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Abstract

Recently, adversarial attacks have drawn the community’s attention as an effective tool to degrade the accuracy of
neural networks. However, their actual usage in the world is limited. The main reason is that real-world machine
learning systems, such as content filters or face detectors, often consist of multiple neural networks, each performing
an individual task. To attack such a system, adversarial example has to pass through many distinct networks at once,
which is the major challenge addressed by this paper. In this paper, we investigate multitask adversarial attacks as a
threat for real-world machine learning solutions. We provide a novel black-box adversarial attack, which significantly
outperforms the current state-of-the-art methods, such as Fast Gradient Sign Attack (FGSM) and Basic Iterative
Method (BIM, also known as Iterative-FGSM) in the multitask setting.
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1 Introduction

Deep neural networks (DNN) have reached outstanding
accuracy in many tasks related to computer vision. This
led to their adaptation to safety-critical systems, such as
autonomous driving and medical scanning. Despite of
their effectiveness, many security flaws [1] in machine
learning systems were found recently, including vulnera-
bility to adversarial attacks [2]. Slight perturbation applied
to model input can lead to completely unexpected model
prediction or classification output. Two different threat
models are considered in adversarial research: white-box
and black-box. In the white-box scenario, the attacker has
full access to the model architecture and parameters. In
the black-box case, malicious actor’s knowledge is lim-
ited to either model output probabilities or to the final
prediction. While white-box setting is of special interest
for the researchers (due to fully controlled environment),
from cyber security perspective, black-box attacks are
more meaningful. In real-world applications, the model
is usually available through API. Thus, the attacker can-
not access the inner state of the model directly. In this
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scenario, the attacker utilizes a substitute network to
reproduce the behavior of AI model behind the API.

Adversarial attacks is now a hot academic topic. To
understand the risks and even opportunities of adversar-
ial attacks for the business, let us start with an example
from Avito company described in their blog [3]. One of
Avito businesses is advertising a platform for the cus-
tomers that wish to sell their cars. To add extra layer of
privacy for the users, Avito replaced number plates on
the cars with branded watermark. An issue popped up
when rival market player started to scrap Avito ads, detect
and replace Avito watermark with their own, then place
those same adds on a different platform without notify-
ing neither Avito nor car owners. These actions negatively
affected Avito’s business: jeopardized relations with the
customers, in particular, violated regulations regarding
their personal data usage. To address the issue, Avito engi-
neered an adversarial solution applied to the whole image.
This attack targeted competitor’s object detection engine,
more specifically, their number plate detection machinery.
As a result, the competitor became unable to automati-
cally detect and replace the number plates. Also, it became
easy for Avito to detect stolen ads and to mitigate misuse
of personal data.
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This case shows how the business can protect their own
intellectual property and interests of their customers with
adversarial attacks. On the other hand, adversarial attacks
can be deployed by threat actors for nefarious purposes
as well. One example is bypassing content filtering on the
website.

In Avito’s example, it was sufficient to thwart just object
detection. But in case of content filtering, evasion of
object detection alone would not be enough. Here, multi-
task adversarial attacks come to play where several com-
puter vision engines shall be targeted at the same time.
Object detection, image classification, and text recogni-
tion might be applied simultaneously in a web-filtering
solution to detect advertisement of parental advisory con-
tent.

2 Contribution summary

Adversarial attacks that target several models of the same
task have been researched quite well. At the same time,
multitask adversarial attacks have surprisingly low cover-
age in the literature, despite their importance for security
of Al-based business solutions (see Lu at al. [4]).

Our work is inspired by Lu at al. [4] that describes dis-
persion reduction technique to enhance cross-task trans-
ferability of adversarial attacks. Our research expands this
method further.

In this paper, we propose a new method for multi-
task adversarial attacks based on dispersion amplification
of the inner DNN activations. We have shown experi-
mentally that while dispersion reduction seems to be an
intuitive choice as it reduces contrast on the inner layers,
amplification of the dispersion produces the same effect
on the DNN accuracy. For some tasks, our method outper-
forms dispersion reduction in terms of both adversarial
attack effectiveness and perturbation size.

3 Related works

Most of real-world machine learning systems do not
expose their internal state. Thus, only black-box attacks
are possible. Early research of black-box attacks was
focused on query-feedback mechanism. Here, the attacker
uses some local search methods such as gradient descent
over target model output probabilities to find an optimal
adversarial perturbation [5-7]. Inability to evaluate gra-
dient of the model makes those approaches rely on a big
amount of queries to the target model. While it is not
a problem in case of stand-alone models, in real-world
online systems, big amount of queries to the model or ML
API will be detected and treated by service provider as a
malicious activity. To overcome this obstacle, adversarial
attacks based on substitute model were proposed [8, 9].
Here, the attacker trains another model that mimics the
target model’s behavior. Then, the attacker crafts adversar-
ial samples using the generated model as white-box target.
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The effectiveness of this attack relies on the transferability
property of the crafted adversarial examples—the abil-
ity to simulate target model’s predictions. This approach
works because commercial solutions tend to re-use many
OpenSource components or train their models on pub-
licly available datasets. Thus, adversarial attacks crafted
on a substitution model tend to work successfully against
commercial proprietary solutions as well.

Methods to enhance adversarial transferability have
been proposed recently [10, 11]. However, all of them rely
on task-specific loss function. Also, quite frequently, they
can be applied to image classification only. This signifi-
cantly limits their usage in real-world scenarios, due to
ensembling methods applied to protect against evasion
attacks. In security-sensitive machine learning systems,
several neural networks are often combined. For example,
face recognition system consists of face detector (detects
whether face is present or not) and liveness detector (clas-
sifies detected face as real-one or an image). To fool such
a system, adversarial example has to thwart both models
simultaneously. Significantly less research was conducted
in this area [4, 12].

Guo et al. [12] proposed a multitask adversarial attack
(MTA) method based on the idea of universal pertur-
bation generated for multiple tasks at once. Universal
perturbation (first described in Moosavi-Dezfooli et al.
[13]) is a perturbation that can be applied to any image to
successfully attack specific model or models. To generate
such a perturbation, one needs to target a set of images
on the step of attack with minimal perturbation size. This
approach provides an opportunity for instant attack as
perturbation needs to be generated only once, while keep-
ing the perturbation size slightly bigger than the one in
case of targeted attacks.

Paper [12] utilizes both the concept of universal and
per-instance perturbations. The authors utilize generative
adversarial networks (GANs) to generate perturbations
that successfully attack the set of predefined tasks. For
each specific task, a separate generator is trained. This
makes targeting additional tasks straightforward but at
the same time limits this approach by requiring training
of additional generators for every new task. To address
this obstacle, we investigated the cross-task transferable
adversarial attacks based on the ideas described by Lu
at al. [4]. In this paper, a method is described for per-
turbation generation that are able to penetrate multiple
models, regardless of their architecture and task without
prior knowledge about the specific task.

Most computer vision neural networks share common
architecture baseline, regardless of their tasks. They are
built of multiple convolutional filters laid on the top of
one another. Each layer detects the presence of some pat-
terns in input image and then passes this information
to higher layers. The first layers memorize most basic,
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general patterns (such as the presence of color change on
image or the presence of horizontal line), while the latter
layers can remember more complex task-related features
(such as the presence of an eye on the image, in case of
face recognition). This generic part of convolutional neu-
ral network is commonly referred to as backbone, while
the latter layers are referred to as heads.

Based on these fundamental principles of convolutional
neural networks, Lu at al. [4] made the following assump-
tion. Due to the limitation of feature space in which
CNN operates, different neural networks, regardless of
their architecture or the data they were train on, memo-
rize similar low-level image patterns in their early layers.
Therefore, image perturbation that disrupts model activa-
tions on early layers has a high chance to be successfully
transferred to the next model.

Before investigating deeper into the ideas of Lu at al.
[4], it is critical to overview the scenarios where ideas
mentioned before might not work. Barni at al. [14] in
the work On the Transferability of Adversarial Examples
against CNN-based Image Forensics have shown such sce-
narios. Concept of pre-trained backbone as a basis for
transfer learning is popular nowadays. It works prop-
erly because ImageNet is a very large-scale dataset, and
models trained on it tend to learn general features that
are good for most of the tasks. But Barni et al. [14]
access different but very important set of tasks. In cases
of training from scratch with not very deep neural net-
work, one would not get neural network with general
purpose feature extractions. Features produced by such,
not very deep network will be highly task specific and
even more data specific. And it is exactly what Barni at
al. have shown in their work. The authors accessed three
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transferability setups: cross-training (the same model but
different datasets), cross-model (the same dataset but dif-
ferent models), cross-model-and-training (different mod-
els, different datasets). All of the scenarios were with the
same target task of digital forensics. In each case, trans-
ferability was low with cross-model-and-training scenario
showing the lowest attack transferability. In the further
work [15], Barni at al. proposed an effective method for
the detection of adversarial attacks and effective protec-
tion of image forensics approaches from those attacks.
The authors once again have shown that transferability
in the domain-oriented tasks are highly limited. Never-
theless, use cases of content filtering that we want to
examine in this work are different. First of all, we are inter-
ested in cross-task transferability in the cases where the
backbone was pre-trained to be general purpose feature
extractor. This use case is more common as it requires
less data collection and labeling and is common in
many tasks ranging from classification to object detection
and re-ID.

Scenario, where the attacker uses inner layer activations
to generate multi-task transferable adversarial example,
is shown in Fig. 1. Lu at al. [4] investigated a method
called dispersion reduction. They argued that reduction
of dispersion on the specific early layers of the CNN acti-
vations results in the highest transferability of the attack.
Dispersion reduction can be viewed as the reduction of
the contrast on the activation picture. It makes it natural
that further layers of the network cannot work properly
with those feature maps. However, we investigated several
inner layer activation distortion techniques and exper-
imentally showed that other manipulations with inner
layer activations are also effective. In our paper, we focus

Target model 1

Substitute model

L 4

(such as classification, object detection, recognition)

Fig. 1 Attacker uses a substitute model to craft adversarial image that successfully passes through different models and across different CV tasks
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on dispersion amplification as the one with the highest
transferability rate.

4 Methodology

Let f;(x) be the target neural network which takes x € R”
as an input and produces some prediction y € R™. The
goal of adversarial attack, with respect to selected p-norm
and perturbation budget ¢, is to generate an adversarial
input x such that:

1

X = argmax (%, t)
=217 <e

where [ and ¢ denote task-specific loss function and
ground truth output, respectively. FGSM [2] and BIM [16]
methods are based on gradient ascent. They can be used
to find optimum for the function (1). To perform these
attacks in the black-box scenario (where gradient value
remains unknown), a substitution neural network f; shall
be trained on (x, f;(x)) and then used to emulate the target
network. The idea is that substitute model trained on the
data labeled by initial network will result in similar fea-
ture extractors in the backbone. However, this approach
requires knowledge about the target model outputs. It also
depends on the loss function. This information is often
limited; thus, adversarial examples obtained in such a way
have low transferability rate.

To overcome these limitations, we propose to calculate
the loss function based on model activations from one of
the early layers of substitute model, rather than from the
model’s output. In this case, knowledge about the original
loss function is used by the target model, and the tar-
get model predictions remain irrelevant. Disrupting the
model in the early layer will cause all further layers to raise
invalid activations, and as a result, the model will make
wrong predictions.

Based on the assumption made previously, perturba-
tions that affect substitute model on early layers have high
chance to succeed in a similar way with the target model.
We have evaluated many techniques that can be used to
alter early layer activations, including the following:

Dispersion reduction [4]

Dispersion amplification

Reduction of distance between two images in feature
space

Lu at al. [4] noted that reducing standard deviation of acti-
vation layers will have the effect similar to reducing image
contrast, therefore making feature map useless for fur-
ther layers. While this is true, we have found that other
distortion techniques also effectively improve adversarial
transferability. Our experiments have shown that dis-
persion amplification technique results in higher rate of
transfer than dispersion reduction. For dispersion amplifi-
cation, we propose to increase the standard deviation (std)
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of internal layer by factor of 5. Setting higher 7 results
in higher dispersion on the resulting image requirement.
After such an attack, the image becomes out of distribu-
tion for all further layers. As a result, they cannot infer
meaningful features from the attacked image. The loss
function for each mentioned method is defined as follows:

()

Dispersion amplification

l(x) = n - std(fi(x0)) — std(fi(x))

(3)

where f; and x denote activations on layer i and generated
adversarial image, respectively. xp is an image before any
manipulations.

To minimize these loss functions, we used gradient-
based iterative process with respect to p-norm con-
straints. The details of proposed method is shown in
Algorithm 1.

Dispersion reduction:/(x) = std(f;(x))

Algorithm 1: Dispersion amplification

Data: surrogate model f;, intermediate layer ,
iterations number 7, original sample x,
perturbation budget ¢

Result: Adversarial sample x;

Xt <— X5

Fo = fs(x0);

compute standard deviation of Fy : Sy = std(Fp);

fort < O0to T do

Fy = fs(xo)e 5

compute standard deviation of S; = F; : std(Fy);

compute loss function: Ly = Sp * n — S;

compute gradient w.r.t. x: Vystd(Ly);

update x; : x; = x; + V,std(Ly);

apply constrains to x; : x; = clip(x;, €);

end

5 Experimental results

In this section, we describe the experimental results of the
proposed attack method. We evaluate the proposed attack
against typical computer vision tasks, including object
detection, face detection, image classification, and seman-
tic segmentation. ImageNet [17] and COCO 2012 [18]
datasets were used for evaluation, with accuracy and mAP
metrics used for each dataset, respectively.

Important point to address is the attack budget. This
parameter defines the degree to which an attack is allowed
to alter each pixel of the image, or in other words its max-
imal L1 norm. For all our experiments, we set this param-
eter equal to 16/255. The authors of the DR approach
used this value in their experiments, and to make compar-
ison of DR and DA as fair as possible, we decided to use
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the same value of attack budget. Attack budget itself does
not mean that each attack will result in an image with L1
distance equal to 16/255; still, it is reasonable to assume
that the attacker will search for the best attack within the
attack budget, and in most of the cases, it results in an
image with the L1 norm as close to attack budget. We
have tested this assumption for both DA and DR attacks
on the subset of ImageNet dataset and have not observed
cases when an attack would finish on the L1 norm far from
16/255. Because of this, we decided not to evaluate the
average L1 norm as a separate metric in the experiments.
We also used n equal 2 in all of the experiments as on the
small subset of data it has shown best performance.

In our first experiment, we analyze how the selection
of surrogate model architecture and target layer influ-
ences attack effectiveness. We made the experiment sev-
eral times using different architectures, including VGG16
[19], ResNet101 [20], InceptionV3 [21], and MobileNetV2
[22]. Each time, one model was selected as a surrogate and
other models as attack targets. First, we trained the sur-
rogate and target models on ImageNet train subset and
measured the accuracy on clean data from validation set.
For the evaluation of attack transferability, we refer to the
target metrics of each task on the attacked images and
compare those numbers to each other. The bigger drop in
the target metric the better transferability of the attack.
We selected this method because we investigate cross-task
transferability and attack effectiveness metric should be
clearly interpretable for each of the tasks (classification,
detection, segmentation).

Then, one-by-one, we selected each convolutional layer
of the surrogate model as the target layer and performed
dispersion amplification attack to obtain adversarial ver-
sion of validation subset. We measured the accuracy of
both surrogate and target models on obtained adversar-
ial data to evaluate how many of generated adversarial
images were able to fool the surrogate model and how
many of them managed to pass to the next neural network
architectures. The obtained results are presented in Fig. 2.

The x axis of each figure represents the depth of tar-
get layer relative to the overall model deepness. Here,
zero represents models with attack on the first convolu-
tional layer, 1 - of the last one. For every architecture,
we obtained similar results. Attack effectiveness on surro-
gate model tends to increase together with the target layer
depth. At the same time, its transferability rate grows first,
then falls, achieving its maximum at middle layers.

Deep layers learn more high-level image features. Thus,
using the activations from these layers allows to alter
model predictions with smaller perturbations, despite that
these features are typically unique for each architecture.
This leads to high attack effectiveness, but poor trans-
ferability. However, features learned at middle layers are
complex enough to be used as the target for adversarial
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Fig. 2 Results of dispersion amplification attacks using different
substitute models. Each plot represents a different target model while
each line is a different substitute model
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attack, but at the same time they are general enough to be
learned by different architectures.

Thus, we investigated how the number of iterations
influences attack effectiveness. To measure it, we repeated
the first experiment while choosing the target layer to be
on the position approximately totallayers x 0.45. Figure 3
shows how substitute model’s and target model’s accuracy
changed over number of iterations. Based on the obtained
results, 100 iterations is enough to achieve decent suc-
cess rate. Taking more than 500 iterations is already not
reasonable.

To evaluate the attack transferability across different
computer vision tasks, we performed dispersion amplifi-
cation attack against several open source models, includ-
ing FastRCNN [23], MaskRCNN [24], and YoloV3 [25]
for object detection, and RCNN [26] and DeepLabV3 [27]
for semantic segmentation. We used the validation sub-
set of COCO 2012 dataset to evaluate the object detection
and semantic segmentation. mAP metric was used in both
cases. The model from the first experiment, pre-trained
on ImageNet, was used as a substitute model. The tar-
get layer and the number of iterations were chosen as
totallayer x 0.45 and 200, respectively. To compare dis-
persion amplification with other methods, we performed
FGSM and BIM attacks defined as follows:

FGSM:x = x + ¢ - signV, (%, t) (4)

BIM:xg = x, X = clip(¥x—1 + € - signVxl(Xk—1, 1))

(5)
The obtained results are presented in Table 1.

6 Discussion

Table 1 shows that both dispersion reduction and dis-
persion amplification attacks have shown higher attack
effectiveness than FGSM, BIM, and LBFGS, while being
agnostic of the task they were targeted on. At the same
time, our method has shown better results compared to
dispersion reduction in most of the attack setups. This
improvement in attack effectiveness varies from marginal
to pretty significant, like in the case of DeepLab segmen-
tation model.

To understand why DA performs better than DR in
many cases, we need to understand the nature of neu-
ron activation distribution. Works on pruning like [28]
have shown that during training of the DNN, there is high
redundancy in the feature maps with some of the fea-
ture maps almost duplicating. During pruning, we take
advantage of this redundancy to leave only informative
feature maps and prune duplicates. But for the tasks of
DA and DR, we utilize this redundancy in a different way.
There are some positively and negatively correlated fea-
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Table 1 Experiment results

Base model  Attack Det.YoloV3 mAP Det. Mask-RCNN mAP  Det. Faster-RCNN mAP  Seg. DeepLab mAP  Classification PSNR
VGG16 FGSM 0.541 0.506 0.522 0.599 0483 30.01
BIM 0.522 0517 0512 0.632 0.349 25.86
LBFGS - 0.542 049 0.538 - 25.51
DR 0.126 0.586 0.136 0411 0.112 30.96
DA 0.119 0.144 0.136 0.128 0.128 2832
ResNet101 FGSM 0.612 0578 0.607 0.622 0.381 30.01
BIM 0.628 0.571 0.567 0.585 0.269 26.68
LBFGS - 0.56 0553 0.547 - 26.73
DR 0.138 0.129 0.131 0.530 0.116 32.69
DA 0.105 0.112 0.112 0.174 0.060 3033
InceptionV3 FGSM 0.595 0.613 0.585 0.594 0520 30.01
BIM 0.601 0.609 0.611 0.591 0.448 26.81
LBFGS - 0515 0.604 0.549 - 26.56
DR 0.132 0.130 0.111 0.490 0.074 33.31
DA 0.126 0.112 0.110 0.216 0.032 30.68
MobileNetv2 ~ FGSM 0.622 0.641 0.629 0.672 0325 30.01
BIM 0.570 0.595 0.601 0.639 0338 26.38
LBFGS - 0.553 0.575 0.539 - 2583
DR 0.147 0.147 0.133 0.221 0.104 30.55
DA 0.112 0.109 0.125 0.147 0.092 29.98

ture maps in each layer of the network like in the example
we obtained from the MobileNetV2 Fig. 4.

During DR attack, the goal is to bring all the activa-
tions to the one value effectively reducing dispersion to
zero. Having negatively correlated activations makes this
task hard as to achieve it one would require to bring
those negatively correlated activations together and close
to positively correlated ones. On the other hand, DA takes
advantage of the negatively correlated feature existence.
To achieve the goal, DA does not require changing of
activation correlation from negative to positive. Taking
those negatively correlated activations and dragging their
activations in the different directions would not affect
the correlation of the activation maps but will effectively

to catch some mid- to high-level features that are not
specific to the architecture. In cases (a) Resnetl01, (b)
MobileNetV2, and (d) InceptionV3, optimum is not that
clear and attack effectiveness fluctuates. The reason for
such behavior might be in utilization of skip connections
in (a, b) and the nature of the Inception block in (d).
Because of the skip connections model indirectly becomes
an ensemble of networks with different depths, which
itself makes hierarchy of the learned features less straight-
forward than VGG16. Also, at the same time, the whole
idea behind the inception block is to incorporate features
of different scales on the same level of activation. It results

amplify dispersion. The result of this effect is that with the
same attack budget, DA is able to achieve higher distor- 7001
tion in the activation distribution space which results in 600 -
higher transferability. 500 1
Another interesting observation can be inferred from
Fig. 2. It is related to the NN architectures themselves. ‘g 400
One can observe that attack effectiveness tends to fluc- 8 300 4
tuate for some architectures while for others do not. For
the plot corresponding to VGG16 attack effectiveness first 2007
rises that falls monotonically. There is a clear optimal 100
point that appears approximately in the middle of the plot N
(c). The reason is the deeper one gets into the VGGL16, -1.00 -0.75 -0.50 —-0.25 0.00 025 050 075 1.00
the more high-level features there one obtains. Mid-level Correation
features become optimum because they are deep enough Fig. 4 Correlation between activations of 0.4 layer of MobileNetV2
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in feature hierarchy unique in comparison to other eval-
uated networks which itself may be the reason for fluc-
tuations in the attack effectiveness. Figure 3 also shows
that InceptionV3 is the architecture most resilient to our
attack; again, we tend to think that the mechanism of
incorporating multi-scale features in one inception block
is the reason for that.

Besides the metrics, it is interesting to compare the
results of DR and DA attacks visually. Figure 5 shows
the examples of attacked images for DA and DR attacks.
Visual perceptibility of perturbations by the human is out-
side of the scope of our research as in target use cases
our goal is to evade automatic detection mechanisms by
Al rather than the human eye. Still, there are few inter-
esting outcomes that can be addressed. Attack examples
obtained with DR have bigger perturbation patterns com-
pared with DA examples. At the same time, perturbations
of DR mostly look like bleak/gray zones on the image that
in some cases look like artifacts created by low-resolution
camera, while DA results in more bright colors more
common to adversarial examples. The metric that helps
to indirectly evaluate visual perception of the attacked
images is peak signal-to-noise ratio (PSNR). This met-
ric represents the ratio between the maximum possible
power of a signal and the power of perturbation noise that
affects the fidelity of its representation. We have observed
that PSNR value in all our experiments was best for DR
with DA being slightly behind. This checks with our per-
ception of DA and DR examples, as DR do not produce
bright color perturbation. Also, when viewing images pro-
duced by DA attack, one can see a familiar patterns. DA
images came out really familiar to the DeepDream [29]
approach. After the detailed analysis, it became obvious
why. DeepDream was used to visualize what exact fea-
tures neural network learns in the process of training. To
do so, researchers fixated a set of neurons and was gener-
ating image with maximized values of activations for this
neurons. As a result, image was transformed with pattern-
specific neuron tends to detect. In case of DA, we do not
fixate specific neuron but do fixate specific layer of the
network and while amplifying the dispersion within the
budget we tend to maximize at least some of the neurons.
Because of close ideas, images from DeepDream and DA
might share similarities in some cases.

7 Conclusion

In this paper, we proposed dispersion amplification attack
as a method for adversarial attack against real-world
machine learning solutions. It was based on cross-task
transferability of perturbations applied to the middle lay-
ers of neural network. We compared our method with
other methods based on cross-task transferability princi-
ple, namely BIM (I-FGSM), LBEGS, FGSM, and dispersion
reduction.

(2021) 2021:10
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(c) DR example

Fig. 5 Examples of attacked images with DA and DR attacks. Both
attacks performed on the 0.4 of the NN depth. Target network for
those examples was MobileNetV2

We have measured proposed attack effectiveness across
different computer vision tasks, including object detec-
tion, semantic segmentation, and image classification. We
observed that our approach outperforms all these known
attacks in black-box scenario. Proposed attack is able to
significantly degrade the performance of target machine
learning system without any knowledge about its internal
architecture and training dataset.
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We assume that the limited feature space of neural
networks middle layers forces networks with different
architectures to memorize similar features. Amplifying
variance on such layers will make all subsequent lay-
ers treat modified activations as out-of-distribution, effi-
ciently forcing them to make incorrect predictions.

For the future, we consider to investigate the applica-
tion of proposed approach for privacy protection of the
user on the Internet. Low level of resulting perturbation
and high transferability of the attack between tasks and
models makes it a great instrument to protect the user
from unnecessary detection and tracking on the Internet.
Such anonymization application shall be useful to miti-
gate fraud schemes and cyber bullying. We see it as a
great non-malicious real-world application for adversarial
attacks.
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