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Abstract

Backdoor attacks against supervisedmachine learningmethods seek tomodify the training samples in such a way that,
at inference time, the presence of a specific pattern (trigger) in the input data causes misclassifications to a target class
chosen by the adversary. Successful backdoor attacks have been presented in particular for face recognition systems
based on deep neural networks (DNNs). These attacks were evaluated for identical triggers at training and inference
time. However, the vulnerability to backdoor attacks in practice crucially depends on the sensitivity of the backdoored
classifier to approximate trigger inputs. To assess this, we study the response of a backdoored DNN for face recognition
to trigger signals that have been transformed with typical image processing operators of varying strength. Results for
different kinds of geometric and color transformations suggest that in particular geometric misplacements and partial
occlusions of the trigger limit the effectiveness of the backdoor attacks considered. Moreover, our analysis reveals that
the spatial interaction of the trigger with the subject’s face affects the success of the attack. Experiments with physical
triggers inserted in live acquisitions validate the observed response of the DNN when triggers are inserted digitally.

Keywords: Backdoor attacks, Neural networks, Adversarial machine learning

1 Introduction
The field of machine learning has experienced tremen-
dous developments in the recent years. Inexpensive
compute power in data-parallel architectures and the
availability of large labeled datasets have spurred a race for
increasingly advanced models, which are able to capture
ever more complex structures of the underlying distri-
bution [1]. Originating from computer vision, the use of
deep neural networks (DNN) has led to unprecedented
performance in many automatic learning tasks [2]. As a
result, DNNs will likely become a key element in security
decisions, such as in identification, authentication, and
intrusion detection.
However, many machine learning methods are vulner-

able to attacks that can compromise their performance
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in adversarial scenarios [3], where a malicious user can
modify the data used for training or at inference time.
Pioneering works in machine learning security [4, 5] have
proposed a taxonomy of possible attacks, categorizing
them by the domain of influence, the knowledge available
to the adversary, and the protection goals violated. Sub-
sequent explorations of this attack space have confirmed
vulnerabilities to machine learning in general and, more
recently, deep learning in particular [6, 7].
Many studies focus on explorative (or evasion) attacks

(i.e., adversarial examples), where the adversary acts at
inference time by creating strategically modified inputs
with the goal of causing misclassification. In causative (or
poisoning) attacks, the adversary instead manipulates the
training samples strategically in order to affect the per-
formance of the classifier at inference time [8]. While less
studied than explorative attacks, causative attacks can be
powerful and hard to detect [9].
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In this work, we focus on backdoor attacks, a class of
causative attacks where the model is trained to output a
certain target class when a specific pattern (called trigger)
is present in the input sample. Backdoor attacks pose a
significant security risk to several application domains of
neural networks. A particularly relevant case is face recog-
nition. Recent works have proposed training strategies
that lead a classifier to assign a specific identity whenever
the trigger is present, regardless of whose face is depicted.
The literature reports an impressive effectiveness of this
attack [10]. As demonstrated in [11], this paves the way
to attacks in the physical world, where an attacker could
fool camera-based face recognition systems by exhibiting
a trigger-like object in front of the camera.
The backdoored models proposed in the literature are

typically designed and tested scenarios where the mali-
cious input data presented to the model at inference time
carries exactly the same trigger used for training. This
carries the implied assumption that the attacker has full
control over the input data. In practice, however, inputs
can be pre-processed images or probes acquired in real-
time from a physical sensor. This distortion of the trigger
information, for instance due to geometric displacement
or varying illumination conditions, is often beyond the
attacker’s control. While these factors have been investi-
gated in the context of adversarial examples [12], we are
not aware of similar work for backdoor attacks.
To close this gap, the present work studies the sensi-

tivity of a backdoored model to triggers that have been
transformed with typical signal processing operators. We
choose a recently proposed model for the domain of face
recognition [10] and consider a post-training scenario,
where the classifier is given amodified trigger with respect
to the one it has been trained to recognize. We apply
different kinds of transformations, including geometric
transformations, occlusion, and different image compres-
sion pipelines. In each case, we analyze the classification
outputs as a function of the controlled strength of the
transformation. This allows us to empirically determine
critical thresholds for the attack’s effectiveness. Physical
triggers have also been realized and their effectiveness has
been tested in several settings. As a first step towards
exploring the causes for the observed effects, we also study
the interaction of the trigger with the face information
contained in the image. This sensitivity analysis allows us
to gain insights on the visual properties of the trigger that
are most relevant for the infectedmodel. Moreover, it pro-
vides an intuition on the feasibility and risk of backdoor
attacks in the physical domain.
The rest of this paper is structured as follows: Section 2

introduces backdoor attacks to neural networks, reviews
prior work on the topic, and positions our work within
the literature. Section 3 describes the method adopted
in our analysis and the experimental setting considered.

Section 4 reports the experimental results on the studied
face recognition model. In Section 5 documents the vali-
dation experiments and their results. Section 6 concludes
with a discussion.

2 Background and prior work
We consider a multi-class classification problem where an
input sample x ∈ R

N is assigned to one of the K classes in
{c1, . . . , cK }. This is achieved by a neural network model
F : R

N → R
K , with parameters induced during a train-

ing phase. F(·) takes as input a sample x and provides a
K-dimensional output vector whose kth element is inter-
preted as the probability of x belonging to class ck . The
decision on x is then taken by assigning the class with the
highest probability, i.e., d(x) = argmaxc∈{c1,...,cK } F(x)c.
The maximum value F(x)d(x) is interpreted as the classifi-
cation confidence.
Backdoor attacks belong to the class of causative attacks:

the attacker influences the training phase with the goal
of causing a specific behavior of the model at inference
time. Different threat models include the case where the
attacker has full access to the training set and can train
the network from scratch or the case where the attacker
can only retrain a pre-trained model (transfer-learning
scenario).
In this context, the peculiarity of backdoor attacks with

respect to conventional causative attacks is that the adver-
sarial effect should take place if the input sample contains
a specific pattern, called trigger, while the model should
behave normally when no trigger is present. We can for-
malize this by defining an embedding function�(x, s) that
inserts a trigger s into an input sample x, resulting in a new
input sample in the same space as x. Then, the attacker
wants to achieve that themodel F(·)misclassifies any sam-
ple �(x, s). The most relevant case is a targeted backdoor
with target class ct . Here, the attacker’s goal is to enforce
that

d(�(x, s)) = ct , ∀x.

The input x, the trigger s, and the embedding function
� are defined according to the experimental scenario and
kind of data. We will provide these specifications for our
analysis in Section 3. Moreover, in the following, we will
use the expression s-infected for both backdoored mod-
els trained to react to the trigger s and input samples that
“contain” the trigger s (i.e., are output of the embedding
function �). By contrast, we will refer to clean models
and inputs when training and testing are performed in
non-adversarial conditions. Figure 1 illustrates backdoor
attacks.
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Fig. 1 Illustration of backdoor attacks. The training set typically contains s-infected samples labeled with the target class. At inference time, the
model assigns samples containing the trigger to the target class, while classifying clean samples correctly

2.1 Known backdoor attacks and defenses
Backdoor attacks against neural networks have been first
proposed in [13] and extended in [14]. The attacker ini-
tially chooses the target class and the trigger. In the case
of images, the trigger can be an arbitrary set of pixel loca-
tions and values. Poisoning is carried out by acting on a
random subset of the training set, where the selected trig-
ger is embedded into the samples and the corresponding
label is set to the target class. By assumption, the attacker
has full control over the training procedure (including
dataset, loss function, learning rate, fraction of modified
data) and can adjust it to achieve her goals. Under these
conditions, the approach yields attack success rates of
more than 99% on the popular MNIST dataset [15], while
preserving good performance on data not exhibiting the
trigger.
More recently, the authors of [10] addressed a more

challenging transfer learning scenario where the attacker
inserts a backdoor in a pre-trained model by retraining it
with poisoned data. In order to compensate for the limited
control over the training data, rather than using arbi-
trary triggers, they derive a suitable trigger from the pre-
trained model. By doing so, they construct triggers that
achieve high success rates on models trained for different
application domains (from face recognition to speech pro-
cessing), while using few additional training samples. A
transfer learning scenario is also addressed in [16], where
the authors propose a procedure to inject backdoors that
can be transferred from a “teacher” model to a “student”
model. Moreover, recent approaches focused on improv-
ing the stealthiness of the trigger [17], which reduces
the visual detectability of backdoor attacks on images, as
well as the possibility to inject attacks without impos-
ing poisoned labels [18]. Backdoor attacks have also been
investigated for video signals [19].

Several defenses against backdoor attacks have been
proposed [20, 21]. The approach in [22] analyzes the inter-
nal activations of the network in order to find anomalies.
A similar idea is investigated in [23]. Neurons that are
supposedly less useful for classification are discarded at
inference time. In [24], the network is reverse-engineered
with an algorithm that estimates a candidate trigger
injected in the model. While all of these defense strategies
require white-box access to the neural network model,
the approach in [25] relies on black-box queries to the
model under investigation. The responses are statistically
analyzed to detect whether the model is backdoored and
whether a specific input sample contains a trigger.

2.2 Relation to prior work
Operating in a post-training scenario and in a black-box
setting, our sensitivity analysis is somewhat compara-
ble to the defense approach in [25]. However, the cited
work studies multi-class problems in image recognition
(MNIST and CIFAR10, 10 classes in each case), while
we address a face recognition problem involving larger
images and a higher number of classes (more than 2000),
as detailed in Section 3.1. Also, the authors of [26] ana-
lyze responses of backdoored face recognitionmodels, but
with a different scope. They aim at finding defense strate-
gies, while not evaluating the impact of possible transfor-
mations of the trigger signal. Our analysis is also related
to the work in [12], which explores geometric transfor-
mations of an adversarial patch. However, this source is
limited to evasion attacks and does not generalize to the
causative attacks studied here.
More generally, our work contains conceptual similari-

ties to studies in the field of digital watermarking, where
the robustness of a watermark is evaluated with respect to
distortions of the watermarked signal [27, 28]. While this
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literature focusses on transformations of the entire input
signal (i.e., after embedding), we process the trigger signal
before embedding.

3 Method
Now, we describe our sensitivity analysis of the responses
of backdoored neural networks with respect to varia-
tions in the trigger signal. We consider the domain of
face recognition; thus, our input samples are images x ∈
R
H·W ·C , where H,W, and C denote width, height, and the

number of color channels, respectively. Using the notation
introduced in Section 2, we study a pre-trained s-infected
model F(·) targeted to a specific class ct . For each input
sample x, d(x) = argmaxc∈{c1,...,cK } F(x)c is the assigned
class and F(x)d(x) is the classification confidence. The trig-
ger s is also an image of the same size as x, but it has
an additional opacity layer with values in [ 0, 1]; thus, s ∈
R
H·W ·(C+1).
We introduce a family of transformation functions

φθ : RH·W ·(C+1) −→ R
H·W ·(C+1) depending on a strength

parameter θ ∈ � used to transform the trigger before
being embedded into an image.
The embedding function is defined as a linear blending

operation with parameter λ ∈[ 0, 1] between the image x
and the trigger s that also encompasses the opacity layer of
s. By explicitly indicating the image indices as subscripts,
the embedding function is given by:

�λ(x, s)h,w,c =(1 − λ · sh,w,C+1) · xh,w,c+ (1)
λ · sh,w,C+1 · sh,w,c

for h = 1, . . . ,H , w = 1, . . . ,W , c = 1, . . . ,C, where the
index C + 1 in the third dimension refers to the opacity
layer.
Given a dataset of clean testing samples X, for each

transformation, we create a version�λ(X,φθ (s)) ofX con-
taining φθ (s)-infected samples. When φθ (·) is the identity
function, we are in the baseline case where the model is
both trained and tested with s-infected images. Other-
wise, a mismatch occurs and wemeasure its impact on the
model performance.
For each dataset variant �λ(X,φθ (s)), we compute the

following performance metrics:

1. ACC: accuracy (rate of φθ (s)-infected samples
assigned to the correct class);

2. ASR: attack success rate (rate of φθ (s)-infected
samples assigned to the target class ct);

3. CM: average classification confidence over the
images in �λ(X,φθ (s)) (regardless of the class
assignment);

4. CCM: average classification confidence over the
images in �λ(X,φθ (s)) assigned to the correct class;

5. CTM: average classification confidence over the
images in �λ(X,φθ (s)) assigned to the target class ct .

3.1 Experimental setup
We use as F(·) the pre-trained models proposed in [10]
and available at [29]. As mentioned in Section 2.1, in
this approach to backdoor attacks, the adversary does not
need access to the full training set. Instead, she finds a
candidate trigger s by heuristic optimization and tunes an
existing model by retraining it with additional s-infected
samples. The authors of [10] placed a backdoor into the
face recognition model proposed in [30], which is trained
on the VGG Face Dataset [31] and outputs a probabil-
ity vector with 2622 dimensions, one for each identity
appearing in the training set.
For our own experiments, we consider asX two datasets

of face images used in [10], denoted as OR and EXT
dataset. TheOR dataset is composed of 2622 JPEG images
depicting distinct faces corresponding to the identities
in the training dataset [31]. For the OR dataset, we
can compute the accuracy of s-infected models (ACC,
CCM). The values should be comparable to the per-
formance of the original model. The EXT dataset con-
tains 1000 JPEG images of faces from subjects who
do not appear in the training set. This dataset can
only be used to measure the effectiveness of the attack
(ASR, CTM).
Our embedding function in Eq. (1) corresponds to the

one used in [10] for training and evaluation. We adopt the
choice of λ = 0.7 for all our experiments.
Two infected models for face recognition are released at

[29]. Both yield an accuracy of ∼ 0.75 on clean inputs of
OR, which is 0.03 less than the clean original model. For
our experiments, we select the stronger one in terms of
ASR, i.e., the one based on a square-shaped trigger (see
Fig. 2). It yields an ASR close to 0.9 on s-infected images
under baseline conditions.

3.2 Transformations
The transformation families selected for our analysis are
reported in Tables 1, 2, and 3. For the sake of clarity,
we have grouped them in categories, namely geometric,
occlusive, and color transformations. Each transformation
is associated with an icon that will be used to annotate the
experimental results.
For the rotation, resizing, and sharing operations,

we always align the centers of the baseline square-
shaped and transformed triggers in the resulting image
before blending. In these cases, the trigger images
also undergo resampling and interpolation processes,
which introduce additional artifacts in the signal
[32, 33].
For contrast, sharpness adjustment, and median filter-

ing, we employed the implementation provided in the
Python Pillow library (v6.10). The “fading to grayscale”
transformation linearly blends the trigger image with its
grayscale version.

https://pillow.readthedocs.io/en/stable/
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Fig. 2 Visualization of the target class and the square-shaped trigger used in [10]

3.3 Embedding process variants
Figure 3 visualizes the process applied to create
�λ(x,φθ (s)) for each clean image x. The pipeline
adopted from [10] stores the test images �(X,φθ (s))
in JPEG format with default quality factor 75. How-
ever, this operation introduces further distortion and
artifacts, as widely investigated in the field of digital
image forensics [34, 35]. In order to assess the effect
of lossy post-compression on the performance of the
backdoored classifier, we repeat our experiments without
JPEG compression and decompression (i.e., skipping
the red area in Fig. 3) and feeding the s-infected model
directly with the output of the embedding function. Due
to limitations of the data source, we cannot avoid that
the clean images are pre-compressed with JPEG in all
experiments.

4 Results
We report the main results for different trigger trans-
formations in Section 4.1. Then, we move on to the
exploration of causes and the validation in the physical
domain. Section 4.2 reports the impact of the JPEG post-
compression. Section 4.3 sheds light on the interaction
of the trigger with image content, using a breakdown of

Table 1 Geometric transformations

the dataset by the amount of overlap between the default
trigger and the depicted face.

4.1 Trigger transformations
Figure 4 reports the results for applying the different
transformations to the trigger before embedding. For each
transformation, we selected a suitable parameter range
� by inspecting preliminary results from a small subset
of the sample. The plots in the left column show suc-
cess rates (ACC and ASR) as a function of the strength of
the transformation. The average confidence values (CM,
CCM, CTM) appear on the right. The graphs are best
read by interpreting the interaction of the ACC and ASR
metrics along the horizontal axis, and with respect to the
baseline (identity function), which is marked in with a gray
vertical line in each plot (ACC=0.10 and ASR=0.89).
We summarize our observations as follows:

1. Monotonicity: for most of the transformations, the
ASR decays monotonically when moving away from
the baseline case, whereas the ACC increases
towards the accuracy obtained by the model in case
of clean inputs (0.75), as expected. Consistent trends
are also observed for the CCM and CTM metrics.
However, there are exceptions. For contrast
enhancement, increasing opacity, and shifting the

Table 2 Occlusive transformations
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Table 3 Color transformations

trigger towards the centre of the image, the ASR
increases after the application of φθ (·). Interestingly,
all shifting transformations are not monotonic
around the baseline. They exhibit local maxima
around 0 and at multiples of 8, which could be
related to JPEG compression artifacts. Recall that the
JPEG format cuts images into blocks of 8 × 8 pixels
before quantizing in the frequency domain. A
representation of the trigger alignment with respect
to the JPEG grid is reported in Fig. 5. Sharpness
adjustment stands out in having almost no impact on
the attack. A speculative explanation is that sharpness
is modified by linear filtering. The effect might be

neutralized in the convolutional layers of the DNN.
2. Symmetry: some transformations are defined

symmetrically around the baseline. In case of
brightness adjustments, shearing, and rotation
(although the last one is not entirely displayed in the
plot), this symmetry also holds for the response of the
metrics. Only resizing exhibits a notable asymmetry:
downsizing is much more impactful than upsizing.

3. Slope: for occlusive transformations, we can compare
the slope of the ASR decay under the same ratio of
removed pixels θ . We observe that occluding the
bottom-right part or the outer part of the square
trigger is equivalent to randomly removing the same
number of pixels. However, the upper-left and inner
parts of the trigger have a much bigger impact when
removed. This indicates that certain parts of the
trigger signal are more relevant than others. The
sensitivity of the upper-left part may also relate to the
image content covered by the trigger.

4. Hitting the target : For each combination of
transformation and parameter value tested, the ACC
and ASR essentially sum up to 1. This means that
almost every misclassification goes to the target class
ct .

For space constraints, the results for the EXT dataset
are reported in Appendix A for the geometric transforma-
tions, as they will be of interest in Section 5.1. The ASR is
consistently higher in the EXT dataset. This holds already
for the baseline case (where the ASR is close to 1.0) and
leads to a generally slower decay, possibly caused by the
absence of face information that are actually known to the
classifier. Tests on all the transformations show that we
can draw the same conclusions in terms of monotonicity,
symmetry, slope, and hitting the target. Given this high
level of consistency, we deem it justified to focus on the
OR dataset for the following two subsections.

Fig. 3 Block diagram of the trigger embedding and inference pipeline including lossy compression
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Fig. 4 Experimental results for different transformation functions applied to the OR dataset. In each case, represented by the corresponding icon,
we plot the performance metrics as functions of the transformation parameter θ . The left plots report ACC and ASR (in green and red, respectively),
and the right plots reports the average confidence values CM, CCM, and CTM (in blue, green, and red, respectively). The baseline case where φθ (·) is
the identity function is indicated with a vertical gray line. The horizontal orange line marks the level of ACC and ASR equal to 0.5
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Fig. 5 Trigger alignment with respect to the 8 × 8 JPEG grid. The
top-left corner of the squared trigger is misaligned by one pixel to the
right and one pixel to the bottom

4.2 JPEG recompression
The JPEG post-compression after the embedding func-
tion, as depicted in Fig. 3, has a small but stable impact
on the success rate of the backdoor attack. We measure
this by subtracting the attack success rate obtained when
skipping the post-compression phase depicted in Fig. 3
from the ASR computed in Section 4.1, thus obtaining the
metric �NPC (no post-compression).
Table 4 reports the statistics of�NPC. Different columns

report the average, minimum, and maximum �NPC
observed over different parameters of the considered
transformations, which are arranged row-wise. The values
are concentrated in the interval [− 0.01, 0.01] and consis-
tently show that the attack is marginally more successful
if the post-compression is omitted. This refutes hypothe-
ses suggesting that the backdoor attack picks up the JPEG
artifacts occurring specifically at the boundary between
the trigger and the background, as the ASR at baseline
conditions decreases by 0.68%.

4.3 Overlap with image content
Next, we seek to identify potential causes for the over-
all response of the s-infected model, also in the light of
the observations made in Section 4.1. In particular, we
study the impact of the location of the squared trigger area
(which is fixed in all s-infected samples) with respect to
the depicted face (which varies across images). We split
the OR dataset into three exclusive categories represent-
ing the level of overlap between the squared trigger and
the face, namely:

Table 4 Statistics of �NPC over different parameters when JPEG
recompression is omitted

Transformation JPEG “advantage” �NPC

Avg Min Max

Rotation − 0.0049 − 0.0110 − 0.0007
Resizing − 0.0034 − 0.0122 0.0034
Horizontal shearing − 0.0065 − 0.0091 − 0.0045
Vertical shearing − 0.0039 − 0.0068 − 0.0019
Horizontal shifting − 0.0044 − 0.0102 0.0000
Vertical shifting − 0.0053 − 0.0110 − 0.0003
Diagonal shifting − 0.0064 − 0.0186 0.0015
Top-left diagonal occlusion − 0.0022 − 0.0076 − 0.0003
Bottom-right diagonal occlusion − 0.0057 − 0.0137 0.0007
Inner rectangular occlusion − 0.0038 − 0.0148 0.0000
Outer rectangular occlusion − 0.0036 − 0.0095 0.0011
Random occlusion − 0.0062 − 0.0095 0.0003
Contrast adjustment − 0.0023 − 0.0068 0.0019
Median filtering −0.0037 −0.0045 −0.0026
Brightness adjustment − 0.0041 − 0.0133 0.0007
Sharpness adjustment − 0.0057 − 0.0076 − 0.0034
Fading to grayscale −0.0046 −0.0091 0.0000
Opacity adjustment − 0.0032 − 0.0086 0.0049

• FREE: no overlap at all.
• TOUCH: overlap with the face boundary, but not

with the mouth.
• OVERLAP: overlap with the face boundary and the

mouth.
We do this by running a face landmark detector1 on the

2622 clean face images and counting howmany and which
landmarks fall into the squared area occupied by the trig-
ger after embedding (in the baseline case). Figure 6 states
the category definitions with respect to the landmark loca-
tions, reports the number of images in each category, and
shows one illustrating example.
Figure 7 reports the results for selected transforma-

tions of Section 4.1 broken down by the three categories.
Observe that the curves for the TOUCH and OVERLAP
categories consistently co-move, whereas the FREE curves
are significantly distant. This shows that having no inter-
action with the face information has indeed improved the
attack’s effectiveness for this backdoored model. This gap
exists under baseline conditions and is generally preserved
when θ varies.
The analysis of the occlusive transformations (top right

plots in Fig. 7) reveals that the gap is even more pro-
nounced when θ = 1 (i.e, when the squared area is com-
pletely removed). This suggests that the infected model
has problems in correctly classifying the faces in the
FREE category even if they are clean. To investigate this
further, we replicated the break-down by category on
clean images only, using the clean model, i.e., the model
without backdoor. Table 5 reports the performance

1We use the dlib library.

https://pypi.org/project/dlib/
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Fig. 6 Examples of the three content-based categories

metrics for these tests. Observe that the FREE category
(first column) stands out also in this case, as the classi-
fication accuracy for it is significantly lower than in the
other two categories (second and third column). It seems
that the clean model [30] that served as basis for the
attack [10] has more general difficulties in the recogni-
tion of small faces. Specifically for samples on which the
clean model was already not very accurate, the poison-
ing process biased the decision on misclassified samples
towards the target class ct . A closer inspection of this
bias is an interesting topic for future investigations, as it
might inform better defenses by detecting the presence of
a backdoor in DNNs.

5 Validation
This section presents the results of two experiments vali-
dating the analysis in Section 4. First, in order to evaluate

whether the results obtained can be related to practi-
cal scenarios, we have conducted an analysis where the
trigger is passed to the DNN through a real object cap-
tured in the physical domain (Section 5.1). Second, we
have extended our sensitivity test to another known task
in automatic face analysis, i.e., the recognition of the
subject’s age. This will allow us to observe differences
and similarities with respect to the findings reported in
Section 4.1, as detailed in Section 5.2.

5.1 Physical domain
The creation of adversarial attacks in the physical domain
has been studied in [36–38]. The goal is to assess the capa-
bilities of an attacker to compromise learning-based sys-
tems by performing specific operations in the real world.
For the case of face recognition, such an analysis is par-
ticularly interesting, as face recognition systems typically

Fig. 7 Overlap with image content: ACC and ASR values for selected transformations aggregated by category
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Table 5 Performance of the clean (top) and s-infected (bottom)
models on the clean version of the OR dataset broken down by
the degree of overlap

FREE TOUCH OVERLAP

Clean ACC 0.54 0.98 0.97

model ASR 0.00 0.00 0.00

s-infected ACC 0.48 0.95 0.91

model ASR 0.32 0.03 0.06

capture live probes of the subjects to be identified, which
could show a known trigger signal in order to bypass the
backdoored system.
Inspired by these approaches, we have created trigger

objects by printing out the image of the squared trig-
ger with different resolutions and placing them on a rigid
background. A holder has been mounted on the back of
each printed trigger, so that a user could easily hold it in
his/her hand (see Fig. 8a). For the sake of clarity, in the fol-
lowing, we will use the terms digital and physical trigger
to indicate the digital trigger image and the trigger object,
respectively.
A number of probe images have been acquired from vol-

unteers, who positioned the physical trigger in front of a
webcam window next to their face (see Fig. 8b). A sub-
set of the geometric transformations has been selected for

this analysis, namely rotation, resizing, as well as horizon-
tal, vertical, and diagonal shifting.
Figure 8c shows the interface designed to capture probe

images. Users are in front of a webcam and can see
their live acquisition. First, a clean reference image is
captured. This serves as background to insert a digital
trigger with the selected geometric transformations, as
described in Section 3. Then, users are asked to hold the
physical trigger and sequentially place it in the positions
corresponding to the same geometric transformations as
displayed in the webcam window. Whenever the posi-
tion matches the red frame, a probe image is captured.
Pairs of images containing digital and physical triggers
are then passed to the φθ (s)-infected model, allowing
a pairwise comparison of the key outputs (class and
confidence).
Acquisitions from 8 volunteers have been collected in

different environments and heterogeneous illumination
conditions. Since the identity of the volunteers are not
known to the model, the situation corresponds to the case
of the EXT dataset. Thus, we should refer to the results
in Appendix A, and we cannot compute the classification
accuracy ACC.
The results are summarized in Fig. 9. It is worth

observing the similarity of the ASR when using the
physical or digital trigger, respectively, under the same
transformation using multiple strength parameters. This
confirms that the capabilities of bypassing the backdoored

Fig. 8 Implementation of the validation experiments in the physical domain
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Fig. 9 Results for pairs of digital and physical triggers (transformations in columns; outcomes in rows). The first two rows report the average ASR over
all 8 subjects and tested transformation strengths. The third row reports the average loss in classification confidence CM when comparing digital
and physical triggers for the same transformation (i.e., a positive loss means decreasing confidence in the physical domain), plotted as a function of
the strength parameter (horizontal axis). Vertical bars indicate minimum and maximum loss at each horizontal support point. The last two rows
report results for two sample subjects (red for digital, purple for physical trigger). The vertical position indicates CM and bubbles indicate successful
attacks (i.e., assignment of the target class)

model reported for the digital trigger generalize to the
physical trigger.
However, the confidence of the network’s decision is

in general lower when physical triggers are used, as it
is shown by the plots of the CM loss in the third row.
With this respect, we found noteworthy between-subject
differences, as exemplified in the bottom two rows. Sub-
ject A exhibits a discrepancy in the decision confidence
already in the baseline trigger position, which extends to
the transformations. By contrast, the confidence values for
subject B are aligned at the baseline position but diverge
for intermediate transformation strengths onwards.

5.2 Age recognition task
We have considered the age recognition task addressed in
[39], where the goal is to assign each face image to the
correct age range, where 7 different age ranges are consid-
ered (0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60+). We
used the backdoored model for this task that is available
at [29], and it is poisoned to assign the class 0-2 if the trig-
ger shown in Fig. 10 appears. The corresponding dataset
is composed of 1000 images with size 224 × 224 × 4.
Note that this experimental setup shares similarities

with the one considered in Section 4: the infected model
has been re-trained with the same poisoning method
proposed in [10] for the face recognition task; a square
trigger is adopted also in this case, although the pattern

used is different as it is determined depending on the
original clean model. However, the architecture used for
this task is quite different than the face recognition case.
Moreover, the nature of the classification problem is also
radically different, both in terms of number of classes and
intrinsic difficulties due to the data variability.

Fig. 10 Example of trojaned image for the age recognition task
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Fig. 11 Experimental results for different transformation functions for the age recognition task. In each case, represented by the corresponding icon,
we plot the performance metrics as functions of the transformation parameter θ . The left plots report ACC and ASR (in green and red, respectively),
and the right plots reports the average confidence values CM, CCM, and CTM (in blue, green, and red, respectively). The baseline case where φθ (·) is
the identity function is indicated with a vertical gray line
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Fig. 12 Visualization of transformed triggers for which the empirical ASR is below 0.5 over the entire dataset. For each transformation, the closest
parameter value with respect to the baseline is depicted and reported below the icon
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We performed the same analysis as in Section 4.1, so
that we can assess potential similarities and differences in
terms of sensitivity of the trigger perturbations. Results
are reported in Fig. 11.
In terms of points 1 (monotonicity), 2 (symmetry), and

4 (“hitting the target”), we can get to very similar con-
clusions as in Section 4.1. One exception is given by the
shifting operations that here behave much more symmet-
rically than for the face recognition case; thus, we do not
find that moving the trigger in a more central position
in the image is beneficial for attack success. Moreover,
regarding point 3 (slope), the different occlusive transfor-
mations all have a very similar impact at the same ratio of
pixels removed. This is related to a more general behav-
ior observed in Fig. 11, i.e., that the ASR curves are less
steep than what observed in Section 4.1. In fact, the ASR
is already below 85% at the baseline trigger state (i.e.,
the best condition for the attack), but it never decreases
below 40% even when the trigger is absent (see complete
occlusions). This corroborates the observation made in
Section 4.3, where we found that the bias of the infected
model towards the target class in the absence of the trigger
is particularly strong when the original model is not accu-
rate on clean data. Here, the initial accuracy of the original
model on clean data is only around 55% and, after poi-
soning, almost all the misclassifications assign the target
class.

6 Conclusions
To the best of our knowledge, we have conducted the
first sensitivity analysis of a selected backdoored neural
network with the objective to evaluate the impact of pro-
cessing operations applied to the trigger signal on the
effectiveness of the attack. Figure 12 offers a visual sum-
mary of the critical values for the strengths of the trans-
formations. We can observe that the attack is somewhat
robust to trigger transformations since we did not find
any visually imperceptible transformation that reduces the
success rate to less than 0.5.
While these conclusions are certainly informative, the

most constraining limitation of this work is the focus
on powerful yet limited instances of backdoored mod-
els for face recognition. This limits the generalizabil-
ity of our conclusions, as it happens for many studies
in this emerging field with so many unknowns. How-
ever, when applying the same trigger transformations to
a poisoned model dealing with a different classification
problem, similar patterns in terms of monotonicity, sym-
metry, and classification error distribution have been
observed, although with some specificities. Moreover,
these findings are generally confirmed by experiments
performed in the physical domain with trigger objects.
We see our results as a first valuable step, a benchmark

for future work, and possibly as a source for inspiration

to study novel approaches to defense. More specific con-
tributions of this work include raising awareness in DNN-
based security applications for the effect of the compres-
sion pipeline and image processing manipulations with
low semantic impact, an issue that is rarely considered
in computer vision and systems security, whereas highly
studied in multimedia security [32, 34, 40, 41]. A more
systematic study of the interaction between image content
and trigger signals relates to the more general question of
how superimposed signals interact with networks’ deci-
sions, a topic of interest in deep network interpretability.
Linking these streams of research could help to form
a better understanding of the limits and potentialities
of backdoor attacks against DNNs. Moreover, investi-
gations should be carried out exploring how much the
attacker can prevent the decrease of success rate by apply-
ing trigger transformations already during the poisoning
phase.
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