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Abstract

PRNU-based image processing is a key asset in digital multimedia forensics. It allows for reliable device identification
and effective detection and localization of image forgeries, in very general conditions. However, performance impairs
significantly in challenging conditions involving low quality and quantity of data. These include working on
compressed and cropped images or estimating the camera PRNU pattern based on only a few images. To boost the
performance of PRNU-based analyses in such conditions, we propose to leverage the image noiseprint, a recently
proposed camera-model fingerprint that has proved effective for several forensic tasks. Numerical experiments on
datasets widely used for source identification prove that the proposed method ensures a significant performance
improvement in a wide range of challenging situations.
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1 Introduction
Image attribution is a fundamental task in the context of
digital multimedia forensics and has gained a great deal of
attention in recent years. Being able to identify the specific
device that acquired a given image represents a powerful
tool in the hands of investigators fighting such hideous
crimes as terrorism and pedopornography.
Most techniques for device identification rely on the

photo response non-uniformity (PRNU) [1, 2], a sort of
fingerprint left by the camera in each acquired photo. The
PRNU pattern originates from subtle random imperfec-
tions of the camera sensor which affect in a deterministic
way all acquired images. Each device has its specific PRNU
pattern, which can be accurately estimated by means of
sophisticated processing steps, provided a large number
of images acquired by the device itself is available. Given
the camera PRNU pattern, image attribution is relatively
easy and very reliable, in ideal conditions. However, the
performance degrades rapidly when the operating condi-
tions are less favorable, since it is ultimately related to the
quantity of available data and their quality [3]. In particu-
lar, performance may be severely impaired when (1) tests
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take place on small image crops and (2) a limited number
of images are available for estimating the device PRNU.
These challenging cases are of great interest for real-world
applications, as clarified in the following.
Modern cameras generate very large images, with mil-

lions of pixels, which provide abundant information for
reliable device identification. However, often large-scale
investigations are necessary. The analyst may be required
to process a large number of images, for example all
images downloaded from a social account, and look for
their provenance in a huge database of available cameras
(PRNU patterns). This calls for an inordinate process-
ing time, unless suitable methods are used to reduce
computation, typically involving some forms of data sum-
marization [4–6]. Working on small crops, rather than on
the whole image, is a simple and effective way to achieve
such a goal. In addition, the PRNU pattern can be also
used to perform image forgery localization [2, 7]. In this
case, a PRNU-based sliding-window analysis is necessary,
on patches of relatively small size.
Turning to the second problem, it may easily happen, in

criminal investigations, that only a few images acquired by
the camera of interest are available to estimate its PRNU
pattern. Moreover, the number and type of source cam-
eras may be themselves unknown, and must be estimated
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in a blind fashion based on a relatively small set of unla-
beled images [8–11]. In such cases, one must cope with
low-quality estimation rather than abandoning the effort.
In this work, we tackle these problems and propose a

novel source identification strategy which improves the
performance of PRNU-based methods when only a few,
or even just one image is available for estimation, and
when only small images may be processed. To this end, we
rely on a recent approach for camera model identification
[12] and use it to improve the PRNU-based source device
identification performance. Camera model identification
has received great attention in recent years, with a steady
improvement of performance, thanks to the availability of
huge datasets on which it is possible to train learning-
based detectors, and the introduction of convolutional
neural networks (CNN). The supervised setting guaran-
tees very good performance [13, 14], especially if deep
networks are used. However, such solutions are highly
vulnerable to attacks [15, 16]. To gain higher robust-
ness, unsupervised or semi-supervised methods may be
used. For example, in [17], features are extracted through
a CNN, while classification relies on machine learning
methods. Interestingly, only the classification step needs
to be re-trained when testing on camera models that
are not present in the training set. Likewise, in [18], it
has been shown that proper fine-tuning strategies can be
applied to camera model identification, a task that shares
many features with other forensic tasks. Of course, this
makes the problem easier to face, given that in a realis-
tic scenario it is not possible to include in the training
phase all the possible cameramodels. A further step in this
direction can be found in [12], where the use of a new fin-
gerprint has been proposed, called noiseprint, related to
camera model artifacts and extracted by means of a CNN
trained in Siamese modality. Noiseprints can be used in
PRNU-like scenarios but require much less data to reach
a satisfactory performance [19].
The main idea of this paper is to make use of noiseprints

to support PRNU-based device identification. In fact,
although noiseprints allow only for model identification,
they are much stronger than PRNU patterns and more
resilient to challenging conditions involving restrictions
on the number and size of images.
In the rest of the paper, after providing background

material on PRNU and noiseprint in section 2, and
describing the proposedmethod in section 3, we carry out
a thorough performance analysis, in section 4, on datasets
widely used in the literature and in several conditions of
interest, proving the potential of the proposed approach.
Finally, section 5 concludes the paper.

2 Background
Device-level source identification relies on specific marks
that each individual device leaves on the acquired images.

Barring trivial cases, like the presence of multiple defec-
tive pixels in the sensor, most identification meth-
ods resort to the photo response non-uniformity noise
(PRNU) pattern. In fact, due to unavoidable inaccuracies
in sensor manufacturing, sensor cells are not perfectly
uniform and generate pixels with slightly different lumi-
nance in the presence of the same light intensity. Accord-
ingly, a simplified multiplicative model for an image I
generated by a given camera is

I = (1 + K)I0 + � (1)

where I0 is the true image, K is the PRNU pattern, �

accounts for all other sources of noise, and all operations
are pixel-wise. The PRNU is unique for each device, stable
in time and present in all images acquired by the device
itself. Therefore, it can be regarded as a legitimate device
fingerprint and used to perform a large number of forensic
tasks [2, 7, 20].
The PRNU of camera Ci can be estimated from a suit-

able number of images, say, Ii,1, . . . , Ii,N , acquired by the
camera itself. First, noise residuals are computed bymeans
of some suitable denoising algorithms f (·)

Wi,n = Ii,n − f (Ii,n) (2)

The denoiser removes to a large extent the original image,
I0i,n, regarded as a disturbance here, in order to emphasize
the multiplicative pattern [21]. Then, the PRNU, Ki, can
be estimated by plain average

̂Ki = 1
N

N
∑

n=1
Wi,n (3)

or according to a maximum-likelihood rule, in order to
reduce the residual noise. Moreover, to remove unwanted
periodicities, related to JPEG compression or model-
based artifacts, the estimated fingerprint is further filtered
by subtracting the averages of each row and column and
by using a Wiener filter in the DFT domain [1, 22].
Eventually, the estimate converges to the true PRNU as
N → ∞.
Assuming to know the true reference PRNU, we can

check if image Im was acquired by camera Ci based on the
normalized cross-correlation (NCC) betweenWm and Ki

NCC(Wm,Ki) = 1
‖Wm‖ · ‖Ki‖〈Wm,Ki〉 (4)

with 〈·, ·〉 and ‖ · ‖ indicating inner product and Euclidean
norm, respectively. The computed NCC will be a random
variable, due to all kinds of disturbances, with a posi-
tive mean if the image was taken by camera Ci, and zero
mean otherwise. In the following, to allow easier inter-
pretation, we present results in terms of a PRNU-based
pseudo-distance, defined as the complement to 1 of NCC

DPRNU(i,m) = 1 − NCC(Wm,Ki) (5)
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PRNU-based methods have shown excellent perfor-
mance for source identification [2] in ideal conditions.
However, the NCC variance increases both with decreas-
ing image size and when the number of images used to
estimate the real PRNU decreases, in which cases, deci-
sion may become highly unreliable. Both conditions may
easily occur in real-world practice, as recalled in Section 1.
Therefore, further evidence, coming from camera-model
features, is highly welcome to improve identification per-
formance.
Indeed, it is well known that, besides device-specific tra-

ces, each image bears also model-specific traces, related
to the processes carried inside the camera, such as demo-
saicking or JPEG compression. Such traces are treated
as noise in the PRNU estimation process and mostly
removed, but they can provide a precious help to tell apart
cameras of different models.
Recently, a camera-model fingerprint has been pro-

posed [12], called noiseprint, extracted by means of a
suitably trained convolutional neural network (CNN). A
noiseprint is an image-size pattern, like the PRNU, in
which the high-level scene content is removed andmodel-
related artifacts are emphasized. This is obtained by train-
ing the CNN in a Siamese configuration, as illustrated in
Fig. 1. Two identical versions of the same net are fed with
pairs of patches extracted from unrelated images. Such
pairs have positive label when they come from the same
model and have the same spatial position, and negative
label otherwise. During training, thanks to a suitable loss
function, the network learns to emphasize the similarities
among positive pairs, that is, the camera model artifacts.
In [12] noiseprints have been shown to enable the accom-
plishment of numerous forensic tasks, especially image
forgery localization.

Similarly to the reference PRNU pattern, the reference
noiseprint of a model is obtained by averaging a large
number of noiseprints extracted by images acquired by
the same model (not necessarily the same device) [19], in
formulas

Ri = 1
N

N
∑

n=1
φ(Ii,n) (6)

where φ(·) is the function implemented by the CNN, Ri
is the estimated reference pattern of the i-th model and,
Ii,n is the n-th image taken by the i-th model. To verify
whether a given image Im was acquired by camera model
Mi, we extract its noiseprint, φ(Im), and compute the
mean square error (MSE) with respect to the model refer-
ence pattern Ri. For homogeneity with the previous case,
this is also called NP-based distance

DNP(i,m) = MSE(Ri,φ(Im)) (7)

Again, DNP(i,m) is expected to be small if them-th image
was indeed acquired by the i-th model and large oth-
erwise, and its variance depends, again, on the size and
number of images used to estimate the reference pattern.
While the image noiseprint does not allow to single out

the camera that acquired a given image, it can be used to
discard or play down a large number of candidates, that is,
all cameras whose model does not fit the test noiseprint.
Moreover, the model-related traces found in noiseprints
are much stronger than the PRNU traces found in image
residuals, as clearly shown in the example of Fig. 2; hence,
noiseprint-based decisions keep being reliable even over
small regions and when a limited number of images is
available for estimation [19].

Fig. 1 Using a Siamese architecture for training. The output of one CNN takes the role of desired (same model and position) or undesired (different
models or positions) reference for the other twin CNN
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Fig. 2 Examples of device fingerprints (PRNU, top) and model fingerprints (noiseprint, bottom) for cameras of the VISION dataset, estimated using
100 images on a crop of dimension 256 × 256. Device fingerprints are noise-like, weak patterns, all different from one another. Noiseprints are much
stronger, model-specific, periodic patterns. Note that the last two devices are of the same model and, accordingly, their noiseprints are almost
identical

3 Proposedmethod
In this work, we want to improve the performance of the
device source identification in the two critical scenarios:
(i) only a few images are available to estimate the refer-
ence PRNU pattern and (2) only a small crop of the image
is used for testing. The few-image scenario accounts for
cases where the physical device is not available, so that
the only available images are recovered from a hard disk
or maybe from a social account of a suspect. Instead, the
small-region scenario is motivated by the need to reduce
memory and time resources for very large-scale analyses.
In addition, a good performance on small regions allows
one to use this approach for image forgery detection
and localization, especially the critical case of small-size
forgeries.
In Fig. 3, we show the histograms of the PRNU-based

(left) and noiseprint-based (right) distances computed on
the widespread VISION dataset [23] in various situa-
tions (different rows). Each subplot shows three different
histograms:

1. Same-device (green): The distance is evaluated
between an image acquired from camera C of model
M and the reference pattern of the same camera;

2. Different-device same-model (blue): The distance is
evaluated between an image acquired from cameraC
of model M and the reference pattern of a different
camera C′ of the same modelM;

3. Different-device different-model (red): The distance
is evaluated between an image acquired from camera
C of modelM and the reference pattern of a different
camera C′ of a different modelM′.

On the first row, we consider a nearly ideal situation,
where tests are performed on 1024 × 1024 crops of the
image and there is plenty of images (we limit them to N =
100) to estimate the reference patterns. The subplot on the
left shows that the PRNU-based distance separates very
well the same-device from the different-device samples.
On the contrary, the two different-device distributions
(same-model and different-model) overlap largely, since
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Fig. 3 Histograms of PRNU-based distance, DPRNU (left), and noiseprint-based distance, DNP (right), on the VISION dataset. N, number of images used
to estimate the reference pattern; d × d, size of crop used for testing

the PRNU does bear model-specific information. Then,
when the number of images used to estimate the reference
pattern decreases (second row,N = 1) or the analysis crop
shrinks significantly (third row, d = 64) same-device and
different-device distributions are not so well separated
anymore, and PRNU-based decisions become unreliable.
Eventually, in the extreme case of N = 1 and d = 64
(fourth row), all distributions collapse. The right side of
the figure shows histograms of the noiseprint-based dis-
tance. In the ideal case (top row), we now observe a
very good separation between same-model and different-
model histograms, while the two same-model distribu-
tions overlap, as noiseprints do not carry device-related
information. Unlike with PRNU, however, when the anal-
ysis conditions deviate from ideal (following rows), the
same-model and different-model distributions keep being

reasonably well-separated, allowing for a reliable model
discrimination even in the worst case (fourth row). This
suggests the opportunity to use the noiseprint-based dis-
tance to support decision insofar different models are
involved.
In summary, our proposal is to use noiseprint-

based model-related information to support PRNU-based
device identification. Assuming to know the camera
model of the image to analyze, the search for the source
device can be restricted only to devices of the samemodel,
thereby reducing the risk of wrong identification, espe-
cially in the most critical cases. However, in real-world
scenarios, camera models may not be known in advance,
calling for a preliminarymodel identification phase, which
is itself prone to errors. Therefore, with the hierarchical
procedure outlined before, there is the non-negligible risk
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of excluding right away the correct device. For this rea-
son, we prefer to exploit the two pieces of information
jointly, rather than hierarchically, by suitably combining
the two distances, as shown pictorially in Fig. 4. Note that,
in this worst-case scenario, where no model-related infor-
mation is known a priori, the noiseprint reference pattern
is estimated from the very same images used to esti-
mate the PRNU pattern. Hence, the resulting performance
represents a lower bound for more favorable conditions.
We consider the following binary hypothesis test:

{

H0 : m-th image not acquired by i-th device.
H1 : m-th image acquired by i-th device. (8)

and propose three different strategies to combine the two
distances.

1. SVM: As first strategy, we adopt a linear support-
vector machine (SVM) classifier. Relying on a large
dataset of examples, the SVM finds the hyperplane
that best separates samples of the two hypotheses,
maximizing the distance from the hyperplane to the
nearest points of each class. Then, we use the ori-
ented distance from the hyperplane as a score to
detect the correct device that acquired the image.
If a limited number of candidate devices is given,
the maximum-score device is chosen. Otherwise, the
score is compared with a threshold to make a binary
decision, and the threshold itself may be varied to
obtain a performance curve. These criteria apply to
the following cases as well.

2. Likelihood-ratio test: To formulate a likelihood-ratio
test (LRT), we model DPRNU and DNP as random
variables with jointly Gaussian distribution in both
hypotheses

{

H0 : (DPRNU,DNP) ∼ N (μ0,�0)
H1 : (DPRNU,DNP) ∼ N (μ1,�1)

(9)

The parameters μ0, �0, μ1, �1 are estimated, for
each situation of interest, on a separate training-
set. In particular, we use two methods to estimate
these parameters, the classical ML approach, and a
robust approach based on the minimum covariance
determinant MCD proposed in [24]. With this Gaus-
sian model and the estimated parameters, we can
compute the log-likelihood ratio

�(i,m) = log
N (DPRNU(i,m),DNP(i,m) |μ1,�1 )

N (DPRNU(i,m),DNP(i,m) |μ0,�0 )

(10)

and use it as decision statistic.
3. Fisher’s linear discriminant: This approach looks for

the direction along which the distributions of two
classes are better separated, measuring the separa-
tion as the ratio of the inter-class to intra-class vari-
ances. The weight vector of the optimal direction,
wopt, is given by

wopt=argmax
w

(

wTμ1 − wTμ0
)2

wT (�1 + �0)w
∝ (�1+�0)

−1(μ1 − μ0)

(11)

where, again, means and co-variance matrices in the
two hypotheses, μ0, �0, μ1, �1, are estimated on a
training-set. In this case, the score is given by the
projection of the vector formed by the two distances
along the optimal direction

FLD(i,m) = wopt
PRNUDPRNU(i,m) + wopt

NPDNP(i,m)

(12)

Fig. 4 The PRNU and the noiseprint are estimated from available images of a given camera and the image under test, separately. Thus, the
PRNU-based (DPRNU) and the noiseprint-based (DNP) pseudo-distances between the test sample and the reference are separately computed and
eventually combined to obtain the final score



Cozzolino et al. EURASIP Journal on Information Security          (2020) 2020:1 Page 7 of 12

4 Experiments
In this section, we assess the performance of the pro-
posed device identification method in all its variants, and
in various realistic scenarios of interests. We consider two
typical scenarios (Fig. 5):

1. Closed-set. The set of candidate sources is predefined
and one is required to associate the test image with
one of the devices in the set. Therefore, the task can
be regarded as a multi-class classification problem.
Accordingly, we evaluate the classification perfor-
mance in terms of accuracy, that is, probability of
correct decision.

2. Open-set or verification. The set of candidate sources
is not given a priori. In this case, one can only
decide on whether the test image was acquired by
a certain device or not. Therefore, the problem is
now binary classification, and we evaluate the clas-
sification performance, as customary, in terms of
probability of correct detection PD and probability of
false alarm PFA, summarized by a receiver operating
curve (ROC), computed for varying decision thresh-
old, and eventually by the area under such a curve
(AUC).

4.1 Datasets
Three different datasets have been employed for our
experiments, two for training and one for testing. In
fact, in order to avoid any bias, we trained the CNN
that extracts the noiseprints and the source identifi-
cation classifiers on disjoint sets of data. Concerning
noiseprints, the network is trained on a large dataset
of images publicly available on dpreviewer.com (list
at http://www.grip.unina.it/images/research/noiseprint/
dpreview_dataset.zip). Our collection comprises 625
camera models, 600 for training the network and 25 for
validation, with a number of images per model ranging
from 8 to 173. The parameters of the source identification
classifiers, instead, have been estimated on the VISION
dataset [23], often used for camera model identification,

which comprises images acquired from 29 different mod-
els, most of them with only one device. Finally, tests have
been conducted on the Dresden dataset [25], proposed
originally for camera source identification, comprising
images from 25 camera models, 18 of which featuring two
or more different devices. We selected these latter models
with all their devices, for a grand total of 66. Details are
reported in Table 1.

4.2 Results
To assess the source identification performance
of the conventional PRNU-only and the proposed
PRNU+noiseprint methods, we consider several chal-
lenging cases obtained by varying the size of the image
crop used for testing and the number of images used
for estimating the reference patterns. In addition, we
consider also the case of JPEG images compressed at two
quality factors, aimed at simulating a scenario in which
images are downloaded from social network accounts,
where compression and resizing are routinely performed.
Note that the PRNU and noiseprint reference patterns are
both estimated from the very same images, since no prior
information is assumed to be available on the camera
models.
To gain some insight into the role of the two distances,

Fig. 6 shows the scatter plots ofDPRNU andDPN for images
of the VISION dataset in the same cases of Fig. 3. Here,
however, we only show same-device (green) and different-
device (red) points, irrespective of models. In the most
favorable case of d = 1024 and N = 100 (top-left),
the two clusters can be separated very effectively by a
vertical line, that is, based only on the PRNU distance.
Instead, in the worst case of d = 64 and N = 1 (bottom-
right), the PRNU-based distance is basically useless, while
the noiseprint-based distance provides by itself a pretty
good separation, with residual errors mostly due to same-
model different-device points. In intermediate cases, both
pieces of information help in separating effectively the two
clusters. Note that a weak correlation between the two
distances exist for same-device points, likely due to the

Fig. 5 On the left, the closed-set scenario where the test image is assigned to one of the device in a set of known cameras. In the verification or
open-set scenario, on the right, the task is to decide if the test image was acquired by a certain device or not

http://www.grip.unina.it/images/research/noiseprint/dpreview_dataset.zip
http://www.grip.unina.it/images/research/noiseprint/dpreview_dataset.zip
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Table 1 Camera models and devices selected from the Dresden
Image Database used for testing

Make Model # devices Images size

Canon Ixus 70 3 3072 × 2304

Casio EX-Z150 5 3264 × 2448

Kodak M1063 5 3664 × 2748

FujiFilm FinePixJ50 3 3264 × 2448

Nikon CoolPix S710 5 4352 × 3264

Nikon D200 2 3872 × 2592

Nikon D70/D70s 2/2 3008 × 2000

Olympus μ1050SW 5 3648 × 2736

Panasonic DMC-FZ50 3 3648 × 2736

Pentax Optio A40 4 4000 × 3000

Pratika DCZ5.9 5 2560 × 1920

Ricoh GX100 5 3648 × 2736

Rollei RCP-7325XS 3 3072 × 2304

Samsung L74wide 3 3072 × 2304

Samsung NV15 3 3648 × 2736

Sony DSC-H50 2 3456 × 2592

Sony DSC-T77 4 3648 × 2736

Sony DSC-W170 2 3648 × 2736

� 18 66

For each camera, we considered 100 images to estimate the reference patterns and
50 images for testing

imperfect rejection of unwanted contributions. Of course,
a different classifier must be designed for each situation of
interest, based on the corresponding training set.
We now analyze the performance on the test dataset,

Dresden, never used in training, beginning with the
closed-set scenario, Table 2. On the rows, we consider
all combinations of d = 64, 256, 1024, and N = 1, 10,
100. When N = 1 or 10, results are averaged over 10
repetitions with different reference patterns. The leftmost
columns show results for the two baselines, based only on
the PRNU-distance (that is, the conventional method of
[2]) and only on the noiseprint-distance. Again, the per-
formance of the conventional method is very good in the
ideal case, but worsens significantly in more challenging
situations, and is only slightly better than random choice
when N = 1 and d = 64. On the contrary, noiseprint-
only identification is never very good, since there are
always 2 to 5 indistinguishable devices for each model,
but remains remarkably stable in all conditions, suggest-
ing that models keep being identified accurately, with only
minor impairments even in the most challenging cases. In
the following column, we show a third reference, called
“ideal”, which represents an upper bound for the perfor-
mance of the proposed approach. Here, we assume perfect
model identification and rely on the PRNU-based distance

only for the final choice in the restricted set of same-
model cameras. In the most favorable case (d = 1024,
N = 100), the PRNU-only performance was already quite
good, and only a marginal improvement is observed. Like-
wise, in the worst case (d = 64, N = 1), PRNU is
unreliable, and the fusion improves only marginally upon
the noiseprint-only performance. However, in interme-
diate cases, large improvements are observed, with the
accuracy growing from 0.649 to 0.793 (d = 1024, N = 1)
or from 0.342 to 0.610 (d = 64, N = 100). This perfor-
mance gain fully justifies our interest for this approach, we
only need the proposed methods to work relatively close
to this upper bound.
In the following five columns, we report results for the

various versions of the proposed method, based on sup-
port vector machine classifier (SVM), likelihood ratio test
with ML estimation (LRT) and robust estimation (r-LRT)
of parameters, and Fisher’s linear discriminant in the same
two versions (FLD and r-FLD). Results are fully satisfac-
tory. Taking for example the FLD column, the gap with
respect to the ideal reference remains quite small in all
cases of interest and, consequently, a large improvement
is observed with respect to the conventional method.
This confirms that the noiseprint-based model classifi-
cation remains largely successful in most conditions and
helps improving the overall performance. As for the var-
ious versions of the proposed approach, there seems to
be no consistent winner, with FLD providing slightly bet-
ter results, on the average, and SVM showing an isolated
bad point (d = 1024, N = 1) maybe due to some over-
fitting. In particular, the nonlinear decision boundary of
the LRT criterion does not seem to ensure improvements
over the linear boundaries of SVM and FLD, confirming
that the two classes are linearly well separated in the fea-
ture space. The versions based on robust estimation of
parameters performs on par or slightly worse than the ML
counterparts.
Table 3, structurally identical to Table 2, provides results

for the open-set scenario in terms of area under the ROC
curve (AUC). All considerations made for the closed-set
scenario keep holding here. Of course, numbers are much
larger than before, because we are considering binary
decisions, where an AUC of 0.5 is equivalent to coin toss-
ing and good results correspond to AUC’s close to 1. This
is actually the case for the proposed method. Considering
again the FLD column, the AUC is never less than 0.935
and not far from that of the ideal reference, while it is often
much larger than the AUC of the conventional method.
Actually, it is worth emphasizing that also the noiseprint-
only method has quite good performance indicators. In
hindsight, this is not too surprising. This scenario, in fact,
fits the case of large-scale analysis, where a very large
number of candidate sources must be considered. Perfect
model identification allows one to reject right away most
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Fig. 6 Scatter plots of the two distances in different conditions on the VISION dataset. For green points, test image and reference come from the
same device, while for red points, they come from different devices. Blue lines depict the Gaussian fitting of the two distributions

of the candidates (small PFA, large AUC), which allows one
to focus on a limited set of candidates, to be analyzed with
greater care and resources. Like before, differences among
the various versions of the proposal are negligible.
The next four tables refer to the case of JPEG-

compressed images, with QF = 90 (Tables 4 and 5)
and with QF = 80 (Tables 6 and 7) always for both
the closed-set and open-set scenarios. First of all, with
reference to the closed-set scenario, let us analyze the per-
formance of the conventional method as the image quality
impairs. Only in the ideal case the accuracy remains fully
satisfactory, while it decreases dramatically in all other
conditions, for example, from 0.649 (uncompressed) to
0.364 (QF = 80), for (d = 1024, N = 1). In fact,
the JPEG compression filters out as noise most of the
small traces on which source identification methods rely.
This is also true for the noiseprint traces. However, in

the same case as before, with the robust-FLD version, the
proposed method keeps granting an accuracy of 0.540,
with a more limited loss from the 0.752 accuracy of
uncompressed images, and a large gain with respect to
the conventional method. The same behavior is observed,
with random fluctuations, in all other cases, and also
in the open-set scenario, so we refrain from a tedious
detailed analysis. However, it is worth pointing out that,
in the presence of compression, the versions based on
robust estimation (r-LRT and r-FLD) provide a consistent,
and often significant, improvement over those relying on
ML estimation.

5 Conclusions
In this paper, we proposed to use noiseprint, a camera-
model image fingerprint, to support PRNU-based forensic
analyses. Numerical experiments prove that the proposed
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Table 2 Accuracy on the Dresden dataset in the closed-set scenario without compression (random-choice accuracy is 0.016)

d N PRNU NP ideal SVM LRT r-LRT FLD r-FLD

1 0.044 0.233 0.331 0.255 0.240 0.238 0.258 0.256

64 10 0.117 0.259 0.422 0.368 0.348 0.358 0.351 0.341

100 0.342 0.282 0.610 0.570 0.557 0.565 0.563 0.557

1 0.191 0.261 0.485 0.405 0.397 0.408 0.430 0.429

256 10 0.500 0.272 0.721 0.683 0.664 0.662 0.692 0.689

100 0.814 0.289 0.904 0.881 0.868 0.867 0.882 0.882

1 0.649 0.270 0.793 0.532 0.733 0.735 0.751 0.752

1024 10 0.901 0.294 0.952 0.888 0.910 0.907 0.913 0.919

100 0.953 0.321 0.975 0.955 0.954 0.954 0.952 0.953

Here and in next tables, the best fusion results are in boldface. When they improve by 20% or more over PRNU, they are emphasized with a green background. Large
improvements are observed when there is data scarcity (small d, small N). All classifiers have quite similar performances

Table 3 AUC on the Dresden dataset in the open-set scenario without compression (random-choice AUC is 0.5)

d N PRNU NP ideal SVM LRT r-LRT FLD r-FLD

1 0.580 0.937 0.980 0.938 0.932 0.932 0.935 0.933

64 10 0.678 0.951 0.983 0.952 0.951 0.952 0.942 0.938

100 0.826 0.954 0.989 0.961 0.962 0.962 0.959 0.957

1 0.742 0.946 0.985 0.949 0.945 0.946 0.945 0.944

256 10 0.880 0.956 0.992 0.965 0.966 0.966 0.968 0.967

100 0.960 0.959 0.997 0.980 0.978 0.978 0.979 0.979

1 0.906 0.949 0.994 0.952 0.964 0.964 0.964 0.965

1024 10 0.981 0.958 0.999 0.971 0.981 0.979 0.980 0.983

100 0.989 0.960 0.999 0.984 0.983 0.983 0.982 0.983

Again, large improvements are observed in the presence of small patches and a small number of reference images. Also in the case, classifiers perform about equally well

Table 4 Accuracy on the Dresden dataset in the closed-set scenario with compression (QF = 90)

d N PRNU NP ideal SVM LRT r-LRT FLD r-FLD

1 0.034 0.178 0.308 0.189 0.130 0.165 0.173 0.189

64 10 0.074 0.234 0.387 0.273 0.202 0.247 0.217 0.273

100 0.238 0.225 0.558 0.440 0.399 0.443 0.404 0.458

1 0.108 0.219 0.424 0.303 0.212 0.255 0.262 0.298

256 10 0.369 0.261 0.648 0.578 0.510 0.562 0.562 0.579

100 0.738 0.268 0.877 0.845 0.823 0.833 0.847 0.834

1 0.527 0.249 0.737 0.547 0.602 0.635 0.664 0.647

1024 10 0.855 0.301 0.936 0.879 0.885 0.892 0.900 0.873

100 0.948 0.313 0.974 0.952 0.948 0.948 0.947 0.926

All performance figures lower significantly with respect to uncompressed images. Fusion keeps providing large gains in the most challenging case
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Table 5 AUC on the Dresden dataset in the open-set scenario with compression (QF = 90)

d N PRNU NP ideal SVM LRT r-LRT FLD r-FLD

1 0.558 0.859 0.979 0.857 0.843 0.856 0.848 0.857

64 10 0.642 0.897 0.982 0.897 0.887 0.898 0.863 0.897

100 0.778 0.917 0.987 0.926 0.928 0.934 0.910 0.933

1 0.689 0.891 0.984 0.897 0.867 0.886 0.862 0.888

256 10 0.834 0.911 0.990 0.933 0.925 0.929 0.929 0.933

100 0.946 0.936 0.996 0.971 0.967 0.967 0.971 0.964

1 0.876 0.912 0.992 0.925 0.929 0.935 0.939 0.937

1024 10 0.973 0.922 0.998 0.957 0.968 0.965 0.970 0.954

100 0.990 0.946 0.999 0.983 0.981 0.980 0.980 0.971

Note that in the most favorable conditions, fusion shows some small impairments with respect to PRNU-only classification

Table 6 Accuracy on the Dresden dataset in the closed-set scenario with compression (QF = 80)

d N PRNU NP ideal SVM LRT r-LRT FLD r-FLD

1 0.027 0.141 0.299 0.137 0.086 0.130 0.120 0.147

64 10 0.043 0.195 0.357 0.188 0.138 0.188 0.142 0.217

100 0.149 0.219 0.482 0.295 0.271 0.324 0.248 0.347

1 0.067 0.188 0.385 0.228 0.146 0.193 0.162 0.218

256 10 0.229 0.246 0.568 0.448 0.352 0.426 0.356 0.473

100 0.618 0.264 0.820 0.750 0.713 0.749 0.736 0.772

1 0.364 0.232 0.643 0.475 0.436 0.485 0.482 0.540

1024 10 0.774 0.283 0.899 0.864 0.818 0.847 0.861 0.852

100 0.935 0.321 0.967 0.948 0.937 0.938 0.948 0.930

Now performance figures lower dramatically with respect to uncompressed images unless plenty of data ar available. Fusion keeps providing good gains, and almost always
robust FLD perform much better than other classifiers

Table 7 AUC on the Dresden dataset in the open-set scenario with compression (QF = 80)

d N PRNU NP ideal SVM LRT r-LRT FLD r-FLD

1 0.543 0.822 0.979 0.818 0.801 0.820 0.807 0.820

64 10 0.609 0.867 0.981 0.852 0.848 0.868 0.807 0.869

100 0.731 0.900 0.986 0.883 0.899 0.914 0.850 0.911

1 0.639 0.862 0.982 0.863 0.834 0.861 0.804 0.858

256 10 0.783 0.888 0.988 0.910 0.897 0.907 0.880 0.913

100 0.920 0.921 0.995 0.959 0.956 0.959 0.956 0.961

1 0.832 0.882 0.990 0.904 0.904 0.913 0.906 0.918

1024 10 0.958 0.898 0.997 0.958 0.959 0.954 0.971 0.950

100 0.986 0.932 0.999 0.984 0.980 0.979 0.984 0.972

Fusion preserves a reasonable performance even with scarce data, with robust FLD almost always the best method
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approach ensures a significant performance improvement
in several challenging situations easily encountered in
real-world applications.
This is only a first step in this direction, and there

is certainly much room for further improvements. In
future work we want to extend the proposed approach
to improve PRNU-based image forgery detection and
localization, and also to perform accurate blind image
clustering, an important problem inmultimedia forensics.
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