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Abstract

Despite the impressive performances reported by deep neural networks in different application domains, they
remain largely vulnerable to adversarial examples, i.e., input samples that are carefully perturbed to cause
misclassification at test time. In this work, we propose a deep neural rejection mechanism to detect adversarial
examples, based on the idea of rejecting samples that exhibit anomalous feature representations at different network
layers. With respect to competing approaches, our method does not require generating adversarial examples at
training time, and it is less computationally demanding. To properly evaluate our method, we define an adaptive
white-box attack that is aware of the defense mechanism and aims to bypass it. Under this worst-case setting, we
empirically show that our approach outperforms previously proposed methods that detect adversarial examples by
only analyzing the feature representation provided by the output network layer.
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1 Introduction
Despite their impressive performances on a variety of
tasks, it has been known for more than a decade that
machine-learning algorithms can be misled by different
adversarial attacks, staged either at training or at test time
[1, 2]. After the first attacks proposed against linear classi-
fiers in 2004 [3, 4], Biggio et al. [5, 6] have been the first to
show that nonlinear machine learning algorithms, includ-
ing support vectormachines (SVMs) and neural networks,
can be misled by gradient-based optimization attacks [1].
Nevertheless, such vulnerabilities of learning algorithms
have become extremely popular only after that Szegedy et
al. [7, 8] have demonstrated that also deep learning algo-
rithms exhibiting superhuman performances on image
classification tasks suffer from the same problems. They
have shown that even only slightly manipulating the pixels
of an input image can be sufficient to induce deep neural
networks tomisclassify its content. Such attacks have then
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been popularized under the name of adversarial examples
[2, 6, 7].
Since the seminal work by Szegedy et al. [7, 8], many

defense methods have been proposed to mitigate the
threat of adversarial examples. Most of the proposed
defenses have been shown to be ineffective against more
sophisticated attacks (i.e., attacks that are aware of the
defense mechanism), leaving the problem of defending
neural networks against adversarial examples still open.
According to [2], the most promising defenses can be
broadly categorized into two families. The first includes
approaches based on robust optimization and game-
theoretical models [9–11]. These approaches, which also
encompass adversarial training [8], explicitly model the
interactions between the classifier and the attacker to
learn robust classifiers. The underlying idea is to incorpo-
rate knowledge of potential attacks during training. The
second family of defenses (complementary to the first) is
based on the idea of rejecting samples that exhibit an out-
lying behavior with respect to unperturbed training data
[12–16].

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-020-00105-y&domain=pdf
mailto: ambra.demontis@unica.it
http://creativecommons.org/licenses/by/4.0/


Sotgiu et al. EURASIP Journal on Information Security          (2020) 2020:5 Page 2 of 10

In this work, we focus on defenses based on rejec-
tion mechanisms and try to improve their effective-
ness. In fact, it has been shown that only relying upon
the feature representation learned by the last network
layer to reject adversarial examples is not sufficient [12,
13]. In particular, it happens that adversarial exam-
ples become indistinguishable from samples of the tar-
get class at such a higher representation level even for
small input perturbations. To overcome this issue, we
propose here a defense mechanism, named deep neu-
ral rejection (DNR), based on analyzing the representa-
tions of input samples at different network layers and
on rejecting samples which exhibit anomalous behavior
with respect to that observed from the training data at
such layers (Section 2).With respect to similar approaches
based on analyzing different network layers [14, 15], our
defense does not require generating adversarial exam-
ples during training, and it is thus less computationally
demanding.
We evaluate our defense against an adaptive white-box

attacker that is aware of the defense mechanism and tries
to bypass it. To this end, we propose a novel gradient-
based attack that accounts for the rejection mechanism
and aims to craft adversarial examples that avoid it
(Section 3).
It is worth remarking here that correctly evaluating

a defense mechanism is a crucial point when propos-
ing novel defenses against adversarial examples [2, 17].
The majority of previous work proposing defense meth-
ods against adversarial examples has only evaluated such
defenses against previous attacks rather than against an
ad hoc attack crafted specifically against the proposed
defense (see, e.g., [15, 18, 19] and all the other re-evaluated
defenses in [17, 20]). The problem with these black-box
and gray-box evaluations in which the attack is essen-
tially unaware of the defense mechanism is that they are
overly optimistic. It has indeed been shown afterwards
that such defenses can be easily bypassed by simple modi-
fications to the attack algorithm [17, 20, 21]. For instance,
many defenses have been found to perform gradient
obfuscation, i.e., they learn functions which are harder
to optimize for gradient-based attacks; however, they can
be easily bypassed by constructing a smoother, differen-
tiable approximation of their function, e.g., via learning a
surrogate model [2, 6, 22–25] or replacing network lay-
ers which obfuscate gradients with smoother mappings
[17, 20, 21]. In our case, an attack that is unaware of the
defense mechanism may tend to craft adversarial exam-
ples in areas of the input space which are assigned to
the rejection class; thus, such attacks, as well as pre-
viously proposed ones, may rarely bypass our defense.
For this reason, we believe that our adaptive white-
box attack, along with the security evaluation method-
ology adopted in this work, provides another significant

contribution to the state of the art related to the prob-
lem of properly evaluating defenses against adversarial
examples.
The security evaluation methodology advocated in [2,

17, 26], which we also adopt in this work, consists of eval-
uating the accuracy of the system against attacks crafted
with an increasing amount of perturbation. The corre-
sponding security evaluation curve [2] shows how grace-
fully the performance decreases while the attack increases
in strength, up to the point where the defense reaches
zero accuracy. This is another important phenomenon
to be observed, since any defense against test-time eva-
sion attacks has to fail when the perturbation is suf-
ficiently large (or, even better, unbounded); in fact, in
the unbounded case, the attacker can ideally replace the
source sample with any other sample from another class
[17]. If accuracy under attack does not reach zero for
very large perturbations, then it may be that the attack
algorithm fails to find a good optimum (i.e., a good adver-
sarial example). This in turn means that we are probably
providing an optimistic evaluation of the defense. As
suggested in [17], the purpose of a security evaluation
should not be to show which attacks the defense with-
stands to, but rather to show when the defense fails. If
one shows that larger perturbations that may compro-
mise the content of the input samples and its nature
(i.e., its true label) are required to break the defense,
then we can retain the defense mechanism to be suf-
ficiently robust. Another relevant point is to show that
such a breakdown point occurs at a larger perturbation
than that exhibited by competing defenses, to show that
the proposed defense is more robust than previously
proposed ones.
The empirical evaluation reported in Section 4, using

both MNIST handwritten digits and CIFAR10 images,
provides consistent results with the aforementioned
aspects. First, it shows that our adaptive white-box attack
is able to break our defensive method at larger perturba-
tions. Second, it shows that our method improves the per-
formance of competing rejection mechanisms which only
leverage the deep representation learned at the output
network layer. We thus believe that our analysis unveils a
promising way of defending against adversarial examples.
We conclude the paper by discussing related work

(Section 5), the main contributions of this work, and its
limitations, along with promising future research direc-
tions (Section 6).

2 Deep neural rejection
The underlying idea of our DNR method is to estimate
the distribution of unperturbed training points at different
network layers and reject anomalous samples that may be
incurred at test time, including adversarial examples. The
architecture of DNR is shown in Fig. 1.
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Fig. 1 Architecture of deep neural rejection (DNR). DNR considers different network layers and learns an SVM with the RBF kernel on each of their
representations. The outputs of these SVMs are then combined using another RBF SVM, which will provide prediction scores s1, . . . , sc for each class.
This classifier will reject samples if the maximum score maxk=1,...,c sk is not higher than the rejection threshold θ . This decision rule can be
equivalently represented as arg maxk=0,...,c sk(x), if we consider rejection as an additional class with s0 = θ

Before delving into the details of our method, let us
introduce some notation. We denote the prediction func-
tion of a deep neural network with f : X �→ Y , where
X ⊆ R

d is the d-dimensional space of input samples
(e.g., image pixels) and Y ⊆ R

c is the space of the out-
put predictions (i.e., the estimated confidence values for
each class), being c the number of classes. If we assume
that the network consists of m layers, then the predic-
tion function f can be rewritten to make this explicit as
f (φ1(φ2(. . . φm(x;wm);w2);w1), where φ1 and φm denote
the mapping function learned respectively by the out-
put and the input layer, and w1 and wm are their weight
parameters (learned during training).
For our defense mechanism to work, one has first to

select a set of network layers, e.g., in Fig. 1, we select
the outer layers φ1, φ2, and φ3. Let us assume that the
representation of the input sample x at level φi is zi.
Then, on each of these selected representations, DNR
learns an SVM with the RBF kernel gi(zi), trying to cor-
rectly predict the input sample. The confidence values
on the c classes provided by this classifier are then con-
catenated with those provided by the other base SVMs
and used to train a combiner, using again an RBF SVM.1
The combiner will output predictions s1, . . . , sc for the c
classes, but will reject samples if the maximum confidence

1Validation samples should be used to train the combiner here and avoid
overfitting, as suggested by stacked generalization [27].

score maxk=1,...,c sk is not higher than a rejection thresh-
old θ . This decision rule can be compactly represented as
arg maxk=0,...,c sk(x), where we define an additional, con-
stant output s0(x) = θ for the rejection class. According
to this rule, if s0(x) = θ is the highest value in the set,
the sample is rejected; otherwise, it is assigned to the class
exhibiting the larger confidence value.
As proposed in [12], we use an RBF SVM here to ensure

that the confidence values s1, . . . , sc, for each given class,
decrease while x moves further away from regions of the
feature space which are densely populated by training
samples of that class. This property, named compact abat-
ing probability in open-set problems [13, 28], is a desirable
property to easily implement a distance-based rejection
mechanism as the one required in our case to detect out-
lying samples.With respect to [12], we train this combiner
on top of other base classifiers rather than only on the
representation learned by the last network layer, to fur-
ther improve the detection of adversarial examples. For
this reason, in the following, we refer to the approach by
Melis et al. [12], rejecting samples based only on their rep-
resentation at the last layer, as neural rejection (NR), and
to ours, exploiting also representations from other layers,
as deep neural rejection (DNR).

3 Attacking deep neural rejection
To properly evaluate security, or adversarial robustness,
of rejection-based defenses against adaptive white-box
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adversarial examples, we propose the following. Given a
source sample x and a maximum-allowed ε-sized pertur-
bation, the attacker can optimize a defense-aware adver-
sarial example x� by solving the following constrained
optimization problem:

x� = arg min
x′ :‖x−x′‖≤ε

�(x′) where �(x′) = sy(x′) − max
j �∈{0,y} sj(x

′)

(1)

where ‖x − x′‖ ≤ ε is an �p-norm constraint (typical
norms used for crafting adversarial examples are �1, �2,
and �∞, for which efficient projection algorithms exist
[29]), y ∈ Y = {1, . . . , c} is the true class, and 0 is
the rejection class. In practice, the attacker minimizes
the output of the true class, while maximizing the out-
put of the competing class (excluding the reject class) to
achieve (untargeted) evasion. This amounts to performing
a strong maximum-confidence evasion attack (rather than
searching for a minimum-distance adversarial example).
We refer the reader to [2, 6, 24] for a more detailed dis-
cussion on such topic. While we focus here on untargeted
(error-generic) attacks, our formulation can be extended
to account for targeted (error-specific) evasion as also
done in [12].
The optimization problem in Eq. (1) can be solved

through a standard projected gradient descent (PGD)
algorithm, as given in Algorithm 1. In our experiments,
we consider a variable step size η (by doubling the initial
step size for ten times) and select the point x′ minimizing
the objective at each update step. This allows our attack
to escape local minima which may hinder the optimiza-
tion process, and consequently, it allows us to obtain a
more reliable security evaluation of the proposed detec-
tion method.

Algorithm 1 PGD-based Maximum-confidence Adver-
sarial Examples
Input: x0: the input sample; η: the step size; 	: a projec-

tion operator on the �p-norm constraint ‖x0−x′‖ ≤ ε;
t > 0: a small positive number to ensure convergence.

Output: x′: the adversarial example.
1: x′ ← x0
2: repeat
3: x ← x′
4: x′ ← 	 (x − η∇�(x))
5: until |�(x′) − �(x)| ≤ t
6: return x′

In Fig. 2, we report an example on a bi-dimensional
toy problem to show how our defense-aware attack works
against a rejection-based defense mechanism.

4 Experimental analysis
In this section, we evaluate the security of the proposed
DNR method against adaptive, defense-aware adversar-
ial examples. We consider two common computer vision
benchmarks for this task, i.e., handwritten digit recog-
nition (MNIST data) and image classification (CIFAR10
data). Our goal is to investigate whether and to which
extent DNR can improve security against adversarial
examples, in particular, compared to the previously pro-
posed neural rejection (NR) defense (which only leverages
the feature representation learned at the last network layer
to reject adversarial examples) [12]. All the experiments
presented in this section are based on the open-source
Python library secml [30], which we plan to extend in
the near future to include an implementation of both DNR
and NR.

Fig. 2 Our defense-aware attack against an RBF SVM with rejection, on a 3-class bi-dimensional classification problem. The initial sample x0 and the
adversarial example x� are respectively represented as a red hexagon and a green star, while the �2-norm perturbation constraint ‖x0 − x′‖2 ≤ ε is
shown as a black circle. The left plot shows the decision region of each class, along with the reject region (in white). The right plot shows the values
of the attack objective �(x) (in colors), which correctly enforces our attacks to avoid the reject region
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Table 1 Model architecture for MNIST (left) and CIFAR10 (right) networks

Layer type Dimension Layer type Dimension

Conv. + ReLU 32 filters (3 × 3) Conv. + Batch Norm. + ReLU 64 filters (3 × 3)

Conv. + ReLU 32 filters (3 × 3) Conv. + Batch Norm. + ReLU 64 filters (3 × 3)

Max Pooling 2 × 2 Max Pooling + Dropout (p = 0.1) 2 × 2

Conv. + ReLU 64 filters (3 × 3) Conv. + Batch Norm. + ReLU 128 filters (3 × 3)

Conv. + ReLU 64 filters (3 × 3) Conv. + Batch Norm. + ReLU 128 filters (3 × 3)

Max pooling 2 × 2 Max Pooling + Dropout (p = 0.2) 2 × 2

Fully connected + ReLU 200 units Conv. + Batch Norm. + ReLU 256 filters (3 × 3)

Fully connected + ReLU 200 units Conv. + Batch Norm. + ReLU 256 filters (3 × 3)

Softmax 10 units Max Pooling + Dropout (p = 0.3) 2 × 2

Conv. + Batch Norm. + ReLU 512 filters (3 × 3)

Max Pooling + Dropout (p = 0.4) 2 × 2

Fully Connected 512 units

Softmax 10 units

4.1 Experimental setup
We discuss here the experimental setup used to evaluate
our defense mechanism.

4.1.1 Datasets
As mentioned before, we run experiments on MNIST and
CIFAR10 data. MNIST handwritten digit data consists of
60,000 training and 10,000 test gray-scale 28× 28 images.
CIFAR10 consists of 50,000 training and 10,000 test RGB
32×32 images.We normalized the images of both datasets
in [0, 1] by simply dividing the input pixel values by 255.

4.1.2 Train-test splits
We average the results on five different runs. In each run,
we consider 10,000 training samples and 1000 test sam-
ples, randomly drawn from the corresponding datasets.
To avoid overfitting, we train the DNR combiner on
the outputs of the base SVMs computed on a sepa-
rate validation set, using a procedure known as stacked
generalization [27]. We use a 3-fold cross-validation
procedure to subdivide the training dataset into three
folds. For three times, we learn the base SVMs on two
folds and classify the remaining (validation) fold. We
then concatenate the predicted values for each valida-
tion fold and use such values to train the combiner.
The deep neural networks (DNNs) used in our exper-
iments are pre-trained on a training dataset (different
from the ones that we use to train the SVMs) of 30,000
and 40,000 training samples, respectively, for MNIST
and CIFAR10.

4.1.3 Classifiers
We compare the DNR approach (which implements rejec-
tion here based on the representations learned by three
different network layers) against an undefended DNN

(without any rejection mechanism) and against the NR
defense by Melis et al. [12] (which implements rejection
on top of the representation learned by the output net-
work layer). To implement the undefended DNNs for the
MNIST dataset, we used the same architecture suggested
by Carlini et al. [21]. For CIFAR10, instead, we considered
a lightweight network that, despite its size, allows obtain-
ing high performances. The two considered architectures
are shown in Table 1, whereas Table 2 shows the model
parameters that we used to train the overmentioned archi-
tectures. The three layers considered by the DNR classifier
are the last three layers for the network trained onMNIST,
and the last layer plus the last batch norm layer and the
second to the last max-pooling layer for the one trained
on CIFAR10 (chosen to obtain a reasonable amount of
features).

4.1.4 Security evaluation
We compare these classifiers in terms of their secu-
rity evaluation curves [2], reporting classification
accuracy against an increasing �2-norm pertur-
bation size ε, used to perturb all test samples. In
particular, classification accuracy is computed as
follows:

Table 2 Parameters used to train MNIST and CIFAR10 networks

Parameter MNIST model CIFAR model

Learning rate 0.1 0.01

Momentum 0.9 0.9

Dropout 0.5 (see Table 1)

Batch size 128 100

Epochs 50 75
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Fig. 3 Security evaluation curves for MNIST (left) and CIFAR10 (right) data, reporting mean accuracy (and standard deviation) against ε-sized attacks

Fig. 4 Influence of the rejection threshold ? on classifier accuracy under attack (y-axis) vs false rejection rate (i.e., fraction of wrongly rejected
unperturbed samples) on MNIST (top) and CIFAR10 (bottom) for NR (left) and DNR (right), for different ?-sized attacks. The dashed line highlights the
performance at 10% false rejection rate (i.e., the operating point used in our experiments)
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• In the absence of adversarial perturbation (i.e., for
ε = 0), classification accuracy is computed as usual,
but considering rejects as errors;

• In the presence of adversarial perturbation (i.e., for
ε > 0), all test samples become adversarial examples,
and we consider them correctly classified if they are
assigned either to the rejection class or to their
original class (which typically happens when the
perturbation is too small to cause a misclassification).

For DNR and NR, we also report the rejection rates,
computed by dividing the number of rejected samples
by the number of test samples. Note that the difference

between accuracy and rejection rate at each ε > 0 corre-
sponds to the fraction of adversarial examples which are
not rejected but still correctly assigned to their original
class. Accordingly, under this setting, classifiers exhibit-
ing higher accuracies under attack (ε > 0) can be retained
more robust.

4.1.5 Parameter setting
We use a 5-fold cross-validation procedure to select the
hyperparameters that maximize classification accuracy
on the unperturbed training data, and set the rejection
threshold θ for NR and DNR to reject 10% of the samples
when no attack is performed (at ε = 0) .

Fig. 5 Adversarial examples computed on the MNIST data to evade DNN, NR, and DNR. The source image is reported on the left, followed by the
(magnified) adversarial perturbation crafted with ε = 1 against each classifier, and the resulting adversarial examples. We remind the reader that the
attacks considered in this work are untargeted, i.e., they succeed when the attack sample is not correctly assigned to its true class
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4.2 Experimental results
The results are reported in Fig. 3. In the absence of
attack (ε = 0), the undefended DNNs slightly outperform
NR and DNR, since the latter wrongly reject also some
unperturbed samples.
Under attack, (ε > 0), when the amount of injected

perturbation is exiguous, the rejection rate of both NR
and DNR increases jointly with ε, as the adversarial exam-
ples are located far from the rest of the training classes in
the representation space (i.e., the intermediate represen-
tations learned by the neural network). For larger ε, both
NR and DNR can no longer correctly detect the adver-
sarial examples, as they tend to become indistinguishable

from the rest of the training samples (in the representation
space in which NR and DNR operate). Both defenses out-
perform the undefended DNNs on the adversarial sam-
ples, and DNR slightly outperforms NR, exhibiting a more
graceful decrease in performance. Although NR tends to
reject more samples for ε ∈ [ 0.1, 1] on CIFAR and for
ε = 0.5 on MNIST, its accuracy is lower than DNR.
The reason is that DNR remains more accurate than NR
when classifying samples that are not rejected. This also
means that DNR provides tighter boundaries closer to
the training classes than NR, thanks to the exploitation
of lower-level network representations, which makes the
corresponding defended classifier more difficult to evade.

Fig. 6 Adversarial examples computed on the CIFAR10 dataset adding a perturbation computed with ε = 0.2. See the caption of Fig. 5 for further
details



Sotgiu et al. EURASIP Journal on Information Security          (2020) 2020:5 Page 9 of 10

In Figs. 4 and 5, we show some adversarial examples com-
puted respectively on the MNIST and CIFAR10 datasets
against the considered classifiers.
Finally, in Fig. 6, we show how the selection of the rejec-

tion threshold θ allows us to trade security against adver-
sarial examples (i.e., accuracy on the y-axis) for a more
accurate classifier on the unperturbed samples (reported
in terms of the rejection rate of unperturbed samples on
the x-axis). In particular, increasing (decreasing) the rejec-
tion threshold amounts to increasing (decreasing) the
fraction of correcly detected adversarial examples and to
increasing (decreasing) the rejection rate when no attack
is performed.

5 Related work
Different approaches have been recently proposed to
perform rejection of samples that are outside of the
training data distribution [31–33]. For example, Thu-
lasidasan et al. [31] and Geifman et al. [32] have pro-
posed novel loss functions accounting for rejection of
inputs on which the classifier is not sufficiently confi-
dent. Geifman et al. [33] have proposed a method that
allows the system designer to set the desired risk level
by adding a rejection mechanism to a pre-trained neu-
ral network architecture. These approaches have, how-
ever, not been originally tested against adversarial exam-
ples, and it is thus of interest to assess their perfor-
mance under attack in future work, also in comparison to
our proposal.
Even if the majority of approaches implementing rejec-

tion or abstaining classifiers have not considered the
problem of defending against adversarial examples, some
recent work has explored this direction too [12, 13].
Nevertheless, with respect to the approach proposed in
this work, they have only considered the output of the
last network layer and perform rejection based solely on
that specific feature representation. In particular, Ben-
dale and Boult [13] have proposed a rejection mechanism
based on reducing the open-set risk in the feature space of
the activation vectors extracted from the last layer of the
network, whileMelis et al. [12] have applied a threshold on
the output of an RBF SVM classifier. Despite these differ-
ences, the rationale of the two approaches is quite similar
and resembles the older idea of distance-based rejection.
Few approaches have considered a multi-layer detec-

tion scheme similar to that envisioned in our work
[14–16, 34, 35]. However, most of these approaches
require generating adversarial examples at training time,
which is computationally intensive, especially for high-
dimensional problems and large datasets [14, 15, 34, 35].
Finding a methodology to tune the hyperparameters
for generating the attack samples is also an open
research challenge. Finally, even though the deep k-
nearest neighbors approach by Papernot et al. [16] does

not require generating adversarial examples at train-
ing time, it requires computing the distance of each
test sample against all the training points at different
network layer representations, which again raises scal-
ability issues to high-dimensional problems and large
datasets.

6 Conclusions and future work
We have proposed deep neural rejection (DNR), i.e., a
multi-layer rejection mechanism, that, differently from
other state-of-the-art rejection approaches against adver-
sarial examples, does not require generating adversarial
examples at training time, and it is less computationally
demanding. Our approach can be applied to pre-trained
network architectures to implement a defense against
adversarial attacks at test time. The base classifiers and
the combiner used in our DNR approach are trained sep-
arately. As future work, it would be interesting to perform
an end-to-end training of the proposed classifier simi-
larly to the approaches proposed in [31] and [32]. Another
research direction may be that of testing our defense
against training-time poisoning attacks [2, 5, 36–38].
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