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Abstract

Backdoor attacks against supervised machine learning methods seek to modify the training samples in such a way that,
atinference time, the presence of a specific pattern (trigger) in the input data causes misclassifications to a target class
chosen by the adversary. Successful backdoor attacks have been presented in particular for face recognition systems
based on deep neural networks (DNNs). These attacks were evaluated for identical triggers at training and inference
time. However, the vulnerability to backdoor attacks in practice crucially depends on the sensitivity of the backdoored
classifier to approximaterigger inputs. To assess this, we study the response of a backdoored DNN for face recognition
to trigger signals that have been transformed with typical image processing operators of varying strength. Results for
different kinds of geometric and color transformations suggest that in particular geometric misplacements and partial
occlusions of the trigger limit the effectiveness of the backdoor attacks considered. Moreover, our analysis reveals that
the spatial interaction of the trigger with the subject’s face affects the success of the attack. Experiments with physical

triggers inserted in live acquisitions validate the observed response of the DNN when triggers are inserted digitally.
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1 Introduction
The field of machine learning has experienced tremen-
dous developments in the recent years. Inexpensive
compute power in data-parallel architectures and the
availability of large labeled datasets have spurred a race for
increasingly advanced models, which are able to capture
ever more complex structures of the underlying distri-
bution [1]. Originating from computer vision, the use of
deep neural networks (DNN) has led to unprecedented
performance in many automatic learning tasks [2]. As a
result, DNNs will likely become a key element in security
decisions, such as in identification, authentication, and
intrusion detection.

However, many machine learning methods are vulner-
able to attacks that can compromise their performance
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in adversarial scenarios [3], where a malicious user can
modify the data used for training or at inference time.
Pioneering works in machine learning security [4, 5] have
proposed a taxonomy of possible attacks, categorizing
them by the domain of influence, the knowledge available
to the adversary, and the protection goals violated. Sub-
sequent explorations of this attack space have confirmed
vulnerabilities to machine learning in general and, more
recently, deep learning in particular [6, 7].

Many studies focus on explorative (or evasion) attacks
(i.e., adversarial examples), where the adversary acts at
inference time by creating strategically modified inputs
with the goal of causing misclassification. In causative (or
poisoning) attacks, the adversary instead manipulates the
training samples strategically in order to affect the per-
formance of the classifier at inference time [8]. While less
studied than explorative attacks, causative attacks can be
powerful and hard to detect [9].
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In this work, we focus on backdoor attacks, a class of
causative attacks where the model is trained to output a
certain target class when a specific pattern (called trigger)
is present in the input sample. Backdoor attacks pose a
significant security risk to several application domains of
neural networks. A particularly relevant case is face recog-
nition. Recent works have proposed training strategies
that lead a classifier to assign a specific identity whenever
the trigger is present, regardless of whose face is depicted.
The literature reports an impressive effectiveness of this
attack [10]. As demonstrated in [11], this paves the way
to attacks in the physical world, where an attacker could
fool camera-based face recognition systems by exhibiting
a trigger-like object in front of the camera.

The backdoored models proposed in the literature are
typically designed and tested scenarios where the mali-
cious input data presented to the model at inference time
carries exactly the same trigger used for training. This
carries the implied assumption that the attacker has full
control over the input data. In practice, however, inputs
can be pre-processed images or probes acquired in real-
time from a physical sensor. This distortion of the trigger
information, for instance due to geometric displacement
or varying illumination conditions, is often beyond the
attacker’s control. While these factors have been investi-
gated in the context of adversarial examples [12], we are
not aware of similar work for backdoor attacks.

To close this gap, the present work studies the sensi-
tivity of a backdoored model to triggers that have been
transformed with typical signal processing operators. We
choose a recently proposed model for the domain of face
recognition [10] and consider a post-training scenario,
where the classifier is given a modified trigger with respect
to the one it has been trained to recognize. We apply
different kinds of transformations, including geometric
transformations, occlusion, and different image compres-
sion pipelines. In each case, we analyze the classification
outputs as a function of the controlled strength of the
transformation. This allows us to empirically determine
critical thresholds for the attack’s effectiveness. Physical
triggers have also been realized and their effectiveness has
been tested in several settings. As a first step towards
exploring the causes for the observed effects, we also study
the interaction of the trigger with the face information
contained in the image. This sensitivity analysis allows us
to gain insights on the visual properties of the trigger that
are most relevant for the infected model. Moreover, it pro-
vides an intuition on the feasibility and risk of backdoor
attacks in the physical domain.

The rest of this paper is structured as follows: Section 2
introduces backdoor attacks to neural networks, reviews
prior work on the topic, and positions our work within
the literature. Section 3 describes the method adopted
in our analysis and the experimental setting considered.
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Section 4 reports the experimental results on the studied
face recognition model. In Section 5 documents the vali-
dation experiments and their results. Section 6 concludes
with a discussion.

2 Background and prior work

We consider a multi-class classification problem where an
input sample x € RN is assigned to one of the K classes in
{c1,...,Ck}. This is achieved by a neural network model
F: RN — RK, with parameters induced during a train-
ing phase. F(-) takes as input a sample x and provides a
K -dimensional output vector whose Kth element is inter-
preted as the probability of x belonging to class . The
decision on x is then taken by assigning the class with the
highest probability, i.e., d(x) = argmaxce(c,,. o} FX)c.
The maximum value F (x)q(x) is interpreted as the classifi-
cation confidence.

Backdoor attacks belong to the class of causative attacks:
the attacker influences the training phase with the goal
of causing a specific behavior of the model at inference
time. Different threat models include the case where the
attacker has full access to the training set and can train
the network from scratch or the case where the attacker
can only retrain a pre-trained model (transfer-learning
scenario).

In this context, the peculiarity of backdoor attacks with
respect to conventional causative attacks is that the adver-
sarial effect should take place if the input sample contains
a specific pattern, called trigger, while the model should
behave normally when no trigger is present. We can for-
malize this by defining an embedding function W (x, s) that
inserts a trigger s into an input sample x, resulting in a new
input sample in the same space as x. Then, the attacker
wants to achieve that the model F () misclassifies any sam-
ple W (x,s). The most relevant case is a targeted backdoor
with target class ct. Here, the attacker’s goal is to enforce
that

d(¥(x,s)) =c¢, Vx.

The input x, the trigger s, and the embedding function
W are defined according to the experimental scenario and
kind of data. We will provide these specifications for our
analysis in Section 3. Moreover, in the following, we will
use the expression s-infected for both backdoored mod-
els trained to react to the trigger s and input samples that
“contain” the trigger s (i.e., are output of the embedding
function W). By contrast, we will refer to clean models
and inputs when training and testing are performed in
non-adversarial conditions. Figure 1 illustrates backdoor
attacks.
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Fig. 1 lllustration of backdoor attacks. The training set typically contains s-infected samples labeled with the target class. At inference time, the
model assigns samples containing the trigger to the target class, while classifying clean samples correctly
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2.1 Known backdoor attacks and defenses

Backdoor attacks against neural networks have been first
proposed in [13] and extended in [14]. The attacker ini-
tially chooses the target class and the trigger. In the case
of images, the trigger can be an arbitrary set of pixel loca-
tions and values. Poisoning is carried out by acting on a
random subset of the training set, where the selected trig-
ger is embedded into the samples and the corresponding
label is set to the target class. By assumption, the attacker
has full control over the training procedure (including
dataset, loss function, learning rate, fraction of modified
data) and can adjust it to achieve her goals. Under these
conditions, the approach yields attack success rates of
more than 99% on the popular MNIST dataset [15], while
preserving good performance on data not exhibiting the
trigger.

More recently, the authors of [10] addressed a more
challenging transfer learning scenario where the attacker
inserts a backdoor in a pre-trained model by retraining it
with poisoned data. In order to compensate for the limited
control over the training data, rather than using arbi-
trary triggers, they derive a suitable trigger from the pre-
trained model. By doing so, they construct triggers that
achieve high success rates on models trained for different
application domains (from face recognition to speech pro-
cessing), while using few additional training samples. A
transfer learning scenario is also addressed in [16], where
the authors propose a procedure to inject backdoors that
can be transferred from a “teacher” model to a “student”
model. Moreover, recent approaches focused on improv-
ing the stealthiness of the trigger [17], which reduces
the visual detectability of backdoor attacks on images, as
well as the possibility to inject attacks without impos-
ing poisoned labels [18]. Backdoor attacks have also been
investigated for video signals [19].

Several defenses against backdoor attacks have been
proposed [20, 21]. The approach in [22] analyzes the inter-
nal activations of the network in order to find anomalies.
A similar idea is investigated in [23]. Neurons that are
supposedly less useful for classification are discarded at
inference time. In [24], the network is reverse-engineered
with an algorithm that estimates a candidate trigger
injected in the model. While all of these defense strategies
require white-box access to the neural network model,
the approach in [25] relies on black-box queries to the
model under investigation. The responses are statistically
analyzed to detect whether the model is backdoored and
whether a specific input sample contains a trigger.

2.2 Relation to prior work

Operating in a post-training scenario and in a black-box
setting, our sensitivity analysis is somewhat compara-
ble to the defense approach in [25]. However, the cited
work studies multi-class problems in image recognition
(MNIST and CIFAR10, 10 classes in each case), while
we address a face recognition problem involving larger
images and a higher number of classes (more than 2000),
as detailed in Section 3.1. Also, the authors of [26] ana-
lyze responses of backdoored face recognition models, but
with a different scope. They aim at finding defense strate-
gies, while not evaluating the impact of possible transfor-
mations of the trigger signal. Our analysis is also related
to the work in [12], which explores geometric transfor-
mations of an adversarial patch. However, this source is
limited to evasion attacks and does not generalize to the
causative attacks studied here.

More generally, our work contains conceptual similari-
ties to studies in the field of digital watermarking, where
the robustness of a watermark is evaluated with respect to
distortions of the watermarked signal [27, 28]. While this
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Fig. 2 Visualization of the target class and the square-shaped trigger used in [10]
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3.3 Embedding process variants

Figure 3 visualizes the process applied to create
W, (x,¢9(s)) for each clean image x. The pipeline
adopted from [10] stores the test images W (X, ¢g(s))
in JPEG format with default quality factor 75. How-
ever, this operation introduces further distortion and
artifacts, as widely investigated in the field of digital
image forensics [34, 35]. In order to assess the effect
of lossy post-compression on the performance of the
backdoored classifier, we repeat our experiments without
JPEG compression and decompression (i.e., skipping
the red area in Fig. 3) and feeding the s-infected model
directly with the output of the embedding function. Due
to limitations of the data source, we cannot avoid that
the clean images are pre-compressed with JPEG in all
experiments.

4 Results

We report the main results for different trigger trans-
formations in Section 4.1. Then, we move on to the
exploration of causes and the validation in the physical
domain. Section 4.2 reports the impact of the JPEG post-
compression. Section 4.3 sheds light on the interaction
of the trigger with image content, using a breakdown of

Table 1 Geometric transformations

Name Icon Parameter 0

Rotation * Counter-clockwise rotation angle

Resize @ Resizing factor
Horizontal Angle between left (right) trigger side
shearing and vertical axis

Vertical Angle between top (bottom) trigger
shearing side and horizontal axis
Horizontal E . .
shifting Number of pixel to the right
Vertical l}’ .

shifting Number of pixel to the bottom
Diagonal B Number of pixel to the right and to
shifting the bottom

the dataset by the amount of overlap between the default
trigger and the depicted face.

4.1 Trigger transformations

Figure 4 reports the results for applying the different
transformations to the trigger before embedding. For each
transformation, we selected a suitable parameter range
® by inspecting preliminary results from a small subset
of the sample. The plots in the left column show suc-
cess rates (ACC and ASR) as a function of the strength of
the transformation. The average confidence values (CM,
CCM, CTM) appear on the right. The graphs are best
read by interpreting the interaction of the ACC and ASR
metrics along the horizontal axis, and with respect to the
baseline (identity function), which is marked in with a gray
vertical line in each plot (ACC=0.10 and ASR=0.89).

We summarize our observations as follows:

1. Monotonicity: for most of the transformations, the
ASR decays monotonically when moving away from
the baseline case, whereas the ACC increases
towards the accuracy obtained by the model in case
of clean inputs (0.75), as expected. Consistent trends
are also observed for the CCM and CTM metrics.
However, there are exceptions. For contrast
enhancement, increasing opacity, and shifting the

Table 2 Occlusive transformations

Name Icon Parameter 6

Top-left
diagonal
occlusion
Bottom-right
diagonal
occlusion
Inner
rectangular
occlusion

Outer
rectangular
occlusion

Ratio of pixels removed from the
square-shaped area of the trigger

w ] b ] ] (]

Random
occlusion



Pasquini and BGhmeURASIP Journal on Information Security

Fig. 5 Trigger alignment with respect to the 8 x 8 JPEG grid. The
top-left corner of the squared trigger is misaligned by one pixel to the
right and one pixel to the bottom

4.2 JPEG recompression

The JPEG post-compression after the embedding func-
tion, as depicted in Fig. 3, has a small but stable impact
on the success rate of the backdoor attack. We measure
this by subtracting the attack success rate obtained when
skipping the post-compression phase depicted in Fig. 3
from the ASR computed in Section 4.1, thus obtaining the
metric Anpc (no post-compression).

Table 4 reports the statistics of Anpc. Different columns
report the average, minimum, and maximum Anpc
observed over different parameters of the considered
transformations, which are arranged row-wise. The values
are concentrated in the interval [ — 0.01,0.01] and consis-
tently show that the attack is marginally more successful
if the post-compression is omitted. This refutes hypothe-
ses suggesting that the backdoor attack picks up the JPEG
artifacts occurring specifically at the boundary between
the trigger and the background, as the ASR at baseline
conditions decreases by 0.68%.

4.3 Overlap with image content

Next, we seek to identify potential causes for the over-
all response of the s-infected model, also in the light of
the observations made in Section 4.1. In particular, we
study the impact of the location of the squared trigger area
(which is fixed in all s-infected samples) with respect to
the depicted face (which varies across images). We split
the OR dataset into three exclusive categories represent-
ing the level of overlap between the squared trigger and
the face, namely:
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Table 4 Statistics of Anpc over different parameters when JPEG
recompression is omitted

Transformation JPEG "advantage” Anpc

Avg Min Max
Rotation —00049  —00110  —0.0007
Resizing —00034 —00122 00034
Horizontal shearing — 0.0065 —0.0091 — 0.0045
Vertical shearing —0.0039 — 0.0068 —0.0019
Horizontal shifting — 0.0044 —0.0102 0.0000
Vertical shifting — 0.0053 —0.0110 — 0.0003
Diagonal shifting — 0.0064 —0.0186 0.0015
Top-left diagonal occlusion —0.0022 —0.0076 —0.0003
Bottom-right diagonal occlusion —0.0057 —0.0137 0.0007
Inner rectangular occlusion —0.0038 —0.0148 0.0000
Outer rectangular occlusion —0.0036 —0.0095 0.0011
Random occlusion — 0.0062 — 0.0095 0.0003
Contrast adjustment —0.0023 — 0.0068 0.0019
Median filtering —0.0037 —0.0045 —0.0026
Brightness adjustment —0.0041 —0.0133 0.0007
Sharpness adjustment —0.0057 —0.0076 —0.0034
Fading to grayscale —0.0046 —0.0091 0.0000
Opacity adjustment — 0.0032 — 0.0086 0.0049

FREE: no overlap at all.
TOUCH: overlap with the face boundary, but not
with the mouth.

e OVERLAP: overlap with the face boundary and the
mouth.

We do this by running a face landmark detector! on the
2622 clean face images and counting how many and which
landmarks fall into the squared area occupied by the trig-
ger after embedding (in the baseline case). Figure 6 states
the category definitions with respect to the landmark loca-
tions, reports the number of images in each category, and
shows one illustrating example.

Figure 7 reports the results for selected transforma-
tions of Section 4.1 broken down by the three categories.
Observe that the curves for the TOUCH and OVERLAP
categories consistently co-move, whereas the FREE curves
are significantly distant. This shows that having no inter-
action with the face information has indeed improved the
attack’s effectiveness for this backdoored model. This gap
exists under baseline conditions and is generally preserved
when 6 varies.

The analysis of the occlusive transformations (top right
plots in Fig. 7) reveals that the gap is even more pro-
nounced when 6 = 1 (i.e, when the squared area is com-
pletely removed). This suggests that the infected model
has problems in correctly classifying the faces in the
FREE category even if they are clean. To investigate this
further, we replicated the break-down by category on
clean images only, using the clean model, i.e., the model
without backdoor. Table 5 reports the performance

e use the d11ib library.


https://pypi.org/project/dlib/
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