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Fig. 1 Given a single input image, ouradversarial magnification(cf Appendix1) reveals the effect of a potential adversarial perturbation. We show
a the original image followed byb its own magnified version as well asc…h magnified versions of adversarial examples generated by different
attacks. Oursmooth adversarial example(d) is invisible even when magnified

competitive but outperforms Carlini & Wagner [8], from
which our own attack differs basically by a smoothness
penalty.

1.1 Contributions
As primary contributions, we

1 Investigate the behavior of existing attacks when
perturbations become •smooth likeŽ the input image;
and

2 Devise one attack that performs well on standard
metrics while satisfying the new constraint.

As secondarycontributions, we

3. Magnify perturbations to facilitate qualitative
evaluation of their imperceptibility;

4. Show that properly integrating the smoothness
constraint is not as easy as smoothing the
perturbation generated by an attack; and

5. Define a new, more complete/fairevaluation
protocol.

The remaining text is organized as follows. Section2
formulates the problem and introduces a classification
of attacks. It describes the C&W attack and the related
work. Section3 explains Laplacian smoothing, on which
we build our method. Section4 presents our smooth
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adversarial attacks, and Section5 provides experimen-
tal evaluation. Conclusions are drawn in Section6. Our
adversarial magnificationused to generate Fig.1 is speci-
fied in Appendix 1.

2 Problem formulation and related work
Let us denote byx ∈ X :=[ 0, 1]n×d an image ofn pixels
and d color channels that has been flattened in a given
ordering of the spatial components. A classifier networkf
maps that input imagex to an output y = f(x) ∈ R

k which
contains thelogitsof k classes. It is typically followed by
softmax and cross-entropy loss at supervised training or
by arg max at test time. An inputx with logits y = f(x)

is correctly classified if theprediction p(x) := arg maxi yi
equals the true label ofx.

The attacker mounts awhite boxattack that is specific to
f, public and known. The attack modifies an original image
xo ∈ X with given true labelt ∈ {1,. . . ,k} into an adver-
sarial examplexa ∈ X , which may be incorrectly classified
by the network, that isp(xa) �= t , although it looks similar
to the original xo. The latter is often expressed by a small
L2 distortion ‖xa − xo‖.

2.1 Families of attacks
In a white box setting, attacks typically rely on exploiting
the gradient of some loss function. We propose to classify
known attacks into three families.

2.1.1 Target distortion
This family gathers attacks targeting a distortionε given
as an input parameter. Examples are early attacks like Fast
Gradient Sign Method (FGSM) [9] and Iterative-FGSM (I-
FGSM) [10]. Their performance is then measured by the
probability of success Psuc := P(p(xa) �= t) as a function
of ε.

2.1.2 Target success
This family gathers attacks that always succeed in mis-
classifyingxa, at the price of a possible large distortion.
DeepFool [11] is a typical example. Their performance is
then measured by theexpected distortionD := E(‖xa −
xo‖).

These two first families are implemented with variations
of a gradient descent method. Aclassification lossfunc-
tion is defined on an output logit vectory = f(x) with
respect to the original true labelt, denoted by�(y, t).

2.1.3 Target optimality
The above attacks are not optimal because they a priori
do not solve the problem of succeeding under minimal
distortion,

min
x∈X :p(x) �=t

‖x − xo‖. (1)

Szegedy et al. [1] approximate this constrained minimiza-
tion problem by a Lagrangian formulation

min
x∈X λ ‖x − xo‖2 + �(f(x), t). (2)

Parameterλ controls the trade-off between the distortion
and the classification loss. Szegedy et al. [1] carry out this
optimization by box-constrained L-BFGS.

The attack of Carlini & Wagner [8], denoted C&W in
the sequel, pertains to this approach. A change of variable
eliminates the box constraint:x ∈ X is replaced byσ(w),
wherew ∈ R

n×d is a latent vector andσ is the element-
wise sigmoid function that projectsRn×d to X . A margin
is introduced: anuntargeted attackmakes the logityt less
than any other logit yi for i �= t by at least a margin
m ≥ 0. Similar to the multi-class SVM loss by Crammer
and Singer [12] (wherem = 1), the loss function� is then
defined as

�(y, t) :=[ yt − max
i �=t

yi + m]+ , (3)

where [·]+ denotes the positive part. The C&W attack uses
the Adam optimizer [13] to minimize the functional

J(w,λ) := λ ‖σ(w) − xo‖2 + �(f(σ (w)), t), (4)

initializing by wo := σ−1(xo). When the margin is
reached, loss�(y, t) (3) vanishes and the distortion term
pulls σ(w) back towardsxo, causing oscillations around
the margin. Among all successful iterates, the one with the
least distortion is kept; if there is none, the attack fails. The
process is repeated for different Lagrangian multiplierλ
according to line search. This family of attacks is typically
more expensive than the two first.

2.2 Imperceptibility of adversarial perturbations
Adversarial perturbations are often invisible only because
their amplitude is extremely small. Few papers deal with
the need of improving the imperceptibility of the adver-
sarial perturbations. The main idea in this direction is to
create low or mid-frequency perturbation patterns.

Zhou et al. [14] add a regularization term for the sake
of transferability, which removes the high frequencies of
the perturbation via low-pass spatial filtering. Heng et
al. [6] propose a harmonic adversarial attack where per-
turbations are very smooth gradient-like images. Guo et
al. [7] design an attack explicitly in the Fourier domain.
However, in all cases above, the convolution and the bases
of the harmonic functions and of the Fourier transform
are independent of the visual content of the input image.

In contrast, the adversarial examples in this work are
crafted to be locally compliant with the smoothness of
the original image. Our perturbation may be sharp across
the edges ofxo but smooth whereverxo is, e.g., on back-
ground regions. It is not just smooth but photorealistic,
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because its smoothness pattern is guided by the input
image.

An analogy becomes evident withdigital watermarking
[15]. In this application, the watermark signal pushes the
input image into the detection region (the set of images
deemed as watermarked by the detector), whereas here
the adversarial perturbation drives the image outside its
class region. The watermark is invisible thanks to the
masking property of the input image [16]. Its textured
areas and its contours can hide a lot of watermarking
power, but the flat areas cannot be modified without
producing noticeable artifacts. Perceptually shaping the
watermark signal allows a stronger power, which in turn
yields more robustness.

Another related problem, with similar solutions math-
ematically, is photorealisticstyle transfer. Luan et al. [17]
transfer style from a reference style image to an input
image, while constraining the output to being photore-
alistic with respect to the input. This work as well as
follow-up works [18, 19] is based on variants of Laplacian
smoothing or regularization much like we do.

It is important to highlight that high frequencies can
be powerful for deluding a network, as illustrated by the
extreme example of theone pixel attack[20]. However,
this is arguably one of the most visible attacks.

3 Background on graph Laplacian smoothing
Popular attacks typically produce noisy patterns that are
not found in natural images. They may not be visible at
first sight because of their low amplitude, but they are eas-
ily detected once magnified (see Fig.1). Our objective is to
craft an adversarial perturbation that is locally as smooth
as the input image, remaining invisible through mag-
nification. This section gives background onLaplacian
smoothing[21, 22], a classical operator ingraph signal pro-
cessing[23, 24], which we adapt to images here. Section4
uses it to generate a smooth perturbation guided by the
original input image.

3.1 Graph
Laplacian smoothing builds on a weighted undirected
graph whosen vertices correspond to then pixels of the
input image xo. The ith vertex of the graph is associated
with feature xi ∈[0, 1]d that is the ith row of xo, that is,
xo =[ x1, . . . ,xn]�. Matrix p ∈ R

n×2 denotes the spa-
tial coordinates of then pixels in the image, and similarly
p =[ p1, . . . ,pn]�. An edge(i, j) of the graph is associated
with weight wij ≥ 0, giving rise to ann × n symmetric
adjacency matrixW, for instance defined as

wij :=
{

kf(xi ,xj)ks(pi ,pj), if i �= j
0, if i = j

(5)

for i, j ∈ {1,. . . ,n}, wherekf is afeature kerneland ks is a
spatial kernel, both being usually Gaussian or Laplacian.

The spatial kernel is typically nonzero only on nearest
neighbors, resulting in a sparse matrixW. We further
define then × n degree matrixD := diag(W1n) where1n
is the all-onesn-vector.

3.2 Regularization [21]
Now, given a new signalz ∈ R

n×d on this graph, the objec-
tive of graph smoothing is to find another signalr, which
is close toz, while at the same time being smooth accord-
ing to the neighborhood system represented by the graph.
Precisely, givenz, we define theoutput signal sα(z) :=
arg minr∈Rn×d φα(r,z), with

φα(r,z) := α

2

∑
i,j

wij
∥∥r̂ i − r̂ j

∥∥2 + (1 − α) ‖r − z‖2
F (6)

where r̂ := D−1/2r and ‖·‖F is the Frobenius norm. The
first summand is thesmoothness term. It encourageŝr i to
be close tor̂ j when wij is large, i.e., when pixelsi and j of
input xo are neighbors and similar. This encouragesr to
be smooth whereverxo is. The second summand is the
fitness termthat encouragesr to stay close toz. Parameter
α ∈[ 0, 1) controls the trade-off between the two.

3.3 Filtering
If we symmetrically normalize matrix W as W :=
D−1/2WD −1/2 and define then×n regularized Laplacian
matrix Lα := (In − αW)/(1 − α), then the expression (6)
simplifies to the following quadratic form:

φα(r,z) = (1 − α)tr
(
r�Lαr − 2z�r + z�z

)
. (7)

This reveals, by letting the derivative∂φ/∂r vanish inde-
pendently per column, that the smoothed signal is given
in closed form:

sα(z) = L−1
α z. (8)

This solution is unique because matrixLα is positive-
definite. Parameter α controls the bandwidth of the
smoothing: functionsα is the all-pass filter forα = 0 and
becomes a strict •low-passŽ filter whenα → 1 [25].

Variants of the model above have been used for instance
for interactive image segmentation [22, 26, 27], transduc-
tive semi-supervised classification [21, 28], and ranking
on manifolds [29, 30]. Input z expresses labels known for
some input pixels (for segmentation) or samples (for clas-
sification), or identifies queries (for ranking), and is null
for the remaining vertices. Smoothing then spreads the
labels to these vertices according the weights of the graph.

3.4 Normalization
Contrary to applications like interactive segmentation or
semi-supervised classification [21, 22], z does not repre-
sent a binary labeling but rather an arbitrary perturbation
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in this work. Also contrary to such applications, the out-
put is neither normalized nor taken as the maximum over
feature dimensions (channels). IfL−1

α is seen as a spatial
filter, we therefore row-wise normalize it to one in order
to preserve the dynamic range ofz. We therefore define
the normalized smoothing functionas

ŝα(z) := diag(sα(1n))
−1sα(z). (9)

This function of course depends onxo. We omit this from
notation but we sayŝα is smoothing guidedby xo and the
output is smooth likexo.

4 Integrating smoothness into the attack
The key idea of the paper is that the smoothness of the
perturbation is now consistent with the smoothness of the
original input imagexo, which is achieved by smoothing
operations guided byxo. This section integrates smooth-
ness into attacks targeting distortion (Section4.1) and
attacks targeting optimality (Section4.2), but in very
different ways.

4.1 Simple attacks
We consider here simple attacks targeting distortion or
success based on gradient descent of the loss function.
There are many variations which normalize or clip the
update according to the norm used for measuring the dis-
tortion, a learning rate or a fixed step etc. These variants
are loosely prototyped as the iterative process

g = ∇x�
(
f(xa

(k)), t
)

, (10)

xa
(k+1) = c

(
xa

(k) − n(g)
)

, (11)

wherec is aclipping function and n anormalization func-
tion according to the variant. Functionc should at least
produce a valid image:c(x) ∈ X =[ 0, 1]n×d.

4.1.1 Quick and dirty
To keep these simple attacks simple, smoothness is loosely
integrated after the gradient computation and before the
update normalization:

xa
(k+1) = c

(
xa

(k) − n(ŝα(g))
)

. (12)

This approach can be seen as a projected gradient descent
on the manifold of perturbations that are smooth likexo.
When applied to PGD2, we call this attack qPGD2 where
the •qŽ stands for a •quick and dirtyŽ integration of the
smoothness constraint.

4.2 Attack targeting optimality
This section integrates smoothness in the attacks tar-
geting optimality like C&W. Our starting point is the

unconstrained problem (4) [8]. However, instead of repre-
senting the perturbation signalr := x − xo implicitly as
a function σ(w) − xo of another parameterw, we express
the objective explicitly as a function of variabler, as in
the original formulation of (2) in [1]. We make this choice
because we need to directly process the perturbationr. On
the other hand, we now need the element-wise clipping
function c(x) := min([ x]+ , 1) to satisfy the constraint
x = xo + r ∈ X (2). Our problem is then

min
r

λ ‖r‖2 + �(f(c(xo + r)), t), (13)

wherer is unconstrained inRn×d.

4.2.1 Smoothness penalty
At this point, optimizing (13) results in •independentŽ
updates at each pixel. We would rather like to take the
smoothness structure of the inputxo into account and
impose a similar structure onr. Representing the pair-
wise relations by a graph as discussed in Section3, a
straightforward choice is to introduce a pairwise loss term

μ
∑
i,j

wij
∥∥r̂ i − r̂ j

∥∥2 (14)

into (13), where we recall thatwij are the elements of
the adjacency matrixW of xo, r̂ := D−1/2r and D :=
diag(W1n). A problem is that the spatial kernel is typ-
ically narrow to capture smoothness only locally. Even
if parameter μ is large, it would take a lot of iterations
for the information to propagate globally, each itera-
tion needing a forward and backward pass through the
network.

4.2.2 Smoothness constraint
What we advocate instead is to apply a global smoothing
process at each iteration: we introduce alatent variable
z ∈ R

n×d and seek for a joint solution with respect tor
andz of the following

min
r,z

μφα(r,z) + λ ‖r‖2 + �(f(c(xo + r)), t), (15)

whereφ is defined by (6). In words,z represents an uncon-
strained perturbation, whiler should be close toz, smooth
like xo, small, and such that the perturbed inputxo + r
satisfies the classification objective. Then, by lettingμ →
∞, the first term becomes a hard constraint imposing a
globally smooth solution at each iteration:

min
r,z

λ ‖r‖2 + �(f(c(xo + r)), t) (16)

subject to r = ŝα(z), (17)

where ŝα is defined by (9). During optimization, every
iterate of this perturbationr is smooth likexo.
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4.2.3 Optimization
With this definition in place, we solve forz the following
unconstrained problem overRn×d:

min
z

λ
∥∥ŝα(z)

∥∥2 + �(f(c(xo + ŝα(z))), t). (18)

Observe that this problem has the same form as (13),
where r has been replaced bŷsα(z). This implies that
we can use the same optimization method as the C&W
attack. The only difference is that the variable isz, which
we initialize byz = 0n×d, and we apply function̂sα at each
iteration.

Gradients are easy to compute because our smoothing is
a linear operator. We denote the loss on this new variable
by L(z) := �(f(c(xo + ŝα(z))), t). Its gradient is

∇zL(z) = Ĵsα (z)� · ∇x�(f(c(xo + ŝα(z))), t), (19)

where Ĵsα (z) is the n × n Jacobian matrix of the smooth-
ing operator atz. Since our smoothing operator is defined
by (8) and (9) is linear, Ĵsα (z) = diag(sα(1n))

−1L−1
α is a

matrix constant in z, and multiplication by this matrix is
equivalent to smoothing. The same holds for the distor-
tion penalty

∥∥ŝα(z)
∥∥2. This means that in the backward

pass, the gradient of the objective (18) w.r.t. z is obtained
from the gradient w.r.t. r (or x) by smoothing, much like
how r is obtained fromz in the forward pass (17).

Matrix Lα is fixed during optimization, depending only
on input xo. For small images like in the MNIST dataset
[31], it can be inverted: function̂sα is really a matrix multi-
plication. For larger images, we use theconjugate gradient
(CG) method [32] to solve the set of linear systemsLαr =
z for r givenz. Again, this is possible because matrixLα is
positive-definite, and indeed, it is the most common solu-
tion in similar problems [26, 30, 33]. At each iteration, one
computes a product of the formv 
→ Lαv, which is effi-
cient becauseLα is sparse. In the backward pass, one can
either use CG on the gradient, orauto-differentiate(AD)
through the forward CG iterations. We choose the latter
because it is the simplest implementation-wise. The two
options have the same complexity and should have the
same run-time in theory. In practice, Tensorflow AD takes
0.43 s on average for 50 CG iterations on ImageNet and
InceptionV3, while CG forward takes 0.33 s.

4.2.4 Discussion
The clipping functionc that we use is just the identity over
the interval [ 0, 1], but outside this interval, its derivative is
zero. Carlini & Wagner [8] therefore argue that the numer-
ical solver of problem (13) suffers from getting stuck in flat
spots: when a pixel of the perturbed inputxo + r falls out-
side [ 0, 1], it keeps having zero derivative after that and
with no chance of returning to [ 0, 1] even if this is bene-
ficial. This limitation does not apply to our case thanks to
the L2 distortion penalty in (13) and to the updates in its

neighborhood: such a value may return to [ 0, 1] thanks to
the smoothing operation.

5 Experiments
Our experiments focus on thewhite boxsetting, where the
defender first exhibits a network, and then the attacker
mounts an attack specific to this network, but we also
investigate atransferability scenario. All attacks areuntar-
getted, as defined by loss function (3).

5.1 Evaluation protocol
For the perceptual evaluation of the qualityof the adver-
sarial images, we follow the recommendation of [34]. This
paper compares fifteen metrics (including SSIM, PSNR,
and wPSNR) to the subjective perceptual evaluation of
a panel of users. The conclusion is thatmost apparent
distortion (MAD) [ 35] is the metric best reflecting user
assessment. A low MAD score means better fidelity.

For quantitative evaluation of the strengthof an attack,
we use two global statistics and an operating character-
istic curve. Given a test image set ofN ′ images, we only
consider its subsetX of N images that are classified cor-
rectly without any attack. The accuracy of the classifier
is N/N ′. Let Xsuc be the subset ofX with Nsuc := |Xsuc|
where the attack succeeds and letD(xo) := ‖xa − xo‖ be
the distortion for imagexo ∈ Xsuc.

The global statistics are thesuccess probability Psuc and
expected distortionD as defined in Section2, estimated by

Psuc = Nsuc

N
, D = 1

Nsuc

∑
xo∈Xsuc

D(xo), (20)

with the exception that D here is theconditional aver-
age distortion, where conditioning is on success. Indeed,
distortion makes no sense for a failure.

If Dmax = maxxo∈Xsuc D(xo) is the maximum distortion,
the operating characteristicfunction P :[ 0,Dmax] →[ 0, 1]
measures the probability of success as a function of a given
upper boundD on distortion. For D ∈[ 0,Dmax],

P(D) := 1
N

|{xo ∈ Xsuc : D(xo) ≤ D}|. (21)

This function increases fromP(0) = 0 to P(Dmax) = Psuc.
It is difficult to define a fair comparison ofdistortion tar-

getingattacks tooptimality targeting attacks. For the first
family, we run a given attack several times over the test
set with different target distortionε. The attack succeeds
on imagexo ∈ X if it succeeds on any of the runs. For
xo ∈ Xsuc, the distortion D(xo) is the minimum distortion
over all runs. All statistics are then evaluated as above.

5.2 Datasets, networks, and attacks
5.2.1 MNIST [36]
We consider a simple convolutional network with three
convolutional layers and one fully connected layer that we
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denote as C4, giving accuracy 0.99. In detail, the first con-
volutional layer has 64 features, kernel of size 8 and stride
2; the second layer has 128 features, kernel of size 6 and
stride 2; the third has also 128 features, but kernel of size
5 and stride 1.

5.2.2 ImageNet
We use the dataset of the NIPS 2017 adversarial compe-
tition [ 37], comprising 1000 images from ImageNet [38].
We use InceptionV3 [39] and ResNetV2-50 [40] networks,
with accuracy 0.96 and 0.93 respectively.

5.2.3 Attacks
The following six attacks are benchmarked:

• L∞ distortion: FGSM [41] and I-FGSM [10].
• L2 distortion: An L2 version of I-FGSM [42], denoted

as PGD2 (projected gradient descent).
• Optimality: TheL2 version of C&W [8].
• Smooth: Our smooth versions qPGD2 of PGD2

(Section4.1) and sC&W of C&W (Section4.2). Note
that the smoothness constraint integration differs a
lot between qPGD2 and sC&W.

5.2.4 Parameters
On MNIST, we useε = 0.3 for FGSM;ε = 0.3,α = 0.08
for I-FGSM; ε = 5,α = 3 for PGD2; confidence mar-
gin m = 1, learning rateη = 0.1, and initial constant

Fig. 2 For a given attack (denoted by an asterisk and bold typeface), the adversarial image with the strongest distortionDover MNIST. In green, the
attack succeeds; in red, it fails


