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Abstract 

Visual cryptography (VC) is a powerful technique with high security and requires no PC or device to reconstruct the 
secret information. Progressive visual cryptography (PVC) is a variation of the VC scheme in which the quality of the 
reconstructed image is improved by increasing the number of shared images. The previous study focused directly on 
maximizing the value of the quality in the completely reconstructed image; thus, there is a difference in the quality of 
the shared images. In this paper, we focus on the aforementioned issue and propose a new approach based on induc-
tive reasoning. Our basic idea is to maximize the quality of the reconstructed images each time the number of shared 
images increases. We call this method the bottom-up approach. Moreover, hitherto, PVC has been evaluated based on 
the value of relative difference or by sight. Such evaluation methods are only subjective or difficult to execute without 
the knowledge of basis matrices. In addition, PVC users cannot easily confirm the effectiveness of their shared images. 
In this paper, we propose a new information-theoretic evaluation method for PVC, which only uses shared images, to 
solve the aforementioned problems. Our proposed method can objectively and quantitatively evaluate PVC based on 
the numerical value, and PVC users can easily confirm the effectiveness of their shared images.

Keywords:  Visual cryptography, Progressive visual cryptography, Information-theoretic evaluation method, Shannon-
Hartley theorem

1  Introduction
1.1 � Background
Visual cryptography (VC) is a secret sharing (SS) scheme 
[1] in which the secret information is encrypted in the 
form of digital images, referred to as “shared image.” Vari-
ous VC schemes have been proposed, and they have a 
common advantage; they do not require any PC or device 
to reconstruct the secret image and can be executed 
without electric power supplies [2]. Therefore, VC has 
many usage and application areas, e.g., pubic services 
such as temporary authentication cards in disaster areas. 
Let us imagine that a disaster of the magnitude of “the 
2011 Tohoku earthquake and tsunami” occurs in a devel-
oping country. The citizens in the disaster area have no 
electricity or Internet access, and everything they need 

to prove their identity is lost in the disaster. At that time, 
VC could be used like the following. One shared image 
could be distributed to each civilian, who could then 
take that shared image and stack it with another shared 
image kept at a special sub-office to prove their identity 
while protecting personal information and privacy. The 
other potential usages of VC are considered private usage 
such as tags for equipment management, privacy pro-
tection such as distributed management of medical data 
(for example, X-ray photographs and CT scan images), 
etc. The basic idea of VC is simple; thus, various schemes 
have been proposed. The major schemes are summarized 
as follows: 

Improving  	� Improve the quality of the reconstructed 
image [3–5].

Progressive  	� Improve the quality of the reconstructed 
images while increasing the number of 
shared images [6–10].
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Color  	� Make color images available for use 
[11–13].

Multiple  	� Reconstruct different secret images by 
rotating or changing the combinations of 
the shared images [14–17].

  Among the several above-mentioned VC schemes, PVC is 
versatile and highly practical. In addition, “color” and “mul-
tiple” can be realized by applying a “progressive”; hence, in 
this study, we regard PVC as a basic technology and focus 
on some weaknesses that were noted in the previous study. 
The focus of PVC in previous studies was on the applica-
tion of color images [7], generating shared images without 
expansion of image size [6], or improving the quality of the 
completely reconstructed image [9]. In this paper, we are 
interested in improving the quality of the reconstructed 
images. Therefore, we emphasize the scheme proposed by 
Okada and Koga [9], and call it the “basic scheme.”

VC was previously exclusively assessed using the “rela-
tive difference” or by sight. PVC is also evaluated using 
similar methods. The evaluation by sight is very subjective 
and depends on the situation. On the other hand, evalu-
ating based on the value of relative difference necessitates 
knowledge of basis matrices, making relative comparisons 
challenging. Therefore, PVC users cannot simply verify the 
effectiveness of their shared images. As a result, there is an 
undesirable operating precondition in which users cannot 
validate the legitimacy of their shared images in advance 
and must rely on them completely. This problem can be 
ignored if the same person generates shared images and 
reconstructs the secret information; however, these prob-
lems are considered to be disadvantageous to the user and 
pose a difficulty in the development of PVC.

1.2 � Motivations and contributions
There is a bias in the shared images because the basic 
scheme solely focused on maximizing the quality of the 
completely reconstructed image. Furthermore, the qual-
ity of certain images that are not reconstructed from all 
shared images may not be satisfactory. Solving this prob-
lem by proposing a novel scheme that can generate all 
shared images with the same quality is our first motiva-
tion. To solve this problem, first, we analyze the cause of 
such a bias and identify the problems that PVCs face and 
summarize the requirements for the improvement. Next, 
we use the idea of “maximizing the quality of the recon-
structed image each time the number of shared images 
rises one” to enhance the method for more effective basis 
matrices based on the examination of these requirements 
and limitations. We provide a new parameter based on 
this concept to ensure the lower bound of black pixels 
in reconstructed images, hence increasing the quality 
of all reconstructed images. We refer to our scheme as 

the “Bottom-up approach” and compare it to the basic 
scheme. We confirm that using the same conventional 
evaluation scale, our technique can overcome the afore-
mentioned problems and meet the requirements. This is 
the first contribution of our study.

As is shown in Section  1.1, in PVC, a general objec-
tive evaluation method and the evaluation method from 
the user side are not employed. Motivated by solving this 
problem, we propose a new information-theoretic evalu-
ation method. The proposed method uses only shared 
images; hence, PVC users can easily confirm the effective-
ness of their shared images. We also quantified the evalu-
ation value, so PVC may be evaluated objectively and 
quantitatively in terms of its numerical value. In consider-
ing such a method, we focused on the following two facts:

•	 An ideal shared image should have high randomness.
•	 The number of black pixels always increases during 

the reconstruction process.

Through experiments, we confirmed that our proposed 
method can objectively and quantitatively evaluate 
PVC. In particular, based on the analysis of the recon-
structed images generated from three shared images of 
the (3, 5)-PVC, we demonstrate the existence of ineffec-
tive share images in the basic scheme. Furthermore, the 
biases between shared images can be estimated numeri-
cally, which cannot be confirmed by sight or the relative 
difference. This is the second contribution of our study.

The remainder of this paper is organized as follows. VC 
is summarized in Section 2. In Section 3, we describe our 
proposed VC scheme and the bottom-up approach and 
compare our scheme with the basic scheme to highlight 
the advantages of our scheme. In Section  4, we present 
our second contribution: the information-theoretic eval-
uation method. Section  5 presents the detailed evalua-
tion results and analysis. In Section 6, we summarize the 
issues related to the future development of VC. Finally, in 
Section 7, we present our conclusions.

2 � Progressive visual cryptography
2.1 � Outline of VC [2]
In this section, we describe the outline of (t,  n)-VC for 
black-white images. Given a secret black-white image, n 
black-white shared images are generated from this secret 
image. The ith shared image is distributed to the ith par-
ticipants securely for each i ∈ G = {1, 2, . . . , n} . In general, 
one pixel of the secret image is expanded to ex pixels, and 
we refer to ex as the “pixel expansion”. We use the “basis 
matrix” to realize such an expansion. Since OR operation 
is used in the reconstruction process, a reconstructed pixel 
will be white if and only if corresponding pixels in all shared 
images are white, and are black, otherwise. Therefore, we 
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define a white pixel as “0” and a black pixel as “1” and use 
X0 and X1 as the basis matrices for the white and black pix-
els, respectively. We define the basis matrices as follows:

Definition 1  A pair ( X0,X1 ) of n× ex Boolean matrices 
can be defined as the basis matrices of (t, n)-VC if the fol-
lowing two conditions are satisfied:

Conditiona  	� There exists a number αk > 0 such that 
for any P ⊂ G and |P| = k ( t ≤ k ≤ n ), 
the following two inequalities hold for 
some dP > 0 : 

 where Xi[P] (i = 0 or 1) denotes the |P| × ex matrix 
obtained by all the rows of Xi corresponding to P, and 
Hw(·) denotes the Hamming weight of the OR summa-
tion of each column in Xi[P].
Conditionb  	� For P ⊂ G such that |P| < t , X1[P] can 

be made identical to X0[P] by an appro-
priate permutation with respect to the 
columns.

Condition a ensures that a secret image can be recon-
structed by stacking at least t(t ≤ n) shared images. We 
can actually distinguish white pixels with black pixels in 
the reconstructed images due to the gap of at least αk · ex 
between the Hamming weights Hw(X0[P]) and Hw(X1[P]).

Condition b guarantees VC security. In a recon-
structed image generated from fewer than t shared 
images, it is impossible to distinguish whether a pixel is 
black or white in the secret image because such a per-
muted Xi[P] ( i ∈ {0, 1} ) occurs with the same probability, 
regardless of whether the pixel is black or white. Accord-
ing to [5] and [10], the following equation can be derived:

The value of αk in Eq. (2) is defined as the difference 
between the number of white pixels and the number of 
black pixels for the stacking of k shared images; this dif-
ference is called the “relative difference.” There are sev-
eral definitions and calculation methods for α ; herein, 
we adopt Koga’s formula [8], which can be expressed as 
follows:

(1)Hw(X0[P])+ αk · ex ≤ dP ,

(2)Hw(X1[P]) ≥ dP

(3)Hw(X0[P]) = Hw(X1[P]) ∀P ⊂ G, |P| ≤ t − 1

(4)𝛼k = min
P∶P⊂G,|P|=k

Hw(X1[P]) −Hw(X0[P])

ex

, t≤k≤ n

In general, as the value of α increases or the value of ex 
decreases, we can perceive a secret image more clearly on 
the reconstructed image.

2.2 � Basic scheme
In this section, we present the basic scheme proposed by 
Okada et al. [9], which focused on maximizing the value 
of αn . Let B = {b1, b2, ..., b2n−1} be a vector set, where 
bi(1 ≤ i ≤ 2n − 1) denotes an n[bit] binary column vec-
tor corresponding to integer i as follows:

For a subset P ⊂ G , we denote ♭Pi  as the OR summation 
of each column element determined by subset P.

Basis matrices X0 and X1 can be generated from B 
according to ex , allowing the overlap choice. We denote S 
as a multiset of bi s as follows.

where {bi, bj , . . . } denotes the underlying set and m(bi) 
denotes the multiplicity of element bi . Let Sp ( p ∈ {0, 1} ) 
be the multiset corresponding to the basis matrix Xp , and 
let yP,Sp be the summation of ♭Pi  corresponding to subset 
P.

Note that the pixel corresponding to vector bi in the jth 
shared image is black if b(i,j) is 1, and white, otherwise. 
For this reason, for P,Q ⊂ G , the pixel corresponding 
to vector bi is white when P ∩ Q = ∅ and black when 
P ∩ Q �= ∅ . With these notations, we summarize the 
algorithm to find multisets Sp illustrated by Okada et al. 
[9] in Algorithm 1. Using these multisets, we can derive 
the basis matrices of the basic scheme. Furthermore, 
Okada et  al. [9] also showed the algorithm to calculate 
the minimum value of ex to achieve the maximum αn in 
general cases. These algorithms can be easily executed 
using a mixed-integer linear programming (MILP) solver 
such as Gurobi [18].

The progressive condition [8] for the basis matrices is 
as follows.

(5)bi=(b(i,1), b(i,2),. . . ,b(i,n))
⊤, b(i,j)∈F2, 1 ≤ j ≤ n

(6)♭Pi =
j∈P

b(i,j), P ⊂ G

(7)S={b
m(bi)

i
, b

m(bj )

j
,…},

∑

bi∈S

m(bi) = ex , m(bi) ∈ ℕ,

(8)yP,Sp =
∑

i:bi∈Sp
m(bi) · ♭Pi

(9)αt < αt+1 < · · · < αn
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The basis matrices of the basic scheme always satisfy 
this condition and can generate shared images with the 
maximum value of αn . However, there may exist some 
cases where two reconstructed images generated from 
k − 1 and k(t ≤ k ≤ n− 1) shared images, respectively, 
have the same quality even when αk−1 < αk holds. Nota-
bly, there may be a significant difference in the value of 
α between a reconstructed image generated from k − 1 
shared images and that generated from k + 1 shared 
images. Therefore, this scheme has two following 
weaknesses: 

Problem1  	� Large differences in quality among the 
shared images (we can visually distinguish 
shared images).

Problem2  	� The quality of the reconstructed image 
depends on the combination of the shared 
images (visibility of the secret image on 
the reconstructed images differs according 
to the combination of the shared images).

  The aforementioned problems limit the usage of PVC. 
The following requirements are therefore based on these 
problems. 

Requirement1  	� Each shared image should be indis-
tinguishable to the sight.

Requirement2  	� The validity of the shared images 
should be confirmed (the recon-
structed images using any combina-
tions of the shared images have the 
same amount of visual information).

  In this paper, we add a new constraint to maximize the 
value of αk continuously throughout the reconstruction 
process to solve the problems and achieve the stated 
requirements.

3 � Improvement of PVC
3.1 � Bottom‑up approach
As is shown above, the basic scheme focused on directly 
maximizing the value of αn . However, this is not a 
unique idea for obtaining the maximum value of αn . In 
this section, we show a novel approach that is based on 
inductive reasoning. First, we try to maximize the value 
of αk with k = t , when the secret image can be recog-
nized. Then, we increase the value of k by one and try 
to maximize the value of αk again. We repeat this pro-
cess until k = n , so we can, in theory, obtain the maxi-
mum αn . Note that we must ensure that generated basis 

matrices always satisfy the progressive condition in Eq. 
(9). With this consideration, not only the completely 
reconstructed image but also the reconstructed images 
that are generated from less than n shared images will 
have good quality.

To realize this approach, first, we make a small 
change from Algorithm  1 to maximize the value of αt 
in the case k = t . We show this result in Algorithm 2. 
Notably, the last condition of Algorithm 2 is added to 
ensure that generated basis matrices satisfy the pro-
gressive condition. Next, we regard Algorithm  2 as 
a sub-algorithm MP(k) to calculate the value of αk . 
Using this value of αk , we introduce a new parameter 
βk = ex × αk and use this parameter to replace some 
constraints of the Algorithm  2 to maximize the value 
of αk+1 . We summarize this process in Algorithm 3 and 
call this scheme the “Bottom-up approach.” A point 
to note here is that both the bottom-up approach and 
the basic scheme aim for a maximum αn , so there is 
a non-zero possibility that the same basis matrices 
will be generated for both schemes. However, com-
pared to the basic scheme, the bottom-up approach 
always generates reconstructed images generated from 
k ( t ≤ k ≤ n− 1 ) shared images of higher quality. In 
the following section, we show an example of this 
approach.

Algorithm 1 Max αn

Algorithm 2 Max αt
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Algorithm 3 Bottom up approach

3.2 � Example model
In this section, we describe the example model used in this 
paper. As is shown in Section 2.2, Okada et al. [9] showed 
the algorithm to calculate the minimum ex to achieve the 
maximum αn . We use this algorithm to calculate the values 
of ex in some cases and show the results in Table 1. From 
here onwards, let {S1, S2, · · · , Sn} be the set of shared 
images. We denote R[i1,i2,...,ij] as a reconstructed image 
generated by stacking j shared images 

{

Si1 , Si2 , . . . , Sij

}

 and 
Rj as the label for reconstructed images generated from all 
combinations of j(2 ≤ j ≤ n) shared images.

In this paper, we use a (3,5)-PVC for example, and the tar-
get secret image is presented in Fig. 1. Since the aspect ratio 
after coding does not change, we chose ex as the least square 
nearest to the theoretical minimum. From Table 1, the opti-
mal value of ex for (3,5)-PVC is 18; thus, we set ex = 16 
and find the basis matrices for the basic and our scheme by 
using Algorithms 1 and 3. Figures 2 and 3 present examples 
of the basic and our scheme, respectively. We also show the 
basis matrices of both schemes in the Appendix.

3.3 � Experimental results
In this section, we present the evaluation results of the 
basic scheme and the bottom-up approach using the con-
ventional evaluation methods.

3.3.1 � Evaluation by sight
We focus on the Hamming weight of the rows in 
the basis matrices of the two schemes. In the basic 
scheme, the Hamming weight of the rows is not the 
same for all the rows; however, all the rows of the 
basis matrices have the same Hamming weight in our 
scheme. This fact leads to the difference in the num-
ber of black pixels contained in the ex pixels when we 
expand the secret image. Therefore, the quality of the 
shared images will be different. To confirm this result, 
let us compare the group of shared images between 
the two schemes (Figs.  2a–e and 3a–e). Here, we 
define the row of the basis matrix used to create the 
shared image Si as the “basic-row” of Si . From Fig. 2a 
(resp. c) and e, we can confirm that S1 (resp. S3 ) and S5 
had different shades of darkness in the basic scheme. 
S1 and S3 were whitish compared to S5 . This indicates 
there is a significant difference in the quality between 
the shared images in the group. In fact, the basic-rows 
of S1 and S3 have a Hamming weight of 5, whereas 
that of S5 has a Hamming weight of 7. Of course, 
from the structure of PVC, the shared image leaks no 
information about the secret image; however, such a 
large difference in quality can be regarded as obtain-
ing information for distinguishing between the shared 
images. This result is pointed out in Problem  1 and 
reveals that Requirement 1 is not achieved. On the 

Table 1  Minimum ex to achieve maximum αn

n \ t 2 3 4 5 6 7 8 9 10

2 2

3 3 4

4 4 6 8

5 5 18 15 16

6 6 14 24 30 32

7 7 16 35 99 70 64

8 8 35 100 196 128 140 128

9 9 50 162 576 315 510 315 256

10 10 33 245 363 650 1155 590 630 512

Fig. 1  The secret image
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other hand, in our scheme, we cannot distinguish the 
difference between Fig.  3a–e by sight. In fact, in our 
scheme, the basic-row of all the shared images has the 
same Hamming weight of 8. From these results, we 
conclude that the difference in the Hamming weight 
of the rows in the basis matrices leads to the differ-
ence in the quality of the shared image. Furthermore, 
we can also conclude that our scheme solves Prob-
lem 1 and achieves Requirement 1.

3.3.2 � Evaluation by relative difference
First, we consider the reconstructed images R3 (note that 
the secret image can be confirmed, and the value of rela-
tive difference can be calculated). The basic scheme had 
α3 = 0.0625 , whereas α3 = 0.1250 in our scheme. Here, 
we introduce a new value called the “intermediate rela-
tive difference α̃ ” for a more detailed comparison. For a 
reconstructed image R[i1,i2,...,ik ] ( t ≤ k ≤ n ), we define 
α̃R[i1,i2,...,ik ]

 as follows:

Fig. 2  Example of the (3,5)-PVC generated by the basic scheme

Fig. 3  Example of the (3,5)-PVC generated by our scheme
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Therefore, Eq. (4) can be rewritten as follows.

As in the above analysis, in the basic scheme, S1 and S3 
had the worst quality, whereas S5 had the best qual-
ity. Hence, the reconstructed images containing S1 or 
S3 will consequently have bad quality, and the recon-
structed images containing S5 will have good quality. To 
confirm this result, we show the best and worst qualities 
for the R3 of the basic scheme in Fig. 4. R[2,4,5] had clear 
secret information with α̃R[2,4,5] = 0.1875, whereas R[1,2,3] 
had unclear secret information with α̃R[1,2,3] = 0.6250. 
On the other hand, all R3 s of our scheme had the same 
α̃4 value, which was 0.1250. For example, we show two 
reconstructed images R[1,2,3] and R[1,2,4] in Fig. 5. In both 
images, the secret image is clear. Similarly, in the case of 
R4 , the basic scheme had α4 = 0.1250, whereas the value 
of our scheme was 0.2500. In the basic scheme, R[1,2,3,4] 
was the worst with α̃R[1,2,3,4] = 0.1250 and R[1,2,4,5] was the 
best with α̃R[1,2,4,5] = 0.2500 . On the other hand, all R4 s 
of our scheme had the same α̃4 value, which was 0.2500. 
These results show the improvement of our approach in 
the quality of the reconstructed images that are generated 
from k ( t ≤ k ≤ n− 1 ) shared images. Furthermore, as 
has been pointed out in Problem 2, the quality of a recon-
structed image depends on the combination of the shared 
images in the basic scheme but does not in our scheme.

(10)𝛼̃R[i1 ,i2 ,…,i
k
]
=

Hw(X1[P]) −Hw(X0[P])

ex

, P={i1, i2,… ,ik}

(11)αk = min α̃Rk , t ≤ k ≤ n

In the case of R5 , both schemes have the same result of 
α5 = 0.3750 . That is, our scheme also achieves the same 
quality of the completely reconstructed image as the basic 
scheme. From all the above results, we conclude that our 
scheme not only achieves a good result in the completely 
reconstructed image but also in the other reconstructed 
images that are generated from k ( t ≤ k ≤ n− 1 ) shared 
images. Furthermore, we also conclude that our scheme 
can solve Problem 2 and achieve Requirement 2.

Now, let us analyze the relationship between the 
value of the relative difference and the amount of vis-
ual information. Figure  6 shows some R3 s that have 
the same value for α̃3 but are generated from differ-
ent combinations of shared images. We confirmed 
that although the values of α̃3 are the same, the clari-
ties of the secret image are different. For example, it 
is easy to confirm that the clarities of the secret image 
on R[1,2,3] and R[1,2,4] are different. Furthermore, we 
also confirmed the existence of some cases where 
some reconstructed images have the same value for α̃ 
but are generated from different numbers of shared 
images ( R3 in a, b, and c and R4 in d of Fig. 7). These 
results indicate the limits of evaluation using the rela-
tive difference α . We expect that a higher value of α 
will result in larger visual information. We also expect 
that the value of α of the reconstructed images will 
increase with increasing the number of shared images; 
however, these results show that there is no relation-
ship between α and the amount of visual information 
in conclusion.

Fig. 4  Best and worst qualities of R3 generated by the basic scheme

Fig. 5  Two reconstructed images of R3 generated by our scheme
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4 � Information‑theoretic evaluation method
As mentioned earlier, the conventional evaluation 
methods for PVC are not objective or difficult to 
execute by PVC users. We focused on the feature of 
PVC that the value of the relative difference increases 
continuously in the reconstruction process (Eq. (9)). 
Because the OR operation is used in the reconstruc-
tion process, the number of black pixels in a limited 
space always increases. From the aforementioned 
facts, we proposed a new evaluation method from 
the information-theoretic viewpoint, which users can 
easily execute and can objectively evaluate PVC by a 
numerical value.

4.1 � Preliminary and basic idea
The channel capacity C [bps] on a continuous communi-
cation channel can be defined using the Shannon-Hartley 
theorem. In the frequency range f1[Hz] ∼f2[Hz], if the 
noise is additive white Gaussian noise (AWGN), it can be 
calculated as follows:

where S(f) and N(f) denote the signal power spectrum 
and noise power spectrum at frequency f [Hz], respec-
tively. This calculation is based on the fact that the condi-
tion S(f ) ≥ N (f ) always holds by the AWGN assumption. 
Because the condition αk+1 ≥ αk always holds in PVC 
(Eq. (9)), we can apply the same assumption if the black 
pixels are regarded as a signal. This is the basic idea of 
our proposed evaluation method. If we regard an ideally 
random shared image as noise and a shared image as a 
signal, we can apply the Shannon-Hartley theorem to 
adapt our evaluation method to this type of noise. In this 
way, an increase in channel capacity denotes an increase 
in visual information, and a small channel capacity indi-
cates high randomness. Therefore, we can evaluate VC by 
only using a shared image or a reconstructed image, and 
Requirement 2 will be achieved. Moreover, because the 

(12)C =
∫ f2

f1

log2(1+
S(f )

N (f )
)df

Fig. 6  Reconstructed images that have the same value of α̃3 = 0.0625

Fig. 7  Reconstructed images that have the same value of α̃ = 0.1250
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noise is ideally random, the increase in visual informa-
tion caused by comparing or stacking shared images can 
be quantitatively evaluated.

Let S(i) and N(i) ( i = 0 ∼ m ) be the discrete values of 
signal power and noise power, respectively, and δ be a 
constant value of the bandwidth of sampling. The chan-
nel capacity for a discrete communication channel can be 
expressed as follows:

Since index number i is assumed to be a positive integer, 
it is obvious that the minimum value of δ is one. Hence, 
we set δ = 1 in this study. In general, the unit for channel 
capacity is “bit per sec [bps]”. However, because the tar-
get of the proposed evaluation method is image data, it is 
appropriate to use “bit per frame [bpf].” For simplicity, we 
refer to it as only [bit] from here onwards.

4.2 � Proposed evaluation method
As mentioned above, the number of black pixels always 
increases during reconstruction in VC. We observe 
how the number of black pixels in a limited space called 
“Mask” increases and calculate the channel capacity by 
applying Eq. (13). We denote the amount of visual infor-
mation contained in shared image V as DV  and the num-
ber of black pixels in the ith mask of image V as #bV (i) . 
If we consider the ideal shared image as noise and the 
generated image as a signal, we can calculate the amount 
of visual information as the channel capacity according to 
Eq. (13). In an ideally random image, the expected value 
of the black pixels will be approximately half the number 
of pixels in the mask. In this study, we set the size of the 
mask as the pixel expansion ex , resulting in a √ex ×

√
ex 

[pixel] rectangle. We discuss the details regarding the 
mask size in Section  6. We move the mask from the 
bottom-left to the top-right of the image and count the 
number of black pixels contained in it. Let #N  be half the 
number of pixels in a mask ( #N  = ex/2 ) and the size of 
the shared image is width × height [pixel]. Therefore, we 
have the following:

where M denotes the total number of masks in an image.
Let the bottom-left starting point rectangle be the 

zero-th mask, and the final top-right rectangle be the (M 
- 1)-th mask. Therefore, we can calculate the amount of 
visual information of image V using Eq. (13) as follows:

(13)C =
m
∑

i=0

(log2(1+
S(i)

N (i)
))δ

(14)M = (width−√
ex + 1) · (height−√

ex + 1)

(15)DV =
M−1
∑

i=0

log2(1+
|#bV (i)− #N |

#N
)

Since DV  depends on the image size, we calculate the 
average amount of information in the mask unit as 
follows:

Henceforth, we refer to CV[bit] as the “amount of infor-
mation”; this value is obtained using basis matrices and 
therefore does not depend on the target secret image. 
However, the amount of information of a reconstructed 
image is affected by the black-to-white ratio in the secret 
image (see Section 6.2). Therefore, the amount of infor-
mation of the reconstructed images may vary based on 
the secret image.

We summarize our proposed method in the following 
procedure. 

Step 1  	� Obtain the share image size of (t, n)-PVC
Step 2  	� Calculate the discrete value of M continuous 

black pixel numbers
Step 3  	� Calculate the amount of information in the 

mask unit by using Eq. (16)

The computational cost of step 2 is M times the count 
of the black pixels in the mask. For step 3, we need to 
perform step 2 for each shared image. For example, in the 
case of (t, n)-VC, there is a total of

combinations of shared images. Hence, a total evalu-
ation of the (t,  n)-VC requires a computational cost of 
(2n − 1) ·M.

5 � Experimental results
In this section, we present the results of applying the pro-
posed method to the PVC model’s examples shown in 
Section 3.2. Since ex = 16 , the mask size was 4 × 4 [pixel] 
and the resultant generated image size was 360 × 180 
[pixel]. Consequently, we obtained M = 63,189 and #N  = 
8. Our computer environment was as follows. 

CPU  	� 3 GHz 6Core Intel Core i5
Memory  	� 8 GB 2667 MHz DDR4
OS  	� macOS Catalina 10.15.7
Program  	� OpenCV 4.4.0 in Python 3.9.0

The average time of calculation for one shared image or 
reconstructed image was less than 5s.

(16)CV = M−1
M−1
∑

i=0

log2(1+
|#bV (i)− #N |

#N
)

(17)
n

∑

i=1

(

n
i

)

= 2n − 1
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5.1 � Evaluation of shared images
In this section, we show that the proposed evaluation 
method can be easily executed using shared images 
and present the evaluation results. Table 2 presents the 
amount of information for each shared image in the two 
schemes. First, let us compare the overall performance 
of the two schemes using the average and standard devi-
ations for the amount of information. The basic scheme 
had an average of 0.3560 [bit], whereas, our scheme had 
0.1786 [bit]. Compared to the basic scheme, our method 
had approximately half the amount of information. On 
the other hand, the standard deviation in our scheme 
was only approximately 1/60 of the basic scheme (0.0039 
and 1.1928). The results show that our bottom-up 
approach generated more ideally random shared images 
and successfully generates a group of shared images with 
a smaller bias as compared to the basic scheme. Notably, 
these results are the same as those confirmed by sight 
and the relative difference mentioned in Section 3.2.

Next, for a more detailed analysis, let us compare the 
best and worst of the two schemes. In the basic scheme, 
S5 (Fig.  2e) had the highest randomness with CS5 = 
0.2249 [bit], whereas S1 and S3 (Fig.  2a, c) had the low 
randomness with CS1 = 0.4515 [bit] and CS3 = 0.4514 
[bit]. Note that we already confirmed by the sight that 
S1 and S3 had the worst quality whereas S5 had the best 
quality in the basic scheme. The amount of information 
for S1 and S3 was almost the same, and this value was 
only approximately 1/2 for S5 . It is also regarded that 
the difference in the Hamming weight of the basic-row 
between the shared images led to this result. As men-
tioned earlier, the Hamming weight of the basic-rows 
of S1 and S3 was small, precisely 5; thus, the number of 
black pixels in the entire image was also small. Although 
random shuffle was used during image generation, it is 
regarded that the value of |#b− #N | in Eq. (16) becomes 
large. Hence, the amount of information also becomes 
larger. Meanwhile, in our scheme, S4 had the highest 
randomness (Fig.  3d) with CS4 = 0.1815 [bit], while S1 
had the lowest randomness (Fig. 3a) with CS1 = 0.1768 
[bit]. The difference was very small (0.0047 [bit]), which 
could only be confirmed based on the numerical value 
and cannot be by the sight. This indicates our proposed 
method can evaluate the detailed value that cannot be 
otherwise evaluated by sight.

The amount of information could not be evaluated 
based on the definition of relative difference even the 
amount of visual information in shared images was evalu-
ated by subjective visual senses in conventional methods. 
From the above analysis, we conclude that our proposed 
method can quantitatively evaluate the achievement of 
Requirement 1 in a numerical value. Furthermore, our 
proposed method can execute using only shared images. 
Therefore, if the PVC provider informs the users of the 
average value of the amount of information for the shared 
images, the PVC users can easily calculate the amount of 
information and confirm the effectiveness of their shared 
images. This result provides a more reliable and easier-
to-use environment for PVC users.

5.2 � Evaluation of the reconstructed image
In this section, we demonstrate that our proposed 
method can also be used to evaluate reconstructed 
images without any knowledge of basis matrices. First, 
we consider the reconstructed images generated from 
(a threshold of ) three shared images, where the secret 
image can be confirmed. The amount of information was 
not the same for all R3 s in the basic scheme, whereas 
our scheme had almost the same value for all R3 s. We 
present the distribution of the amount of information 
for R3 s in the two schemes shown in Fig. 8. In Fig. 8, the 
R3 s are arranged on the horizontal axis, and the amount 
of information they have is represented by a line graph. 
Since the difference in the quality of shared images 
leads to a difference in the quality of the reconstructed 
images, we expect that if a group of ideal images is gen-
erated, the graph becomes a horizontal line regardless 
of the order of the images arranged on the horizontal 
axis. On the other hand, if the image group has a bias, 
a zigzag line graph is obtained. The large difference in 
the amount of information for R3 s of the basic scheme 
can be confirmed in Fig. 8. The graph of our scheme is 
nearly linearly parallel to the horizontal axis, whereas 
that of the basic scheme is zigzag. Consequently, we can 
confirm that Problem 2 occurs in the basic scheme but 
does not in our scheme. Therefore, we conclude that 
only our scheme achieved Requirement 2. This result 
also shows that we can easily confirm the existence of 
Problem  2 and the achievement of Requirement 2 
without any knowledge of basis matrices.

Table 2  Results of evaluation method with one shared image

CS1 CS2 CS3 CS4 CS5 Average Standard 
deviation

Basic scheme 0.4515 0.3258 0.4514 0.3267 0.2249 0.3560 0.1928

Our scheme 0.1768 0.1780 0.1772 0.1815 0.1797 0.1786 0.0039
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Because the value of the relative difference continu-
ously increases in the PVC, we expect that the amount 
of information for the reconstructed images also continu-
ously increases. Furthermore, the increase in the amount 
of information is expected to decrease with an increase 
in the number of shared images. In the case of a large 
bias in the shared images, there is a possibility that the 
randomness increases or does not change when stack-
ing shared images. That is, the amount of information 
decreases or does not increase, respectively. In the basic 
scheme, such possibilities are confirmed. We present 
remarkable examples of the reconstruction process of the 
basic scheme in Fig. 9 to confirm these results. Figure 9a 
shows a case where the amount of information decreases 

because the randomness is improved once. The degree of 
improvement in randomness can be quantitatively evalu-
ated using the proposed method. Similarly, we also can 
confirm the case that the amount of information does not 
increase. In Fig.  9b, S5 and R[1,5] have the same amount 
of information. That is, the randomness does not change 
when we stack S1 onto S5 . On the other hand, in our pro-
posed scheme, no such cases were found. An example of 
the reconstruction process of our scheme is presented in 
Fig. 10. From Fig. 10, we can confirm that the amount of 
information for the reconstructed images increases con-
tinuously and the increase in the amount of information 
decreases in the process as expected. From the above 
analysis, we conclude that the proposed method enables 
more detailed evaluations than the conventional method 
using the relative difference.

Fig. 8  Amount of information C in R3 of two schemes

Fig. 9  Remarkable examples of the reconstruction process in the basic scheme

Fig. 10  Example of the stable reconstruction process of our scheme
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6 � Discussion
6.1 � Size of mask
In Section 4.2, we set the mask size to the same value as 
that of pixel expansion. Therefore, regardless of the value 
of pixel expansion, the mask size must be determined 
empirically or experimentally. Our experimental results 
presented in Section  5 show that a mask size of 4 × 4 
[pixel] is highly effective. Certainly, the setting of mask 
size to 4 × 4 [pixel] is appropriate from the condition of ex 
= 16; however, considering the value of #N  and the range 
of #b , it is possible that this setting may be optimal for 
other image sizes and pixel expansions. For example, let 
us consider the case where the mask size is 3 × 3 [pixel]. 
In this case, the value of #N  becomes 4.5; thus, even if 
the shared image is ideally random, the calculation result 
of (#b− #N ) will be non-zero, which leads to unavoidable 
errors. Therefore, it is not adequate to set the mask size 
to an odd number of squares. On the other hand, in the 
case of 2 × 2 [pixel], the range of #b is too small. Con-
versely, in the case of 6 × 6 [pixel], the range of #b is large, 
and it is possible to set detailed values. However, we must 
examine whether such expressions of detailed values are 
necessary for evaluation. The value of ex is sufficiently 
smaller than the image size; hence, the number of sam-
ples is not affected, and the required computational cost 
does not change (from Eq. (14)). However, the reliability 
of the calculated evaluation results is significantly differ-
ent. This issue will be addressed in our future work.

6.2 � Validity of AWGN assumption
In view of the fact that the number of black pixels con-
tained in the reconstructed images always increases in 
the reconstruction process, as mentioned in Section 4.1, 
we confirmed that the AWGN assumption made in the 
proposed method is valid. Since the reconstruction pro-
cess is based on OR operation, this assumption is valid 
for the entire image; however, it does not apply locally. 
For example, let us consider two reconstructed images 
R[1,2,5] and R[1,2,3,4] (Fig. 7a, d) of the basic scheme. These 
images have the same value α̃ , which was 0.1250, and the 
amount of information is also almost the same, where 
CR[1,2,5] = 0.3785 [bit] and CR[1,2,3,4] = 0.3786 [bit]. Theo-
retically, the following holds.

Since CR[1,2] = 0.1788 [bit], we can obtain CS5 = 0.1997 
[bit] and CR[3,4] = 0.1998 [bit]. However, the actual values 
are CS5 = 0.2248 [bit] and CR[3,4] = 0.1809 [bit]. Therefore, 
we find that it is inappropriate to directly calculate the 
sum or difference in the amount of information.

(18)CR[1,2,5] = CR[1,2] + CS5

(19)CR[1,2,3,4] = CR[1,2] + CR[3,4]

As mentioned above, these differences are a result of the 
OR operation. We consider the black-to-white ratio in the 
secret image as for another cause. In general, the white area 
suppresses the increase in the black pixels in the recon-
structed image. However, because the proposed evaluation 
method focuses only on the increase in the number of black 
pixels, a larger white area results in a larger error in the cal-
culation of the sum and difference in the amount of infor-
mation. We expect that if this problem is addressed, more 
detailed and accurate evaluations can be provided.

6.3 � Relationship between basis matrices and security 
of PVC

During image generation, the rows of the basis matri-
ces are randomly replaced. Naor and Shamir [2] sug-
gested that such a random shuffle guarantees the 
security of VC. Therefore, under the assumption that 
random shuffle is secure, the security of VC does not 
decrease even if all the basis matrices, the value of 
pixel expansion, and random shuffle are open. How-
ever, because random shuffle directly reflects the bias 
of the Hamming weight and run-length in the basis 
matrices, there is a possibility of an attack based on 
such a bias. For instance, if an insecure pseudo-ran-
dom permutation is used, the initial value can be esti-
mated. Therefore, the bias of Hamming weight of the 
basis matrices may affect the security of PVC. Specific 
verification of this is our future work.

7 � Conclusion
We demonstrated the problems associated with PVC and 
described the requirements to improve PVC. We pro-
posed a new improved scheme, the bottom-up approach, 
which introduces a new parameter to maximize the value 
of α during the reconstruction process. The experimen-
tal results showed that our scheme can solve the afore-
mentioned problems and achieve these requirements of 
PVC. In addition, we also clarified the problem that the 
evaluation methods for PVC are subjective or difficult to 
execute without the knowledge of basis matrices. These 
problems lead to the fact that PVC users cannot confirm 
the effectiveness of their shared images. We proposed a 
new information-theoretic evaluation method that uses 
only the shared image or the reconstructed images. By 
experiment, we confirmed that our method can objec-
tively and quantitatively evaluate PVC. Furthermore, the 
proposed method can achieve a more detailed evalua-
tion, which cannot otherwise be achieved in conventional 
evaluation methods, by using a numerical value. The pro-
posed method can also confirm the achievement of the 
aforementioned requirements and can be easily executed 
by PVC users. We have also highlighted future works for 
the development of PVC.
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Appendix
The basis matrices for (3, 5)-PVC of both schemes men-
tioned in Section 2.2 are as follows.

The basic scheme:

Bottom-up approach:
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X0 =











0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1











X1 =











1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1
0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1











X0 =











0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1











X1 =











1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1










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