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(a) Original image (b) Original, magnified
(c) C&W [8] (d) sC&W (this work)
(e) DeepFool [11] (f) Universal [4]
(g) FGSM [9] (h) I-FGSM [10]
Fig. 1 Given a single input image, oadversarial magnificati¢ef Appendixl) reveals the effect of a potential adversarial perturbation. We show
athe original image followed bl its own magnified version as well ash magnified versions of adversarial examples generated by different
attacks. Ousmooth adversarial examftgis invisible even when magnified

competitive but outperforms Carlini & Wagner B], from 3. Magnify perturbations to facilitate qualitative
which our own attack differs basically by a smoothness evaluation of their imperceptibility;
penalty. 4. Show that properly integrating the smoothness

constraint is not as easy as smoothing the
perturbation generated by an attack; and
5. Define a new, more complete/fagvaluation

1.1 Contributions
As primary contributions, we

1 Investigate the behavior of existing attacks when protocol
perturbations become esmooth likeZ the input image; o . . )
and The remaining text is organized as follows. Sectiah
2 Devise one attack that performs well on standard formulates the problem and introduces a classification
metrics while satisfying the new constraint. of attacks. It describes the C&W attack and the related

work. Section3 explains Laplacian smoothing, on which
As secondarycontributions, we we build our method. Section4 presents our smooth
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adversarial attacks and Section5 provides experimen-
tal evaluation. Conclusions are drawn in Sectiof. Our
adversarial magnificationused to generate Fidl is speci-
fied in Appendix 1.

2 Problem formulation and related work

Let us denote byx € X :=[0,1]"¢ an image ofn pixels
and d color channels that has been flattened in a given
ordering of the spatial components. A classifier networfk
maps that input imagex to an outputy = f(x) € R¥ which
contains thelogits of k classes. It is typically followed by

softmax and cross-entropy loss at supervised training or

by arg max at test time. An inputx with logits y = f(x)
is correctly classified if theprediction p(x) := arg maxy;
equals the true label ok.

The attacker mounts avhite boxattack that is specific to
f, public and known. The attack modifies an original image
Xo € X with given true labelt € {1,...,k} into an adver-
sarial examplexg € X', which may be incorrectly classified
by the network, that isp(xa) # t, although it looks similar
to the original x,. The latter is often expressed by a small
L, distortion ||[Xa — Xol|.

2.1 Families of attacks
In a white box setting, attacks typically rely on exploiting

the gradient of some loss function. We propose to classify

known attacks into three families.

2.1.1 Target distortion
This family gathers attacks targeting a distortiom given
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Szegedy et al1]] approximate this constrained minimiza-
tion problem by a Lagrangian formulation

min A X — Xol|2 + £(f(X), 1). )
XeX

Parameteri controls the trade-off between the distortion
and the classification loss. Szegedy et dl] §arry out this
optimization by box-constrained L-BFGS.

The attack of Carlini & Wagner B], denoted C&W in
the sequel, pertains to this approach. A change of variable
eliminates the box constraintx € X is replaced by (w),
wherew € R™ is a latent vector ands is the element-
wise sigmoid function that projectsR™9 to X'. A margin
is introduced: anuntargeted attackmakes the logity; less
than any other logity; for i # t by at least a margin
m > 0. Similar to the multi-class SVM loss by Crammer
and Singer 2] (wherem = 1), the loss function¢ is then
defined as

]yt =y — maxy +mly, (3)
where []; denotes the positive part. The C&W attack uses
the Adam optimizer [13] to minimize the functional

Iw, 1) = 1 [|lo (W) — Xoll® + £(f(o- (W), 1), 4

initializing by wo = o~ 1(xo). When the margin is
reached, los€(y,t) (3) vanishes and the distortion term
pulls o (w) back towardsxe, causing oscillations around
the margin. Among all successful iterates, the one with the
least distortion is kept; if there is none, the attack fails. The

as an input parameter. Examples are early attacks like FasProcess is repeated for different Lagrangian multiplier

Gradient Sign Method (FGSM) 9] and Iterative-FGSM (I-
FGSM) [1Q]. Their performance is then measured by the
probability of successdg: := P(p(Xa) # t) as a function
of e.

2.1.2 Target success

This family gathers attacks that always succeed in mis-

classifyingxa, at the price of a possible large distortion.
DeepFool [L1] is a typical example. Their performance is
then measured by theexpected distortioD = E(||Xa —
Xoll).

These two first families are implemented with variations
of a gradient descent method. Alassification lossunc-
tion is defined on an output logit vectory = f(x) with
respect to the original true labet, denoted by¢(y,t).

2.1.3 Target optimality

according to line search. This family of attacks is typically
more expensive than the two first.

2.2 Imperceptibility of adversarial perturbations
Adversarial perturbations are often invisible only because
their amplitude is extremely small. Few papers deal with
the need of improving the imperceptibility of the adver-
sarial perturbations. The main idea in this direction is to
create low or mid-frequency perturbation patterns.

Zhou et al. [14] add a regularization term for the sake
of transferability, which removes the high frequencies of
the perturbation via low-pass spatial filtering. Heng et
al. [6] propose a harmonic adversarial attack where per-
turbations are very smooth gradient-like images. Guo et
al. [7] design an attack explicitly in the Fourier domain.
However, in all cases above, the convolution and the bases
of the harmonic functions and of the Fourier transform

The above attacks are not optimal because they a prioriare independent of the visual content of the input image.

do not solve the problem of succeeding under minimal
distortion,

min
XEXP(X)#t

X = Xoll.

1)

In contrast, the adversarial examples in this work are
crafted to be locally compliant with the smoothness of
the original image. Our perturbation may be sharp across
the edges ofk, but smooth whereverx, is, e.g., on back-
ground regions. It is not just smooth but photorealistic,
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because its smoothness pattern is guided by the inputThe spatial kernel is typically nonzero only on nearest

image.

An analogy becomes evident witligital watermarking
[15]. In this application, the watermark signal pushes the
input image into the detection region (the set of images

neighbors, resulting in a sparse matrixX\V. We further
define then x n degree matrixD = diag(W1,) wherel,
is the all-onesn-vector.

deemed as watermarked by the detector), whereas here3.2 Regularization 1]
the adversarial perturbation drives the image outside its Now, given a new signat € R"*9 on this graph, the objec-

class region. The watermark is invisible thanks to the
masking property of the input image 16]. Its textured

areas and its contours can hide a lot of watermarking
power, but the flat areas cannot be modified without

tive of graph smoothing is to find another signal, which
is close toz, while at the same time being smooth accord-
ing to the neighborhood system represented by the graph.
Precisely, giverg, we define theoutput signal s,(z) =

producing noticeable artifacts. Perceptually shaping the arg min, cgnxd ¢ (1, 2), with

watermark signal allows a stronger power, which in turn
yields more robustness.

Another related problem, with similar solutions math-
ematically, is photorealisticstyle transfer Luan et al. [L7]

Zr@—a)|r—2z|2 (6)

ba(r.2) = 5 3w i~
i’j

. . £ —-1/2 H H
transfer style from a reference style image to an input Wheref := D /?r and |-||r is the Frobenius norm. The

image, while constraining the output to being photore-
alistic with respect to the input. This work as well as
follow-up works [18, 19] is based on variants of Laplacian
smoothing or regularization much like we do.

It is important to highlight that high frequencies can
be powerful for deluding a network, as illustrated by the
extreme example of theone pixel attack[20]. However,
this is arguably one of the most visible attacks.

3 Background on graph Laplacian smoothing

first summand is thesmoothness termit encouraged; to
be close tofj whenwj is large, i.e., when pixelsandj of
input X, are neighbors and similar. This encouragesto
be smooth whereverx, is. The second summand is the
fitness termthat encourages to stay close ta. Parameter
a €[0,1) controls the trade-off between the two.

3.3 Filtering
If we symmetrically normalize matrix W as W
D~Y?wWD ~1/2 and define then x n regularized Laplacian

Popular attacks typically produce noisy patterns that are Matrix Lo = (In — @W)/(1 — ), then the expression€)

not found in natural images. They may not be visible at

first sight because of their low amplitude, but they are eas-

ily detected once magnified (see Fidj). Our objective is to
craft an adversarial perturbation that is locally as smooth
as the input image, remaining invisible through mag-
nification. This section gives background oraplacian
smoothing[21, 22], a classical operator igraph signal pro-
cessing23, 24], which we adapt to images here. Sectigh

uses it to generate a smooth perturbation guided by the

original input image.

3.1 Graph

Laplacian smoothing builds on a weighted undirected
graph whosen vertices correspond to then pixels of the
input image Xo. The ith vertex of the graph is associated
with feature x; €[0, 1]d that is the ith row of x,, that is,
Xo =[X1,...,xn]". Matrix p € R"*2 denotes the spa-
tial coordinates of then pixels in the image, and similarly
p =[p1,...,pn]". An edge(i,j) of the graph is associated
with weight wj > 0, giving rise to ann x n symmetric
adjacency matriXW, for instance defined as

ke (Xi, X YKs(Pi, pj), if i #j
wj = {Of,( i» XpKs(pi, pj) . 7:: )
fori,j € {1,...,n}, wherek; is afeature kernelandks is a
spatial kerne| both being usually Gaussian or Laplacian.

simplifies to the following quadratic form:

@)

This reveals, by letting the derivativé¢/or vanish inde-
pendently per column, that the smoothed signal is given
in closed form:

b (r,Z) = (1 — a)tr (rTﬁar —22"r + sz) .

s (2) = L'z (8)

This solution is unique because matrix’, is positive-
definite. Parametero controls the bandwidth of the
smoothing: functions, is the all-pass filter for« = 0 and
becomes a strict slow-passZ filter whan — 1 [25].

Variants of the model above have been used for instance
for interactive image segmentationZ2, 26, 27], transduc-
tive semi-supervised classification2[l, 28], and ranking
on manifolds [29, 30]. Input z expresses labels known for
some input pixels (for segmentation) or samples (for clas-
sification), or identifies queries (for ranking), and is null
for the remaining vertices. Smoothing then spreads the
labels to these vertices according the weights of the graph.

3.4 Normalization

Contrary to applications like interactive segmentation or
semi-supervised classificatior2fl, 22], z does not repre-
sent a binary labeling but rather an arbitrary perturbation
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in this work. Also contrary to such applications, the out-
put is neither normalized nor taken as the maximum over
feature dimensions (channels). If;? is seen as a spatial
filter, we therefore row-wise normalize it to one in order
to preserve the dynamic range of. We therefore define
the normalized smoothing functiomas

& (@) = diags, (1n)) s (2). 9
This function of course depends ox,. We omit this from
notation but we says, is smoothing guidedy x, and the
output is smooth likex,.

4 Integrating smoothness into the attack

The key idea of the paper is that the smoothness of the 4.2.1

perturbation is now consistent with the smoothness of the
original input image xo, which is achieved by smoothing
operations guided byxe. This section integrates smooth-
ness into attacks targeting distortion (Sectiod.1) and
attacks targeting optimality (Section4.2), but in very
different ways.

4.1 Simple attacks
We consider here simple attacks targeting distortion or

Page 5of 12

unconstrained problem 4) [8]. However, instead of repre-
senting the perturbation signal := x — X, implicitly as

a function o (W) — X, of another parametem, we express
the objective explicitly as a function of variable, as in
the original formulation of (2) in [1]. We make this choice
because we need to directly process the perturbatiorOn
the other hand, we now need the element-wise clipping
function c(x) := min([x]+,1) to satisfy the constraint
X =Xo+r € X (2). Our problem is then
2P + £(f(c(Xo + 1), ),

mrin (13)

wherer is unconstrained inR"*4.

Smoothness penalty

At this point, optimizing (13) results in sindependentZ
updates at each pixel. We would rather like to take the
smoothness structure of the inputx, into account and
impose a similar structure onr. Representing the pair-
wise relations by a graph as discussed in SectiBna
straightforward choice is to introduce a pairwise loss term

oy wi i =i
D]

(14)

success based on gradient descent of the loss function.

There are many variations which normalize or clip the
update according to the norm used for measuring the dis-

into (13), where we recall thatw; are the elements of
the adjacency matrixW of xo, f := D~%2r and D

tortion, a learning rate or a fixed step etc. These variants diag(\W1y). A problem is that the spatial kernel is typ-

are loosely prototyped as the iterative process

9= Vxt (fxa®)t),

xa® D = ¢ (Xa(k) _ n(g)> ,

(10)

(11

wherecis aclipping function and n anormalization func-
tion according to the variant. Functionc should at least
produce a valid imagec(x) € X =[0, 1]"<d.

4.1.1 Quick and dirty

To keep these simple attacks simple, smoothness is loosely

integrated after the gradient computation and before the
update normalization:

xa®tD = ¢ (Xa(k) -n& (g))) : (12)

ically narrow to capture smoothness only locally. Even
if parameter u is large, it would take a lot of iterations

for the information to propagate globally, each itera-
tion needing a forward and backward pass through the
network.

4.2.2 Smoothness constraint
What we advocate instead is to apply a global smoothing
process at each iteration: we introduce katent variable
z € R™9 and seek for a joint solution with respect to
and z of the following

min - uee(r,2) + 4 Irl%+ £fexo + 1), (15)
where¢ is defined by 6). In words, z represents an uncon-
strained perturbation, whiler should be close t@, smooth
like xo, small, and such that the perturbed inpuky, + r

This approach can be seen as a projected gradient descentalisfies the classification objective. Then, by letting —

on the manifold of perturbations that are smooth like,.
When applied to PGD, we call this attack qPGDR where
the «qZ stands for a squick and dirtyZ integration of the
smoothness constraint.

4.2 Attack targeting optimality

oo, the first term becomes a hard constraint imposing a
globally smooth solution at each iteration:
min 2 r|1? + €f(c(xo + 1), D) (16)

subjectto r =%,(2), (17)

This section integrates smoothness in the attacks tar- where §, is defined by @). During optimization, every

geting optimality like C&W. Our starting point is the

iterate of this perturbationr is smooth likex,.
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4.2.3 Optimization

With this definition in place, we solve forz the following
unconstrained problem ovefR"*9:

(18)

min A [|%@ |? + ecetxo + & @), D).

Observe that this problem has the same form a43),
where r has been replaced b, (z). This implies that
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neighborhood: such a value may return to [ 0, 1] thanks to
the smoothing operation.

5 Experiments

Our experiments focus on thavhite boxsetting, where the
defender first exhibits a network, and then the attacker
mounts an attack specific to this network, but we also
investigate aransferability scenario. All attacks arentar-

attack. The only difference is that the variable 5 which
we initialize byz = Op«q, and we apply functiors, at each
iteration.

5.1 Evaluation protocol
For the perceptual evaluation of the qualityf the adver-

Gradients are easy to compute because our smoothing isg5yig| images, we follow the recommendation a34]. This

by L(z) := £(f(c(Xo + & (2))),t). Its gradient is
ViL(2) = &, @7 Vel (f(CXo + & @), 1),

where % (2) is the n x n Jacobian matrix of the smooth-
ing operator atz. Since our smoothing operator is defined
by (8) and () is linear, & (z) = diag(s,(1n) 1Lt is a
matrix constant in z, and multiplication by this matrix is
equivalent to smoothing. The same holds for the distor-
tion penalty |5, (2) ||2 This means that in the backward
pass, the gradient of the objectivelg) w.r.t. z is obtained
from the gradient w.r.t.r (or x) by smoothing, much like
how r is obtained fromz in the forward pass 17).

Matrix L, is fixed during optimization, depending only
on input X,. For small images like in the MNIST dataset
[31], it can be inverted: functions, is really a matrix multi-
plication. For larger images, we use thmnjugate gradient
(CG) method [32] to solve the set of linear system§,r =
zfor r givenz. Again, this is possible because matri, is
positive-definite, and indeed, it is the most common solu-
tion in similar problems [26, 30, 33]. At each iteration, one
computes a product of the formv — L,v, which is effi-

(19)

and wPSNR) to the subjective perceptual evaluation of
a panel of users. The conclusion is thahost apparent
distortion (MAD) [ 35] is the metric best reflecting user
assessment. A low MAD score means better fidelity.

For quantitative evaluation of the strengttof an attack,
we use two global statistics and an operating character-
istic curve. Given a test image set i’ images, we only
consider its subseX of N images that are classified cor-
rectly without any attack. The accuracy of the classifier
is N/N’. Let Xgyc be the subset ofX with Ngyc = [Xsudl
where the attack succeeds and I&(xo) = |[Xa — Xol be
the distortion for imagex, € Xsuc.

The global statistics are thsuccess probability ¢ and
expected distortioD as defined in Sectior?, estimated by

Z D(Xo),

Xo€Xsuc

(20)

NSUC

with the exception that D here is the conditional aver-
age distortion where conditioning is on success. Indeed,
distortion makes no sense for a failure.

If Dmax = MaXy,exq,c D(Xo) is the maximum distortion,

cient becauseL, is sparse. In the backward pass, one canthe operating characteristidunction P :[ 0,Dmax] —[0, 1]

either use CG on the gradient, oauto-differentiate (AD)
through the forward CG iterations. We choose the latter

because it is the simplest implementation-wise. The two
options have the same complexity and should have the

same run-time in theory. In practice, Tensorflow AD takes

measures the probability of success as a function of a given
upper boundD on distortion. For D €[ 0, Dmax],

1
P(D) = NHXO € Xsuc: D(Xo) < D}l. (21)

0.43 s on average for 50 CG iterations on ImageNet and This function increases fromP(0) = 0 t0 P(Dmax) = Psuc.

InceptionV3, while CG forward takes 0.33 s.

4.2.4 Discussion

The clipping functionc that we use is just the identity over
the interval [ O, 1], but outside this interval, its derivative is
zero. Carlini & Wagner B] therefore argue that the numer-

ical solver of problem {L3) suffers from getting stuck in flat

spots: when a pixel of the perturbed input, + r falls out-

Itis difficult to define a fair comparison ofdistortion tar-
getingattacks tooptimality targeting attacks. For the first
family, we run a given attack several times over the test
set with different target distortione. The attack succeeds
on imageXx, € X if it succeeds on any of the runs. For
Xo € Xsug the distortion D(X,) is the minimum distortion
over all runs. All statistics are then evaluated as above.

side [0, 1], it keeps having zero derivative after that and 5.2 Datasets, networks, and attacks

with no chance of returning to [0, 1] even if this is bene-
ficial. This limitation does not apply to our case thanks to
the L, distortion penalty in (13) and to the updates in its

5.2.1 MNIST [36]
We consider a simple convolutional network with three
convolutional layers and one fully connected layer that we
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denote as C4, giving accuracy 0.99. In detail, the first con-
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e L, distortion: FGSM @1] and I-FGSM [1Q].

volutional layer has 64 features, kernel of size 8 and stride e L, distortion: An L, version of I-FGSM #2], denoted
2; the second layer has 128 features, kernel of size 6 and  as PGD (projected gradient descent).

stride 2; the third has also 128 features, but kernel of size
5 and stride 1.

5.2.2 ImageNet

We use the dataset of the NIPS 2017 adversarial compe-

tition [ 37], comprising 1000 images from ImageNeBp].
We use InceptionV3 B9] and ResNetV2-5040] networks,
with accuracy 0.96 and 0.93 respectively.

5.2.3 Attacks
The following six attacks are benchmarked:

e Optimality: The Lo version of C&W [8].

e Smooth: Our smooth versions qPGInf PGD,
(Section4.1) and sC&W of C&W (Sectiom.2). Note
that the smoothness constraint integration differs a
lot between gPGD and sC&W.

5.2.4 Parameters

On MNIST, we usee = 0.3 for FGSM;e = 0.3,« = 0.08
for I-lFGSM; ¢ = 5,0 = 3 for PGDy; confidence mar-
ginm = 1, learning raten = 0.1, and initial constant

PGD2 * qPGD2 C&W sC&W
D=6.00 D=0.36 D=0.52
PGD, qPGD, * C&W sC&W
D=2.25 D=6.00 D=3.33 D=2.57
D=4.00 D=4.22 D=3.31
PGD, qPGD, C&W sC&W *
D=4.00 D=4.15 D=4.85
Fig. 2 For a given attack (denoted by an asterisk and bold typeface), the adversarial image with the strongest distaeioNIST. In green, the
attack succeeds; in red, it fails




