Russo et al. EURASIP Journal on Information Security (2021) 2021:11

https://doi.org/10.1186/513635-021-00126-1

EURASIP Journal on
Information Security

RESEARCH Open Access

Detection of illicit cryptomining using

network metadata

Michele Russo'” ®, Nedim Srndi¢! and Pavel Laskov?

Check for
updates

Abstract

effectiveness in protecting real-world systems.

Ilicit cryptocurrency mining has become one of the prevalent methods for monetization of computer security
incidents. In this attack, victims' computing resources are abused to mine cryptocurrency for the benefit of attackers.
The most popular illicitly mined digital coin is Monero as it provides strong anonymity and is efficiently mined on CPUs.
Illicit mining crucially relies on communication between compromised systems and remote mining pools using the
de facto standard protocol Stratum. While prior research primarily focused on endpoint-based detection of in-browser
mining, in this paper, we address network-based detection of cryptomining malware in general. We propose
XMR-Ray, a machine learning detector using novel features based on reconstructing the Stratum protocol from raw
NetFlow records. Our detector is trained offline using only mining traffic and does not require privacy-sensitive normal
network traffic, which facilitates its adoption and integration.

In our experiments, XMR-Ray attained 98.94% detection rate at 0.05% false alarm rate, outperforming the closest
competitor. Our evaluation furthermore demonstrates that it reliably detects previously unseen mining pools, is
robust against common obfuscation techniques such as encryption and proxies, and is applicable to mining in the
browser or by compiled binaries. Finally, by deploying our detector in a large university network, we show its

Keywords: Detection, Malware, Cryptomining, Monero, NetFlow, Machine learning, One-class classification

1 Introduction

At the end of 2017, the cryptocurrency market reached
a market capitalization of over $600 billion [1]. Since
then, the market has demonstrated its interest in this
technology, and cryptocurrencies have proven to be a rev-
olutionary asset class. In May 2021, another surge of the
cryptocurrency market occurred, taking the market val-
uation to a record of over $2 trillion [2]. However, the
potential financial gains attracted not only investors but
also malicious actors.

Security risks related to cryptocurrencies are diverse.
Conventional hacking incidents at cryptocurrency
exchanges (e.g., [3, 4]) led to vast financial losses and even,
as in the case of MtGox, to bankruptcy. Other prominent
incidents included manipulation of wallet addresses [5],

*Correspondence: michele.russol@huawei.com
"Huawei Technologies Duesseldorf GmbH, Munich, Germany
Full list of author information is available at the end of the article

@ Springer Open

exploitation of wallet software [6—8], and compromise
of mining power exchanges such as NICEHASH [9]. In
contrast to such jackpot-style incidents, illicit mining of
digital coins [10] is a far more reliable source of income
for criminals.

Various sources have reported a dramatic rise in cryp-
tocurrency mining malware in the last 2 years. The
year 2018 began with a surge in mining attacks [11], the
trend rising in the entire year [12], during which time the
number of cryptomining malware samples grew by more
than 4000% [13]. In the first quarter of 2019, the num-
ber of campaigns targeting victims’ computers to mine
cryptocurrencies reportedly increased by 29% [14], and
the recovery in trading price starting from May 2019 has
resulted in a spike in cryptomining malware operations
[15, 16]. Finally, large-scale attacks targeting enterprises
are still widespread in 2020 (e.g., [17-19]).

© The Author(s). 2021, corrected publication 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http:/creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-021-00126-1&domain=pdf
http://orcid.org/0000-0001-6876-2798
mailto: michele.russo1@huawei.com
http://creativecommons.org/licenses/by/4.0/

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

Our work is focused on detecting mining of Monero
cryptocurrency (abbr. XMR), the most prevalent one in
the illicit cryptomining ecosystem due to its anonymity
guarantees and the feasibility to use CPUs for mining [20].
Monero mining is typically performed by a group of min-
ers (clients) connected to a common mining pool (server)
which shares the workload and profit among miners. This
arrangement boosts the chance for the entire pool to
mine a new block and consequently obtain a reward for
it, in turn maximizing the long-term expected gain for
individual miners. The de facto standard application layer
protocol for communication between pool servers and
clients is Stratum [21]. It has a minimalist syntax and uses
simple logic for pool mining, which triggered our inter-
est to investigate if it can be discriminated from other
network traffic.

Illicit cryptomining attacks can be categorized into
two main families. In-browser cryptomining (also crypto-
jacking, browser-based mining) runs in the victim’s web
browser for as long as she stays on a web page with a min-
ing script, e.g., CRYPTOLOOT [22]. Binary-based crypto-
mining malware is typically delivered via trojans which
download and execute mining binaries as background
processes. In both cases, by abusing computational power
of hundreds of hijacked devices, attackers can amass sig-
nificant computational power and generate substabtial
earnings. Section 2 presents further details on “benign”
and “malicious” mining.

From the victims' perspective, illicit cryptomining
incurs electricity and cloud costs, and causes devices to
slow down and deteriorate rapidly, to the point of poten-
tially being physically destroyed [23]. Crucially, it should
be recognized as a breach indicator and promptly rectified
to prevent further serious damage, e.g., confidential data
theft.

Due to these security implications, illicit cryptomining
has received growing attention in the research commu-
nity, cf. Section 3. The majority of previous work focused
on understanding and assessing profitability of in-browser
mining [24-27]; other work discussed its detection and
mitigation [28-31]. Much less attention has been paid
to binary-based cryptomining, comprising essentially the
early investigation of Bitcoin mining botnets [32] and the
comprehensive study of Monero mining malware [20].
In terms of detection techniques, the majority of prior
work spotted mining on the endpoints by monitoring
CPU or GPU usage and process metrics (processor time,

Page 2 of 20

system calls, number of threads, etc.), or in the network
using simple indicators of compromise like domain and IP
blacklists or IPS rules.

While endpoint-based approaches are appealing in
their capability to identify salient features of cryptomin-
ing, their deployment is labor-intensive. Network-based
detection, in contrast, can be localized on critical net-
work nodes, but existing approaches cannot cope with
proxies and encryption. In this work, we demonstrate
that essential properties of cryptomining activity can be
accurately recovered from aggregated network traffic, i.e.,
NetFlow records, thus combining the advantages of both
approaches.

The unique capabilities of our proposed detector XMR-
RAY stem from key design decisions elaborated in
Section 5.1. It inspects network traffic metadata, i.e., Net-
Flow records (see example in Table 1). To alleviate the
information loss in comparison to a full traffic dump, we
introduce our principal innovation: a novel set of fea-
tures based on constraint-solving which indicate whether
a set of NetFlow records corresponding to a TCP ses-
sion exhibits unique statistical regularities characteristic
to Stratum. Using our novel features, Stratum traffic can
be discriminated from other traffic by deploying a one-
class classifier trained solely on mining traffic obtained
from legitimate mining pool clients. As a result, we obtain
a highly efficient, privacy-preserving detector resistant
to encryption, tunneling and proxies, and outperforming
detectors based on DPI. Its design and implementation are
presented along with data collection in Section 5.

In Section 6, we show that XMR-RAY, trained once on
legitimate cleartext mining traffic in our lab, successfully
generalizes to a variety of use cases. First, we evaluate it
in a controlled environment with traffic collected from
a large corporate network (Section 5.3). Next, we assess
its robustness against encryption as well as tunneling
and apply it to both in-browser and binary-based min-
ing traffic. We also show that it successfully detects traffic
generated by mining malware. Finally, we deploy it in a
large university network and assess its false alarm rate.

The main contributions of this work are:

e We design XMR-RAY, a machine learning system for
detection of cryptocurrency mining.

e e propose a novel set of features for machine
learning based on a form of constraint-solving which
indicate whether NetFlow records corresponding to a

Table 1 NetFlow records corresponding to the traffic window depicted in Fig. 2

Source Destination Packets Bytes Start time End time Src. port Dst. port TCP flags Protocol
Miner Pool I 1752 1530189072 1530189144 50122 7777 24 6
Pool Miner 6 952 1530189072 1530189144 7777 50122 24 6

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

TCP stream exhibit unique statistical regularities
characteristic to Stratum.

e e evaluate the detection performance of the
proposed solution on a comprehensive collection of
real-world traffic and compare it to the closest
related prior work.

e We assess the system’s robustness against encryption,
tunneling, proxying, and adversarial machine
learning.

® We assess the false-positive rate of our system in a
real-world deployment in a large university.

Following the experimental evaluation, we discuss the
main limitations of XMR-Ray in Section 7 and conclude
the paper.

2 Cryptocurrency mining

Mining is a fundamental operation for cryptocurrency
networks. Every transaction added to a public ledger must
be verified to avoid over- or double-spending. In the
absence of a central authority, participants of the peer-to-
peer network verify several transactions of their choice.
Transactions are grouped into blocks that are chained
together by applying cryptographic hash functions to the
content of the new block as well as the hash values of pre-
vious blocks, thus creating a tamper-proof “block-chain”
in the ledger. Two mechanisms ensure that each partic-
ipant verifies transactions honestly. First, obtaining the
right to permanently add a block to the ledger is made
expensive. Hence, every participant needs to “invest”
resources into verification and provide an easily verifiable
proof-of-work (PoW) for each block. Second, honest work
is adequately rewarded.

Both mechanisms outlined above are implemented by
mining which entails the contest for finding a padding to
a block such that the hash function computed over the
padded block evaluates to a value smaller than the given
threshold. Cryptographic hash functions are irreversible;
hence, the only way to solve this problem is to brute-
force the padding. The first participant to find a suit-
able padding announces the solution to the network and
receives a small value in cryptocurrency as a reward. The
threshold, and hence the problem difficulty, is adjusted
such that a solution is expected once in a certain time
interval. The participants’ chance of find a solution first
is proportional to their share of computational resources
within the network.

2.1 Mining pools

For miners without specialized computing resources,
pooling together is the only realistic chance to gain any
reward. A mining pool server, connected to a cryp-
tocurrency network, distributes tasks to pool participants
(clients). When a client finds a solution, it reports it to

Page 3 of 20

the server, which in turn verifies it and broadcasts it to
the cryptocurrency network. Once the solution is verified
by the network, the server receives the reward, with-
holds a commission and distributes the rest among clients
according to their work.

A specialized application layer protocol called Stratum
was developed for pooled mining. It is a line-based text
protocol using TCP sockets and JSON-encoded messages.
Although there is no official standard for Stratum and
its implementations may differ for different currencies,
its workflow remains largely the same across implemen-
tations. Mining pools typically implement the following
operations using Stratum:

Broadcast mining jobs to the pool participants
Collect the participants’ hashes/shares

Look for the block reward

Track the participants’ contributions and distribute
their rewards proportionally

B W e

Pooled mining is particularly popular for ASIC-resistant
currencies like Monero, Dashcoin, and AEON, as they use
a PoW algorithm designed to be egalitarian and efficient
to compute on CPUs.

2.2 Malicious mining

Illegitimate or malicious mining refers to mining per-
formed on hijacked resources. For example, employees
may mine on a corporate computing cluster, or malware
may use the CPU of an infected endpoint for monetiza-
tion. There exist two prevalent techniques for malicious
mining.

2.2.1 Binary-based cryptomining

This type of mining is performed by malware delivered via
spam, exploit kits, or trojans. Once a device is infected, it
downloads and starts a mining binary (executable). Previ-
ous studies reveal that cryptomining malware usually is a
variant of a legitimate open-source mining client with cus-
tom configuration parameters, e.g., hard-coded address
of the miscreant’s cryptocurrency wallet, address of the
mining pool or proxy, etc [20].

Monero (abbrev. XMR) is the preferred currency used
by cryptomining malware, and XMRIG [33] is a popu-
lar legitimate mining tool deployed in most illicit mining
campaigns [20, 34]. Since 2017, the number of coin miners
has surged, with almost 4 million new samples in the third
quarter of 2018 alone [13]. While the mining functionality
has remained stable, its delivery methods and operational
mechanisms have evolved with the malware ecosystem.
Fileless malware [35] spreads using a combination of Pow-
erShell and the EternalBlue exploit [36]. Some samples
terminate rival mining malware on victim hosts to maxi-
mize their resource use [37]. Ransomware enhanced with

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

cryptocurrency mining capability decides in real time
which of the two strategies is more lucrative [38].

2.2.2 In-browser mining

This type of mining takes place in users’ web browsers
while they are visiting a web page with an active mining
script. It is considered legitimate if the site owner obtains
the user’s consent and may be financially more attrac-
tive to the owner than web advertisement [39]. In-browser
Monero mining was pioneered by COINHIVE [40], which
provided an efficient JavaScript mining client for embed-
ding into websites, with claims of achieving up to 65% of
the hashing rate of binary-based mining.

However, this type of mining is often abused by crimi-
nals who inject JavaScript mining scripts into vulnerable
web sites. A number of such attacks has been reported
using COINHIVE scripts on, e.g., government websites
of the USA, the UK, and Australia [41]. Attackers also
abused Google’s DoubleClick service, making the affected
web pages show legitimate advertisement while a web
miner covertly performed mining in the background
[42]. Another insidious attack vector targeted carrier-
grade MikroTik routers vulnerable to remote login with
authentication bypass [43]. In this case, attackers abused
the routers’ web proxy functionality to inject COINHIVE
scripts into websites browsed by users who accessed the
Web through them.

3 Related work

Below, we present and categorize the most relevant
work addressing the phenomenon of cryptojacking. For
a comprehensive and detailed review of prior work, we
refer the reader to [44]. In addition, we place this work
in the broader context of threat detection and traffic
classification.

3.1 Detection of non-mining threats in network traffic
While detection initially focused on network packets
[45, 46], the rising link speeds made packet analysis infea-
sible and alternative approaches have emerged based on
network aggregated flows, especially NetFlow [47]. Com-
bined flow- and packet-based approaches were intro-
duced for malware family classification [48, 49]. Pure
flow-based systems have been successful in detecting
malware-related activities [50—-52] like botnets [53-55],
DoS attacks [56-58], scans [59-61], and worms [62, 63].
Similarly, our work is based on NetFlow, but we introduce
novel features specialized for mining detection.

3.2 Traffic classification

The problem addressed in our work may be seen as a spe-
cial case of traffic classification, namely, identification of
the Stratum protocol traffic. Hence, our method is related
to the respective work on traffic classification. Conti et al.

Page 4 of 20

proposed a method for identifying user actions in Android
applications based on information from TCP/IP packet
metadata in encrypted traffic [64, 65]. Papadogiannaki et
al. proposed a pattern language for describing IP packet
sequences and use it for fine-grained identification of
application events, also in encrypted traffic [66]. Traffic
classification was also performed using first 5 packets of
a TCP connection [67] or counting received packets and
bytes [68]. The impact of traffic sampling on performance
of detection systems was studied in [69]. We refer the
interested reader to [70, 71] for an exhaustive literature
survey in traffic analysis and classification.

3.3 Longitudinal studies

A considerable body of related work investigated the
cryptojacking ecosystem. In 2014, Huang et al. reverse-
engineered a large population of Bitcoin mining malware
and analyzed its network traffic to study operational
behavior, geographical distribution, and other features
[32]. They identified coherent botnet campaigns, esti-
mated their earnings and speculated about their payout
strategies. A similar study has addressed the clandes-
tine ecosystem of malicious Monero mining binaries [20].
Other longitudinal studies addressed in-browser crypto-
jacking, most prominently MINESWEEPER [28], present-
ing a new detection technique using static JavaScript
analysis and monitoring CPU cache events during
WebAssembly execution. An analysis of Alexa’s top 1
million sites provided insights into campaigns’ earnings
estimates, distribution networks, pools, proxies, and ser-
vices. Bijmans et al. [27] extend this work with a larger
list of domains gathered from different sources. They
analyze NetFlow records associated with mining ser-
vices and assess their usage distribution. Other stud-
ies addressed similar questions, differing primarily in
techniques for the detection of cryptojacking websites
[24-26, 72-75].

3.4 Endpoint- and cloud-based detection

Early work on detection addressed Bitcoin mining in cloud
environments. Solanas et al. [76] proposed a method for
detecting undesirable activities, including Bitcoin min-
ing, by using privacy-friendly features extracted from
OpenStack implementations. They use metrics such as
CPU utilization, disk read/write request rates/bytes and
network byte/packet rates to train a detector. A simi-
lar approach was taken in [77]. Analogously, hardware-
assisted profiling has been used to create discernible
signatures for various mining algorithm [78, 79]. Other
related work relies on analysis of power consumption, net-
work logs and web resources [80], hardware performance
indicators [81, 82], or on a combination of both Win-
dows performance counters and network flows features
[83]. RAPID analyzes endpoint performance from the

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

web browser to detect in-browser mining using machine
learning in real time [29]. Naseem et al. convert Wasm
binaries to gray-scale images and utilize a convolutional
neural network-based classifier to label an image as either
malicious (i.e., cryptojacking) or benign [84]. Cryptojack-
ing was also detected by tracing opcodes during execution
although not from the browser itself [31]. In the field of
memory forensics, Ali et al. [85] proposed several tech-
niques for extraction of key cryptojacking indicators, e.g.,
wallet addresses and Stratum protocol messages, from
memory images. Side channels have also been successfully
used for detection [86].

Detection of cryptojacking at the endpoints or in cloud
infrastructure may appear straightforward since crypto-
jacking inherently incurs high CPU and memory usage.
Nevertheless, it remains susceptible to false positives (pro-
cesses with similar resource usage profiles) and evasion
(attackers throttle the consumption to stay under the
radar). Especially in enterprise environments, deployment
and orchestration of endpoint detection may be very
costly.

3.5 Network-based detection

Guidelines published in technical papers, e.g., [87], typ-
ically present simple network detection rules. Others,
e.g., [88], list indicators of compromise (IoC) for Mon-
ero mining, e.g., pool domains, wallet addresses, C&C
communication patterns. However, such techniques are
routinely evaded by attackers. Academic research devel-
oped complementary ideas. Swedan et al. present a system
for gateway-based traffic analysis which dissects HTTP(S)
traffic to extract and analyze JavaScript in real time using
heuristic rules [89]. This approach is nevertheless suscep-
tible to evasion using JavaScript obfuscation and bears
a substantial operational burden associated with HTTPS
proxies. Several papers [90-93] rely on computing fea-
tures upon packet flows and training binary classification
machine learning models. They achieve high detection
accuracy at the expenses of computation and deployment
overhead.

Motivated to achieve accurate detection and reduce
cost, recent papers investigate using NetFlow [94, 95].
They propose binary classification to discriminate
between mining and non-mining traffic, utilizing the
C4.5 decision tree algorithm and generic NetFlow-based
features known from earlier work [96]. However, binary
classification complicates deployment, as the model
needs to be trained from scratch in every environment
(“train everywhere”). In contrast, our detector is trained
once using only mining traffic and can subsequently be
deployed in any environment without retraining because
it does not depend on the highly diverse non-mining
traffic (“train once, deploy everywhere”). Furthermore,
our work introduces novel features highly specialized for

Page 5 of 20

mining detection, and we experimentally demonstrate its
superior detection performance.

4 Stratum traffic analysis
In this section, we present the details of the Stratum pool
mining protocol. To this end, we perform a manual anal-
ysis of full packet traces of Stratum traffic captured in
our lab and show the most important findings. Our traffic
collection effort is documented in Section 5.3.
Communication over Stratum starts with the pool
client (miner) contacting the pool server and performing
authentication. As soon as the miner successfully logs into
a mining pool, it starts receiving jobs over New Job mes-
sages which have the general format shown in Listing 1.

{

"jsonrpc": "2.0",

"method": "job",

"params": {
"blob": "152 hex char string (76 bytes)",
"job_id": "1l6864",
"target": "cf8b0000"

}
}

Listing 1 Stratum new job message

In the examples, we show the format used by a specific
combination of client-server tools, i.e., the mining pool
mine.xmrpool.net and mining client XMRIG 2.6.4,
but our algorithm is designed to be independent of
the specific implementation and focuses on the Stratum
workflow.

The main properties of New Job messages areas follows:

e blob: an ASCII hexadecimal string (76 bytes/152
characters) representing the content to be hashed by
miners in order to produce Monero coins. A portion
of this string is editable and represents the nonce
that can be arbitrarily set by miners.

® job id:astring used to match jobs with their
corresponding results; it has a variable length which
depends on the pool implementation.

e target:in order for the block to be accepted by the
pool, its header hash must be lower than or equal to
the current target, thus lowering the target makes the
hash computation more difficult.

When a mining pool client receives a New Job message
from the server, it starts the mining process. This involves
finding a nonce such that the value generated by hash-
ing the new blob, using the PoW hash function, is lower
than the target. The information included in the New Job
message is sufficient to define the problem.

Once the miner finds a solution, it submits its result to
the pool in the form of a Solution Submission message. An
example for this type of message can be seen in Listing 2.
It contains several fields, but 3 are relevant for our analy-
sis. The job_id corresponds to the job which has been

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

Miner Pool

[——Login—m7~—
l——L0gin granted”
| ———New Job— |

Mining

Solution Submission_p|

| —Submission Result™ |

Fig. 1 Typical stratum mining workflow

completed. The nonce (8 hexadecimal characters denot-
ing a 4-byte value) has been found by the miner and used
to produce a suitable hash. The hash value of the block
header using the found nonce is returned as result.

vid": 76,
"jsonrpc": "2.0",
"method": "submit",
"params": {
nigm. mwin,
"job_id": "16871",
"nonce": "b51100e0",
"result": "64 hex char string (32 bytes)"

}
}

Listing 2 Stratum solution submission message

The mining pool server receives the Solution Submission
message. After verifying the correctness of the embed-
ded solution, it sends back a Submission Result message.
An example is shown in Listing 3. This pattern of com-
munication between the pool client and server, denoted
in Fig. 1 as Unit, repeats until the network connection is
terminated.

Page 6 of 20

nid": 76,

"jsonrpc": "2.0",

"result": {
"status": "OK"

I

"error": null

}

Listing 3 Stratum Submission Result message.

A detailed example of the communication between a
miner and a Monero public pool over Stratum is shown
in Fig. 2. The two subfigures show the TCP/Stratum pack-
ets sent by the pool and the miner, respectively, during
the mining process. The plot is based on full-packet cap-
ture (DPI) for demonstration purposes, but our algorithm
works on NetFlow data. As an example, NetFlow records
corresponding to the window of network traffic between
the dashed vertical lines are presented in Table 1.

Miners may sometimes receive New Job messages from
the pool while they are already working on a job. This
happens for two reasons: either a new block has been
mined or new transactions appeared for the current block.
Therefore, the ratio between the number of jobs and num-
ber of the submitted solutions in a single NetFlow record
pair is not one-to-one. This makes reconstructing Stratum
semantics from NetFlow more difficult.

By analyzing several mining traces using visualiza-
tion tools, e.g., see Fig. 2, we discovered the following
properties:

e The size of Stratum messages exchanged between a
server and client remains nearly constant.

e New Job and Solution Submission are the largest
messages sent by the pool and the miner, respectively.

e After Login, the miner generally sends 2 types of
messages: Solution Submission and Keep-Alive.

e The number of TCP acknowledgments (ACK) sent
by the miner, excluding keep-alives, is equal to the
number of Submission Result and New Job messages
sent by the pool. The number of ACKs sent by the
pool is not equal to the number of Solution

Pool
[¥ ¥ ¥ ¥
300
3 + New Job
£, 200 - B Submission Result
M ® TCP keepalive ACK
100 m R Emm u [] [} Em = = = [] .= = =a
.l
Miner
p 300 w ok k FRH * * * *E W * L * * 4 ACK
T, 200 o * Solution Submission
aa} ® Keepalive
100
A MA OA A AA AA A A A A A A A A A AA A A A A A AA
12:29 12:30 12:31 12:32 12:33 12:34 12:35 12:36 12:37 12:38 12:39 12:40
Fig. 2 Example of stratum communication between a mining pool and client

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

Submission. This happens because the pool often
piggybacks the ACK flag for a Solution Submission in
the Submission Result packet.

These properties enable us to engineer Stratum-specific
features for accurate detection of mining traffic.

5 XMR-Ray detector

This section presents the design and implementation of
the cryptomining detector XMR-RAY, with a particular
focus on design decisions and its novel features.

5.1 Design tradeoffs
Several features of the current cryptomining ecosystem
are crucial for the design of our detector. First, the Stra-
tum protocol is de facto standard. Furthermore, not only
the protocol but also the few client implementations
are largely shared among legitimate and malicious users.
Finally, malicious mining operations are often carried out
via legitimate public mining pools [20]; thus, the mali-
cious actors are forced to use exactly the same client and
protocol implementations as the said public pools.

To take advantage of these findings, we made the follow-
ing key design choices for XMR-RAY:

1. Itis based on network traffic inspection, not
endpoint monitoring,

2. It uses aggregate information, i.e., NetFlow, not DPL

It employs one-class, not binary classification.

4. Its features are mining-specific.

w

Table 2 Summary of benefits and drawbacks of XMR-RAY's design

Page 7 of 20

Tradeoffs of these decisions are summarized in Table 2,
empty cells denote cases with no discernible effects.

Installing and managing endpoint monitoring tools
with comprehensive coverage is challenging in dynamic
environments. Network-based detection, in contrast, can
be centralized. However, existing simple network-based
approaches, e.g., IP/domain blacklists and IPS rules,
cannot cope with encryption. Consequently, XMR-RAY
inspects NetFlow instead of packets, achieving several
advantages while potentially reducing accuracy due to the
information loss.

The choice of machine learning approach is based on
the premise that pool mining traffic can be discriminated
from all other network communications. Therefore, we
employ a one-class classifier (OCC) trained solely on min-
ing traffic generated by generic legitimate mining pool
clients. This is a clear competitive advantage over related
work which employs binary classifiers, as they addition-
ally require full network traffic for training. In essence,
binary classifiers decide between two classes, while OCCs
decide between the target class and everything else, i.e.,
“universe”. If the target class is well characterized by rep-
resentative training data and characteristic features, and
the universe is very diverse and constantly changing—an
assumption which is true in our case—then OCC is clearly
a superior choice. The benefits are very significant, the
only drawback is the information loss which may lead to
lower accuracy.

To alleviate information loss, the main innovation effort
was invested in reconstructing as much information as

Design choice Efficiency Privacy Cost-efficiency Ease of Robustness Accuracy
deployment
Network- vs. Does not slow Does not require Deployed and Robust against
endpoint-based down endpoints. endpoint agents. managed endpoint evasion.
centrally. Not applicable to
novel protocols®.
NetFlow vs. DPI Several orders of Traffic content is Network devices, No need to Relatively robust Information loss
magnitude less not inspected. e.g. switches, decrypt traffic against due to
input to process. already support using an HTTPS encryption. aggregation?.
NetFlow proxy.

One-class vs.
binary
classification

Specialized vs.

generic NetFlow

features

Amount of mining
traffic used for
OCC training is a
small fraction of
normal enterprise
traffic necessary
for training binary
classifiers.

Computationally
slightly more
expensives.

No need to use
sensitive
enterprise traffic
for training, only
generic Stratum
traffic.

aggregation.

Minimal training

data maintenance:

collection of
generic Stratum
traffic is sufficient.

The classifier, as

trained by security
vendors, can be

Not affected by
any changes in
enterprise traffic.

Information loss
due to lack of
access to normal

shipped to trafficS.

customers

without on-site

adaptation.

Minimal retraining

required.
Robust against Tailored to
encryption, Stratum protocol
proxying, and semantics.
tunneling.

Sentences marked with "§” denote drawbacks

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

possible from NetFlow records by designing Stratum-
specific features. Section 6 demonstrates that this effort
was very successful and that another crucial benefit was
achieved this way: robustness against encryption, proxy-
ing, and tunneling. The cost is a minor increase of com-
putation effort, already compensated by using NetFlow
and OCC.

Clearly, the benefits are numerous and very significant,
especially for the last 2 design choices, which also rep-
resent competitive advantages compared to related work.
However, the main strength is also the main weakness:
by being Stratum-specific, the approach is not applicable
to completely novel protocols. This is discussed from the
perspective of adversarial machine learning in Section 6.6
and as a limitation in Section 7.

5.2 Deployment scenario
A typical deployment scenario for our detector is shown
in Fig. 3, where XMR-RAY receives metadata of traffic
passing through the network gateway. A network flow
is a communication session between two applications
described by the tuple (As, ps, Ag, p4, P), where A, A, are
source and destination IP addresses, p;, p; are the corre-
sponding ports, and P is the IP protocol. Each direction
in the communication is considered a separate, unidirec-
tional flow.

NetFlow records are exported according to different
timeout rules:

e Active timeout takes place upon expiration of the
active timeout, enabling periodic export of flow
statistics in long network conversations.

® [nactive timeout occurs if no packet is observed in a
flow within a specified time interval.

e Flag-based timeout is activated when FIN and RST
flags in TCP sessions indicate session termination.

After NetFlow collection is enabled on a device, flow
statistics are stored and updated in a cache. When a flow
times out, its statistics are exported in form of a NetFlow
record.

5.3 Data collection
The starting point of our mining investigation is a rep-
resentative corpus of legitimate mining traffic collected

Network
Gateway o *
Intern
.
Detection Metadata ? g

)
system Iy

Fig. 3 Typical deployment scenario for XMR-RAY

Page 8 of 20

using a mining server optimized for CPU and GPU min-
ing. Such a traffic is largely machine-independent and
thus the machine learning models’ results are not biased
even if the data was generated and collected from a single
machine. It runs Ubuntu 18.04 and has an AMD RX 580
GPU and AMD Ryzen 7 2700x CPU. The primary mining
tools were XMRIG for CPU and CLAYMORE/XMR-STAK
for GPU mining, as these are well maintained and widely
used both legitimately and in cryptomining malware cam-
paigns [20]. Traffic was collected by running TCPDUMP
locally on the mining server and converted to NetFlow
setting both active and inactive timeouts to 100s. In our
implementation, metadata is encoded using NetFlow v5,
the most common and lightweight version, but alternative
formats like IPFIX are also suitable. This procedure is used
for training and evaluation in our experiments.

To collect a comprehensive corpus of cleartext min-
ing traffic, we mined in 25 well-known Monero public
pools [97] for about 6 months, gathering around 4000 h of
mining traffic.

For the experimental evaluation, we also collected a cor-
pus of NetFlow data (test dataset) from a large enterprise
network (about 10k hosts). Like for mining traffic, export
timeouts were set to 100s. It comprises around 500 mil-
lion flows, of which there are 16,000 TCP conversations
(565,000 flows) longer than 30 min and was collected
for 1 month. This heterogeneous network environment is
representative for large enterprises. We assume that the
test data does not contain mining traffic and our man-
ual investigation did not find any, even in our method’s
false positives. Finally, it is worth noting that all Net-
Flow records were collected with a sampling rate of 100%.
This is standard practice among enterprises that for secu-
rity purposes deploy dedicated NetFlow exporters. To
enable the computation of performance metrics like true/-
false positive rate in our experiments, we inject subsets
of mining conversations taken from our mining traffic
collection into the test dataset. Specifically, we insert
NetFlow records belonging to mining TCP conversations
among the NetFlow records from the benign enterprise
traffic. We carefully avoid using the injected mining traffic
for training.

5.4 System architecture

The architecture of the XMR-RAY system is depicted in
Fig. 4. It takes as input NetFlow records and operates in 2
modes: training and deployment. In training mode, Net-
Flow records from our database of collected mining traffic
are used to train a machine learning model. In deploy-
ment mode, the trained model is used to classify NetFlow
records resulting from TCP conversations of new, live
network traffic as either mining or other traffic. In the
following, we provide a detailed description of individual
modules.

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

Page 9 of 20

Preprocessing
Database of] 4 . h Trainin
mining traffic TCP Traffic Feature ’
- session windowing extraction
Live network reconstruction by time
traffic | _ J
NetFlow TCP Windowed TCP Feature
records conversations conversations vectors Decision
Fig. 4 System architecture

5.4.1 TCP conversation reconstruction

Stratum runs over TCP, and mining is carried out during
long communication sessions which we denote as “con-
versations.” NetFlow records are collected with a timeout
that can be much shorter than the duration of a single
conversation, e.g., 100 s. A single mining session there-
fore corresponds to many NetFlow records. The first step
of our method is to reassemble unidirectional NetFlow
records into bidirectional TCP conversations. All NetFlow
records sharing the same TCP 4-tuple are grouped into a
single TCP conversation.

5.4.2 Traffic windowing by time

In the second step, the previously reassembled TCP con-
versations are partitioned by time into overlapping succes-
sive windows, each window having the same time length
of Iy seconds. This is repeated every fi seconds. The
overlap is due to the sliding window nature of splitting
and ly > fiv. Keeping [y constant ensures that time-
dependent features have a comparable value among all
time windows. The sets of time-windowed TCP conver-
sations produced in this step are the basic unit of pro-
cessing for the machine learning model, i.e., the model’s
decisions are made based on NetFlow records collected
within a time window of /i seconds from a single TCP
conversation.

5.4.3 Feature extraction
In this step, the output of the previous module is pre-
pared for processing by the machine learning algorithm.
The feature extraction module computes 110 features
capable of capturing the intrinsic network behavior of
Stratum communications. The features are described in
Section 5.5. The output are real-valued feature vectors
that describe the salient properties of individual traffic
windows.

Feature extraction is the last module in the preprocess-
ing subsystem. The preprocessing is performed in exactly
the same way for both training and deployment.

5.4.4 Training
In the training mode, incoming feature vectors are used
to train a one-class classification model. In this mode,

only mining traffic from the training dataset is used as
input. The model is trained to identify whether a set of
NetFlow records corresponding to a time window of ly
seconds from a single TCP conversation contains mining
traffic or not. The output of the training step is a one-class
classification model.

5.4.5 Prediction

In prediction mode, the model predicts whether windows
of live traffic represent mining or not. During deploy-
ment, decisions can also be made on a coarser granu-
larity of TCP conversations by applying some rules (e.g.,
majority voting) to the outcome of window-based pre-
diction. In all but the real-world deployment experiment
(see Section 6.8), we use window-based prediction to
evaluate our method. This is intended to evaluate the
worst-case performance in the absence of error correction
mechanisms.

5.5 Feature engineering

A crucial contribution of this work is a novel set of features
that describe characteristic traits of the Stratum proto-
col from the information aggregated in NetFlow records.
To this end, we devised a novel feature extraction pro-
cess dubbed “speculative reconstruction” The analysis of
Stratum traffic that motivated our feature design is pre-
sented in Section 4. All features are computed for NetFlow
records corresponding to individual traffic windows of
duration /y seconds of TCP conversations.

5.5.1 Group 1: Heuristics based on speculative
reconstruction of Stratum
The first group of features exploits the fact that Stra-
tum messages have a very constrained format, which
enables us to reconstruct characteristics of cleartext mes-
sages from aggregated values in NetFlow records. We dub
this process “speculative” because the constraints we have
identified do not always have a unique solution but nev-
ertheless enable a good guess about the true sequence of
Stratum messages.

The process starts by analyzing each pair of correspond-
ing unidirectional NetFlow records in a time-windowed
TCP conversation, i.e., the NetFlow record from A to B

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

and B to A. Our goal is to estimate, for each pair of
records, the following quintuples:

ACK packet size,

Size of New Job messages

Size of Solution Submission messages
Number of New Job messages

Number of Solution Submission messages

SR e

To this end, we apply 10 intrinsic constraints imposed by
TCP and Stratum, for example:

ACK packet size in bytes € {40, 44, .. ., 80}.

Size of Solution Submission messages is greater than
the size of ACK packets by at least 72 bytes (nonce +
result).

e Size of New Job messages is greater than the size of
ACK packets by at least 152 bytes (blob size).

e Number of miner’s packets is the sum of number of
ACK packets, Keep-Alive and Solution Submission
messages.

e Number of miner’s ACK packets is the sum of the
numbers of New Job and Submission Result
messages.

After filtering out Keep-Alive messages, we guess the ACK
packet size and estimate the remaining four quantities so
as to match the number of packets and bytes observed
in NetFlow records. After discarding quintuples with
non-integer values we are usually left with several plau-
sible quintuples, i.e., solutions, for each pair of NetFlow
records.

In the second step, we group all quintuples obtained for
a time-windowed TCP conversation by the first 3 dimen-
sions (i.e., ACK packet size, size of New Job messages, size
of Solution Submission messages) and count their occur-
rences. These 3 dimensions are imposed by TCP and
Stratum configuration parameters of the pool and miner
and they remain nearly constant for the duration of the
session. The last 2 dimensions (i.e., number of New Job
messages and number of Solution Submission messages)
are variables reflecting the current workload of the miner.

In the final step, we use the triplet counts from the
second step to compute the following features for every
window of Iy seconds:
FI1.1 Ratio of the largest triplet count to the total count of
feasible triplets
Difference between largest and smallest triplet count
Standard deviation of triplet counts
Ratio of New Job packet size to Solution Submission
packet size for the most frequent triplet
Standard deviation of New Job message counts
across all NetFlow records for the most frequent
triplet

F1.2
F1.3
Fi1.4

F1.5

Page 10 of 20

F1.6 Standard deviation of Solution Submission message
counts across all NetFlow records for the most
frequent triplet.

The feature sensitivity analysis of our classifier showed
that these features play a major role in attaining high
detection accuracy. In the following, we attempt to eluci-
date the speculative reconstruction on an example with an
Iw of 30 min. We use the same value for the experiments
in Section 6.

The essence of the speculative reconstruction process is
solving a system of equations whose constraints are dic-
tated primarily by Stratum semantics. As a result, in case
of a mining conversation, a single solution of the system
should frequently repeat across the conversation’s Net-
Flow record pairs. On the other hand, no solution should
dominate others in non-mining conversations.

Features F1.1-F1.3 explicitly aim at capturing this char-
acteristic. A high value for these features means that
only one triplet (ACK packet size, size of New Job mes-
sages, size of Solution Submission messages) solves the
equation system for most NetFlow record pairs. This is
a strong indicator of mining traffic. Figure 5 shows the
statistical distribution of features F1.1-F1.3 for approx-
imately 15,000 mining and normal conversations of [y
minutes. Although features computed on mining conver-
sations show some variability in their values, their medi-
ans are several times higher than those of normal con-
versations. This demonstrates the validity of speculative
reconstruction and the importance of features F1.1-F1.3
as indicators of mining traffic.

Features F1.4-F1.6 characterize the average difficulty
of jobs requested by specific pools. For non-mining
traffic, they are likely to appear random. In addition,
F1.6 captures the effects of the VARDIFF algorithm [98]
employed by pools to update the miners’ job difficulty
based on their average time to finish past jobs.

While speculative reconstruction features carry a strong
signal for differentiating between mining and other traf-

F1.1 F1.2 F1.3

17.5

1.0 2.00 —

15.0 1.75

0.8 4

12.5 1.50

0.6 4 10.0 4 125 4

1.00

7.5 o

0.4 + 0.75 -

5.0 o
0.50 -

0.2 o

2.5 4 a 0.25 -
0.0 - 0.0 = 0.00 - =
T T T T T T

Mining Normal Mining Normal Mining Normal

Fig. 5 Statistical distribution of F1.1,F1.2,and F1.3

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

fic, alone they cannot achieve low false positive rate. We
observed during feature development that the most sim-
ilar traffic to Stratum was VoIP and protocols exhibiting
polling or beaconing behaviors. These protocols share
commonalities with Stratum, such as a near-constant
transmission rate, long duration, and repeating mes-
sages. To finally distinguish between mining and these
similar protocols, we extended our feature set with the
following.

5.5.2 Group 2: Correlation between mean packet sizes of
the miner and the pool

The ratio of byte count and packet count of a NetFlow
record gives its mean packet size. For the mean packet
sizes of 2 sequences of unidirectional NetFlow records
of every time window, we compute different correlation
metrics, e.g., Pearson correlation coefficient. This cap-
tures the intuition that a New Job message from the pool
is unlikely to be immediately followed by a solution from
the miner. In NetFlow terms, the pool’s record has a high
mean packet size (since New Job is the biggest Stratum
message), and the corresponding miner’s record a low one,
because it acknowledges the New Job but does not deliver
the solution in the same record.

In the other direction, when the miner sends a Solution
Submission it is unlikely that the pool has sent a New Job
message in the previous seconds. Also, the pool needs to
send a Submission Result and occasionally an ACK, which
lowers the mean packet size since these packets are much
smaller than New Job messages. Hence the two lists of
mean packet sizes are anti-correlated for mining traffic
and uncorrelated for non-mining traffic.

5.5.3 Group 3: Correlation between packet count and mean
packet size

Features in this group are similar to group 2 but instead
correlate the mean packet size and packet count of all
NetFlow records with the same direction. We observe
that a miner’s Solution Submission triggers a response
from the pool that the miner needs to ACK. Hence, a
Solution Submission message boosts the number of pack-
ets sent by both sides, causing the mean packet size of
the miner to raise (Solution Submission is miner’s biggest
packet) and of the pool to drop (Submission Result is
small). Hence, the miner’s packet count and mean packet
size are correlated, the opposite is true for the pool,
and no correlation should be observed for most other
traffic.

5.5.4 Group 4: Ratio of transmitted bytes

For each unidirectional NetFlow record (A to B), we find
the corresponding answer (B to A) and compute the ratio
of bytes sent and received. The features represent the dis-
tribution of such ratios: range, interquartile range, mean,
and standard deviation.

Page 11 of 20

5.5.5 Group 5: Mean packet size

These features represent the distribution of mean packet
sizes for NetFlow records with the same direction, com-
prising standard deviation, range, and interquartile range.

5.5.6 Group 6: Transmission rate

These features represent the distribution of the trans-
mission rate (bytes/s) for NetFlow records with the same
direction, comprising standard deviation, interquartile
range and minimum rate.

Feature groups 4—6 capture the intuition that min-
ing communication has a finite set of possible packets
exchanged, as well as relatively constant miner-pool com-
munication, following a specific pattern. Finally, the above
semantically motivated features are complemented with
useful general features derived from number of sent bytes
and mean packet inter-arrival time.

5.6 One-class classification

In machine learning, one-class classification (OCC)
attempts to identify objects of a specific class by learn-
ing from a training set containing only objects of that
class. The task in OCC is to define a classification bound-
ary around the positive (target) class, such that it accepts
as many target objects as possible, while minimizing the
chance of accepting negative (outlier) objects. It is a one-
vs-rest classification, where the rest are not observed
during training.

XMR-RAY uses the Isolation Forest OCC algorithm as
implemented in SCIKIT-LEARN [99]. Its hyperparameters
are tuned using grid search; the following values are cho-
sen for all subsequent experiments: n_estimator = 300,
contamination = 0.01, max_samples is set to the num-
ber of training samples. At an early stage in research,
we evaluated other one-class classifiers, such as one-class
SVM, but their results were inferior. Given a generally
high accuracy of XMR-RAY, we did not study even more
advanced classifiers, e.g., deep learning.

6 Results

In this section, we test XMR-RAY in diverse environments,
with the goal of providing a comprehensive and realistic
evaluation.

For the detection in networks with thousands of hosts
it is crucial to maximize detection rate (i.e., recall or true
positive rate (TPR)) and minimize false alarm rate (i.e.,
false positive rate (FPR)):

TP FpP
TPR = —, FPR = —.
p N

Above, TP represents the count of true alarms, P the
total count of mining traffic windows, FP the count of false
alarms, and N the total count of non-mining windows.

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

A single pair of (TPR, FPR) values provides a very
limited view of detector’s performance. Most detectors
have variable detection thresholds (e.g., the percentage
of trees in a random forest which vote for one of the
classes) which, when adjusted, change their decisions and
therefore (TPR, FPR) rates as well. The receiver operat-
ing characteristic (ROC) curve provides a comprehensive
view of detector’s performance because it incorporates all
(TPR, FPR) operating points of the detector for all values
of its detection threshold (as a 2D curve). Throughout this
section, we evaluate the detection performance using the
area under ROC (AuROC), which provides a summary of
the ROC curve. Its values lie in the range (0, 1), the higher
the better.

6.1 Trade-off between latency and accuracy

Our first experiment aims to find a good trade-off
between detection latency and accuracy, as influenced by
the window size [y, a parameter of our algorithm. Low-
ering its value reduces latency but also the amount of
information available to make the decision.

For each window size ly, we perform a variant of a 10-
fold cross-validation. Our set of mining traffic comprises
traffic collected from all 25 recorded mining pools (see
Section 5.3). We divide the mining traffic into 10 differ-
ent 80:20 splits. The 80% comprises the training set. The
remaining 20% is mixed with our non-mining enterprise
traffic collection (also described in Section 5.3) to serve as
the test set.

Figure 6 shows that the detection accuracy grows with
lw, as expected. We choose [y = 1800s (30min), with
TPR = (98.94 + 0.34)% and EPR = (0.054 =+ 0.027)%, and
use this value in all subsequent experiments. The FPR
is computed per time window (30min) of a TCP stream,
rather than per flow record. In our test environment with
about 3500 TCP conversations per day which exceed 30
min, XMR-RAY produced about 3 false positives per day.

6.2 Detection of novel mining pools

Another crucial property of cryptomining detectors is
their capability to detect traffic from miners that com-
municate with previously unknown mining pools. This

1.000
0.998
0.996
0.994

Mean AuROC

600 900 1200 1500 1800 2400 3000 3600

Window size Iy (seconds)

Fig. 6 Detection performance as a function of window size /jy

Page 12 of 20

is a challenging task since mining traffic can be, and in
practice already is, easily customized. Indeed, the majority
of well-known Monero public pools use existing cus-
tomizable tools like NODE-CRYPTONOTE-POOL [100] and
NODEJS-POOL [101].

To evaluate XMR-RAY’s ability to detect novel pools,
we design a new experiment. Similarly to the previ-
ous case, we use 10-fold cross-validation, but this time,
we make sure that none of the pools in the test set
have appeared in the training set. This experiment simu-
lates real-world deployment where completely new pools
appear regularly. We evaluate several ratios of numbers
of pools used for training and testing, ranging from 7:18
to 22:3. Experiment results depicted in Fig. 7 show a clear
advantage in using more pools for training and give a
promise that model performance has potential to improve
with time as more mining traffic is collected for train-
ing. Using about 10 pools for training suffices to achieve
high TPR (96.20 £ 3.04)% on the remaining 15 previously
unseen pools with an FPR of only (0.058 £ 0.071)%.

6.3 Detection of malware mining traffic

To verify that XMR-RAY detects mining by malware, we
set up a CUCKOO sandbox [102] and executed two sam-
ples belonging to mining campaigns WEBCOBRA [103]
and NRSMINER [104]. We collected around 30 h of traf-
fic thus generating an insignificant profit for the threat
actors. We noticed that the WEBCOBRA miner connected
to an IP address, while NRSMINER used a DNS query. In
both cases, the remote hosts may have been proxies or
private pool servers, as they did not belong to any public
Monero pools.

Nevertheless, XMR-RAY correctly classified all 30-min
(lw) time windows as mining. This experiment does not
evaluate FPR by design, as the model is only applied to
positive test samples. The result corroborates our hypoth-
esis that there is no substantial difference between legiti-
mate and illegitimate mining traffic.

6.4 Detection in obfuscated network traffic
Another experiment evaluates XMR-RAY’s capability to
correctly identify obfuscated mining traffic, i.e., using

1.0000
0.9975
0.9950
0.9925
0.9900

Mean AuROC

7:18 10:15 13:12 15:10 18:7 20:5 22:3

Ratio of mining pools (training : evaluation)

Fig. 7 Detection performance on novel mining pools

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

encryption or connecting through a tunnel, even when
it was trained only on NetFlow records of cleartext min-
ing traffic. Similarly to the previous experiment, in this
section, we do not evaluate FPR by design, as the model is
only applied to positive test samples.

6.4.1 Encrypted mining

Since the beginning of 2018, mining pools and tools
increasingly provide the option to perform mining over an
encrypted channel using SSL/TLS. In some cases, pools
encourage the use of SSL by reducing fees for miners that
do so [105]. In October 2018, XMRIG introduced support
for SSL/TLS.

To collect encrypted mining traffic, we mined for
several hours with different mining tools in 11 out
of 25 pools that supported SSL mining. All pools
accepted one of the following ciphers proposed by the
client: AES{128,256}-GCM-SHA{256,384} [106].
This choice is natural since AES -GCM has slowly replaced
AES-CBC over the past years, becoming the most used
encryption mechanism. Furthermore, TLS1.3 no longer
supports CBC-mode ciphers since AES-GCM combines
stronger security, lower traffic overhead and higher per-
formance on modern hardware.

Counter mode of operation is designed to turn
block ciphers into stream ciphers; hence, we expected
AES-GCM (Galois Counter Mode) to increase the packet
size but keep the crucial properties and relations we
observed in Stratum messages. And indeed, the model
detected 98.16% of the 1000 evaluated 30-min windows of
SSL mining traffic. Although this finding is not surprising
given our feature design, it is nevertheless a remarkable
accomplishment for a machine learning algorithm trained
without access to encrypted traffic.

In the next step, we modified the mining client to
propose other cipher suites in the TLS handshake.
The only remaining ones the pools accepted were
AES{128,256}-CBC-SHA{128,256}. The detection
rate was 99.35% on 250 h of encrypted mining traffic, thus
the padding of the CBC mode of operation has a negligible
influence on our features. From these results, we conclude
that our model reliably detects encrypted mining traffic,
due to two main reasons:

1 Reliance on metadata instead of payload
2 Custom feature design that reveals the intrinsic
behavioral characteristics of the Stratum protocol.

We are not aware of any use of SSL/TLS by cryptomin-
ing malware so far. However, encryption is becoming ever
more widespread and it is not difficult to imagine its use
for this purpose in the near future. By proposing a model
resistant to evasion using encryption, we hope to be one
step ahead of malicious actors.

Page 13 of 20

6.4.2 SOCKS proxy

This is an SSH tunnel which applications use to forward
their traffic to a proxy server that relays it to the final
destination. The clients must use an SSH agent.

For this experiment, we collected several hours of
mining traffic through a SOCKS 5 proxy using ciphers
CHACHA20-POLY1305, AES{128,192,256}-CTR,
and AES{128,256}-GCM. To test a different cipher
suite from the previous experiment, we force the SSH
session to use the AEAD cipher CHACHA20-POLY1305.
On 250 h of mining over an SSH tunnel, the detection
rate was 89.16%.

6.4.3 Mining proxy

In the past few years, several botnets started min-
ing, and the mining pools started to ban them under
the pressure of the mining community. A common
approach for spotting botnets is to count the num-
ber of IP addresses that connect using the same wal-
let address (e.g., mineXMR . com [107]). To avoid a ban
and mask their wallets, attackers started using mining
proxies like XMRIG-PROXY [108]. Such tools are simi-
lar to standard proxies but communicate over Stratum
and manage a large number of miners. They reduce
the number of connections to the pool, e.g., up to 256
times for XMRIG-PROXY. XMR-Ray has detected 90.08%
of the 200 h of mining that we performed over
XMRIG-PROXY.

6.5 Detection of in-browser mining

Previous longitudinal studies investigated the distribu-
tion of well-known cryptomining services in web pages
[25, 27, 28]. Our collection included the top 3: COIN-
HIVE, COINIMP [109], and CRYPTOLOOT [22]. These
were found in around 75% of all websites with mining
scripts within the Alexa Top 1 million list, COINHIVE
alone accounted for 60%. We found the websites hosting
these scripts via the search engine PublicWWW [110],
connected to them to perform mining and collected the
traffic. The scripts throttled the CPU usage down to 30%
to evade detection.

Table 3 shows that XMR-RAY reliably detects COINHIVE
and CRYPTOLOOT. Similarly to the previous two experi-
ments, we do not evaluate its FPR by design, as the model
is only applied to positive test samples. We further inves-
tigate the reasons for a somewhat lower detection rate for
COINIMP.

Table 3 Detection results for in-browser mining

Mining service Traffic (h) Detection rate
Coinhive 250 98.85%
CryptolLoot 100 95.26%
Coinlmp 75 79.47%

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

During in-browser mining, clients communicate with
the mining pool using WebSockets. All our collected
examples used WebSockets over TLS. By collecting and
decrypting a new session, we noticed COINIMP also
used obfuscation. Looking at the distribution of packet
sizes in the packet dump (before conversion to NetFlow),
we noticed that COINIMP introduced variations to the
Stratum workflow that reduced our detection rate. We
thus conclude that the WebSocket proxy server alters the
client-side protocol.

On March 8, 2019, COINHIVE stopped its mining ser-
vices. As a result, other mining services took advantage
of Coinhive’s absence and cryptojacking attacks are still
widespread [111-113].

6.6 Robustness against adversarial evasion

Machine learning algorithms are vulnerable to adversarial
examples, i.e., data which is manipulated in order to evade
a specific detector. We implement several software mod-
ifications for the XMRIG mining client as a preliminary
evaluation of XMR-RAY’s robustness against adversar-
ial evasion. Our modifications are intended to trick our
model into misclassifying mining TCP conversations as
non-mining. Similarly to previous experiments, we do not
evaluate FPR by design, as the model is only applied to
positive test samples. Results of our 3 evasions are shown
in Table 4.

6.6.1 Attack 1: Data injection

Analyzing the open-source code of mining pools, we
noticed that the JSON parser function extracts only the
key-value pairs it is interested in and discards the others.
We then add to each Stratum Solution Submission mes-
sage a new key-value pair of random length between 32
and 512 bytes. This modification had little influence on
the detection rate.

6.6.2 Attack 2: Message injection

If the JSON key method is missing from a client message,
the pool does not send a Stratum reply but simply a TCP
ACK. We make XMRIG send random-length messages at
random intervals every 2—10s. This attack considerably
reduces the detection rate. Modifying the number of pack-
ets and randomizing packet sizes disrupts our client-side
features.

6.6.3 Attack 3: Error triggering
The last example is the one that, among the three, alters
the mining traffic shape and behavior the most. We modi-

Table 4 Detection results for adversarial evasion

Attack Traffic (h) Detection rate

Data injection 250 93.37%
Message injection 350 81.28%
Error triggering 200 53.16%

Page 14 of 20

fied the mining client to send messages with a wrong value
for the method JSON key. We noticed that certain public
pools answer with an error message that contains the same
ID of the received faulty message. Therefore, by sending
messages with a wrong method and variable-length ID
at random intervals, we can trigger variable-length error
messages in response from the pool. Doing so, we man-
age to evade the detection around 50% of the time. This
does not come as a surprise since a modification like
this heavily affects the standard Stratum workflow and
thus both our client- and pool-side features. This tech-
nique works only with pools that deploy the standard
NODE-CRYPTONOTE-POOL.

From our experiments, we conclude XMR-Ray can
indeed be vulnerable to evasion attacks. However, for
the attacks to work, the adversary must deviate from the
standard Stratum protocol. Nevertheless, such deviations
from the protocol can be both detected and sanctioned by
security updates to pool software.

6.7 Comparison to prior work

To position our system among existing detectors, we com-
pare it to its most closely related prior work, Mufoz et
al. [94]. This work also follows a network-based approach
using NetFlow but, in contrast to XMR-RAY, employing
generic features and binary classification. We reimple-
mented it to the best of our knowledge and describe the
technical details of our reimplementation in Appendix A.

Figure 8 compares the detection performance of both
approaches on detecting novel mining pools, as in
Section 6.2. The results for XMR-RAY, repeated from
Fig. 7, are clearly superb. In particular, using 10 training
pools it achieved TPR = (96.20 £ 3.04)% and FPR = (0.058
+ 0.071)%, while the competitor had about 28x higher
FPR = (1.65 + 1.07)% at a lower detection rate of (94.96 +
2.60)%.

The detection rate of the approaches was compared
across all experiments described in Sections 6.3-6.6, as
summarized in Table 5. Malware is fully detected by
both. Munoz et al. is more robust against stream ciphers
but a lot more vulnerable against CBC-mode encryption.
Other experiments, most notably adversarial evasion, pro-
vide rich empirical evidence for the superiority of XMR-
RAY. Given the boost of TPR and reduction of FPR, we

1.000

0.975

0.950

Munoz et al.

Mean AuROC

0.925

7:18 10:15 13:12 15:10 18:7 20:5 22:3

Ratio of mining pools (training : evaluation)

Fig. 8 Comparison on detecting novel mining pools

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

Table 5 Competitive comparison

Detection rate (%)

Category Experiment Muiioz et al. XMR-Ray
Malware NRSminer 100.00 100.00
WebCobra 100.00 100.00
Encryption SSL stream 99.13 98.16
SSLCBC 90.11 99.35
Proxying SOCKS5 8835 89.16
XMRIG 8292 90.08
In-browser mining Coinhive 90.82 98.85
CryptolLoot 80.80 95.26
CoinIMP 68.52 79.47
Adversarial evasion Data injection 66.08 93.37
Msg. injection 25.96 81.28
Err. triggering 16.89 53.16

conclude that XMR-RAY’s specialized features and OCC
approach provide a substantial improvement over the
state of the art.

6.8 Results from real-world deployment

In the final stage of our research we deployed XMR-RAY
with the trained model described in Section 6.1 in the net-
work of a large university with around 100,000 endpoints.
As a common procedure for practical deployments, we
used an error-correction mechanism for the model’s pre-
dictions which we refer to as majority voting. Our model
was run every 3 hours, loading the past 3 hours of traf-
fic, and labeling a TCP conversation as mining only if the
majority of its traffic windows have been labeled as such.
We configured the traffic windowing module to use an
overlap of fiy = lw/2 = 900s, thus having at most 11
traffic windows within 3 h. To assist security analysts in
incident prioritization, we categorized each TCP conver-
sation (not limited to 3 h) into low or high risk, depend-
ing on the count and ratio of its windows classified as
mining.

In 2 weeks of operation in the university network, XMR-
RAY analyzed 2,219,410 TCP conversations longer than
lyy = 1800 s and labeled 52 as mining: 5 with high
and 47 with low risk. We manually investigated the posi-
tives to assess the detection performance. The 5 high-risk
conversations were confirmed as Monero mining. Inter-
estingly, only one host was mining by connecting directly
to a well-known public pool (pool.supportxmr.com:7777),
while the others were mining through proxies. Two of
these proxies’ IP addresses were associated with malware
activity according to AbuseIPDB [114]. In addition, one
was listed as IoC for a Chinese cryptomining hacking

Page 15 of 20

campaign targeting macOS users [115]. We were not able
to confirm any of the 47 low-risk positives; thus, the sys-
tem achieved a FPR of 0.0021%, i.e., 3.4 false positives per
day. The risk categorization has helped the analysts focus
their attention on legitimate threats.

7 Discussion

The experimental evaluation presented above demon-
strates that the proposed method has clearly met the
objectives of its design. In this section, we elucidate design
limitations and discuss possible solutions for overcoming
them, as well as further applications of our design ideas
for NetFlow traffic analysis.

One limitation of our design is its lack of support for
UDP. No existing cryptomining implementations known
to us use UDP, but an attacker could, in principle, tun-
nel Stratum over UDP. To close such evasion opportunity,
unidirectional NetFlow features could be investigated that
do not rely on any TCP communication patterns.

Another feature of our design is its limitation to Stra-
tum. If pools migrate to novel protocols, our method will
become ineffective. However, we find this scenario to be
unlikely for the near future. Stratum is widely deployed,
proven, and reliable for its users, and we are not aware
of plans to replace it. In case of cryptojackers, to avoid
using Stratum, they would have to develop both a cus-
tom mining client and the pool which, on top of being
costly, represents a single point of failure and brings main-
tenance overhead due to Monero hard forks. Although
Stratum will be replaced at some point in the future, the
same is true for all protocols, including HTTP and TLS,
which went through major changes recently. And just like
new detectors were necessary for HTTP/2 and TLS 1.3,
researchers will need to make new detectors for future
pool mining protocols, an evolutionary approach typical
for security.

Adversarial examples are a further threat to our tech-
nique, just like to all other machine learning approaches.
As shown in Table 4, some hand-crafted obfuscations
indeed reduce the detection accuracy. However, for the
protocol deviations to succeed, they must be accepted by
the pool. Legitimate public pools are incentivized to and
do block deviating miners and we expect that our pro-
posed attacks will be rendered ineffective as soon as they
become deployed. Illegitimate pools are free to change the
protocol, in which case the evasion attack is reduced to
protocol modification attack which we addressed in the
previous paragraph.

An exciting direction for future work is deeper inves-
tigation of the speculative reconstruction technique. In
the feature sensitivity analysis for our classifier (omit-
ted due to lack of space) we have observed that the
features obtained by this technique (group 1) play the
major role in attaining high detection accuracy. It is there-

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

fore interesting to understand what other applications of
network metadata analysis can benefit from this design
technique but also whether it may negatively affect user
privacy. The interconnection of various design decisions
enabled by this technique requires a better understand-
ing of its mathematical properties, especially the existence
and uniqueness of solutions for different protocols.

8 Conclusions

In this paper, we addressed the problem of detecting ille-
gitimate cryptocurrency mining in network traffic. We
demonstrated that the de facto standard protocol for
pooled mining, Stratum, exhibits salient patterns which
enable its reliable detection using NetFlow. The presented
system XMR-RAY outperforms the closest competitors
by combining one-class classification (OCC) with novel
Stratum-specific features.

OCC is trained solely on mining traffic generated
by legitimate mining clients, while binary classifiers
employed by the state of the art also require full non-
mining network traffic. In case the target class is well
characterized by representative training data and charac-
teristic features, and the other classes are very diverse and
constantly changing, an assumption which holds true for
cryptocurrency mining, then OCC is a superior choice
and provides major benefits in efficiency, privacy, costs,
deployment and robustness.

Our principal innovation is a set of features using
constraint-solving to assess whether NetFlow records cor-
responding to a TCP stream are likely to originate from
Stratum traffic. These features also provide another cru-
cial benefit: robustness against encryption, proxying and
tunneling.

A comprehensive experimental evaluation in a large
corporate environment demonstrated high effectiveness.
With a detection latency of 30 min, XMR-RAY reached a
detection accuracy of 98.94% at a false alarm rate of 0.05%,
about 28 times lower than that of the closest competi-
tor. We have also demonstrated its ability to detect traffic
towards novel mining pools, as well as to most promi-
nent cryptojacking services. Deployed in a large univer-
sity network it successfully detected real-world mining
attacks.

Akin to other machine learning systems, our technique
is not immune to adversarial examples. We discuss this
and other limitations of our approach, and outline the
prospects for using our novel feature extraction technique
in other applications of network metadata analysis.

Appendix A

To compare our detector to the state of the art, we reim-
plemented the detector described in [94]. The features are
as follows:

Page 16 of 20

Inbound and outbound packets/second
Inbound and outbound bytes/second
Inbound and outbound bytes/packet
Bytes_inbound/bytes_outbound ratio
Packets_inbound/packets_outbound ratio

We are confident about the quality of our reimplementa-
tion since, even if not fully described, the baseline features’
names are self-explanatory and leave little room for inter-
pretation.

For a fair and accurate comparison, the goal was to
evaluate both approaches following the same procedure.
However, that is generally not possible because they are
trained on different data: OCC only on mining while
binary classifiers also require non-mining traffic. There-
fore, for training binary classifiers, we resorted to another
corpus of NetFlow data from the same enterprise environ-
ment where the evaluation was performed. To simulate a
realistic deployment, the non-mining part of the binary
classifiers’ training traffic was collected a month before
the test dataset described in Section 5.3. Crucially, the
entire test dataset and the mining portion of the training
dataset remains identical.

We repeated the experiments of Sections 6.1-6.6 for 2
best models from [94]: C4.5 and CART. We used WEKA,
specifically the PYTHON-WEKA-WRAPPER library [116],
to implement the C4.5 algorithm and SCIKIT-LEARN for
CART. In our environment, CART performed signifi-
cantly better, and therefore, we compare only its results
against ours.

Abbreviations

AES: Advanced encryption standard; ASCI: American standard code for
information interchange; ASIC: Application-specific integrated circuit; AUROC:
Area under receiver operating characteristic; CART: Classification and
regression trees; CBC: Cipher block chaining; CPU: Central processing unit; CTR:
Counter; DPI: Deep packet inspection; FPR: False-positive rate; GCM:
Galois/counter mode; GPU: Graphics processing unit; HTTP: Hypertext transfer
protocol; HTTPS: Hypertext transfer protocol secure; loC: Indicator of
compromise; IP: Internet protocol; IPFIX: Internet protocol flow information
export; IPS: Intrusion prevention system; JSON: JavaScript object notation;
OCC: One-class classification; PoW: Proof of work; ROC: Receiver operating
characteristic; SHA: Secure hash algorithm; SSL: Secure sockets layer; TCP:
Transport control protocol; TLS: Transport layer security; TPR: True-positive
rate; UDP: User datagram protocol; XMR: Monero cryptocurrency

Acknowledgements
Not applicable.

Authors’ contributions

MR performed the data acquisition and software implementation and the
main part of data analysis and interpretation. NS participated in data analysis
and interpretation. All authors participated in the conception, design, and
manuscript writing. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Due to the commercially and privacy-sensitive nature of the research, no data
subjects consented to their data being retained or shared.

Russo et al. EURASIP Journal on Information Security

(2021) 2021:11

Declarations

Competing interests

The authors are currently applying for patents relating to the content of the
manuscript. MR and NS have received salary from an organization that has
applied for patents relating to the content of the manuscript.

Author details
"Huawei Technologies Duesseldorf GmbH, Munich, Germany. 2University of
Liechtenstein, Vaduz, Liechtenstein.

Received: 15 June 2021 Accepted: 10 November 2021
Published online: 04 December 2021

References

1.

S. Higgins, $600 billion: cryptocurrency market cap sets new record
(2017). https://www.coindesk.com/600-billion-cryptocurrency-market-
cap-sets-new-record/ Accessed 19 Apr 2021

CoinMarketCap, Global cryptocurrency charts - total market
capitalization (2021). https://coinmarketcap.com/charts/ Accessed 17
May 2021

M. Yamazaki, Tokyo-based cryptocurrency exchange hacked, losing
$530 million: NHK (2018). https://www.reuters.com/article/us-japan-
cryptocurrency/tokyo-based-cryptocurrency-exchange-hacked-losing-
530-million-nhk-idUSKBNTFF29C Accessed 21 Apr 2021

J. Russell, Korean crypto exchange Bithumb says it lost over $30M
following a hack (2018). https://techcrunch.com/2018/06/19/korean-
crypto-exchange-bithumb-says-it-lost-over-30m-following-a-hack/
Accessed 21 Apr 2021

M. Yuval, CoinDash TGE Hack findings report 15.11.17 (2017). https://
blog.coindash.io/coindash-tge-hack-findings-report-15-11-17-
9657465192e1 Accessed 21 Apr 2021

E. Ananin, A. Semenchenko, Copy-pasting thief from a copy-pasted
code (2018). https://www fortinet.com/blog/threat-research/copy-
pasting-thief-from-a-copy-pasted-code.html Accessed 21 Apr 2021

J. Wilmoth, Hackers seize $32 million in Ethereum in parity wallet breach
(2017). https://www.ccn.com/hackers-seize-32-million-in-parity-wallet-
breach/ Accessed 21 Apr 2021

S. Higgins, Tether claims $30 million in US dollar token stolen (2017).
https:.//www.coindesk.com/tether-claims-30-million-stable-token-
stolen-attacker Accessed 21 Apr 2021

R. lyengar, More than $70 million stolen in bitcoin hack (2017). https://
money.cnn.com/2017/12/07/technology/nicehash-bitcoin-theft-
hacking/index.html Accessed 21 Apr 2021

C. Budd, Threat brief: malware authors mine Monero across the globe in
a big way (2108). https://unit42.paloaltonetworks.com/threat-brief-
malware-authors-mine-monero-across-globe-big-way/ Accessed 21
Apr 2021

E. Lopatin, Kaspersky Security Bulletin 2018 story of the year: miners
(2018). https://securelist.com/kaspersky-security-bulletin-2018-story-of-
the-year-miners/89096/ Accessed 21 Apr 2021

European Union Agency For Network and Information Security, Enisa
threat landscape report 2018. Technical report, ENISA (2019). https://
www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018
McAfee Labs, McAfee Labs Threats Report (2018). https://www.mcafee.
com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf
Accessed 21 Apr 2021

McAfee Labs, McAfee Labs Threats Report (2019). https://www.mcafee.
com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
Accessed 21 Apr 2021

C. Cimpanu, Cryptomining malware saw new life over the summer as
Monero value tripled (2019). https://www.zdnet.com/article/crypto-
mining-malware-saw-new-life-over-the-summer-as-monero-value-
tripled/ Accessed 21 Apr 2021

AMR, Kaspersky Security Bulletin 2019 (2019). https://securelist.com/
kaspersky-security-bulletin-2019-statistics/95475 Accessed 21 Apr 2021
C. Cimpanu, Thousands of enterprise systems infected by new Blue
Mockingbird malware gang (2020). https://www.zdnet.com/article/
thousands-of-enterprise-systems-infected-by-new-blue-mockingbird-
malware-gang/ Accessed 21 Apr 2021

J. Karasek, A. Remillano, Outlaw updates kit to kill older miner versions,
targets more systems (2020). https://blog.trendmicro.com/trendlabs-

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.
34.

35.

36.

37.

Page 17 of 20

security-intelligence/outlaw-updates-kit-to-kill-older-miner-versions-
targets-more-systems/ Accessed 21 Apr 2021

A. Windsor, Breaking down a two-year run of Vivin's cryptominers (2020).
https://blog talosintelligence.com/2020/01/vivin-cryptomining-
campaigns.html Accessed 21 Apr 2021

S.Pastrana, G. Suarez-Tangil, in Proceedings of the Internet Measurement
Conference, IMC. Afirst look at the crypto-mining malware ecosystem: a
decade of unrestricted wealth (ACM, Amsterdam, 2019), pp. 73-86.
https://doi.org/10.1145/3355369.3355576

BitcoinWiki, Stratum mining protocol (2020). https://en.bitcoinwiki.org/
wiki/Stratum_mining_protocol Accessed 21 Apr 2021

Crypto-Loot, CryptoLoot earn more from your visitors (2020). https://
crypto-loot.org/ Accessed 21 Apr 2021

N. Buchka, A. Kivva, D. Galov, Jack of all trades (2017). https://securelist.
com/jack-of-all-trades/83470/ Accessed 21 Apr 2021

S. Eskandari, A. Leoutsarakos, T. Mursch, J. Clark, in IEEE European
Symposium on Security and Privacy Workshops, EuroS&P Workshops. A first
look at browser-based cryptojacking (IEEE, London, 2018), pp. 58-66.
https://doi.org/10.1109/EuroSPW.2018.00014

J.Ruth, T. Zimmermann, K. Wolsing, O. Hohlfeld, in Proceedings of the
Internet Measurement Conference IMC. Digging into browser-based
crypto mining (ACM, Boston, 2018), pp. 70-76. https://dl.acm.org/
citation.cfm?id=3278539

G.Hong, Z.Yang, S. Yang, L. Zhang, Y. Nan, Z. Zhang, M. Yang, Y. Zhang,
Z.Qian, H. Duan, in ACM SIGSAC Conference on Computer and
Communications Security CCS, ed. by D. Lie, M. Mannan, M. Backes, and X.
Wang. How you get shot in the back: a systematical study about
cryptojacking in the real world (ACM, Toronto, 2018), pp. 1701-1713.
https://doi.org/10.1145/3243734.3243840

H. L. J. Bijmans, T. M. Booij, C. Doerr, in 28th USENIX Security Symposium,
USENIX Security, ed. by N. Heninger, P. Traynor. Inadvertently making
cyber criminals rich: a comprehensive study of cryptojacking campaigns
atinternet scale (USENIX Association, Santa Clara, 2019), pp. 1627-1644.
https.//www.usenix.org/conference/usenixsecurity19/presentation/
bijmans

R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel, H. Bos, G.
Vigna, in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS, ed. by D. Lie, M. Mannan, M. Backes,
and X. Wang. MineSweeper: an in-depth look into drive-by
cryptocurrency mining and its defense (ACM, Toronto, 2018),

pp. 1714-1730. https://doi.org/10.1145/3243734.3243858

J.D. P. Rodriguez, J. Posegga, in Proceedings of the 34th Annual Computer
Security Applications Conference ACSAC. RAPID: resource and API-based
detection against in-browser miners (ACM, San Juan, 2018),

pp. 313-326. https://doi.org/10.1145/3274694.3274735

W.Wang, B. Ferrell, X. Xu, K. W. Hamlen, S. Hao, in 23rd European
Symposium on Research in Computer Security, ed. by J. Lopez, J. Zhou, and
M. Soriano. SEISMIC: SEcure In-lined Script Monitors for Interrupting
Cryptojacks, vol. 11099 (Springer, Barcelona, 2018), pp. 122-142. https://
doi.org/10.1007/978-3-319-98989-1_7

D. Carlin, P. O'Kane, S. Sezer, J. Burgess, in 16th Annual Conference on
Privacy, Security and Trust, ed. by K. McLaughlin, A. A. Ghorbani, S. Sezer,
R.Lu, L. Chen, R. H. Deng, P. Miller, S. Marsh, and J. R. C. Nurse. Detecting
cryptomining using dynamic analysis (IEEE Computer Society, Belfast,
2018), pp. 1-6. https://doi.org/10.1109/PST.2018.8514167

D.Y.Huang, H. Dharmdasani, S. Meiklejohn, V. Dave, C. Grier, D. McCoy, S.
Savage, N. Weaver, A. C. Snoeren, K. Levchenko, in 21st Annual Network
and Distributed System Security Symposium. Botcoin: monetizing stolen
cycles (The Internet Society, San Diego, 2014). https://www.ndss-
symposium.org/ndss2014/botcoin-monetizing-stolen-cycles

xmrig, XMRig (2021). https://xmrig.com/ Accessed 21 Apr 2021

J. Grunzweig, The rise of the cryptocurrency miners (2018). https://
unit42.paloaltonetworks.com/unit42-rise-cryptocurrency-miners/
Accessed 21 Apr 2021

V. Bulavas, A. Kazantsev, A mining multitool (2018). https://securelist.
com/a-mining-multitool/86950/ Accessed 21 Apr 2021

SecurityFocus, Microsoft Windows SMB Server CVE-2017-0144 Remote
Code Execution Vulnerability (2017). https://www.securityfocus.com/
bid/96704 Accessed 21 Apr 2021

Dr. WEB Anti-virus, Linux.BtcMine.174 (2018). https://vms.drweb.com/
virus/?i=17645163 Accessed 21 Apr 2021

https://www.coindesk.com/600-billion-cryptocurrency-market-cap-sets-new-record/
https://www.coindesk.com/600-billion-cryptocurrency-market-cap-sets-new-record/
https://coinmarketcap.com/charts/
https://www.reuters.com/article/us-japan-cryptocurrency/tokyo-based-cryptocurrency-exchange-hacked-losing-530-million-nhk-idUSKBN1FF29C
https://www.reuters.com/article/us-japan-cryptocurrency/tokyo-based-cryptocurrency-exchange-hacked-losing-530-million-nhk-idUSKBN1FF29C
https://www.reuters.com/article/us-japan-cryptocurrency/tokyo-based-cryptocurrency-exchange-hacked-losing-530-million-nhk-idUSKBN1FF29C
https://techcrunch.com/2018/06/19/korean-crypto-exchange-bithumb-says-it-lost-over-30m-following-a-hack/
https://techcrunch.com/2018/06/19/korean-crypto-exchange-bithumb-says-it-lost-over-30m-following-a-hack/
https://blog.coindash.io/coindash-tge-hack-findings-report-15-11-17-9657465192e1
https://blog.coindash.io/coindash-tge-hack-findings-report-15-11-17-9657465192e1
https://blog.coindash.io/coindash-tge-hack-findings-report-15-11-17-9657465192e1
https://www.fortinet.com/blog/threat-research/copy-pasting-thief-from-a-copy-pasted-code.html
https://www.fortinet.com/blog/threat-research/copy-pasting-thief-from-a-copy-pasted-code.html
https://www.ccn.com/hackers-seize-32-million-in-parity-wallet-breach/
https://www.ccn.com/hackers-seize-32-million-in-parity-wallet-breach/
https://www.coindesk.com/tether-claims-30-million-stable-token-stolen-attacker
https://www.coindesk.com/tether-claims-30-million-stable-token-stolen-attacker
https://money.cnn.com/2017/12/07/technology/nicehash-bitcoin-theft-hacking/index.html
https://money.cnn.com/2017/12/07/technology/nicehash-bitcoin-theft-hacking/index.html
https://money.cnn.com/2017/12/07/technology/nicehash-bitcoin-theft-hacking/index.html
https://unit42.paloaltonetworks.com/threat-brief-malware-authors-mine-monero-across-globe-big-way/
https://unit42.paloaltonetworks.com/threat-brief-malware-authors-mine-monero-across-globe-big-way/
https://securelist.com/kaspersky-security-bulletin-2018-story-of-the-year-miners/89096/
https://securelist.com/kaspersky-security-bulletin-2018-story-of-the-year-miners/89096/
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.zdnet.com/article/crypto-mining-malware-saw-new-life-over-the-summer-as-monero-value-tripled/
https://www.zdnet.com/article/crypto-mining-malware-saw-new-life-over-the-summer-as-monero-value-tripled/
https://www.zdnet.com/article/crypto-mining-malware-saw-new-life-over-the-summer-as-monero-value-tripled/
https://securelist.com/kaspersky-security-bulletin-2019-statistics/95475
https://securelist.com/kaspersky-security-bulletin-2019-statistics/95475
https://www.zdnet.com/article/thousands-of-enterprise-systems-infected-by-new-blue-mockingbird-malware-gang/
https://www.zdnet.com/article/thousands-of-enterprise-systems-infected-by-new-blue-mockingbird-malware-gang/
https://www.zdnet.com/article/thousands-of-enterprise-systems-infected-by-new-blue-mockingbird-malware-gang/
https://blog.trendmicro.com/trendlabs-security-intelligence/outlaw-updates-kit-to-kill-older-miner-versions-targets-more-systems/
https://blog.trendmicro.com/trendlabs-security-intelligence/outlaw-updates-kit-to-kill-older-miner-versions-targets-more-systems/
https://blog.trendmicro.com/trendlabs-security-intelligence/outlaw-updates-kit-to-kill-older-miner-versions-targets-more-systems/
https://blog.talosintelligence.com/2020/01/vivin-cryptomining-campaigns.html
https://blog.talosintelligence.com/2020/01/vivin-cryptomining-campaigns.html
https://doi.org/10.1145/3355369.3355576
https://en.bitcoinwiki.org/wiki/Stratum_mining_protocol
https://en.bitcoinwiki.org/wiki/Stratum_mining_protocol
https://crypto-loot.org/
https://crypto-loot.org/
https://securelist.com/jack-of-all-trades/83470/
https://securelist.com/jack-of-all-trades/83470/
https://doi.org/10.1109/EuroSPW.2018.00014
https://dl.acm.org/citation.cfm?id=3278539
https://dl.acm.org/citation.cfm?id=3278539
https://doi.org/10.1145/3243734.3243840
https://www.usenix.org/conference/usenixsecurity19/presentation/bijmans
https://www.usenix.org/conference/usenixsecurity19/presentation/bijmans
https://doi.org/10.1145/3243734.3243858
https://doi.org/10.1145/3274694.3274735
https://doi.org/10.1007/978-3-319-98989-1_7
https://doi.org/10.1007/978-3-319-98989-1_7
https://doi.org/10.1109/PST.2018.8514167
https://www.ndss-symposium.org/ndss2014/botcoin-monetizing-stolen-cycles
https://www.ndss-symposium.org/ndss2014/botcoin-monetizing-stolen-cycles
https://xmrig.com/
https://unit42.paloaltonetworks.com/unit42-rise-cryptocurrency-miners/
https://unit42.paloaltonetworks.com/unit42-rise-cryptocurrency-miners/
https://securelist.com/a-mining-multitool/86950/
https://securelist.com/a-mining-multitool/86950/
https://www.securityfocus.com/bid/96704
https://www.securityfocus.com/bid/96704
https://vms.drweb.com/virus/?i=17645163
https://vms.drweb.com/virus/?i=17645163

Russo et al. EURASIP Journal on Information Security

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

(2021) 2021:11

E. Vasilenko, O. Mamedov, To crypt, or to mine - that is the question
(2018). https://securelist.com/to-crypt-or-to-mine-that-is-the-
question/86307/ Accessed 21 Apr 2021

P. Papadopoulos, P. llia, E. P. Markatos, Truth in web mining: Measuring
the profitability and cost of cryptominers as a web monetization model.
CoRR (2018). http://arxiv.org/abs/1806.01994

Coinhive, Coinhive Monero JavaScript Mining (2019). https://web.archive.
org/web/20190109010215/https://coinhive.com/ Accessed 21 Apr 2021
C. Leonard, CoinHive cryptocurrency mining script injected into 1000s of
government websites via BrowseAloud plugin (2018). https://www.
forcepoint.com/blog/x-labs/coinhive-cryptocurrency-mining-script-
injected-1000s-government-websites Accessed 21 Apr 2021

C. Liu, J. Chen, Google's DoubleClick abused to deliver miners (2018).
https://blog.trendmicro.com/trendlabs-security-intelligence/
malvertising-campaign-abuses-googles-doubleclick-to-deliver-
cryptocurrency-miners/ Accessed 21 Apr 2021

M. Hron, D. Jursa, MikroTik mayhem: Cryptomining campaign abusing
routers (2018). https://blog.avast.com/mikrotik-routers-targeted-by-
cryptomining-campaign-avast Accessed 21 Apr 2021

E. Tekiner, A. Acar, A. S. Uluagac, E. Kirda, A. A. Selcuk, SoK: cryptojacking
malware (2021). https://doi.org/2103.03851

R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, S. Zhou, in
Proceedings of the 9th ACM Conference on Computer and Communications
Security, ed. by V. Atluri. Specification-based anomaly detection: a new
approach for detecting network intrusions (ACM, Washington, 2002),
pp. 265-274. https://doi.org/10.1145/586110.586146

Y.Huang, W. Lee, in 7th International Workshop on Recent Advances in
Intrusion Detection, ed. by E. Jonsson, A. Valdes, and M. Almgren. Attack
analysis and detection for ad hoc routing protocols, vol. 3224 (Springer,
Sophia Antipolis, 2004), pp. 125-145. https://doi.org/10.1007/978-3-
540-30143-1_7

F. Erlacher, F. Dressler, On high-speed flow-based intrusion detection
using snort-compatible signatures. IEEE Trans Dependable Secure
Comput, 1-1(2020)

B. Anderson, D. A. McGrew, in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
Machine learning for encrypted malware traffic classification:
accounting for noisy labels and non-stationarity (ACM, Halifax, 2017),
pp. 1723-1732. https://doi.org/10.1145/3097983.3098163

X.Deng, J. Mirkovic, in 11th USENIX Workshop on Cyber Security
Experimentation and Test, ed. by C. S. Collberg, P. A. H. Peterson. Malware
analysis through high-level behavior (USENIX Association, Baltimore,
2018). https://www.usenix.org/conference/cset18/presentation/deng
K. Bartos, M. Sofka, V. Franc, in 25th USENIX Security Symposium, USENIX
Security, ed. by T. Holz, S. Savage. Optimized invariant representation of
network traffic for detecting unseen malware variants (USENIX
Association, Austin, 2016), pp. 807-822. https://www.usenix.org/
conference/usenixsecurity 16/technical-sessions/presentation/bartos

B. A. Alahmadi, I. Martinovic, in 2018 APWG Symposium on Electronic
Crime Research, eCrime. MalClassifier: malware family classification using
network flow sequence behaviour (IEEE, San Diego, 2018), pp. 1-13.
https://doi.org/10.1109/ECRIME.2018.8376209

M. Piskozub, R. Spolaor, I. Martinovic, Malalert: detecting malware in
large-scale network traffic using statistical features. SIGMETRICS Perform.
Evaluation Rev. 46(3), 151-154 (2018). https://doi.org/10.1145/3308897.
3308961

G. Gu, R. Perdisci, J. Zhang, W. Lee, in Proceedings of the 17th USENIX
Security Symposium, ed. by P. C. van Oorschot. BotMiner: clustering
analysis of network traffic for protocol- and structure-independent
botnet detection (USENIX Association, San Jose, 2008), pp. 139-154.
http://www.usenix.org/events/sec08/tech/full_papers/gu/gu.pdf

L. Bilge, D. Balzarotti, W. K. Robertson, E. Kirda, C. Kruegel, ed. by R. H.
Zakon. 28th Annual Computer Security Applications Conference (ACM,
Orlando, 2012), pp. 129-138. https://doi.org/10.1145/2420950.2420969
D.Zhao, I. Traoré, B. Sayed, W. Ly, S. Saad, A. A. Ghorbani, D. Garant, Botnet
detection based on traffic behavior analysis and flow intervals. Comput.
Secur. 39, 2-16 (2013). https://doi.org/10.1016/j.cose.2013.04.007
Y.Gao, Z.Li, Y. Chen, in 26th IEEE International Conference on Distributed
Computing Systems (ICDCS). A Do resilient flow-level intrusion detection
approach for high-speed networks (IEEE Computer Society, Lisboa,
2006), p. 39. https://doi.org/10.1109/ICDCS.2006.6

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71

72.

73.

Page 18 of 20

A. Lakhina, M. Crovella, C. Diot, in Proceedings of the ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, ed. by R. Guérin, R. Govindan, and G. Minshall.
Mining anomalies using traffic feature distributions (ACM, Philadelphia,
2005), pp. 217-228. https://doi.org/10.1145/1080091.1080118

G. Minz, G. Carle, in 10th IFIF/IEEE International Symposium on Integrated
Network Management. Real-time analysis of flow data for network attack
detection (IEEE, Munich, 2007), pp. 100-108. https://doi.org/10.1109/
INM.2007.374774

A. Sperotto, R. Sadre, A. Pras, in IP Operations and Management, 8th IEEE
International Workshop, ed. by N. Akar, M. Piéro, and C. Skianis. Anomaly
characterization in flow-based traffic time series, vol. 5275 (Springer,
Samos Island, 2008), pp. 15-27. https://doi.org/10.1007/978-3-540-
87357-0_2

Q. Zhao, J. J. Xu, A. Kumar, Detection of super sources and destinations
in high-speed networks: algorithms, analysis and evaluation. IEEE J. Sel.
Areas Commun. 24(10), 1840-1852 (2006). https://doi.org/10.1109/JSAC.
2006.877139

. Paredes-Oliva, P. Barlet-Ros, J. Solé-Pareta, in International Workshop on
Traffic Monitoring and Analysis, ed. by M. Papadopouli, P. Owezarski, and
A. Pras. Portscan detection with sampled NetFlow, vol. 5537 (Springer,
Aachen, 2009), pp. 26-33. https://doi.org/10.1007/978-3-642-01645-5_4
T. Dubendorfer, B. Plattner, in 14th IEEE International Workshops on
Enabling Technologies (WETICE). Host behaviour based early detection of
worm outbreaks in internet backbones (IEEE Computer Society,
Linképing, 2005), pp. 166-171. https://doi.org/10.1109/WETICE.2005.40
T. Dubendorfer, A. Wagner, B. Plattner, in Proceedings of the First IEEE
International Workshop on Critical Infrastructure Protection IWCIP '05. A
framework for real-time worm attack detection and backbone
monitoring (IEEE Computer Society, USA, 2005), pp. 3—12. https://doi.
org/10.1109/IWCIP.2005.2

M. Conti, L. V. Mancini, R. Spolaor, N. V. Verde, Analyzing android
encrypted network traffic to identify user actions. [EEE Trans. Inf.
Forensics Secur. 11(1), 114-125 (2016). https://doi.org/10.1109/TIFS.
2015.2478741

M. Conti, L. V. Mancini, R. Spolaor, N. V. Verde, in Proceedings of the 5th
ACM Conference on Data and Application Security and Privacy, CODASPY,
ed. by J. Park, A. C. Squicciarini. Can't you hear me knocking: identification
of user actions on Android apps via traffic analysis (ACM, San Antonio,
2015), pp. 297-304. https://doi.org/10.1145/2699026.2699119

E. Papadogiannaki, C. Halevidis, P. Akritidis, L. Koromilas, ed. by M. Bailey,
T. Holz, M. Stamatogiannakis, and S. loannidis. 21st International
Symposium on Research in Attacks, Intrusions, and Defenses, vol. 11050
(Springer, Heraklion, 2018), pp. 315-334. https://doi.org/10.1007/978-3-
030-00470-5_15

L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, K. Salamatian, Traffic
classification on the fly. Comput. Commun. Rev. 36(2), 23-26 (2006).
https://doi.org/10.1145/1129582.1129589

D. Rossi, S. Valenti, in Proceedings of the 6th International Wireless
Communications and Mobile Computing Conference, ed. by A. Helmy, P.
Mueller, and Y. Zhang. Fine-grained traffic classification with NetFlow
data (ACM, Caen, 2010), pp. 479-483. https://doi.org/10.1145/1815396.
1815507

V. Carela-Espanol, P. Barlet-Ros, A. Cabellos-Aparicio, J. Solé-Pareta,
Analysis of the impact of sampling on netflow traffic classification.
Comput. Netw. 55(5), 1083-1099 (2011). https://doi.org/10.1016/j.
comnet.2010.11.002

T.T.T.Nguyen, G. J. Armitage, A survey of techniques for internet traffic
classification using machine learning. IEEE Commun. Surv. Tutor. 10(1-4),
56-76 (2008). https://doi.org/10.1109/SURV.2008.080406

M. Conti, Q. Li, A. Maragno, R. Spolaor, The dark side(-channel) of mobile
devices: a survey on network traffic analysis. IEEE Commun. Surv. Tutor.
20(4), 2658-2713 (2018). https://doi.org/10.1109/COMST.2018.2843533
J.Rauchberger, S. Schrittwieser, T. Dam, R. Luh, D. Buhov, G.
Potzelsberger, H. Kim, in Proceedings of the 13th International Conference
on Availability, Reliability and Security, ed. by S. Doerr, M. Fischer, S.
Schrittwieser, and D. Herrmann. The other side of the coin: a framework
for detecting and analyzing web-based cryptocurrency mining
campaigns (ACM, Hamburg, 2018), pp. 18-11810. https://doi.org/10.
1145/3230833.3230869

M. Musch, C. Wressnegger, M. Johns, K. Rieck, Web-based cryptojacking
in the wild. CoRR abs/1808.09474 (2018). http://arxiv.org/abs/1808.09474

https://securelist.com/to-crypt-or-to-mine-that-is-the-question/86307/
https://securelist.com/to-crypt-or-to-mine-that-is-the-question/86307/
http://arxiv.org/abs/1806.01994
https://web.archive.org/web/20190109010215/https://coinhive.com/
https://web.archive.org/web/20190109010215/https://coinhive.com/
https://www.forcepoint.com/blog/x-labs/coinhive-cryptocurrency-mining-script-injected-1000s-government-websites
https://www.forcepoint.com/blog/x-labs/coinhive-cryptocurrency-mining-script-injected-1000s-government-websites
https://www.forcepoint.com/blog/x-labs/coinhive-cryptocurrency-mining-script-injected-1000s-government-websites
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://blog.avast.com/mikrotik-routers-targeted-by-cryptomining-campaign-avast
https://blog.avast.com/mikrotik-routers-targeted-by-cryptomining-campaign-avast
https://doi.org/2103.03851
https://doi.org/10.1145/586110.586146
https://doi.org/10.1007/978-3-540-30143-1_7
https://doi.org/10.1007/978-3-540-30143-1_7
https://doi.org/10.1145/3097983.3098163
https://www.usenix.org/conference/cset18/presentation/deng
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/bartos
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/bartos
https://doi.org/10.1109/ECRIME.2018.8376209
https://doi.org/10.1145/3308897.3308961
https://doi.org/10.1145/3308897.3308961
http://www.usenix.org/events/sec08/tech/full_papers/gu/gu.pdf
https://doi.org/10.1145/2420950.2420969
https://doi.org/10.1016/j.cose.2013.04.007
https://doi.org/10.1109/ICDCS.2006.6
https://doi.org/10.1145/1080091.1080118
https://doi.org/10.1109/INM.2007.374774
https://doi.org/10.1109/INM.2007.374774
https://doi.org/10.1007/978-3-540-87357-0_2
https://doi.org/10.1007/978-3-540-87357-0_2
https://doi.org/10.1109/JSAC.2006.877139
https://doi.org/10.1109/JSAC.2006.877139
https://doi.org/10.1007/978-3-642-01645-5_4
https://doi.org/10.1109/WETICE.2005.40
https://doi.org/10.1109/IWCIP.2005.2
https://doi.org/10.1109/IWCIP.2005.2
https://doi.org/10.1109/TIFS.2015.2478741
https://doi.org/10.1109/TIFS.2015.2478741
https://doi.org/10.1145/2699026.2699119
https://doi.org/10.1007/978-3-030-00470-5_15
https://doi.org/10.1007/978-3-030-00470-5_15
https://doi.org/10.1145/1129582.1129589
https://doi.org/10.1145/1815396.1815507
https://doi.org/10.1145/1815396.1815507
https://doi.org/10.1016/j.comnet.2010.11.002
https://doi.org/10.1016/j.comnet.2010.11.002
https://doi.org/10.1109/SURV.2008.080406
https://doi.org/10.1109/COMST.2018.2843533
https://doi.org/10.1145/3230833.3230869
https://doi.org/10.1145/3230833.3230869
http://arxiv.org/abs/1808.09474

Russo et al. EURASIP Journal on Information Security

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

(2021) 2021:11

. Petrov, L. Invernizzi, E. Bursztein, CoinPolice: detecting hidden
cryptojacking attacks with neural networks (2020). http://arxiv.org/abs/
2006.10861

A.Romano, Y. Zheng, W. Wang, in 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). Minerray:
semantics-aware analysis for ever-evolving cryptojacking detection,
(2020), pp. 1129-1140

M. Solanas, J. Hernandez-Castro, D. Dutta, Detecting fraudulent activity
in a cloud using privacy-friendly data aggregates. CoRR abs/1411.6721
(2014). http://arxiv.org/abs/1411.6721

R.Ning, C. Wang, C. Xin, J. Li, L. Zhu, H. Wu, in [EEE INFOCOM 2019 - IEEE
Conference on Computer Communications. Capjack: capture in-browser
crypto-jacking by deep capsule network through behavioral analysis,
(2019), pp. 1873-1881. https://doi.org/10.1109/INFOCOM.2019.8737381
R. Tahir, M. Huzaifa, A. Das, M. Ahmad, C. A. Gunter, F. Zaffar, M. Caesar, N.
Borisov, in 20th International Symposium on Research in Attacks, Intrusions,
and Defenses, ed. by M. Dacier, M. Bailey, M. Polychronakis, and M.
Antonakakis. Mining on someone else’s dime: mitigating covert mining
operations in clouds and enterprises, vol. 10453 (Springer, Atlanta, 2017),
pp. 287-310. https://doi.org/10.1007/978-3-319-66332-6_13

M. Conti, A. Gangwal, G. Lain, S. G. Piazzetta, Detecting covert cryptomining
using HPC. CoRR abs/1909.00268 (2019). http://arxiv.org/abs/1909.00268
M. Bissaliyev, A. Nyussupov, S. Mussiraliyeva, Enterprise security
assessment framework for cryptocurrency mining based on monero. J.
Math. Mech. Comput. Sci. 98(2), 67-76 (2018). https://doi.org/10.26577/
jmmcs-2018-2-400

D. Draghicescu, A. Caranica, A. Vulpe, O. Fratu, in 2018 International
Conference on Communications (COMM). Crypto-mining application
fingerprinting method, (2018), pp. 543-546. https://doi.org/10.1109/
ICComm.2018.8484745

F.Gomes, M. Correia, in 2020 IEEE 19th International Symposium on
Network Computing and Applications (NCA). Cryptojacking detection with
cpu usage metrics, (2020), pp. 1-10. https://doi.org/10.1109/NCA51143.
2020.9306696

G. Gomes, L. Dias, M. Correia, in 2020 IEEE 19th International Symposium
on Network Computing and Applications (NCA). Cryingjackpot: network
flows and performance counters against cryptojacking, (2020), pp. 1-10.
https://doi.org/10.1109/NCA51143.2020.9306698

F.Naseem, A. Aris, L. Babun, E. Tekiner, S. Uluagac, in Network and
Distributed Systems Security (NDSS) Symposium 2021, February 21-25, 2021
Virtual. Minos*: a lightweight real-time cryptojacking detection system,
(2021). https://dx.doi.org/10.14722/ndss.2021.24444

S.S. Ali, A. EIAshmawy, A. F. Shosha, in Proceedings of the International
Conference on Security and Management (SAM). Memory forensics
methodology for investigating cryptocurrency protocols, (2018),

pp. 153-159

A. Gangwal, M. Conti, Cryptomining cannot change its spots: detecting
covert cryptomining using magnetic side-channel. IEEE Transactions on
Information Forensics and Security. 15, 1630-1639 (2020)

J. D'Herdt, Detecting crypto currency mining in corporate environments.
Technical report, SANS (2018). https://www.sans.org/reading-room/
whitepapers/threats/paper/35722

E. L. Jamtel, in 2018 11th International Conference on IT Security Incident
Management IT Forensics (IMF). Swimming in the monero pools, (2018),
pp. 110-114. https://doi.org/10.1109/IMF.2018.00016

A. Swedan, A. N. Khuffash, O. Othman, A. Awad, ed. by A. Abuargoub, B.
Adebisi, M. Hammoudeh, S. Murad, and M. Arioua. Proceedings of the
2nd International Conference on Future Networks and Distributed
Systems (ACM, Amman, 2018), pp. 23-12310. https://doi.org/10.1145/
3231053.3231076

H. N. C. Neto, M. A. Lopez, N. C. Fernandes, D. M. F. Mattos. Minecap:
super incremental learning for detecting and blocking cryptocurrency
mining on software-defined networking, vol. 75, (2020), pp. 121-131.
https://doi.org/10.1007/512243-019-00744-4

M. Caprolu, S. Raponi, G. Oligeri, R. D. Pietro, Cryptomining makes noise:
detecting cryptojacking via machine learning. Comput. Commun. 171,
126-139 (2021). https://doi.org/10.1016/j.comcom.2021.02.016

A. Pastor, A. Mozo, S. Vakaruk, D. Canavese, D. R. Lopez, L. Regano, S.
Goémez-Canaval, A. Lioy, Detection of encrypted cryptomining malware
connections with machine and deep learning. IEEE Access. 8,
158036-158055 (2020). https://doi.org/10.1109/ACCESS.2020.3019658

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

113.

Page 19 of 20

Y.Feng, D. Sisodia, J. Li, in Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security ASIA CCS '20. Poster:
content-agnostic identification of cryptojacking in network traffic
(Association for Computing Machinery, New York, 2020), pp. 907-909.
https://doi.org/10.1145/3320269.3405440

i Munoz J.Z., J. Sudrez-Varela, P. Barlet-Ros, in 5th IEEE International
Symposium on Measurements & Networking, M&N. Detecting
cryptocurrency miners with NetFlow/IPFIX network measurements (IEEE,
Catania, 2019), pp. 1-6. https://doi.org/10.1109/IWMN.2019.8804995

V. Vesely, M. Zadnik, How to detect cryptocurrency miners? by traffic
forensics! Dig. Investig. 31, 100884 (2019). https://doi.org/10.1016/j.diin.
2019.08.002

F.lglesias, T. Zseby, Analysis of network traffic features for anomaly
detection. Mach. Learn. 101(1-3), 59-84 (2015). https://doi.org/10.1007/
$10994-014-5473-9

SupportXMR, List of all Monero Pools (2021). http://moneropools.com/
Accessed 21 Apr 2021

Slushpool, What is Vardiff (variable difficulty algorithm)? (2021). https://
help.slushpool.com/en/support/solutions/articles/77000433929-what-
is-vardiff-variable-difficulty-algorithm- Accessed 21 Apr 2021
F.Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825-2830 (2011)
node-cryptonote-pool Developers, Mining pool for CryptoNote based
coins such as Bytecoin and Monero. GitHub (2020). https://github.com/
zone117x/node-cryptonote-pool

nodejs-pool Developers, nodejs-pool. GitHub (2020). https://github.
com/Snipa22/nodejs-pool

Stichting Cuckoo Foundation, Cuckoo Sandbox - automated malware
analysis (2021). https://cuckoosandbox.org/ Accessed 19 Apr 2021

K. Khade, X. Lin, WebCobra malware uses victims' computers to mine
cryptocurrency (2018). https://securingtomorrow.mcafee.com/other-
blogs/mcafee-labs/webcobra-malware-uses-victims-computers-to-
mine-cryptocurrency/ Accessed 21 Apr 2021

N. Hyvdrinen, NRSMiner updates to newer version (2019). https.//
labsblog.f-secure.com/2019/01/03/nrsminer-updates-to-newer-
version/ Accessed 21 Apr 2021

Nanopool, Claymore-XMR-Miner (2017). https://github.com/nanopool/
Claymore-XMR-Miner/blob/master/README.md Accessed 21 Apr 2021
OpenSSL Software Foundation, OpenSSL: Cryptography and SSL/TLS
Toolkit (2020). https://www.openssl.org/docs/man1.0.2/man1/ciphers.
html Accessed 21 Apr 2021

mineXMR.com, High performance Monero mining pool (2021). http://
minexmr.com/ Accessed 21 Apr 2021

J. Grunzweig, Large scale Monero cryptocurrency mining operation
using XMRig (2018). https://unit42.paloaltonetworks.com/unit42-large-
scale-monero-cryptocurrency-mining-operation-using-xmrig/
Accessed 21 Apr 2021

CoinlMP, CoinlMP FREE JavaScript Mining (2020). https://www.coinimp.
com/ Accessed 21 Apr 2021

PublicWWW, PublicWWW Source Code Search Engine (2020). https://
publicwww.com/ Accessed 21 Apr 2021

. Check Point, April 2019's most wanted malware: cyber criminals up to

old 'trickbots" again (2019). https://www.checkpoint.com/press/2019/
april-2019s-most-wanted-malware-cyber-criminals-up-to-old-
trickbots-again/ Accessed 21 Apr 2021

Check Point, October 2019's most wanted malware: the decline of
cryptominers continues, as Emotet Botnet expands rapidly (2019).
https://www.checkpoint.com/press/2019/may-2019-most-wanted-
malware-patch-now-to-avoid-the-bluekeep-blues/ Accessed 21 Apr
2021

Check Point, February 2020's most wanted malware: increase in exploits
spreading the Mirai Botnet to loT devices (2020). https://blog.
checkpoint.com/2020/03/11/february-2020s-most-wanted-malware-
increase-in-exploits-spreading-the-mirai-botnet-to-iot-devices/
Accessed 21 Apr 2021

Marathon Studios Inc., AbuselPDB - IP address abuse reports (2021).
https://www.abuseipdb.com/ Accessed 2021 Oct 15

Programmer All, Mac sample analysis (2020). https://programmerall.
com/article/76021153067/ Accessed 15 Oct 2021

http://arxiv.org/abs/2006.10861
http://arxiv.org/abs/2006.10861
http://arxiv.org/abs/1411.6721
https://doi.org/10.1109/INFOCOM.2019.8737381
https://doi.org/10.1007/978-3-319-66332-6_13
http://arxiv.org/abs/1909.00268
https://doi.org/10.26577/jmmcs-2018-2-400
https://doi.org/10.26577/jmmcs-2018-2-400
https://doi.org/10.1109/ICComm.2018.8484745
https://doi.org/10.1109/ICComm.2018.8484745
https://doi.org/10.1109/NCA51143.2020.9306696
https://doi.org/10.1109/NCA51143.2020.9306696
https://doi.org/10.1109/NCA51143.2020.9306698
https://dx.doi.org/10.14722/ndss.2021.24444
https://www.sans.org/reading-room/whitepapers/threats/paper/35722
https://www.sans.org/reading-room/whitepapers/threats/paper/35722
https://doi.org/10.1109/IMF.2018.00016
https://doi.org/10.1145/3231053.3231076
https://doi.org/10.1145/3231053.3231076
https://doi.org/10.1007/s12243-019-00744-4
https://doi.org/10.1016/j.comcom.2021.02.016
https://doi.org/10.1109/ACCESS.2020.3019658
https://doi.org/10.1145/3320269.3405440
https://doi.org/10.1109/IWMN.2019.8804995
https://doi.org/10.1016/j.diin.2019.08.002
https://doi.org/10.1016/j.diin.2019.08.002
https://doi.org/10.1007/s10994-014-5473-9
https://doi.org/10.1007/s10994-014-5473-9
http://moneropools.com/
https://help.slushpool.com/en/support/solutions/articles/77000433929-what-is-vardiff-variable-difficulty-algorithm-
https://help.slushpool.com/en/support/solutions/articles/77000433929-what-is-vardiff-variable-difficulty-algorithm-
https://help.slushpool.com/en/support/solutions/articles/77000433929-what-is-vardiff-variable-difficulty-algorithm-
https://github.com/zone117x/node-cryptonote-pool
https://github.com/zone117x/node-cryptonote-pool
https://github.com/Snipa22/nodejs-pool
https://github.com/Snipa22/nodejs-pool
https://cuckoosandbox.org/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/webcobra-malware-uses-victims-computers-to-mine-cryptocurrency/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/webcobra-malware-uses-victims-computers-to-mine-cryptocurrency/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/webcobra-malware-uses-victims-computers-to-mine-cryptocurrency/
https://labsblog.f-secure.com/2019/01/03/nrsminer-updates-to-newer-version/
https://labsblog.f-secure.com/2019/01/03/nrsminer-updates-to-newer-version/
https://labsblog.f-secure.com/2019/01/03/nrsminer-updates-to-newer-version/
https://github.com/nanopool/Claymore-XMR-Miner/blob/master/README.md
https://github.com/nanopool/Claymore-XMR-Miner/blob/master/README.md
https://www.openssl.org/docs/man1.0.2/man1/ciphers.html
https://www.openssl.org/docs/man1.0.2/man1/ciphers.html
http://minexmr.com/
http://minexmr.com/
https://unit42.paloaltonetworks.com/unit42-large-scale-monero-cryptocurrency-mining-operation-using-xmrig/
https://unit42.paloaltonetworks.com/unit42-large-scale-monero-cryptocurrency-mining-operation-using-xmrig/
https://www.coinimp.com/
https://www.coinimp.com/
https://publicwww.com/
https://publicwww.com/
https://www.checkpoint.com/press/2019/april-2019s-most-wanted-malware-cyber-criminals-up-to-old-trickbots-again/
https://www.checkpoint.com/press/2019/april-2019s-most-wanted-malware-cyber-criminals-up-to-old-trickbots-again/
https://www.checkpoint.com/press/2019/april-2019s-most-wanted-malware-cyber-criminals-up-to-old-trickbots-again/
https://www.checkpoint.com/press/2019/may-2019-most-wanted-malware-patch-now-to-avoid-the-bluekeep-blues/
https://www.checkpoint.com/press/2019/may-2019-most-wanted-malware-patch-now-to-avoid-the-bluekeep-blues/
https://blog.checkpoint.com/2020/03/11/february-2020s-most-wanted-malware-increase-in-exploits-spreading-the-mirai-botnet-to-iot-devices/
https://blog.checkpoint.com/2020/03/11/february-2020s-most-wanted-malware-increase-in-exploits-spreading-the-mirai-botnet-to-iot-devices/
https://blog.checkpoint.com/2020/03/11/february-2020s-most-wanted-malware-increase-in-exploits-spreading-the-mirai-botnet-to-iot-devices/
https://www.abuseipdb.com/
https://programmerall.com/article/76021153067/
https://programmerall.com/article/76021153067/

Russo et al. EURASIP Journal on Information Security (2021) 2021:11

116. Peter "fracpete” Reutemann, Python wrapper for the Weka Machine
Learning Workbench (2021). https://pypi.org/project/python-weka-
wrapper/ Accessed 19 Apr 2021

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 20 of 20

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://pypi.org/project/python-weka-wrapper/
https://pypi.org/project/python-weka-wrapper/

	Abstract
	Keywords

	Introduction
	Cryptocurrency mining
	Mining pools
	Malicious mining
	Binary-based cryptomining
	In-browser mining

	Related work
	Detection of non-mining threats in network traffic
	Traffic classification
	Longitudinal studies
	Endpoint- and cloud-based detection
	Network-based detection

	Stratum traffic analysis
	XMR-Ray detector
	Design tradeoffs
	Deployment scenario
	Data collection
	System architecture
	TCP conversation reconstruction
	Traffic windowing by time
	Feature extraction
	Training
	Prediction

	Feature engineering
	Group 1: Heuristics based on speculative reconstruction of Stratum
	Group 2: Correlation between mean packet sizes of the miner and the pool
	Group 3: Correlation between packet count and mean packet size
	Group 4: Ratio of transmitted bytes
	Group 5: Mean packet size
	Group 6: Transmission rate

	One-class classification

	Results
	Trade-off between latency and accuracy
	Detection of novel mining pools
	Detection of malware mining traffic
	Detection in obfuscated network traffic
	Encrypted mining
	SOCKS proxy
	Mining proxy

	Detection of in-browser mining
	Robustness against adversarial evasion
	Attack 1: Data injection
	Attack 2: Message injection
	Attack 3: Error triggering

	Comparison to prior work
	Results from real-world deployment

	Discussion
	Conclusions
	Appendix A
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

