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Abstract

In recent years, classification techniques based on deep neural networks (DNN) were widely used in many fields such
as computer vision, natural language processing, and self-driving cars. However, the vulnerability of the DNN-based
classification systems to adversarial attacks questions their usage in many critical applications. Therefore, the
development of robust DNN-based classifiers is a critical point for the future deployment of these methods. Not less
important issue is understanding of the mechanisms behind this vulnerability. Additionally, it is not completely clear
how to link machine learning with cryptography to create an information advantage of the defender over the
attacker. In this paper, we propose a key-based diversified aggregation (KDA) mechanism as a defense strategy in a
gray- and black-box scenario. KDA assumes that the attacker (i) knows the architecture of classifier and the used
defense strategy, (ii) has an access to the training data set, but (iii) does not know a secret key and does not have
access to the internal states of the system. The robustness of the system is achieved by a specially designed key-based
randomization. The proposed randomization prevents the gradients’ back propagation and restricts the attacker to
create a “bypass” system. The randomization is performed simultaneously in several channels. Each channel introduces
its own randomization in a special transform domain. The sharing of a secret key between the training and test stages
creates an information advantage to the defender. Finally, the aggregation of soft outputs from each channel stabilizes
the results and increases the reliability of the final score. The performed experimental evaluation demonstrates a high
robustness and universality of the KDA against state-of-the-art gradient-based gray-box transferability attacks and the
non-gradient-based black-box attacks (The results reported in this paper have been partially presented in CVPR 2019
(Taran et al., Defending against adversarial attacks by randomized diversification, 2019) & ICIP 2019 (Taran et al.,
Robustification of deep net classifiers by key-based diversified aggregation with pre-filtering, 2019)).

Keywords: Adversarial examples, Defense, Randomization, Diversified aggregation, Black-box attacks,
Non-gradient/gradient-based attacks, Machine learning

1 Introduction
The advent of deep learning techniques [1] has stimulated
the deployment of machine learning in many applica-
tions. The DNNs have been applied to solve a wide range
of problems in image classification [2, 3], object detec-
tion [4, 5], face recognition [6, 7] image caption [8, 9],
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natural language processing [10, 11], speech recognition
[12, 13], drones and robotics [14, 15], malware detection
[16, 17], etc., and more science and discovery-related
fields, such as drug composition analysis [18], brain
circuit reconstruction [19], and DNA mutation impact
analysis [20].
Despite the outstanding performance and remarkable

achievements, the DNN systems have recently shown to
be vulnerable to adversarial attacks [21]. These adversar-
ial attacks aim at tricking a decision of the DNN with
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high confidence during test time by introducing carefully
designed perturbations to a chosen target image. These
perturbations are usually quite small in magnitude and
almost imperceptible to human vision system that makes
them almost universal and yet very dangerous. At the
same time, such attacks can cause a neural network to
produce an erroneous decision about the signal or image.
Even worse, the attacked models report high confidence
on the produced wrong classification and it is difficult if
not impossible to distinguish it from those obtained on
the original data. Moreover, the same added perturbation
can fool multiple network models with similar or different
architectures trained for the same task [22]. Additionally,
Kurakin et al. [23] have proven that adversarial examples
also exist in physical-world scenarios. This weakness has
become a major security concern and seriously questions
the usage of the DNN-based systems in many security-
and trust-sensitive applications.
The serious implications caused by the adversarial

attacks triggered a wide interest of researchers to inves-
tigate defenses for deep learning models. In recent years,
various defense strategies and countermeasures to pro-
tect the DNN against adversarial attacks were proposed
[24–26]. However, the growing number of defenses leads
to a natural invention of new and even more universal
attacks. The diversity of discovered adversarial attacks is
quite broad, but without loss of generality, one can clus-
ter all these attacks into three large groups [27, 28]: (1)
white-box attacks, (2) gray-box attacks, and (3) black-box
attacks. The white-box attacks assume that the attacker
has a full access to the trained model and training data.
Despite a big popularity of this group of attacks, their
applicability to real-life systems is questionable due to
the fact that most real-world systems do not release their
internal configurations and/or trained parameters. The
reason behind the usage of this group of attacks is to be
compliant with cryptographic principles stating that “a
secure system” should assume public knowledge of the
algorithm. However, this principle does not completely
apply here since the defender does not use any secret key.
In fact, both the defender and attacker share the same
training data sets. Thus, the defender has no information
advantage over the attacker.
The gray- and black-box scenarios are more suited to

real-life applications. The gray-box attacks assume that
the attacker has certain knowledge about the trained
model but there exist some secret unknown elements to
the attacker or access to the intermediate results is limited.
The back-box attack scenario assumes that the attacker
only observes the system output to each input without
any knowledge about used architecture or possibility to
observe the internal states.
In this paper, we consider an image classification prob-

lem and aim at investigating a new family of defense

strategies inspired by the second Kerckhoffs’s crypto-
graphic principle [29] that can be applied to both gradient-
and non-gradient-based adversarial attacks in gray- and
black-box scenarios. We name it key-based diversified
aggregation (KDA). The main idea behind the proposed
approach is to create an information advantage of the
defender over the attacker. The generalized information
access diagram of the proposed system is illustrated in
Fig. 1. The defender has an access to both training data
and secret shared between the training and test stages.We
assume that the attacker can only access the training data.
The defender can combine the data and the secret in var-
ious ways like, for example, by adding secret key-based
random noise, by projecting the input onto the random
basis vectors generated from the secrete key, via key-
driven random cropping or affine transformations, etc.
However, since in general case, such perturbations might
lead to the classification performance drop, one can cre-
ate a redundancy by applying these perturbations many
times to the input thus creating multi-channel process-
ing. In this way, the classification process is diversified in
L channels possessing its own regular perturbation. Since
the introduced perturbations are known to the defender,
the classifier φθ l in each channel l, 1 ≤ l ≤ L, is trained
only for the certain defender’s perturbation. To reduce a
possible negative effect of perturbation that might lead
to the information loss in general, the soft outputs of the
classifiers in themulti-channel system are aggregated. The
final decision is communicated to the output of the system
in the form of class label ĉ ∈ {1, 2, · · · ,Mc}, where Mc is
the number of classes. At the test stage, the defender has
both a probe x and the secret key while the attacker has
only the training set. The attacker can produce an adver-
sarial example xadv and observe the decision output of
system ĉ or a rejection. Since the attacker does not have
a direct access to the defender’s perturbation that is char-
acterized by a sufficient entropy, the only possibility is to
increase the number of adversarial tests to be performed
according to the observable output. This makes the adver-
sarial attacks less efficient against this system and more
complex.
The proposed method provides the following advan-

tages for the defender over the attacker:

• The use of the secret key creates an information
advantage for the defender over the attacker.

• The multi-channel system increases the
computational burden of the attacker over the
defender. The attacker has to attack at least several
channels simultaneously to ensure misclassification
outcome.

• The key-based diversification and a limited access to
the internal system states do not allow the attacker to
build a “bypass” system. Unavailability of the “bypass”
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Fig. 1 The information access diagram: the defender has an access to the training data and secret shared between the training and test stages while
the attacker has only access to the shared training data set

system makes it difficult, if not impossible, to use the
gradient-based white-box attacks, which are more
efficient than the “blind” iterative black-box attacks.

• The right choice of aggregation operator and a
possibility to choose the channels at random provide
an additional degree of freedom and increase the
security of the whole system.

• Finally, each channel can have an adjustable amount
of randomness that allows not only to achieve the
required level of defense but it also gives a possibility
to adapt to different types of attacks.

The present paper is a further extension of our previous
framework proposed in [30, 31]. In particular, we extend
and explain inmore details themain elements and features
of the proposed protectionmechanism reflected in Figs. 1,
2, 3, 4, and 5. Additionally, new extended experiments
have been performed to demonstrate the following:

• The robustness of the proposed multi-channel
system in face of transferability attacks in gray-box
scenario against new PGD attack [32]. The obtained
results are given in Table 2.

• The transferability of the attacks with respect to the
vanilla classifiers. The results are presented in
Tables 1 and 2. In general, we show that the
considered attacks do not possess the high
transferability from a single-channel model to a
single-channel model. Moreover, we confirm that the
transferability to the proposed multi-channel model
with KDA is even weaker.

• The transferability of the attacks from one multi-
channel system to another multi-channel system
assuming that the attacker has full knowledge about
the classification model architecture and used defense
mechanism except the secret keys of defender. The
results are given in Table 3 and show the high
robustness of proposed system to such kind of attacks.

• Finally, the system performance with the randomized
aggregation of multi-channel outputs according to
Fig. 6 is investigated. The corresponding results are
presented in Tables 2, 5, and 6 and demonstrate that
the key-based aggregation can be used as an extra
layer of protection.

Notations. We use small bold letters x to denote a sig-
nal that can be represented in 1D, 2D, or 3D format. φθ

denotes the classifier model with the parameters θ , c is
used to denote the class label, and y is a soft output of the
classifier φθ , where c corresponds to the maximum value
in y, ε corresponds to the adversarial perturbation, and εd

means the defender’s perturbation.

2 Previous work: defenses and attacks
The diagram shown in Fig. 2 illustrates a traditional view
on the classification process. Assume that the data sam-
ples are drawn from a distribution Pχ (x) possessing Mc
classes. The labeled training samples represent the train-
ing data set {xi, ci}Mi=1 with M training samples. At the
training stage, the classifier φθ uses the available training
data to learn the parameters θ . At the test stage, given a
test sample x, the trained classifier φθ outputs one of the
classes ĉ ∈ {1, 2, · · · ,Mc}. A rejection option can be also
naturally envisioned. The trained decision boundaries are
schematically illustrated in Fig. 3.
Since Kurakin et al. [23] demonstrated the vulnerabil-

ity of the DNN to adversarial attacks, one can observe an
increasing interest to the investigation of both new attacks
and development of efficient countermeasures.
First, we consider a generic attack on the above classifier.

As shown in Fig. 4a, the attacker produces an adversarial
example xadv from a host sample x of a class c by a map-
per gα : xadv = gα(x, ε) with some perturbation ε in such a
way to fool the classifier φθ : φθ (xadv) = cadv, i.e., to force
the classifier to produce an output cadv �= c. Generally, gα
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Fig. 2 Classifier training: a traditional classifier has an access to training data samples {xi , ci}Mi=1 generated from Pχ (x). The classifier learns a set of
parameters θ to output a decision ĉ ∈ {1, ...,Mc} or to reject an input (∅)

Fig. 3 Classifier’s decision boundaries: a without rejection and b with rejection. Note the difference in the decision regions of trained classifiers

Fig. 4 The attacker-defender game in adversarial classification: a the attacker produces an adversarial example xadv from a host x by a mapper
xadv = gα(x, ε); b the defender answers by the pre-filtering ϕβ (xadv) to obtain an estimation x̂ on the original host class manifold; c an alternative

defense strategy by a randomization of input adversarial image as x̂ = xadv + εd
′
, the resulting sample will be outside attacker’s target class with a

small probability that the resulting sample will be in the original host class that requires the classifiers retraining; d the proposed defense strategy
consists of pre-filtering by ϕβ (xadv) and addition of defender’s randomized perturbation εd : x̃ = ϕβ (xadv) + εd , such that ‖εd‖22 � ‖εd′ ‖22
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Fig. 5 Explanation of multi-channel randomization: given a training data set, the defender introduces a random perturbation εdl , 1 ≤ l ≤ L, to each
sample {xi}Mi=1 and trains L classifiers. Since the perturbation is known at training, i.e., all samples obtain the stationary “bias” by εdl for the same
classifier l, the randomization has a limited impact on the classifier performance. Since the attacker has no access to the defender’s perturbations
and all of them are equilikely, an equivalent manifold for the attacker is expanded thus leading to higher entropy and thus increasing the learning
complexity

can be any non-linear mapper. However, a simple additive
attack has become themost popular one: xadv = x+ε. The
classic approach assumes that the attacker has an access
to the same training data samples as the defender. Thus,
there is no information advantage of the defender over
the attacker. Moreover, having general knowledge about
the used classifier architecture, cost function, and train-
ing algorithm, the attacker can learn with a certain degree

Table 1 Classification error (%) on the first 1000 test samples for
the gray-box C&W transferability attacks from a single-channel
model to a multi-channel model

Data type

Attacked Transferability Transferability KDA

vanilla vanilla # channels · # classifiers
3 6 9

MNIST

Original 1 0.9 0.5 0.5 0.5

C&W �2 100 6.69 4.69 4.81 4.02

C&W �0 100 14.2 7.27 7.51 6.78

C&W �∞ 99.99 4.77 2.73 2.28 2.08

Fashion-MNIST

Original 7.5 7.5 8.1 7.4 7.6

C&W �2 100 11.2 9.26 8.68 8.9

C&W �0 100 11.82 10.41 9.97 10

C&W �∞ 99.9 11.59 9.19 8.52 8.79

CIFAR-10

Original 21 20.6 21.2 19.6 19.5

C&W �2 100 25.09 22.42 21.3 21.04

C&W �0 100 30.71 24.58 23.52 23.03

C&W �∞ 100 25.42 22.8 21.39 21.21

of precision the same decision boundaries as the defender
(Fig. 3).

2.1 Defense strategies
Nowadays, different types of defense strategies have been
developed [26]. Without pretending to be exhaustive in
our overview, we only mention some of the well-known
families of defense strategies.
Probably, the largest family of defense strategies is based

on retraining. Most successful works in this direction are
network distillation proposed by Papernot et al. in [33]
and adversarial retraining investigated by Goodfellow et
al. [34], Kurakin et al. [23], Wu et al. [35], etc. The main
reason for this interest is based on a belief that a well-
trained classifier that has access to the adversarial exam-
ples can adjust its decision boundaries and efficiently filter
them out. However, the attacker has always the last word
in this game and can create new unseen types of adver-
sarial examples. At the same time, to envision all possible

Table 2 Classification error (%) on the first 1000 test samples
(CIFAR-10) for the gray-box PGD transferability attacks from a
single-channel model to a multi-channel model with randomly
selected channels (the average results over 10 runs)

Data type

Attacked Transferability Transferability KDA

vanilla vanilla # channels · # classifiers
3 5 7 9

VGG 16

Original 10.7 11.7 11.6 9.9 9.5 9

PGD 16.1 15.2 14.25 12.16 11.75 11

ResNet 18

Original 9.5 10.6 11.7 9.3 8.8 8.1

PGD 17.9 14.9 14.7 11.29 10.67 9.7
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Table 3 Classification error (%) on the first 1000 test samples
(CIFAR-10) for the gray-box OnePixel transferability attacks from a
multi-channel model to a multi-channel model under different
keys

Data type

KDA with different keys

# channels · # classifiers
3 6 9

VGG16

Original 12.6 11.2 10.5

OnePixel p = 1 13.07 10.98 10.4

OnePixel p = 3 12.72 11.37 10.3

OnePixel p = 5 12.6 11.35 10.8

ResNet18

Original 9.95 8.4 7.7

OnePixel p = 1 9.75 8.17 7.8

OnePixel p = 3 10 8.35 7.8

OnePixel p = 5 10.38 8.39 8.1

adversarial examples on the side of the defender or to
generate them, it looks practically infeasible. It should
be pointed out that in this setting, the defender has no
information advantage over the attacker.
The second large family of defense strategies is based

on a detection-rejection approach. If one assumes that
the adversarial examples are based on a modification
of original data, it is natural to expect that this adver-
sarial modification leads to the difference in statistics
of original data and adversarial ones. It is worth men-
tioning that the adversarial example detection is similar
in nature to a steganalysis problem, where the digital
watermarking community has developed a rich family of
methods. Summarizing this experience, one can mention
that to train efficient detectors of adversarial attacks, it is

needed to either know a model describing an adversar-
ial modulation along with the statistics of original data
[36] or have an access to the training data sets of original
and adversarial examples. Some examples of these strate-
gies include [37–40]. The detection of adversarial attacks
might work, if the attack statistics remain the same. Unfor-
tunately, the detection of new attacks requires re-training
and there is no guarantee that unseen examples are
detectable. Finally, similarly to steganography, advanced
attackers will mask the statistics of adversarial perturba-
tions by host statistics as it is done in smooth adversarial
attack [41]. This makes the tasks of defender very diffi-
cult due to low distinguishability of host and perturbation
statistics.
Alternatively, one can envision an active defense strat-

egy when the defender attempts at removing or decreasing
the effect of adversarial perturbation by pre-processing ϕβ

via different types of filtering to bring the input to the
original data manifold as shown in Fig. 4b. Similar strat-
egy was very efficient against robust digital watermarking,
where the watermark was considered as an additive noise
and the pre-filtering removed this watermark by denois-
ing. Since the denoising is known to be very efficient
in the flat regions [42] to destroy the remaining water-
mark completely, the additive noise was added to the
regions of textures and edges. The goal of filtering can
be achieved in several ways. If the model of adversar-
ial modulation is known, the defender can develop an
efficient filtering strategy using an analytically derived
filter when the model of the image is assumed to be
known too. Otherwise, a machine learnable image model
can be used. If the model of adversarial perturbation is
unknown but the training samples of original data and its
adversarial perturbations are available, one can design a
network mapping the adversarial input to the clean data.

Fig. 6 Generalized diagram of the proposed multi-channel system with the KDA
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Finally, when only the original data are available, one
can train an auto-encoder on it and then apply it to the
adversarial data. The trained decoder will attempt at
generating almost clean output by projecting an adversar-
ial example onto the manifold of training data encoded
into a structure of the auto-encoder. We will refer to this
form of filtering as regeneration. For example, Gu et al.
in [43] propose a deep contractive auto-encoder that is
a variant of the classical auto-encoder with an additional
penalty increasing the robustness to adversarial examples.
Meng et al. in [44] introduce MagNet, which combines
the detector and regeneration networks. The filtering via
denoising was considered in [44–46] and via compression
in [47, 48]. However, since, in general case, the pre-
processing ϕβ is deterministic in nature, sooner or later,
the attacker can learn and bypass it.
This leads to the need to use randomization as a second

step [42]. Generally, the idea behind the randomization
can be considered as a perturbation of adversarial image
with distortion εd

′ defined by the defender as shown in
Fig. 4c. The resulting sample is expected to be outside
the attacker’s target class. In practice, the randomization
is considered in various ways and might include (a) the
randomization of input, (b) the randomization of feature
vectors, (c) the randomization of filters, and (d) the ran-
domization of any decision-making function parameters.
For example, in [25] the authors propose to apply a ran-
dom permutation to the input data as a form of random-
ization. Another direction is to randomize the input data
by adding noise [49–51]. The input image randomization
via random image resizing and padding is investigated in
[52]. In [53], the authors explore the idea of stochastically
combining different image transforms like, for example,
discrete Fourier transform (DFT) domain perturbation,
color changing, noise injection, and zooming into a single
barrage of randomized transformations to build a strong
defense. The idea of DNN feature randomization is exam-
ined in [54–56]. Since a particular form of randomization
is unknown to the attacker, the defender gains an impor-
tant information advantage over the attacker. However, it
can be achieved only under the condition that the applied
defender’s randomization tricks are properly incorporated
into the classifier. Otherwise, an uninformed classifier will
treat them as noise or degradation that unavoidably leads
to the drop in the classification accuracy. Moreover, as it
was noticed by all authors of the above papers, another
problem of randomization techniques is related to the fact
that after randomization, the inputs might be randomly
swapped between the classes, which leads to the drop in
the classification accuracy too.
In Fig. 4d, the proposed idea of combining the pre-

processing and randomization techniques is explained.
First of all, it includes returning the input sample to
the original data manifold through an appropriate pre-

filtering and, secondly, to make the defense stochastic
and to create the information advantage for the defender,
the perturbing the image with a distortion εd, such that
‖εd‖22 � ‖εd′ ‖22. However, in the case of the complex
geometry of classes and strong adversarial attacks, the
strong perturbation εd could be required too, and as
a consequence, the input sample swapping between the
classes could not be excluded. To overcome this short-
coming, in this paper, we propose a multi-channel ran-
domization technique as shown in Fig. 5. The main idea
is that in each channel l, 1 ≤ l ≤ L, the defender intro-
duces a random perturbation εdl to each sample {xi}Mi=1
and trains lth classifier. Since the perturbation is known at
training, i.e., all samples obtain a stationary “bias” by εdl

for the same classifier l, the randomization has a limited
impact on the classifier performance: all classes’ manifolds
will be just moved along the direction of perturbation on
εdl , and if they are separable in the original space, then
they will stay separable in a new space as well. This allows
to avoid the decrease of classification accuracy. More-
over, in this case, the perturbation εdl might be sufficiently
big to face strong attacks. From the point of the attacker,
since he has no access to the defender’s perturbations εdl ,
all of them are equilikely and an equivalent manifold for
the attacker expands thus leading to higher entropy and
increases the attacker’s learning complexity.Moreover, the
targeted attacks become more difficult since the bound-
aries between the classes on the expanded manifold are
not clearly defined due to the random perturbations εdl .

2.2 Adversarial attacks
Without loss of generality, one can group the state-of-the-
art adversarial attacks against the DNN classifiers into two
main groups [26]:

1 Gradient-based attacks. The core idea behind this
group of attacks consists of the back propagation of
the targeted class label to the input layer. A function
of the gradient is considered as an adversarial noise
that is added to a host image. Obviously, to
successfully propagate the gradient via a network, it
should be end-to-end differentiable.
Without pretending to be exhaustive in our
overview, we would like to mention some
well-known attack strategies of this group. The
L-BFGS attack proposed by Szegedy et. al. in [57] is
time-consuming due to the used expensive linear
search and, as a consequence, is impractical for
real-life applications. However, this attack served as a
basis for several more successful attacks such as Fast
Gradient Sign Method (FGSM) [34]. In contrast to
L-BFGS, FGSM is fast but not all the time gives the
minimal adversarial perturbation between original
and targeted samples. FGSM method has several
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successful extensions, like FGSM with momentum
[58], One-step Target Class Method (OTCM) [23],
RAND-FGSM algorithm [59], proposed in [23] Basic
Iterative Method (BIM), projected gradient descent
(PGD) [32] the generalized version of BIM, and
Iterative Least-Likely Class Method (ILLC). In
addition, it should also be mentioned the
Jacobian-based Saliency Map Attack (JSMA) [60]
and the DeepFool approach [61] with its extension
Universal perturbation [62]. Moreover, one should
note the attack proposed by Carlini and Wagner in
[63] that we will refer to as C&W attack. As it has
been shown in many works, like for example in [64]
and [65], this attack is among the most efficient ones
against many existing defense mechanisms. Finally,
Athalye et. al. in [66] propose Backward Pass
Differentiable Approximation technique that aims at
avoiding the gradient masking in white-box scenario.

2 Non-gradient-based attacks
The attacks of this group do not require any
knowledge of the DNN gradients or the need of
network differentiability. The most well-known
members of this group are the Zeroth Order
Optimization (ZOO) [67] and the OnePixel Attack
[68].

In our work, we will consider the most successful rep-
resentatives of each group, namely, gradient-based C&W
attack and non-gradient-based OnePixel attack.
In general case, for an input image x ∈ R

N×S with a class
label c ∈ {1, 2, · · · ,Mc}, the optimization problem of find-
ing an adversarial example with the additive perturbation
xadv = x + ε and target class cadv can be formulated as
follows:

minε L
(
cadv,φθ (x + ε)

)
+ λ‖ε‖p,

s.t. x + ε ∈[ 0, 1]N×S ,
(1)

where L(.) is a classification loss, φθ is a targeted classi-
fier, c �= cadv, λ is a Lagrangian multiplier, and �p-norm is
defined as:

‖ε‖p =
( ∑N×S

i=1 |εi|p
) 1

p
,

with 0 ≤ p ≤ 2.

2.2.1 C&Wattack
The C&W attack proposed by Carlini and Wagner in [63]
is among the most efficient attacks against many reported
so far defense strategies. The authors find the formu-
lation (1) difficult for solving directly due to the high
non-linearity and propose an alternative definition:

minε a · f (x + ε) + ‖ε‖p,
s.t. x + ε ∈[ 0, 1]N×S , (2)

where a > 0 is a suitably chosen constant, f (.) is a new
objective function such that φθ (x + ε) = cadv, if and only
if f (x + ε) ≤ 0. In [63] the authors investigate several
objective functions f (.), and as the most efficient one, they
propose:

f (xadv) = max
(
max
l �=cadv

(
Z

(
xadv

)
l

)
− Z

(
xadv

)
cadv

,−κ

)
,

(3)

where l is an index of any class while cadv is an index of
the adversarial class; Z(x) = φθn−1(x) is the result of the
network φθ before the last activation function that, in case
of classification, usually it is a softmax; and κ is a constant
that controls the confidence of the attack.

2.2.2 PGD attack
Additionally to the C&W attack, the PGD attack [32] that
is an iterative version of FGSM attack and a generalized
version of BIM attack was considered. The PGD solves
the optimization problem (1) by computing an adversarial
example at the iteration t + 1 as:

xadvt+1 = Proj
(
xadvt + α · sign

(
∇xL

(
cadv,φθ (xadvt )

) ))

(4)

where Proj(.) keeps xadvt+1 within a predefined perturbation
range and valid image range and α a is the magnitude of
the adversarial perturbation in each iteration.

2.2.3 OnePixel attack
OnePixel attack was proposed by Su et al. in [68]. This
attack uses a Differential Evolution (DE) optimization
algorithm [69] for the attack generation. The DE algo-
rithm does not require the objective function to be differ-
entiable or known, but instead, it observes the output of
the classifier as a black-box output. The OnePixel attack
aims at perturbing a limited number of pixels in the input
image x ∈ R

N×S. The optimization problem is formulated
as:

minε L
(
cadv,φθ (x + ε)

)
,

s.t. ‖ε‖0 ≤ d, (5)

where d is a number of pixels to bemodified in the original
image x and L(.) is a classification loss.

3 Classification algorithm based on KDA
The generalized diagram of the proposed multi-channel
system with the KDA is shown in Fig. 6. It consists of six
main building blocks:

1 Pre-filtering ϕβ(x) that has an optional character.
The goal of this block is to return the input image x
back to the manifold of the original class by removing
high-magnitude outliers introduced by the attacker,
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if any. One can choose a broad range of pre-filtering
algorithms from a simple local mean filter to more
complex algorithms such as BM3D [70] or based on
DNN mappers [71].

2 Pre-processing of the input data in a transform
domain via a mappingWj, 1 ≤ j ≤ J . In general, the
transformWj can be any linear data-independent
mapper. For example, it can be a random projection
with the dimensionality reduction or expansion, or
belong to a family of orthonormal transformations
(WjW

T
j = I) like DFT (discrete Fourier transform),

DCT (discrete cosines transform), and DWT
(discrete wavelet transform). Moreover,Wj can also
be a learnable transform. However, it should be
pointed out that from the point of view of the
robustness to adversarial attacks, the
data-independent transformWj is of preference to
avoid any leakage about it from the training data.
Furthermore,Wj can be based on a secret key kj.

3 Data-independent processing Pji, 1 ≤ i ≤ I presents
the randomization part and serves as a defense
against gradient back propagation to the direct
domain and the manifold expanding. One can
envision several cases. As shown in Fig. 7a,
Pji ∈ {0, 1}l×n, l < n, presents a lossy sampling of the
input image of length n, as considered in [72]. In
Fig. 7b, Pji ∈ {0, 1}n×n is a lossless permutation,
similar to [25]. Finally, in Fig. 7c, Pji ∈ {−1, 0,+1}n×n

corresponds to sub-block sign flipping. The yellow
color highlights the key defined region of key-based
sign flipping. This operation is reversible and thus
lossless for an authorized party. Moreover, to make
the data-independent processing irreversible for the
attacker, it is preferable to use a Pji based on secret
key kji.

4 Classification block φθ ij can be represented by any
family of classifiers. However, if the classifier is
designed for classification of data in the direct
domain, then it is preferable that it is preceded by
W

−1
j . This concerns the usage of convolutional or

fully connected layers.
5 Classifiers’ selection S with a key ks randomly selects

Js classifiers’ outputs out of JI pre-trained classifiers’
outputs for a further aggregation.

6 Aggregation block Aϑ can be represented by any
operation ranging from a simple summation to
learnable operators adapted to the data or to a
particular adversarial attack.

As it can be seen in Fig. 6, the chain of processing rep-
resented by the blocks 2, 3, and 4 can be organized in
a parallel multi-channel structure that is followed by the
classifiers’ selector and the aggregation block. The final
decision about the class is made based on the aggregated
result. The rejection option can be also envisioned.
It should be pointed out that the access to the inter-

mediate results inside the considered system provides the
attacker a possibility to use the full system as a white-box.
The attacker can discover the secret keys kj and/or kji, and
make the system end-to-end differentiable using the Back-
ward Pass Differentiable Approximation technique [66] or
via replacing the key-based blocks by the “bypass” map-
pers. Therefore, it is important to restrict the access of
the attacker to the intermediate results within the block
B (see Fig. 6). That satisfies our assumption about gray-
and black-box attacks. Additionally, it is in the accor-
dance with Kerckhoffs’s cryptographic principle when we
assume that the algorithm and architecture are known to
the attacker besides the used secret key that in our case
corresponds to the secret perturbations.

Fig. 7 Randomized transformation Pji , 1 ≤ j ≤ J, 1 ≤ i ≤ I examples: a randomized sampling, b randomized permutation, and c randomized sign
flipping in the sub-block defined in orange. All transforms are key-based
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The training of the described classification architecture
can be performed according to:

(ϑ̂ , {θ̂ji}) = argmin
ϑ ,{θ ji}

T∑
t=1

J∑
j=1

I∑
i=1

L(ct ,Aϑ (φθ ji (W
−1
j PjiWj ϕβ(xt)))),

(6)

whereL is a classification loss, ct is a class label of the sam-
ple xt , Aϑ corresponds to the aggregation operator with
parameters ϑ , T equals to the number of training sam-
ples, J is the total number of channels, and I equals to the
number of classifiers per channel that, in general, can be
different for each channel j. For practical implementation,
we will keep I equal for all channels. φθ ji is the ith classi-
fier of the jth channel, and θ denotes the parameters of the
classifier.
In the proposed system, we will consider several practi-

cal simplifications leading to information and complexity
advantages for the defender over the attacker:

• The defender training is performed per channel
independently up to selection and aggregation
blocks. Since Js classifiers’ outputs out of JI
pre-trained classifiers are chosen for the aggregation
by the defender at the test stage, the attacker should
target to attack a subset of classifiers to trick the final
decision. To guess a potentially chosen subset, the
attacker faces

(JI
Js
)
-combinatorial problem that under

properly chosen JI and Js can represent a
considerable complexity burden for the attacker. At
the same time, the attacker cannot introduce a single
perturbation to trick all classifiers simultaneously.

• The blocks of data-independent processing Pji aim at
preventing gradient back propagation into the direct
domain, but the classifier training is adapted to a
particular Pji in each channel.

• It will be shown further by the numerical results that
the usage of the multi-channel architecture with the
following aggregation stabilizes the results’ deviation
due to the use of randomization or lossy
transformations Pji, if such are used.

• The right choice of the aggregation operator Aϑ

provides an additional degree of freedom and
increases the security of the system through the
possibility to adapt to specific types of attacks.
In general case, as an aggregation operator, the
defender could use the following:

– An additional classification network that takes
as an input the soft outputs of multi-channel
classifiers and outputs the final prediction.
These multi-channel outputs could be, for
example, aggregated into a 1D vector via
summation, concatenation, etc;

– The majority voting of the multi-channel
outputs;

– The summation of the multi-channel outputs
with the maximum class selection.

Generally speaking, since the multi-channel classifier
could be trained independently from the aggregation
block, the choice of aggregation operator could be
defined experimentally.

• Moreover, the overall security level considerably
increases due to the independent randomization in
each channel. The main advantage of the
multi-channel system consists in the fact that each
channel can have an adjustable amount of
randomness that allows to obtain the required level of
defense against the attacks. In a one-channel system,
the amount of introduced randomness can be either
insufficient to prevent the attacks or too high that
leads to a drop in classification accuracy. Therefore,
having a channel-wise distributed randomness is
more flexible and efficient for the above trade-off.

It should be pointed out that the overall complexity of
training the multi-channel system is I × J higher com-
pared to a single-channel system. At the same time, one
should note that the aggregation allows relaxing a network
fine-tuning complexity. Thus, there is no need in expen-
sive parameters fine-tuning in a multi-channel system
in contrast to a single-channel counterpart. The channel
aggregation allows to achieve an equivalent performance
with “weakly” trained classifiers with lower overall com-
plexity. For the final training, the multi-channel classifiers
had to have only different secret keys and different start-
ing initialization per channel. Moreover, in case of non-
deep aggregation strategies, the defender training could
be performed independently up to selection and aggrega-
tion blocks. This fact allows the defender to train several
channels in parallel.

4 Randomization using key-based sign flipping in
the DCT domain

One of the defense’s core elements in the proposed
multi-channel architecture shown in Fig. 6 is the input
image randomized diversification via data-independent
processing P. The simplest case of such a diversification
can be considered for the direct domain with the per-
mutation of input pixels. In fact, the algorithm proposed
in [25] reflects this idea for a single channel. However,
despite the reported efficiency, a single-channel architec-
ture is subject to a drop in classification accuracy, even for
the original, i.e., non-adversarial, data. The performance
of a permutation-based defense in a multi-channel setting
has been investigated in [30]. The obtained results demon-
strate a high sensitivity to the gradient perturbations that
degrades the performance of the classifiers. It has been
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shown in [30, 31] that the preservation of local correla-
tion helps preserve the loss of the gradients and drop of
classification accuracy.
In this paper, we use the DCT as the operator W and

the local sign flipping Pji ∈ {−1, 0, 1}n×n based on the
individual secret key kji for each classifier φθ . The term
local means that the processing is done only in some
sub-band or block of the input image. The length of
the secret key kji equals the length of the corresponding
sub-band, i.e., n × n. In general, the image can be split
into overlapping or non-overlapping sub-bands of differ-
ent sizes and different positions that are kept in secret.
In our experiments for the simplicity and interpretability,
we split the image in the DCT domain into four non-
overlapping fixed sub-bands of the same size denoted as
follows: (L) top left that represents the low frequencies
of the image, (V ) vertical, (H) horizontal, and (D) diag-
onal sub-bands as illustrated in Fig. 8a. The key-based
sign flipping is applied independently in V, H, and D
sub-bands keeping all other sub-bands unchanged. The
length of secret key in each sub-band corresponds to n ×
n = image size/2 × image size/2. The effects of such pro-
cessing after the inverse DCT transform are perceptually
almost unnoticeable and exemplified in Fig. 8c–e.
The corresponding multi-channel architecture is illus-

trated in Fig. 9. For simplicity, as an aggregation operator
Aϑ , we use a simple summation and the selector S uses
the outputs of all classifiers JI. For the pre-filtering ϕβ ,
we use a custom filter based on a difference of the point
of interest in the center of the window with the median
value in the window of size 3 × 3 around this point. If
the magnitude of difference exceeds a specified threshold,
the pixel is considered to be corrupted by the adversary
and its value is replaced by a mean value computed in
the window, or otherwise, it is kept intact. Finally, under
the introduced perturbation, each classifier φθ ji is trained
independently as:

θ̂ ji = argmin
θ ji

T∑
t=1

L(ct ,φθ ji(W
−1

PjiW ϕβ(xt))). (7)

The soft outputs of trained classifiers are aggregated by
the summation as shown in Fig. 9.

5 Results and discussion
5.1 Attacks’ scenarios
Accordingly to the central concept of the proposed
defense strategy that consists in an information advantage
of the defender over the attacker, the attacker has a lim-
ited access to the intermediate results and does not know
the used secret keys. Therefore, the attacker is not able to
attack the proposed system in a white-box manner and to
create directly the gradient-based adversarial examples. In
this respect, the efficiency of the proposed multi-channel
architecture with the diversification and randomization by
the key-based sign flipping in the DCT domain against the
adversarial attacks is tested for three scenarios:

1 Gray-box transferability attacks from a single-
channel model to a multi-channel model tested on (i)
the C&W attack [63] with the constraints on �2, �0,
and �∞ norms and (ii) the PGD attack [32].

2 Gray-box transferability attacks from a
multi-channel model to a multi-channel model
under different keys tested on the OnePixel attack
[68] with perturbation in 1, 3, and 5 pixels.

3 Black-box direct attacks tested on the OnePixel
attack [68] with perturbation in 1, 3, and 5 pixels.

The experiments are performed on the MNIST [73],
Fashion-MNIST [74], and CIFAR-10 data sets [75]. The
MNIST set of handwritten digits contains 10 classes,
60,000 training and 10,000 test gray-scale images of the
size 28×28. The Fashion-MNIST set has 10 classes, 60,000
training and 10,000 test gray-scale images of the size 28×
28. The CIFAR-10 consists of 60,000 color images of size
32 × 32 (50,000 train and 10,000 test) with 10 classes.
Examples of images from each data set are illustrated in
Fig. 10. Due to the fact that the attack generation process
is sufficiently slow for all considered attacks, the experi-
mental results are obtained on the first 1000 test samples.
The examples of the attacked images are given in Fig. 11.
The goal of experimental validation is to confirm

whether the successful adversarial attacks can trick the
proposed defense mechanism.

5.2 Technical details
In this section, the technical details about the practical
implementation of used attacks are presented. To ensure

Fig. 8 Local key-based sign flipping in the DCT sub-bands: a sub-bands, b original image, c image with a sign flipping in V sub-band, d image with a
sign flipping in H sub-band, and e image with a sign flipping in D sub-band
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Fig. 9Multi-channel classification with the local DCT sign flipping

a reproducible research, the complete code is available at
https://github.com/taranO/multi-channel-KDA.

5.2.1 C&Wattack
For the fair comparison, the gradient-based C&W attack
is tested on the classifiers with the architecture identical
to those tested in [63]. The implementation was done in
TensorFlow. For the training, the SGD was used with a
learning rate 1e−2 and weight decay 1e−6. The “attacked
vanilla” and “transferability vanilla” models were trained
during 50 epochs (after 50th epoch, the saturation was
observed) with a batch size equals to 128. In the multi-
channel model, each classifier was trained during 100
epochs using Adam optimizer with a learning rate 1e−3,
weight decay 1e−6, and batch size 64. For the �2 attack,
the learning rate was 1e−2, confidence 0, maximum num-
ber of iterations 1000 with early stopping if the gradient
descent gets stuck, and the minimum and maximum pixel
values equal to −0.5 and 0.5 correspondingly. For the �0
and �∞ attacks, the constant factor was 2, and the rest of
the used parameter was the same as in case of �2 attack.

5.2.2 OnePixel attack
The VGG16 [76] and ResNet18 [3] vanilla models were
trained during 100 epochs with learning rate 1e−3, weight
decay 5e−4, and batch size 128. For the VGG16, the SGD
was used. In case of the ResNet18, the Adam was used. In
multi-channel system for each classifier, the same corre-
sponding parameters were used and the implementation
was done in Pytorch.

5.2.3 PGD attack
The PGD attack was used to attack the VGG16 and
ResNet18 models. The Pytorh implementation of PGD
attack from the FoolBox library1 was used with the
1https://foolbox.readthedocs.io/en/stable/index.html

next parameters: α equals to 0.5, step size 0.01, and 100
iterations.

5.3 Empirical results and discussion
Accordingly to the scenarios presented in Section 5.1, for
each scenario, we provide the detailed explanation of (i)
what kind of assumptions is done, (ii) what kind of knowl-
edge is available to the attacker, and (iii) the obtained
results.

5.3.1 Gray-box transferability: from a single-channel to a
multi-channel

The results obtained for the gray-box transferability of
the adversarial examples from a single-channel model to
a multi-channel model are given in Table 1 for the C&W
attack with the constraints on �2, �0 and �∞ norms and in
Table 2 for the PGD attack.
The architecture for a single-channel DNN classifier

(that we named vanilla) was chosen and made known to
the attacker. The attacker has also an access to the same
training data set as the defender. The attacker trains his
single-channel vanilla classifier and produces the adver-
sarial examples against his system. The results of this
attack are shown in the “Attacked vanilla” column of
Tables 1 and 2. It is easy to see that the C&W attacks
are very efficient against unprotected system. At the same
time, Table 2 demonstrates that the PGD attack is less
efficient.
The defender trains the same single-channel architec-

ture using the same training data set but with differ-
ent initialization of model’s parameters. The results of
transferability of adversarial examples to the defender’s
single-channel classifier are shown in the “Transferabil-
ity vanilla” column of Tables 1 and 2. In contrast to the
claimed transferability, our results clearly demonstrate

https://github.com/taranO/multi-channel-KDA
https://foolbox.readthedocs.io/en/stable/index.html
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Fig. 10 Examples of original images from each class from MNIST (top line), Fashion-MNIST (middle line), and CIFAR-10 (bottom line) data sets

the low efficiency of the proposed attacks even without
any special defense mechanisms for the MNIST, Fashion-
MNIST, and CIFAR-10 data sets.
The transferabillity of the same adversarial examples

to the proposed multi-channel architecture produces the
results reported in the “Transfereability KDA” column of
Tables 1 and 2. The obtained results show that the increase
of the number of channels leads to the decrease of classi-
fication error. More particularly, from Table 1, it is easy to
see that in case of the CIFAR-10 data set that presents a

particular interest for us as a data set with natural images,
the classification error under the C&W �2 and C&W �∞
attacks is the same as in the case of the vanilla classifier
on the original non-attacked data. In case of C&W �0
attack, there is only about 2% of attack success. The simi-
lar situation can be observed for the the PGD attack given
in Table 2. In the case of MNIST and Fashion-MNIST
data sets, the C&W �2 and C&W �∞ produce about 1–
3% of successful attacks while for the C&W �0 this value
is slightly higher and is about 2.5–5.5%. This is related

Fig. 11 Adversarial examples: (left) original image x, (middle) adversarial example xadv , and (right) absolute value of the adversarial perturbation ε

computed as |ε| = |x − xadvv|
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to a high sparsity of the original images that, generally
speaking, is not frequent for the natural images.
From the obtained results, one can conclude that the

multi-channel model demonstrates the ability to be robust
to the adversarial examples generated for the single-
channel model with the same architecture of DNN classi-
fier and the ability to improve the classification accuracy
on both the non-attacked original and attacked data.

5.3.2 Gray-box transferability: from amulti-channel to a
multi-channel

The results obtained for the gray-box transferability of
the adversarial examples from one multi-channel model
to another multi-channel model under different keys are
given in Table 3 for the OnePixel attack with perturbation
in 1, 3, and 5 pixels.
The architecture for a multi-channel model with the

proposed defense strategy was made known to the
attacker. The attacker has also access to the same train-
ing data set as the defender. The attacker does not know
only the secret keys of the defender. Therefore he trains
his multi-channel classifier under a selected set of keys
and produces the adversarial examples against his sys-
tem. The defender, in his turn, trains the similar system
under different keys and different initialization of model’s
parameters that remain secret. From the results reported
in Table 3, it is easy to see that the success of attack does
not exceed 0.5% compared to the classification accuracy
on the original non-attacked data (rows “Original”). More-
over, as it is also observed in Tables 1 and 2, the increase
of the number of channels in multi-channel model leads
to the increase of classification accuracy both on the
non-attacked original and attacked data.

5.3.3 Black-box direct attack
The results obtained for the direct attacks to a single-
channel and a multi-channel models in the black-box
scenario are shown in Table 4. The row “Original”
corresponds to the use of non-attacked original data.
For a single-channel and a multi-channel cases, the

attacker does not have any knowledge about the classifiers’
architecture, about the number of channels, or about the
used defense mechanisms. The attacker can only observe
the predicted class for the given input. In this respect, the
attacker tries to attack the classification models directly
in a black-box way. The results obtained for the OnePixel
attack with perturbation in 1, 3, and 5 pixels are shown in
Table 4. From these results, it is easy to see that for the
non-protected single-channel model (“Attacked vanilla”),
such kind of attacks can be sufficiently efficient: in the
case of VGG16 model, the classification error is about
60–80%, and in the case of ResNet18 model, it is about
35–60%. For both classifiers, the increase of the number of
perturbed pixels (p) leads to the increase of classification

Table 4 Classification error (%) on the first 1000 CIFAR-10 test
samples for the direct black-box OnePixel attacks

Data type

Attacked Attacked KDA

vanilla # channels · # classifiers
3 6 9

VGG16

Original 10.7 11 9.2 8.9

OnePixel p = 1 58.04 11 9.5 8.7

OnePixel p = 3 72.13 10.9 8.9 8.3

OnePixel p = 5 79.02 12.1 9.3 9.1

ResNet18

Original 9.5 11.1 9.1 7.8

OnePixel p = 1 36.96 11.5 9 7.7

OnePixel p = 3 49.85 11.5 9.1 7.8

OnePixel p = 5 59.74 11.7 9.2 7.8

error. At the same time, the use of the proposed defense
mechanism based on the KDA allows to decrease the
classification error to the level of classification on the non-
attacked original data, or in other words, it practically
diminished the effect of these attacks.
To summarize the above results, it should be pointed

out that as it can be seen from Tables 1, 2, 3, and 4,
the results obtained for the non-attacked original data
demonstrate that the use of the proposed multi-channel
architecture, in general, allows to improve the classifica-
tion accuracy of vanilla classifier. This is quite remarkable
by itself since it shows that the multi-channel processing
with the aggregation does not degrade the performance
due to the introduced key-based diversification in contrast
to many defense strategies based on the idea of random-
ization. Finally, the results obtained on the adversarial
examples demonstrate high robustness of the proposed
KDA-based defense technique.
Next, we demonstrate the impact of several factors, such

as the key-based aggregation on the classification accu-
racy and robustness to the adversarial attacks (Tables 5
and 6) and the level of adversarial distortion (Table 7).

5.3.4 Key-based aggregation
Additionally to the multi-channel system with the fixed
channels for aggregation shown in Fig. 9 and its results
demonstrated in Tables 1, 3, and 4, the similar system
has been investigated for the case when the channels for
the aggregation were chosen based on a random key. The
results averaged over 10 runs are given in Tables 2, 5,
and 6. Comparing the results for the KDA presented, for
example, in Tables 1 and 5, one can notice a small degrada-
tion of performance under the random selection of chan-
nels for the aggregation in Table 5. This is due to the fact
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Table 5 Classification error (%) on the first 1000 test samples for
the gray-box C&W transferability attacks from a single-channel
model to a multi-channel model with randomly selected
channels (the average results over 10 runs)

Data type

Transferability KDA

# channels · # classifiers
3 5 7

MNIST

Original 0.6 0.5 0.6

C&W �2 5.06 4.77 4.44

C&W �0 7.77 7.3 7.12

C&W �∞ 3.41 3.12 2.77

Fashion-MNIST

Original 8.2 8.2 8.1

C&W �2 9.4 9.1 8.84

C&W �0 10.58 10.52 10.27

C&W �∞ 9.33 9.09 8.83

CIFAR-10

Original 21.2 20.5 19.9

C&W �2 22.92 21.22 21.1

C&W �0 27.82 25.46 24.33

C&W �∞ 24.57 22.33 21.86

that the sub-bands chosen for the randomization in the
setup of Table 1 always correspond to the three main sub-
bands representing V, H, and D sub-bands, whereas the
sub-bands representing channels in the setup of Table 5
were chosen at random. This discrepancy decreases with
the increase of the number of aggregated channels.

Table 6 Classification error (%) on the first 1000 test samples
(CIFAR-10) for the multi-channel system against the direct
black-box OnePixel attacks with randomly selected channels (the
average results over 10 runs)

Data type

Attacked KDA

# channels · # classifiers
3 5 7

VGG16

Original 11.7 9.5 9.3

OnePixel p = 1 11.3 9.6 9

OnePixel p = 3 11.5 9.8 8.9

OnePixel p = 5 12 10.6 9.4

ResNet18

Original 11.1 9.7 8.8

OnePixel p = 1 11.1 9.2 8.9

OnePixel p = 3 11.4 9.6 8.8

OnePixel p = 5 10.9 9.8 9.1

In summary, one can conclude that the obtained results
indicate that the proposed KDA-based defense strat-
egy demonstrates a high robustness to the transferability
attacks in the gray-box scenarios as well as to the direct
black-box attacks. Moreover, it allows to improve the
classification accuracy of the vanilla classifiers. Finally, it
should be pointed out that, in general, the increase of the
number of classification channels and data-independent
processing Pij leads to improving the classification accu-
racy. However, a trade-off between the further decrease of
the classification error and the increase of the complexity
of the algorithm should be carefully addressed that goes
beyond the scope of this paper.

5.3.5 Adversarial distortions
The efficiency of the proposed defense strategy with
increased adversarial distortions in terms of amplitude
value of the adversarial noise and its behavior are investi-
gated in the gray-box scenario presented in Table 1. The
amplitude of the adversarial noise increases from �2 to �∞
and �0. Figure 11 shows several examples of adversarial
noise with indicated noise amplitude. The median and
mean �2-norm of adversarial perturbation are given in
Table 7. In all cases, the same trained model has been
evaluated. The efficiency of the proposed defense strat-
egy with the increase of adversarial distortions in terms
of number of distorted pixels and its behavior are inves-
tigated in black-box scenario illustrated in Table 4, where
p = 1, ... p = 5 indicate the increase of the number
of distorted pixels. The corresponding adversarial noise
amplitudes are given in Table 7. In all cases, the pro-
posed KDA-based defense strategy successfully resists to
the adversarial distortion of different levels.

6 Conclusions
In this paper, we address a problem of DNN classifiers’
protection against adversarial attacks in gray- and black-
box scenarios. We propose the key-based randomized
diversification mechanism as a defense strategy in the
multi-channel architecture with the aggregation of classi-
fiers’ scores. The randomized transform is a secret key-
based randomization in a defined domain. The goal of this
randomization is to prevent the gradient back propagation
or use of “bypass” systems by the attacker. It is also impor-
tant to remark that the proposed approach is “compliant”
with the cryptographic principles when the defender has
an information advantage over the attacker expressed via
the knowledge of the secret key shared between the train-
ing and test stages. We evaluate the efficiency of the
proposed defense and the performance of several vari-
ations of the considered architecture on three standard
data sets against a number of known state-of-the-art
attacks. The numerical results demonstrate the robustness
of the proposed defense mechanism against (i) gray-box
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Table 7 Adversarial distortion

Attack Median �2-norm Mean �2-norm

MNIST

C&W �2 5.28e−03 5.52e−03

C&W �0 1.56e−02 1.61e−02

C&W �∞ 1.24e−02 1.29e−02

Fashion-MNIST

C&W �2 2.30e−04 5.31e−04

C&W �0 4.35e−03 4.86e−03

C&W �∞ 4.43e−04 5.43e−04

CIFAR-10

C&W �2 7.80e−05 1.19e−04

C&W �0 2.48e−03 4.55e−03

C&W �∞ 1.73e−04 2.13e−04

ResNet18 (CIFAR-10)

PGD 1.00e−04 1.37e−04

Vanilla OnePixel p = 1 5.25e−04 2.76e−03

Vanilla OnePixel p = 3 1.24e−03 3.51e−03

Vanilla OnePixel p = 5 1.86e−03 4.18e−03

Multi-channel model
OnePixel p = 1

3.22e−04 2.42e−03

Multi-channel model
OnePixel p = 3

1.33e−03 3.61e−03

Multi-channel model
OnePixel p = 5

2.05e−03 4.33e−03

VGG16 (CIFAR-10)

PGD 9.99e−05 1.50e−04

Vanilla OnePixel p = 1 5.86e−04 2.78e−03

Vanilla OnePixel p = 3 1.37e−03 3.69e−03

Vanilla OnePixel p = 5 2.02e−03 4.26e−03

Multi-channel model
OnePixel p = 1

3.43e−04 2.25e−03

Multi-channel model
OnePixel p = 3

1.27e−03 3.64e−03

Multi-channel model
OnePixel p = 5

1.91e−03 4.28e−03

transferability attacks from a single-channel model to a
multi-channel model under assumption that the attacker
uses only the knowledge about the single-channel model
architecture, (ii) gray-box transferability attacks from a
multi-channel model to a multi-channel model trained
under different keys assuming that the attacker has full
knowledge about the multi-channel model architecture
and used defense strategy except the defenders’ secret
keys, and (iii) black-box direct attacks under assumption
that the attacker has no knowledge about the model archi-
tecture or defense mechanisms. In all scenarios, as a worst
case, we assume that the attacker uses the same data set as
the defender. Additionally, the obtained results show that

using the multi-channel architecture with the following
aggregation stabilizes the results and increases the classifi-
cation accuracy on the attacked and non-attacked original
data samples.
For the future work, we aim at investigating in details

the security aspects of the proposed KDA algorithm. It
looks very interesting to obtain estimates and bounds on
the attacker complexity attempting at learning the intro-
duced randomization or bypassing it by some dedicated
structures. It is also important to investigate the impact
of number of training examples jointly with the random-
ization in terms of comparison of entropy of training data
set versus needed entropy of randomization. Finally, it is
important to extend the aggregation mechanism to more
complex learnable strategies instead of used summation.
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