AIM, Facebook, ICQ, and Skype

Chat

VPN e-mail Gmail

E-mail

VPN traffic Inetflix, Spotify, Sopcast, and Skype

Traffic

VPN-P2P Bittorrent and uTorrent

P2P
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4.1.5  CCCS‑CIC‑AndMal2020
TheAndroid malware dataset, designated as CCCS-CIC-
AndMal-2020,comprises 200,000 benign and 200,000 
malicious software samples. Thisvast collection of 
data includes a total of 4 million Androidapplications, 
spanning across 14 renowned malware categories and 
191famous malware programs. The multi-domain nature 
of this dataset canbe effectively represented using differ-
ent types of malware.

4.2  Experimental settings
This experiment utilizes the Windows 10 64-bit operating 
system, equipped with a 18GB RAM and a quad-core Intel 
Core i7-10900 processor, as well as Nvidia GTX1080 GPU 
acceleration. The Python framework for implementation 
is TensorFlow and Keras [5]. The optimization algorithm 
employed is ADAM [12], with a batch size of 200, input 
training dataset size of 96,000 samples, and flow rate per 
type of traffic set at 6,000. Additionally, another 64,000 
samples were selected for testing purposes, with each type 
of abnormal traffic having 4,000 samples.

In this experiment, each entry in the dataset is treated 
as an array and converted into text for LSTM learning. 
Initially, we train our model using a labeled HTTP traffic 
dataset. Our evaluation metrics include precision, recall, 
and F1 score, which enable us to assess the model’s abil-
ity to detect anomalies in HTTP traffic. Subsequently, we 
validate the model’s performance on an additional 1 mil-
lion unlabeled HTTP traffic datasets. Furthermore, this 
experiment demonstrates the effectiveness of our model 
for detecting network anomalies across multiple domains 
using the CTU-13 and ISCX datasets. The evaluation 
metrics used are precision and recall.

4.3  Comparison algorithms
This experiment uses the following comparison algo-
rithms for HTTP traffic anomaly detection.

(1) Deep feed-forward artificial neural networks 
(CNN), which is widely used in image processing

(2) RNN, often used for time series prediction and 
speech recognition

(3) Bi-LSTM, which can predict each feature of the 
sequence based on the previous state and context

(4) The following comparison algorithms are used in 
multi-domain anomaly detection

(5) Parallel cross-CNN [22] (PCCN), fusing different 
domain characteristics from branches of CNN

(6) A hybrid of feed-forward neural networks (FNN) 
and CNN [23] (HDCM), where FNN is used to pro-
cess formatted data, thereby reducing the overall 
complexity of learning

(7) Decision tree which is an integrated learning 
scheme

(8) Single-task learning (STL) of the basic layer of the 
model proposed in this study.

5  Results

5.1  Detection of labeled data sets
The results of the labeled HTTP data set indicate that the 
recall rate and F1 score of the sequence model (LSTM 
and Bi-LSTM) are superior to those of CNN. In par-
ticular, Bi-LSTM has a better performance than LSTM. 
The model proposed in this study outperforms both the 
sequence model and CNN in terms of precision, recall,  
and F1 score, as illustrated in Fig. 2. These findings demon-
strate that the proposed model has significant advantages 
in supervised learning and is capable of identifying signifi-
cant differences between normal and abnormal traffic.

5.2  Detection of unlabeled data sets
Table  4 shows the results of the unlabeled data set. 
CNN and the model proposed in this paper recog-
nized more abnormal samples than the LSTM-based 
approach. Specifically, MT_MODEL refers to model 
validation-based data, i.e., unlabeled data, which exists 
in multi-domain form; MT_RULE is rule-based data 
containing category imbalanced data to validate the 
robustness of the model; MT_NEW is based on meta-
learning, where new samples are continuously added 
during the training of the model to validate the scal-
ability of the model; TP naturally ground is the one 
that is classified as positive samples and positive sam-
ples, which discriminates the sample correctly. From 
Table  4, it is clear that the MT_MODEL indicator of 
the proposed model is larger than other indicators, 
which means that most of the traffic that is marked as 
abnormal. Similarly, the performance of our model for 
MT_RULE and MT_NEW is also the best, which can be 
attributed to our application of multi-domain machine 
learning to effectively solve the heterogeneous problem 
of distribution. In particular, the use of attention mech-
anisms allows the model to focus on certain classes of 
attacks with few samples. Compared with LSTM and 
Bi-LSTM, the proposed model can find more abnormal 
traffic. The FP value of the proposed model is the low-
est, which illustrates the superiority of the attention-
based model.

5.3  Weight distribution of attention
By extracting the attention weight of abnormal traf-
fic, three HTTP traffic entries are obtained that belong 
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to cross-site scripting attacks with similar requests. 
Figure  3 shows the attention weight distribution. The 
depth of the color corresponds to the importance of the 
words in the sentence given by the model. The darker 
the color, the more important the word, vice versa. 
Obviously, the valid words detected by the model are 
“textarea”, “ < ”, “ > ”, “script”, “alert”, and “adminDir,” 
which are consistent with the ground truth.

Fig. 2 Results on HTTP-labeled data sets

Table 4 Results on the unlabeled data sets

Model MT_MODEL MT_RULE MT_NEW FP

CNN 48,270 16,809 4973 33,910

LSTM 38,689 10,276 2527 25,886

Bi-LSTM 40,621 13,302 3835 23,466

Proposed model 55,692 18,917 5974 23,379

Fig. 3 Weight distribution of attention
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5.4  Malware detection
Figure  4 illustrates the precision and recall rates of the 
model in malware detection. Compared to PCNN, STL, 
and the proposed model, they have achieved higher preci-
sion and recall rates. The precision and recall of the pro-
posed model surpass those of STL for Neris and Emotet, 
which exhibit clear patterns. Avzhan’s ambiguity signifi-
cantly reduces the overall performance of the proposed 
model to 0.93. Although Tinba’s dimensionality is high, 
its pattern is also clear. STL and the proposed model can 
achieve high precision. The proposed model leverages 
the information of the integrated module, allowing tasks 
in different domains to share lower-level parameters. The 
individual level learns specific knowledge, while the public 
level learns shared knowledge across different domains.

Table  5 presents a comparison of the performance 
of various models in terms of precision and recall. The 
"average" column indicates the average performance of 
each model as shown in Figs. 4 and 5. The results dem-
onstrate that the proposed model exhibits superior sta-
bility, with minimal reduction in precision and significant 
improvement in recall rate.

5.5  Identification of VPN encapsulation
The results of the performance comparison between the 
proposed model and the decision tree in Table 6 indicate 
a significant improvement in precision and recall rate for 
both VPN and non-VPN data, with an average improve-
ment of 9.25%. This demonstrates that the proposed 
model is more effective in detecting network attacks 
than the decision tree, which may struggle to distinguish 
between normal and abnormal traffic due to the often-
disguised nature of network attacks. Overall, these find-
ings suggest that the proposed approach is a promising 
method for improving network security and mitigating 
the risks associated with cyber threats.

5.6  Trojan Horse classification
Table 7 presents the overall performance of different models  
on the CTU-13 data set. The proposed model outperforms 
PCNN and HDM in terms of precision and recall rate, 
while also saving almost one-third of the training time 
compared to PCNN and HDCM. This is due to the ability 
of the proposed model to learn three domain tasks simul-
taneously through parameter sharing among domains.

Fig. 4 The precision of each malware detection

Table 5 Performance of models

Precision (%) Recall (%)

PCNN STL Proposed model PCNN STL Proposed 
model

Average 94.6 96.7 97.9 94.9 96.6 98.0

Optimal 94.7 96.9 98.2 95.2 95.3 98.6

Difference 0.1 0.2 0.3 0.3 0.7 0.6
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The confidence interval shown in Table 8 was obtained 
using paired sampling t test with a 90% confidence level. 
The subscripts 1, 2, and 3 refer to PCNN, HDM, and the 
proposed model, respectively. The degrees of freedom 
were 24 (the abnormal category was 9, and there were 
three models). The results demonstrate that the pro-
posed model outperforms both PCNN and HDM models  
in terms of recall rate, and is better than HDM in preci-
sion. Furthermore, the results show that the proposed 
model can handle three different domain tasks simul-
taneously without compromising performance in any 
single domain.

5.7  KDDcupmulti detection
Table  9compares the performance of the PCNN model, 
which is a lightGBM-based network traffic anomaly detec-
tion model that utilizes dataoptimization and Focal loss 
optimization, with our model, which onlyutilizes data opti-
mization. The recall values for all four attacktypes have 
improved, with Normal decreasing by only 2% and Dos, 
U2R,R2L, and Probe increasing by 5%, 2%, 8%, and 6% 
respectively. Amongthese improvements, the recall value 
for the R2L attack type has beenthe most significant.
Ourmodel is a multi-classifier network traffic anomaly 
detection modelthat uses data balancing and feature selec-
tion after optimization.Compared to the PCNN model, 

Fig. 5 The recall of each malware detection

Table 6 Comparison between the decision tree and the 
proposed model

Models VPN (%) Non‑VPN (%)

Precision Recall Precision Recall

Decision tree 89.0 92 91.6 87.8

Proposed model 99.3 99.5 99.7 98.6

Performance improvement  + 10.9  + 6.8  + 9.3  + 10.0

Table 7 Overall performance of the models

Measures PCNN HDCM Proposed 
model

Precision (%) 97.5 94.8 99.4

Recall (%) 94.7 94.7 98.0

Training time (s) 25.42 21.75 9.19

Table 8 Confidence interval

µ1 − µ3 µ2 − µ3

Precision (%) (− 3.561, 1.316) (− 6.711, − 1.985)

Recall (%) (− 6.671, − 0.482) (− 6.735, − 0.281)

Table 9 Comparison of Recall values of PCNN and our model on 
KDDcup99

Recall

PCNN Our model

Normal 0.94 0.92

Dos 0.81 0.87

U2R 0.13 0.15

R2L 0.29 0.37

Probe 0.87 0.93
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which is solely based on CNN without anyoptimization, 
our model has achieved an average recall improvement 
of14% across all attack types.It is worth noting that the recall 
value for U2Rand R2L is quite low, indicating that these types 
of malware may beless common or more difficult to detect 
than other types. The recallvalue for Probe is also lower than 
the other types, which suggeststhat our model may need 
further improvement in detecting this type ofmalware.

5.8  Multi‑domaindetection on CCCS‑CIC‑AndMal2020 
data set

Androidmalware is one of the most serious threats on the 
internet, and hasseen an unprecedented surge in recent 
years. This presents a publicchallenge to cybersecurity 
experts. There are many techniquesavailable for identifying 

and classifying Android malware based onmachine learn-
ing, but recently, multi-domain machine learning hase-
merged as a prominent classification method for such 
samples.Table10presents the results of a malware detec-
tion experiment, with eachcategory of malware listed 
along with the number of families andsamples detected, as 
well as the F1 score.Itappears that the most common types 
of malware detected were adware,backdoor, file infec-
tor, riskware,ransomware, and Trojan. These categories 
accounted for a significantportion of the total number of 
families and samples detected.Itis worth noting that there 
are some differences in the F1 scoresbetween different 
categories. For example, the F1 score forransomware was 
relatively high (0.9775), while the F1 score fortrojan was 
relatively low (0.7868). This suggests that differenttypes of 
malware may require different approaches for detection and-
classification. As can be seen from Table 10,the F1scorefor  
each category of Android malware detection in this paper is 
veryhigh, averaging 0.92, meeting the requirements of real-
worldscenarios and providing strong protection for Android 
phones.Moreover, the efficiency and accuracy of the multi-
domain detectionsystem have been greatly improved.

5.9  Model convergence
The convergence validation of the proposed model is 
shown in Fig.  6. According to Fig.  6, the weight search 
space of the neural network is smaller than that of a single 
structure LSTM. The network structure and the number 
of neurons in the combination of attention mechanism 

Table 10 DetectionEffectiveness of Different Types of Malware

Category Number of 
families

Number of 
samples

F1 score

Adware 48 47,210 0.8595

Backdoor 11 1,538 0.9627

File Infector 5 669 0.8963

No Category - 2,296 0.9756

PUA 8 2,051 0.9786

Ransomware 8 6,202 0.9775

Riskware 21 97,349 0.9555

Scareware 3 1,556 0.9788

Trojan 5 2351 0.7868

Fig. 6 Convergence of the proposed model
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and multi-domain machine learning affect the conver-
gence of the model. The attention mechanism corrected 
by weighted summation is independent of the output of 
the multi-domain learning [32]. Auto-regressive infor-
mation is incorporated in the model, which improves the 
accuracy of the proposed algorithm. Besides, the lower 
panel of Fig.  6 also shows that the objective function 
converges rapidly and tends to smooth out (i.e., the con-
vergence speed of weights degrades shapely from 50 to 
around 0) during both the testing and training processes. 
Because the feedback information of the model struc-
ture restricts the weight search space of the LSTM-based 
neural network, it is easier for the proposed algorithm to 
obtain the optimal value and fast convergence speed.

6  Conclusion
In this study, we propose a multi-domain machine learning 
model for network attack anomaly detection by combin-
ing Bi-LSTM and attention mechanism. Our approach has 
been tested on several public large-scale traffic data sets, 
and the results demonstrate that integrating multiple mod-
ules does not lead to additional overfitting. The proposed 
model is able to accurately detect different types of network 
anomalies, including HTTP traffic anomaly detection, mal-
ware detection, VPN encapsulation identification, and Tro-
jan horse classification. One key advantage of our approach 
is its ability to adapt to different scenarios and optimize 
the learning system accordingly. In future work, we plan to 
explore the internal structure of various neural networks 
further in order to achieve even better performance. This 
could involve analyzing the strengths and weaknesses 
of different models, as well as experimenting with new 
training techniques and algorithms. Overall, our research 
demonstrates the potential of using advanced machine 
learning techniques for network security. By combining 
multiple modules and optimizing the learning system, we 
can develop more effective methods for detecting and pre-
venting network attacks. As such, our work has important 
implications for both individuals and organizations looking 
to protect their online assets from malicious actors.
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