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Abstract 

Reliable and non-intrusive user identification and authentication on mobile devices, such as smartphones, are topical 
tasks today. The majority of state-of-the-art solutions in this domain are based on “device unlock” scenario—checking 
of information (authentication factors) provided by the user for unlocking a smartphone. As such factors, we may use 
either single strong authentication factor, for example, password or PIN, or several “weaker” factors, such as tokens, 
biometrics, or geolocation data. However, these solutions require additional actions from a user, for example, pass-
word typing or taking a fingerprint, that may be inappropriate for on-the-fly authentication. In addition, biometric-
based user authentication systems tend to be prone to presentation attack (spoofing) and typically perform well in 
fixed positions only, such as still standing or sitting.

We propose BehaviorID solution that is passwordless (transparent) user-adaptive context-dependent authentication 
method. The feature of BehaviorID is usage of new “device lock” scenario—smartphone is stayed unlocked and can be 
fast locked if non-owner’s actions are detected. This is achieved by tracking of user’s behavior with embedded sensors 
after triggering events, such as actions in banking apps, e-mails, and social services. The advanced adaptive recurrent 
neural network (A-RNN) is used for accurate estimation and adaptation of behavioral patterns to a new usage context. 
Thus, proposed BehaviorID solution allows reliable user authentication in various usage contexts by preserving low 
battery consumption.

Performance evaluation of both state-of-the-art and proposed solutions in various usage contexts proved the 
effectiveness of BehaviorID in real situations. Proposed solution allows reducing error levels up to three times in 
comparison with modern Abuhamad’s solutions (Abuhamad et al., IEEE Internet Things J 7(6):5008–5020, 2020) (about 
0.3% false acceptance rate (FAR) and 1.3% false rejection rate (FRR)) by preserving high robustness to spoofing attack 
( 2.5% spoof acceptance rate (SAR)). In addition, BehaviorID showed low drift of error level in case of long-term usage 
in contrast to modern solutions. This makes the proposed BehaviorID solution an attractive candidate for next-genera-
tion behavior-based user authentication systems on mobile devices.
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1  Introduction
Mobile devices become pervasive in business processes, 
including corporate systems, e-mails, social networks, 
and banking. It results in wealth of on-device stored sen-
sitive information such as user’s credentials, payments, 
geolocation data, and device usage history. Important 
part of this information protection is usage of effective 
access control system (ACS), namely for identification 
and authentication of a user [1].
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Modern ACS is based on checking of something that 
a user knows (a password or a passphrase), possesses (a 
token), or is (biometrics and behavioral templates) [2, 3]. 
The first and second factors provide strong authentica-
tion at the cost of usability, namely necessity of a pass-
word typing or carrying an additional equipment (token) 
with a smartphone. On the other hand, biometric-based 
authentication solutions allows improving usability by 
preserving low error rate. Nevertheless, these solutions 
are vulnerable to presentation attack, namely spoofing of 
biometric data attackers [3, 4].

Promising approach is provided by modern behavior-
based authentication technologies. Typically, they are 
based on biometric data capturing and extracting user-
specific behavioral patterns needed for the analysis of 
several modalities during user interactions with mobile 
devices  [5–7]. However, the performance of these sys-
tems significantly depends on the context, namely user’s 
activity (motionless, walking, running) and application 
in use [8]. Thus, spoofing-proof transparent user-friendly 
methods for user authentication are needed.

The contribution of the paper is summarized as follows:

•	 We propose the BehaviorID method for transparent 
context-dependent behavior-based user authentica-
tion on mobile devices. BehaviorID is based on track-
ing and updating user behavioral templates for vari-
ous context using device’s embedded sensors. Also, 
the proposed method allows for fast adaptation of 
behavioral templates to work with new (previously 
unseen) usage contexts.

•	 The BehaviorID method has been benchmarked with 
keystroke dynamics modality in three cases: typ-
ing fixed text in fixed context, typing arbitrary text 
in fixed context, and typing arbitrary text in varying 
context. According to the obtained results, the pro-
posed method preserves low error rate for all consid-
ered use cases (about 0.3% FAR, 1.3% FRR, and 2.5% 
SAR).

•	 It was shown that the proposed method outper-
formed the modern Abuhamad et  al. method  [9] 
in the most difficult case of long-term tracking of 
behavioral pattern (about 2.1% FAR and 3.9% FRR). 
The obtained results proved that BehaviorID solu-
tion is suitable for on-device sensitive data process-
ing (class 3, strong biometric tier) for Android tiered 
authentication model (ATAM) (about 5% for fixed 
usage context).

•	 The fast detection of non-owner usage of a mobile 
device (within 0.5− 1.0 s for Samsung Galaxy S21 
smartphone) with low error level makes the pro-
posed method an attractive candidate for transparent 
user authentication on next-generation smartphones

The rest of this paper is organized as follows. Notations 
are presented in Section  2. Section  3 gives an overview 
of the modern ACS systems for mobile devices. In Sec-
tion 4, we introduce a user-adaptive multimodal context-
dependent behavior-based authentication method and 
compare it with the state-of-the-art solutions. The results 
of performance and accuracy evaluation are in Section 5. 
Section 6 concludes the paper.

2 � Preliminaries
High-dimensional arrays, matrices, and vectors are 
denoted in boldface. Their individual elements are 
denoted by the corresponding lower-case letters in italic. 
The calligraphic font is reserved for sets. If nothing addi-
tionally specified, we suppose that an element x from a 
set X  is sampled according to a uniform distribution.

3 � Related works
Modern ACS provide wide range of authentication 
options, while revealing a number of risks for users and 
infrastructure providers. The most important risks are 
identity theft and eavesdropping, phishing, inadequate 
device’s resource usage, personal and corporate data 
blending, vulnerability of biometric-based ACS to spoof-
ing, and usage context shift [1, 10].

Modern multifactor authentication and access control 
solutions, such as RSA SecurID [11], NuData Security 
[12], Touch ID and Face ID [13], and   SecureAuth [14], 
address these challenges. The diagram of used authenti-
cation factors for these solutions is presented in Fig. 1.

The RSA SecurID and Amazon GuardDuty  [15] are 
comprehensive solutions that rely on knowledge and 
possession-based authentication factors (Fig.  1). The 
SecureAuth system includes biometric-based factors 
for improving robustness of ACS to password leakages. 
Full biometric-based ACS solutions for mobile devices 
are TouchID and FaceID of Apple Inc. Unfortunately, 
these solutions are vulnerable to spoofing attacks that 
limits their usage for sensitive information processing. 
In addition, TouchID and FaceID solutions need addi-
tional actions from users, such as fingerprint check dur-
ing launching of banking application, that may negatively 
impact user experience.

A variety of behavior-based authentication systems 
were proposed for smartphones in the last years, such 
as MasterCard NuData  [12], TwoSense.AI  [16], BioSig-
ID [17], OneSpan [18], and Zighra  [19]. These solutions 
can be compared by the types of used behavioral features, 
abilities of tracking/update person’s behavioral profile, 
and engaged device sensors (Table 1).

The all-in-one ACS solutions, such as MasterCard 
NuData, TwoSense.AI, and OpenSpan, use location-
based features for counteracting spoofing attack based 
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on user device cloning (Table  1). Nevertheless, analysis 
of the user’s location may raise privacy concerns. Also, 
these solutions require connection to external databases 
with user profiles that may be inappropriate for offline 
use cases.

The modern solutions for continuous multifactor user 
authentication, such as OneSpan and Zighra (Table  1), 
rely on detection of unusual usage patterns. However, 
these solutions provide limited opportunities to track 
behavioral profile’s alterations caused by the user’s habit 
changes. Thus, users may be required for regular update 
of their profiles that may be inconvenient.

The promising way to improve the accuracy of ACS 
system is analysis of the contextual information, namely 
applications usage and user’s physical activity [20] (Fig. 1). 
The data retrieved from context-aware sources is more 
difficult for the attacker to manipulate which decreases 
the effectiveness of spoofing attack. Examples of context-
aware ACS solutions are SecuredTouch (acquired by Ping 
Identity [21]), Samsung HYPR [22], NuData Security, and 
TwoSense.AI  [16] (Fig.  1). These systems are continu-
ously tracking both behavior-related features and con-
textual information, such as user location during use of 
banking apps. Despite the high authentication accuracy 

Fig. 1  Landscape of authentication solutions for mobile devices. Despite high usability, the domain of context-dependent behavior-based 
authentication (marked with dashed red line) does not attract much attention yet

Table 1  Comparison of state-of-the-art commercial solutions in the domain of behavior-based user authentication on mobile devices

Solution MasterCard NuData TwoSense.AI BioSig–ID OneSpan Zighra

Authentication method Behavior-based Continuous and multi-
factor

Multifactor Multifactor Continuous and multi-
factor

Used sensors Motion sensor, touch-
screen, GPS, wireless 
adapters

Motion sensor, touch-
screen, front-facing 
camera, GPS

Touchscreen Motion sensor, 
touchscreen, 
front-facing 
camera

Motion sensor, touch-
screen

On-device solution No No No Yes Yes

Behavioral profile’s 
update

No No No No No

Used modalities Apps usage, geoloca-
tion, keystroke dynamics, 
device tilts, wireless 
connections

Touchscreen, apps usage, 
keystroke dynamics, 
geolocation, gaits

PIN or password, ges-
tures on touchscreen

Apps usage, key-
stroke dynamics, 
wireless connec-
tions

Apps usage, keystroke 
dynamics, wireless con-
nections

Transparent (password-
less) authentication

Yes Yes No Yes Yes

Context-adaptive No No No Yes No
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and robustness to spoofing, these solutions may be inap-
propriate for private users due to privacy violation con-
cerns and high consumption of computation and battery 
resources [23, 24].

Therefore, a transparent on-device privacy-preserv-
ing user authentication solution is needed. This paper is 
devoted to fill this gap by development of a user-adaptive 
multimodal context-dependent behavior-based authenti-
cation method.

4 � Proposed technology
To provide on-device context-dependent behavior-based 
authentication, we propose the BehaviorID solution. The 
flowchart of the user’s features processing with proposed 
method is presented in Fig. 2.

The user authentication with the BehaviorID method 
starts from a triggering event, such as launch a prede-
fined application (Fig. 2). Then, signals from the device’s 
embedded sensors are being gathered until finalization 
trigger event, for instance, start typing in a launched 
application. The collected signals are preprocessed with 
dynamic time warping (DTW) algorithm to compensate 
the time shift between them [25].

At the second step, context recognition is performed 
using preprocessed signals. The recognition model is 
based on convolutional neural network (CNN) for fea-
ture extraction from inputted signals. Also, the prepared 
signals are combined into modalities to be processed. For 
instance, touchscreen keyboard timing and touch loca-
tions are transformed into type patterns.

At the third step, each modality is processed with 
advanced A-RNN model [26]. The feature of the network 
is usage of mixture layer to improve performance in case 
of processing sequences with multiple patterns, e.g., mix-
ture of output signals from embedded sensors. The out-
put of context recognition model is used as an external 
parameter for mixture layers of A-RNN to compensate 
possible alterations of of user behavioral profile.

Finally, the outputs of each A-RNN related to individ-
ual modality are processed with decision-making module 
(Fig.  2). In case of positive decision (user is authenti-
cated), the user is notified about the success authentica-
tion, and the extracted features are used to update the 
A-RNN parameters. Otherwise, negative decision is 
reported (user is not recognized).

Applying of mixture layer for A-RNN allows track-
ing multiple patterns by preserving fixed computation 
complexity that is important for on-device usage  [26]. 
In addition, update of A-RNN parameters taking into 
account the usage context allows compensating user 
behavioral profile alterations caused by user’s habits 
changes. Let us describe this part of the proposed solu-
tion in more details. Description of A-RNN features is 
presented in Section  4.1. Modalities that were used are 
described in Section 4.2.

4.1 � Adaptive recurrent neural network
Today, one of the most popular approach for solv-
ing sequence modeling tasks is based on usage of long 
short-term memory (LSTM) and gated recurrent unit 
(GRU) networks  [27]. The LSTM network is based on 

Fig. 2  User authentication procedure with proposed BehaviorID method
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utilizing memory cells and a gating mechanism to con-
trol information flow. The GRU networks use simplified 
memory cells with a single update gate that controls 
forgetting and updating factors simultaneously.

Some advanced mechanisms appeared during the last 
years to extend LSTM and GRU functionality [27]. The 
first one is attention mechanism based on the estima-
tion of the similarity between encoded source sentence 
and output words. The mechanism is particularly use-
ful in machine translation, image captioning, and rating 
prediction tasks. Another mechanism is memory-aug-
mented networks that use an external memory for each 
sequence. These networks aim to memorize the recent 
useful samples and compare them with the current ones 
within the input sequence. This approach is frequently 
used in meta and one-shot learning tasks. Nevertheless, 
these mechanisms are aimed at tracking a single tem-
plate in inputted sequence [27]. This limits the usage of 
such methods in applications related to behavior analy-
sis, where several patterns may present in gathered data 
at the same time.

Recently, the A-RNN was proposed by Zhao et al. [26] 
for modeling and memorizing multiple patterns in 
training sequences. This is achieved by applying a mix-
ture layer to improve the performance of a single recur-
rent neural networks (RNN). Therefore, the mixture 
layer makes possible storage for the set of patterns in 
contrast to mixture of expert models, where the output 
is controlled by a sparse gating function [26]. The struc-
ture of mixture layer augmented A-RNN is illustrated 
in Fig. 3 [26].

The mixture layer is based on the usage of a matrix 
M ∈ R

m×n that contains n prototypes (patterns) from 
the training sequences, while each pattern has m ele-
ments (samples). Then, the hidden state ht−1 for RNN 

is able to represent the sub-sequence (x1, . . . , xt−1) from 
an input sequence (x1, x2, . . .) , xi ∈ R

m (Fig. 3).
The similarity si between ht−1 and extracted patterns 

(columns of the matrix Mi, i ∈ [1; n] ) is used to produce 
a weight vector w = (w1, . . . ,wn) for scaling (amplifying 
or attenuating) each pattern [26]:

Consequently, the task of estimation probability of cur-
rent state p(ht−1,M) can be formulated as [26]:

Therefore, the hidden states in A-RNN are updated in the 
following way [26]:

where ht ,ht−1 are the hidden states of current cell on t 
and (t − 1) time steps correspondingly,  xt is the input 
vector on t time step, and g(·) is the  activation function 
for RNN cell.

As an example of A-RNN, we used LSTM network 
augmented by mixture layer. Since the retrieved result 
of looking up matrix in mixture layer (1) is added to all 
gates and cells of LSTM, the forget gate ft and the input 
gate it can be represented as [26]:

where σ(·) is the sigmoid function, and  W,b are the 
weighting matrix and bias vector, respectively, for forget 
( Wf ,bf  ), input ( Wi,bi ), and output ( Wo,bo ) gates. In the 
same way, the weighting matrix and bias vector for mem-
ory cell are defined as Wc and bc , respectively. Then, the 
memory cell ct can be updated as [26]:

where ◦ is the concatenation operator for multidimen-
sional vectors, and c̃t is the updated state of memory cell. 
Consequently, the output gate ot and the cell’s hidden 
state ht (2) become:

Correction of extracted patterns (columns of matrix M ) 
is done after decision-making (Fig. 2). Note that A-RNN 
for proposed solution consists of several augmented 
LSTM networks pretrained for different usage contexts.

wi =
exp(si)

j exp(sj)
, i ∈ [1; n].

(1)p(ht−1,M) =
∑

i

wiMi.

(2)ht = g(ht−1, xt , p(ht−1,M)),

ft = σ(Wf [ht−1, x, p(ht−1,M)] + bf ),

it = σ(Wi[ht−1, x, p(ht−1,M)] + bi),

c̃t = tanh(Wc[ht−1, x, p(ht−1,M)] + bc),

ct = ft ◦ ct−1 + it ◦ c̃t .

ot = σ(Wo[ht−1, x, p(ht−1,M)] + bo),

ht = ot ◦ tanh(ct).

Fig. 3  Architecture of mixture layer in adaptive recurrent neural 
network. Here, M1, . . . ,Mn denote the patterns extracted from the 
training sequences
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4.2 � Modalities for user authentication
Ensuring low error rate for ACS requires combining sev-
eral modalities, such as PIN input, pick-up [28], gripping 
[29], and touchscreen utilization [30]. However, mod-
ern authentication solutions are based on taking these 
modalities in predefined usage contexts, only for example 
during typing, that requires usage of ensemble models 
for data processing. The A-RNN provides ability to track-
ing of several behavioral patterns at the same time. Thus, 
we propose to combine the following modalities during 
user authentication with BehaviorID method to provide 
flexible trade-off between authentication accuracy and 
usability: 

1	 Type pattern based on touchscreen keyboard timing 
and touches locations: 

1.	 Keyboard hit-map
2.	 Distance between touches and buttons centers

2	 Swipe pattern on touchscreen
3	 Device small motions estimated with motion sensor: 

1.	 Tilt of device
2.	 Small motions during text typing or swiping on 

touchscreen

4	 Behavioral profiling based on app usage patterns
5	 Eyes tracking during app usage estimated by using 

device’s front-facing camera
6	 Mobile grip pattern detected by utilizing touchscreen 

and gyroscope

Effective countermeasures against spoofing attack during 
user authentication requires using additional factors [3]. 
BehaviorID allows “strengthening” of widespread authen-
tication methods by the usage of several modalities, for 
example: 

1	 Password-based authentication—user’s behavior 
parameters are analyzed during typing, namely key-
stroke dynamics, device small motion, and keyboard 
hit map. If user behavior differs from saved profile, 
the device will remain locked regardless of the cor-
rectness of the entered password.

2	 Secure keyboard—the proposed method can be used 
for touchscreen keyboard strengthening while work-
ing in messengers, social networks, etc. In case of 
failure of the BehaviorID authentication, a message 
will not be sent and the system will ask for additional 
authentication.

3	 Strengthening of biometric-based authentication—
BehaviorID can be used for increasing the robustness 

of biometric-based authentication to spoofing. This 
is achieved by analyzing the device’s small motions 
during authentication. Thus, a device remains locked 
even for spoofed biometric authentication, for exam-
ple, facial recognition, if motion patterns differ from 
a known one or even absent.

4	 Users transparent authentication—the method 
checks of user authenticity at the background (with-
out making of authentication request) after launch-
ing of predefined applications, for example, banking 
app. If the difference between gathered behavioral 
data, such as swipe patterns, touchscreen hit map, 
user’s sight tracking, and a reference profile, is above 
a threshold, the device is locked in short time.

Rich functionality of the proposed BehaviorID method 
makes it an attractive solution for transparent multifac-
tor on-device user authentication. However, performance 
evaluation of BehaviorID in real cases requires additional 
investigation. Therefore, of special interest is the perfor-
mance evaluation of modern and proposed methods.

5 � Experiments
Performance evaluation of the state-of-the-art and pro-
posed BehaviorID solutions was performed for both 
single modal and multimodal user authentication. The 
following use cases were considered: 

1	 Estimation of SAR is performed to check the con-
formity of BehaviorID performance with require-
ments of ATAM [3] for processing sensitive data on 
mobile and wearable devices.

2	 Keystroke dynamics-based authentication in vari-
ous context corresponds to the case of “strengthen-
ing” of user authentication by single modality (e.g., 
password-based authentication) in several usage con-
texts.

3	 Multimodal authentication by changing usage con-
text allows evaluating the solution robustness to 
changes of person’s behavioral templates, for exam-
ple, start walking after still standing.

4	 Long-term tracking of behavioral pattern alterations 
corresponds to the case of changing of user’s behav-
ior over long-term usage of ACS system.

Performance analysis of the BehaviorID method was 
done using PC- and Android-based prototypes. The PC-
based prototype includes the implementation of A-RNN 
module with the TensorFlow package and its tuning of 
predefined datasets. Then, pretrained model was trans-
ferred to Samsung Galaxy S21 smartphone with Ten-
sorFlow Lite converter. The smartphone operated under 
Android 11 OS.
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Usage context recognition for Android demo was per-
formed with usage of human activity recognition (HAR) 
module. The module allows detecting the following phys-
ical activities—users are laying down, sitting, still stand-
ing, and walking. The HAR module uses CNN proposed 
by Gholamrezaii et  al.  [31] for feature extraction from 
signals gathered by motion sensor, namely accelerom-
eter and gyroscope. The network was trained on stand-
ard UCI HAR dataset [32] and fine tuned on modern 
HARTH [33] and KU-HAR [34] datasets.

BehaviorID performance evaluation was done using a 
set of public and in-house datasets of behavioral patterns 
for mentioned modalities (Section  4.2) in various usage 
contexts. The following datasets were used:

•	 The ExtraSensory dataset  [35] includes measure-
ments of several sensors for 60 persons on smart-
phones and tablets made “in the wild.” The data was 
captured by motion sensor, geolocation, and mag-
netometer for 15 smartphone models (Android and 
iOS).

•	 The MotionSense dataset  [36] includes time series 
generated by motion sensor of iPhone 6s smart-
phone. The device was kept in the participant’s front 
pocket. The dataset includes the estimation for 24 
participants performing 6 physical activities (15 tri-
als-per-activity in average).

•	 The SherLock dataset  [37] is a huge dataset of long-
term tracking of smartphone sensors with a high 
temporal resolution. The dataset offers explicit labels 
that capture the activity of applications running on 
the device. It contains about 10 billion data records 
from 30 users collected over a period of 2 years and 
an additional 20 users for 10 months (totally 50 
users).

•	 The H-MOG dataset  [38] includes the results of 
large-scale user study to collect a wide range of 
behavioral patterns related to touch dynamics, ges-
ture, and movement and orientation of the phone. 
The data of 100 volunteers was collected during sit-
ting and walking.

•	 The UMDAA-02 dataset  [39] consists of 141.14 GB 
of smartphone sensor signals collected from 48 vol-
unteers on Nexus 5 devices over 2 months. The data 
was gathered by frontal-facing camera, touchscreen, 
motion sensor, magnetometer, light sensor, GPS, 
Bluetooth, WiFi, proximity sensor, temperature sen-
sor, and pressure sensor. The data collection appli-
cation also stored the timing of the screen lock and 
unlock events, start and end timestamps of calls, 
foreground application, etc.

•	 The BB-MAS dataset  [40] is collected by the 
international research teams for the analysis of 

the behavioral biometrics, obtained from multi-
ple devices. Data from 117 subjects was collected 
for typing fixed and free text, walking, and touch-
screen utilization on desktops, tablets, and smart-
phones.

•	 Fixed-context dataset was collected by our team dur-
ing analysis of behavior-based authentication sys-
tems. The signals were gathered for 30 users (at least 
5 authentication probes per user) during still stand-
ing. The users were requested to enter a 10-character 
passwords by left, right, or both hands.

Usage of several datasets during performance analysis is 
caused by the absence of a single “universal” dataset for 
the evaluation of behavior-based authentication systems 
for both short- and long-term changes of users behav-
ioral patterns. Thus, we divided the considered datasets 
into two groups, namely with short-time (ExtraSen-
sory, MotionSense, and in-house databases) and long-
term (SherLock, H-MOG, and UMDAA-02 datasets) 
estimations.

For comparison, we considered the following state-of-
the-art solutions for behavior-based user authentication 
on smartphones:

•	 Abuhamad et  al. method  [9]—based on the utiliza-
tion of deep RNN, namely LSTM, for modeling tem-
porary dependencies between samples of behavioral 
templates

•	 Reichinger et al. [41]—based on unsupervised learn-
ing approach for gathered behavioral features with 
usage of hidden Markov model

•	 MMAuth method  [42]—integrates the heteroge-
neous information of user identity from multiple 
modalities with usage of developed time-extended 
behavioral feature set and a deep learning based one-
class classifier

The performance analysis of modern and proposed 
methods was done in several stages. At the first step, we 
evaluate the conformity of the proposed BehaviorID to 
the requirements of ATAM  [3], namely FAR, FRR, and 
SAR values. The SAR was estimated as the probability of 
false acceptance of non-target user [3]. Analysis was per-
formed with standard ExtraSensory, MotionSense, and 
in-house datasets. Both single and multifactor authen-
tication cases were considered with the usage of motion 
sensor (accelerometer and gyroscope) as well as inter-
touch duration (ITD). The estimated values of FAR, FRR, 
and SAR are presented in Table 2.

Note that the Abuhamad et al. method allows negligi-
bly decreasing the error level for the single modal case, 
while preserving similar or even higher error values for 
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multimodal case in comparison with modern Reich-
inger et  al. and MMAuth methods (Table  2). This can 
be explained by better accuracy of modeling cross-sam-
ples dependencies for gathered signals by usage of deep 
LSTM model in comparison with the hidden Markov 
model for advanced methods.

Moving from single factor to multifactor authentica-
tion allows for decreasing SAR values from 37.2  to 2.9% 
by preserving low FAR (about 2.5% ) and FRR (near 8% ) 
values for the proposed method (Table 2). The obtained 
results are close to state of the art in the domain of 
behavior-based authentication  [1, 20, 43]. Note that 
the obtained SAR values for multifactor authentication 
( SAR < 7% ) corresponds to class 3 (strong) tier of ATAM 
[3]. This makes the proposed solution an attractive candi-
date for use in security-sensitive scenarios.

On the second stage of performance analysis, evalu-
ation of error level in both fixed and various usage 
contexts was done. The obtained metrics values are rep-
resented in Tables 3 and 4.

Note that there is a relatively high level of SAR 
and FRR values in case of usage of a single sensor 
(Table 3)—up to 22.1% SAR and 13.4% FRR for all sen-
sors. The usage of output signals for accelerometer and 
gyroscope allows reducing up to two times SAR by pre-
serving the similar FRR values (Table  3). Merging of 
signals for all considered sensors leads to considerable 
decrease of error rates—up to 0.35% for SAR and 6.9% 
for FRR.

The password-based authentication “in-the-wild” by 
varying usage contexts and the password’s length was 

considered on BB-MAS dataset (Table 4). The noticeable 
decreasing of SAR and FRR values was obtained—up to 
9% reducing of SAR and up to two times in comparison 
with the fixed-context dataset. This can be explained by 
huge size of BB-MAS dataset [40] in comparison with in-
house dataset—3.5 million keystroke events, 57.1 million 
data points for motion sensor, and 1.7 million data points 
for swipes. The usage of much bigger amount of samples 
for BB-MAS dataset allows considerably improving the 
detection accuracy of both HAR module and A-RNN 
networks.

The next stage of performance analysis is aimed at the 
evaluation of considered solutions for the case of mul-
timodal authentication in several usage contexts. The 
H-MOG and UMDAA-02 datasets were used for the 
estimation of FAR and FRR in this case. The keystroke 
dynamics, device fine motions, swipe patterns, applica-
tions profiling, and gaze tracking were used as authen-
tication factors. The estimated values of FAR and FRR 
metrics for the state-of-the-art and proposed solutions 
for case of changing usage context (from still sitting to 
walking) are presented in Table 5.

State-of-the-art solutions and the proposed BehaviorID 
methods achieve similar values of FAR and FRR by mul-
tifactor authentication during usage contexts changes 
(UMDAA-02 dataset, Table  5). However, BehaviorID 
allows for achieving smaller error rates (up to three times 
in comparison with Abuhamad’s solutions) on H-MOG 
dataset. In both cases, values of FAR and FRR are close 
to the state-of-the-art results [1, 43] that prove the effec-
tiveness of the proposed solution in this case.

Table 2  Estimated FAR, FRR, and SAR for single and multifactor authentication cases for fixed usage context (users are still sitting) 
using state-of-the-art and proposed methods. The “Acc” and “Gyr” stand for accelerometer and gyroscope

In-house dataset Motion-Sense 
dataset

ExtraSensory dataset

Acc Gyr Acc, Gyr Acc, Gyr, and ITD Acc, Gyr Acc, Gyr Acc, Gyr, 
and ITD

Abuhamad et al. FAR 18.3% 34.1% 15.6% 4.0% 4.7% 3.2% 3.1%

FRR 14.1% 24.6% 13.8% 8.1% 9.5% 6.6% 4.2%

SAR 20.6% 45.8% 15.4% 5.1% 6.0% 3.2% 3.0%

Reichinger et al. FAR 17.5% 36.8% 15.6% 13.1% 4.9% 3.4% 2.9%

FRR 12.4% 26.7% 12.3% 8.2% 9.1% 5.3% 4.0%

SAR 18.3% 41.5% 16.8% 5.7% 6.8% 3.1% 2.8%

MMAuth FAR 19.4% 38.1% 15.0% 7.5% 5.0% 4.1% 3.0%

FRR 13.7% 25.1% 14.3% 7.6% 8.6% 5.5% 4.1%

SAR 17.1% 37.9% 16.1% 7.8% 5.3% 4.2% 2.9%

BehaviorID FAR 16.0% 37.2% 13.1% 12.5% 3.5% 3.5% 2.5%

FRR 11.2% 24.8% 10.4% 6.9% 7.7% 4.4% 3.8%

SAR 15.6% 37.2% 12.5% 3.5% 4.8% 2.9% 2.5%
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At the last stage, the most difficult case of long-term 
tracking of behavioral template was considered. The per-
formance analysis was done on SherLock dataset using 

three modalities, namely keystroke dynamics, application 
usage logs, and device’s fine motions. The estimated val-
ues of FAR and FRR metrics for modern and proposed 

Table 3  Estimated values of FAR, FRR, and SAR for password-based password’s length (fixed-context in-house dataset) with modern 
and proposed methods

Modalities Single sensor Two sensors Multisensors

Sensors Accelerometer Gyroscope Touchscreen Accelerometer and 
gyroscope

Motion 
sensor and 
touchscreen

Abuhamad et al. method

  FAR 17.2% 32.8% 20.3% 15.8% 4.6%

  FRR 12.4% 25.5% 15.1% 10.8% 7.6%

  SAR 13.8% 38.2% 13.6% 13.2% 2.6%

Reichinger et al. method

  FAR 18.1% 37.1% 19.8% 13.9% 12.4%

  FRR 13.8% 27.9% 15.6% 12.1% 8.4%

  SAR 16.8% 39.1% 14.2% 13.9% 3.4%

MMAuth method

  FAR 19.1% 34.0% 17.6% 14.8% 7.7%

  FRR 13.0% 26.3% 15.3% 11.4% 7.2%

  SAR 16.4% 39.5% 14.9% 12.8% 1.5%

BehaviorID method

  FAR 14.5% 32.1% 17.2% 12.7% 11.9%

  FRR 11.2% 24.8% 14.2% 10.4% 6.9%

  SAR 15.9% 37.2% 13.1% 12.5% 0.4%

Table 4  Estimated values of FAR, FRR, and SAR during user authentication during free-text typing in various contexts (BB-MAS dataset) 
with modern and proposed methods

Modalities Single sensor Two sensors Multisensors

Sensors Accelerometer Gyroscope Touchscreen Accelerometer and 
gyroscope

Motion 
sensor and 
touchscreen

Abuhamad et al. method

  FAR 14.2% 24.1% 10.8% 7.7% 3.4%

  FRR 9.8% 18.1% 8.4% 6.0% 3.2%

  SAR 11.9% 27.1% 9.1% 9.5% 2.6%

Reichinger et al. method

  FAR 12.4% 23.2% 11.1% 8.2% 3.0%

  FRR 9.4% 17.5% 8.2% 7.6% 2.8%

  SAR 12.8% 26.0% 9.9% 9.1% 3.3%

MMAuth method

  FAR 13.8% 24.5% 11.7% 8.0% 2.2%

  FRR 10.1% 18.9% 8.7% 7.9% 3.0%

  SAR 12.0% 27.5% 9.2% 9.4% 3.1%

BehaviorID method

  FAR 10.6% 22.8% 8.9% 5.4% 1.7%

  FRR 7.2% 15.3% 6.8% 5.8% 2.1%

  SAR 13.4% 25.7% 9.4% 9.6% 0.7%
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solutions for the 3-week usage period are presented in 
Table 6.

The state-of-the-art Abuhamad et  al. solution has 
shown a decreasing authentication accuracy up to 13% 
for the considered case, while the proposed method 
preserves low performance degradation (only about 4% , 
Table  6). Thus, BehaviorID provides the same or even 
better performance for short-term tracking of behavioral 
templates and performs much better in long-term usage 
scenarios.

6 � Conclusion
Many solutions for biometric- and behavior-based 
authentication and liveness detection on mobile devices 
are presented on the market. Despite the widespread 
integration, they tend to be vulnerable to presentation 
attack (spoofing of biometric data). In addition, majority 
of the modern solution are typically designed to operate 
in fixed usage context, such as still positions, that nega-
tively impacts the user experience.

Major contribution of this paper is the proposed con-
text-dependent behavior-based BehaviorID method that 
allows for accurate on-the-fly user authentication in vari-
ous usage contexts. The BehaviorID is based on apply-
ing advanced A-RNN model for simultaneously tracking 
several behavioral templates in signals gathered from 
built-in sensors. This makes possible fast adaptation of 
behavioral templates to alterations caused by alterations 
of user habits as well as changes in person’s physical state, 
for example, injuries. Also, the A-RNN allows tracking of 

behavioral features by preserving low computation over-
head that makes it attractive for usage on resource-con-
strained mobile devices.

Performance analysis of the proposed methods showed 
that BehaviorID allows outperforming the state-of-the-
art multifactor behavior-based authentication methods 
even in the most difficult case of long-term tracking of 
behavioral patterns (about 2.1% FAR and 3.9% FRR). Also, 
the proposed method provides low error rate in various 
usage context (about 0.5% FAR and 1.3% FRR) by preserv-
ing fast detection of non-owner user (within 0.5− 1.0 s 
for Samsung Galaxy S21 smartphone). This makes the 
proposed BehaviorID method a promising candidate 
for the next-generation user authentication systems on 
mobile and wearable devices.

Our future work will be devoted to investigating the 
accuracy of behavioral template tracking for long-term 
evaluation in real environment. Moreover, we will focus 
on the adaptation of the proposed method for wearable 
devices, such as smartwatches, by reducing the com-
putational overhead of behavioral template tracking 
procedure.

Abbreviations
ACS: Access control system; ATAM: Android tiered authentication model; 
A-RNN: Adaptive recurrent neural network; CNN: Convolutional neural 
network; DTW: Dynamic time warping; FAR: False acceptance rate; FRR: False 
rejection rate; GRU​: Gated recurrent unit; HAR: Human activity recognition; ITD: 
Inter-touch duration; LSTM: Long short-term memory; RNN: Recurrent neural 
networks; SAR: Spoof acceptance rate.

Acknowledgements
Not applicable.

Authors’ contributions
DP performed the initial set of experiments with the proposed neural network 
architecture that showed its applicability. VC and PK prepared the demo for 
on-device usage and performed the experiments for checking the applicabil-
ity of the proposed solution. AO drafted the first version of the manuscript. DP 
updated the manuscript to the final version. All authors read and approved 
the final manuscript.

Funding
Research was conducted on funds of Samsung R &D Institute Ukraine, Kyiv.

Availability of data and materials
Model evaluation was performed on open datasets, namely UCI HAR [32], 
ExtraSensory [35], MotionSense [36], SherLock [37], H-MOG [38], UMDAA-
02 [39], and BB-MAS [40]. The considered state-of-the-art Abuhamad et al.  [9], 
Reichinger et al.[41], and MMAuth [42] methods are available from the cor-
responding author on reasonable request. We compared the obtained results 
with the requirements of ATAM [3].

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Security Team, Samsung R &D Institute Ukraine, 57, Lva Tolstogo Street, 
01032 Kyiv, Ukraine. 2 Institute of Physics and Technology, Igor Sikorsky Kyiv 

Table 5  Estimated values of FAR and FRR during multifactor 
authentication in various usage contexts

Metric Abuhamad 
et al. method

Reichniger 
et al. method

MMAuth 
method

BehaviorID 
method

H-MOG dataset

  FAR 1.8% 0.9% 1.3% 0.3%

  FRR 3.0% 1.5% 1.9% 1.3%

UMDAA-02 dataset

  FAR 7.4% 6.8% 7.9% 7.0%

  FRR 5.4% 4.1% 5.0% 3.5%

Table 6  Estimated values of FAR and FRR during multifactor 
authentication for the case of long-term usage of a smartphone 
(SherLock dataset)

Metric Abuhamad 
et al. 
method

Reichniger 
et al. 
method

MMAuth method BehaviorID 
method

FAR 9.4% 2.8% 6.6% 2.1%

FRR 12.7% 4.2% 11.9% 3.9%



Page 11 of 11Progonov et al. EURASIP Journal on Information Security          (2022) 2022:6 	

Polytechnic Institute, 37, Prospect Peremohy, 03056 Kyiv, Ukraine. 3 Faculty 
of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, 
64/13, Volodymyrska Street, 01601 Kyiv, Ukraine. 

Received: 15 September 2021   Accepted: 17 August 2022

References
	1.	 M. Papadopouli, A. Arnes, J.A. Bombin, E. Boschi, S. Buchegger, R.B. Cortiñas, 

et al., Mobile identity management. IDM report. Eur. Netw. Inf. Secur. 
Agency. (2010). https://​www.​enisa.​europa.​eu/​publi​catio​ns/​Mobil​e20IDM. 
Accessed 24 June 2020

	2.	 M.A. Ferrag, L. Maglaras, A. Derhab, H. Janicke, Authentication schemes for 
smart mobile devices: threat models, countermeasures, and open research 
issues. Telecommun. Syst. 73, 317–348 (2020)

	3.	 Google. Lockscreen and authentication improvements in Android 11. 
(2020). https://​andro​id-​devel​opers.​googl​eblog.​com/​2020/​09/​locks​creen-​
and-​authe​ntica​tion.​html. Accessed 23 May 2022

	4.	 C. Wu, K. He, J. Chen, Z. Zhao, R. Du, Liveness is not enough: enhancing 
fingerprint authentication with behavioral biometrics to defeat puppet 
attacks. in 29th USENIX Security Symposium (USENIX Security 20) (2020), 
p. 2219–2236. https://​www.​usenix.​org/​confe​rence/​useni​xsecu​rity20/​prese​
ntati​on/​wu. Accessed 12 July 2021

	5.	 C. Burt, U.S. DISA develops prototype multi-biometric smartphone for 
“assured identity”. (2019). https://​www.​biome​tricu​pdate.​com/​201908/​u-s-​
disa-​devel​ops-​proto​type-​multi-​biome​tric-​smart​phone-​for-​assur​ed-​ident​ity. 
Accessed 23 May 2022

	6.	 M. Ehatisham-ul Haq, M.A. Azam, J. Loo, K. Shuang, S. Islam, U. Naeem, et al., 
Authentication of smartphone users based on activity recognition and 
mobile sensing. Sensors. 17(9), (2017). https://​www.​mdpi.​com/​1424-​8220/​
17/9/​2043. Accessed 12 July 2021

	7.	 A. Alzubaidi, J. Kalita, Authentication of smartphone users using behavioral 
biometrics. IEEE Commun. Surv. Tutor. 18(3), 1998–2026 (2016)

	8.	 O. Riva, C. Qin, K. Strauss, D. Lymberopoulos, Progressive authentication: 
deciding when to authenticate on mobile phones. in 21st USENIX Security 
Symposium (USENIX Security 12) (Bellevue, 2012), p. 301–316. https://​www.​
usenix.​org/​confe​rence/​useni​xsecu​rity12/​techn​ical-​sessi​ons/​prese​ntati​on/​riva. 
Accessed 12 July 2021

	9.	 M. Abuhamad, T. Abuhmed, D. Mohaisen, D. Nyang, AUToSen: deep-learn-
ing-based implicit continuous authentication using smartphone sensors. 
IEEE Internet Things J. 7(6), 5008–5020 (2020)

	10.	 A. Cser, M. Merritt, The future of identity and access management. FOR-
RESTER Inc. (2019). https://​www.​forre​ster.​com/​report/​The+​Future+​Of+​
Ident​ity+​And+​Access+​Manag​ement/-/E-​RES13​6522. Accessed 24 Jun 2020

	11.	 RSA SecurID Suite. https://​www.​rsa.​com/​en-​us/​produ​cts/​rsa-​secur​id-​suite. 
Accessed 24 Jun 2020

	12.	 NuData Security. https://​nudat​asecu​rity.​com/. Accessed 24 Jun 2020
	13.	 Apple Inc . Touch ID and Face ID technologies description. https://​suppo​rt.​

apple.​com/​en-​us/​HT208​108. Accessed 24 Jun 2020
	14.	 SecureAuth Identity Platform. https://​www.​secur​eauth.​com/​produ​cts/​ident​

ity-​platf​orm. Accessed 24 Jun 2020
	15.	 Amazon GuardDuty: protect your AWS accounts with intelligent threat 

detection. https://​aws.​amazon.​com/​guard​duty/?​nc1=h_​ls. Accessed 23 
May 2022

	16.	 TwoSense.AI: continuous multifactor authentication. https://​www.​twose​
nse.​ai/. Accessed 23 May 2022

	17.	 Biometric signature ID. https://​biosig-​id.​com/. Accessed 23 May 2022
	18.	 OneSpan: do more business with better security & simplified customer 

experiences. https://​www.​onesp​an.​com/. Accessed 23 May 2022
	19.	 Zighra: insights and resources. https://​zighra.​com/. Accessed 23 May 2022
	20.	 Context-aware identity management framework. Alliance Telecommun. Ind. 

Solutions. (2018). https://​access.​atis.​org/​apps/​group_​public/​downl​oad.​php/​
43565/​ATIS-I-​00000​70.​pdf. Accessed 24 Jun 2020

	21.	 Ping identity announces the acquisition of SecuredTouch to accelerate 
identity fraud capabilities. https://​www.​pingi​denti​ty.​com/​en/​compa​ny/​ping-​
newsr​oom/​press-​relea​ses/​2021/​secur​edtou​ch.​html. Accessed 23 May 2022

	22.	 E. Koster, Why Samsung NEXT and HYPR believe the future will be 
passwordless. https://​news.​samsu​ng.​com/​us/​samsu​ng-​next-​hypr-​belie​ve-​
future-​will-​passw​ordle​ss/. Accessed 23 May 2022

	23.	 H.G. Kayacik, et al. Data Driven Authentication: On the Effectiveness of 
User Behaviour Modelling with Mobile Device Sensors. Cornell University 
preprint repository. arXiv:1410.7743 (2014)

	24.	 M.A. Alqarni, S.H. Chauhdary, M.N. Malik, et al., Identifying smartphone users 
based on how they interact with their phones. Hum. Cent. Comput. Inf. Sci. 
10(7), (2020). https://​doi.​org/​10.​1186/​s13673-​020-​0212-7

	25.	 S. Salvador, P. Chan, Toward accurate dynamic time warping in linear time 
and space. Intell. Data Anal. 11(5), 561–580 (2007)

	26.	 K. Zhao, Y. Li, C. Zhang, C. Yang, H. Xu, Adaptive recurrent neural network 
based on mixture layer. (2018). arXiv e-prints. http://​arxiv.​org/​abs/​1801.​08094

	27.	 I. Goodfellow, Y. Bengio, A. Courville, Deep learning (The MIT Press, Cam-
bridge, 2016)

	28.	 W.H. Lee, X. Liu, Y. Shen, H. Jin, R.B. Lee, Secure pick up: implicit authentica-
tion when you start using the smartphone. (2017). arXiv e-prints. http://​
arxiv.​org/​abs/​1708.​09366

	29.	 K. Murao, H. Tobise, T. Terada, T. Iso, M. Tsukamoto, T. Horikoshi, Mobile phone 
user authentication with grip gestures using pressure sensors. Int. J. Perva-
sive Comput. Commun. 11(3), 288–301 (2015)

	30.	 S.J. Alghamdi, L.A. Elrefaei, Dynamic authentication of smartphone users 
based on touchscreen gestures. Arab. J. Sci. Eng. 43, 789–810 (2018)

	31.	 M. Gholamrezaii, S.M. Taghi Almodarresi, "Human Activity Recognition 
Using 2D Convolutional Neural Networks," 2019 27th Iranian Conference on 
Electrical Engineering (ICEE), pp. 1682–1686, (2019) https://​doi.​org/​10.​1109/​
Irani​anCEE.​2019.​87865​78

	32.	 D. Garcia-Gonzalez, D. Rivero, E. Fernandez-Blanco, M.R. Luaces, A public 
domain dataset for human activity recognition using smartphones. Sensors. 
20(8), (2020)

	33.	 A. Logacjov, K. Bach, A. Kongsvold, H.B. Bårdstu, P.J. Mork. HARTH: a human 
activity recognition dataset for machine learning. Sensors (Basel). 21(23), 
(2021)

	34.	 N. Sikder, A.A. Nahid, KU-HAR: an open dataset for heterogeneous human 
activity recognition. Pattern Recognit. Lett. 146, 46–54 (2021)

	35.	 Y. Vaizman, K. Ellis, G. Lanckriet, Recognizing detailed human context in the 
wild from smartphones and smartwatches. IEEE Pervasive Comput. 16(4), 
62–74 (2017)

	36.	 M. Malekzadeh, R.G. Clegg, A. Cavallaro, H. Haddadi, Mobile sensor data 
anonymization, in Proceedings of the International Conference on Internet 
of Things Design and Implementation. IoTDI ’19. (ACM, New York, 2019), 
pp.49–58

	37.	 Y. Mirsky, A. Shabtai, L. Rokach, B. Shapira, Y. Elovici, "Sherlock vs moriarty: A 
smartphone dataset for cybersecurity research", Proc. ACM Workshop Artif. 
Intell. Secur. pp. 1–12, (2016). https://​doi.​org/​10.​1145/​29967​58.​29967​64

	38.	 Z. Sitová, J. Šeděnka, Q. Yang, G. Peng, G. Zhou, P. Gasti et al., HMOG: new 
behavioral biometric features for continuous authentication of smartphone 
users. IEEE Trans. Inf. Forensic. Secur. 11(5), 877–892 (2016)

	39.	 U. Mahbub, S. Sarkar, V.M. Patel, R. Chellappa, "Active user authentication for 
smartphones: A challenge data set and benchmark results," 2016 IEEE 8th 
International Conference on Biometrics Theory, Applications and Systems 
(BTAS), (2016), pp. 1–8, https://​doi.​org/​10.​1109/​BTAS.​2016.​77911​55

	40.	 A.K. Belman, L. Wang, S.S. Iyengar, P. Sniatala, R. Wright, R. Dora, et al., Insights 
from BB-MAS – a large dataset for typing, gait and swipes of the same 
person on desktop, tablet and phone. (2019), arXiv e-prints. http://​arxiv.​org/​
abs/​1912.​02736

	41.	 D. Reichinger, E. Sonnleitner, M. Kurz, Continuous mobile user authentica-
tion using combined biometric traits. Appl. Sci. 11(24), (2021)

	42.	 Z. Shen, S. Li, X. Zhao, J. Zou, MMAuth: a continuous authentication frame-
work on smartphones using multiple modalities. IEEE Trans. Inf. Forensic. 
Secur. 17, 1450–1465 (2022)

	43.	 G. Rowe, N. Nikols, D. Simmons, The future of identity management (2018-
2023). TechVision Res. (2018). https://​techv​ision​resea​rch.​com/​wp-​conte​
nt/​uploa​ds/​2018/​01/​The-​Future-​of-​Ident​ity-​Manag​ement-​2018-​final.​pdf. 
Accessed 24 Jun 2020

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.enisa.europa.eu/publications/Mobile20IDM
https://android-developers.googleblog.com/2020/09/lockscreen-and-authentication.html
https://android-developers.googleblog.com/2020/09/lockscreen-and-authentication.html
https://www.usenix.org/conference/usenixsecurity20/presentation/wu
https://www.usenix.org/conference/usenixsecurity20/presentation/wu
https://www.biometricupdate.com/201908/u-s-disa-develops-prototype-multi-biometric-smartphone-for-assured-identity
https://www.biometricupdate.com/201908/u-s-disa-develops-prototype-multi-biometric-smartphone-for-assured-identity
https://www.mdpi.com/1424-8220/17/9/2043
https://www.mdpi.com/1424-8220/17/9/2043
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/riva
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/riva
https://www.forrester.com/report/The+Future+Of+Identity+And+Access+Management/-/E-RES136522
https://www.forrester.com/report/The+Future+Of+Identity+And+Access+Management/-/E-RES136522
https://www.rsa.com/en-us/products/rsa-securid-suite
https://nudatasecurity.com/
https://support.apple.com/en-us/HT208108
https://support.apple.com/en-us/HT208108
https://www.secureauth.com/products/identity-platform
https://www.secureauth.com/products/identity-platform
https://aws.amazon.com/guardduty/?nc1=h_ls
https://www.twosense.ai/
https://www.twosense.ai/
https://biosig-id.com/
https://www.onespan.com/
https://zighra.com/
https://access.atis.org/apps/group_public/download.php/43565/ATIS-I-0000070.pdf
https://access.atis.org/apps/group_public/download.php/43565/ATIS-I-0000070.pdf
https://www.pingidentity.com/en/company/ping-newsroom/press-releases/2021/securedtouch.html
https://www.pingidentity.com/en/company/ping-newsroom/press-releases/2021/securedtouch.html
https://news.samsung.com/us/samsung-next-hypr-believe-future-will-passwordless/
https://news.samsung.com/us/samsung-next-hypr-believe-future-will-passwordless/
https://doi.org/10.1186/s13673-020-0212-7
http://arxiv.org/abs/1801.08094
http://arxiv.org/abs/1708.09366
http://arxiv.org/abs/1708.09366
https://doi.org/10.1109/IranianCEE.2019.8786578
https://doi.org/10.1109/IranianCEE.2019.8786578
https://doi.org/10.1145/2996758.2996764
https://doi.org/10.1109/BTAS.2016.7791155
http://arxiv.org/abs/1912.02736
http://arxiv.org/abs/1912.02736
https://techvisionresearch.com/wp-content/uploads/2018/01/The-Future-of-Identity-Management-2018-final.pdf
https://techvisionresearch.com/wp-content/uploads/2018/01/The-Future-of-Identity-Management-2018-final.pdf

	Behavior-based user authentication on mobile devices in various usage contexts
	Abstract 
	1 Introduction
	2 Preliminaries
	3 Related works
	4 Proposed technology
	4.1 Adaptive recurrent neural network
	4.2 Modalities for user authentication

	5 Experiments
	6 Conclusion
	Acknowledgements
	References


