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Abstract

Genomic data is crucial in the understanding of many diseases and for the guidance of medical treatments.
Pharmacogenomics and cancer genomics are just two areas in precision medicine of rapidly growing utilization. At
the same time, whole-genome sequencing costs are plummeting below $ 1000, meaning that a rapid growth in
full-genome data storage requirements is foreseeable. While privacy protection of genomic data is receiving growing
attention, integrity protection of this long-lived and highly sensitive data much less so.
We consider a scenario inspired by future pharmacogenomics, in which a patient’s genome data is stored over a long
time period while random parts of it are periodically accessed by authorized parties such as doctors and clinicians. A
protection scheme is described that preserves integrity of the genomic data in that scenario over a time horizon of
100 years. During such a long time period, cryptographic schemes will potentially break and therefore our scheme
allows to update the integrity protection. Furthermore, integrity of parts of the genomic data can be verified without
compromising the privacy of the remaining data. Finally, a performance evaluation and cost projection shows that
privacy-preserving long-term integrity protection of genomic data is resource demanding, but in reach of current and
future hardware technology and has negligible costs of storage.

Keywords: Long-term security, Integrity, Authenticity, Genomic data, Genomic privacy, Genomic security,
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1 Introduction
Full genome sequencing is becoming a standard medical
procedure in the near future, not only in the assessment
of many diseases but also in the research or consumer ser-
vices setting. For example, in its recent annual report [1],
the UK’s chief medical officer called for a revolution
of gene testing and wants whole-genome sequencing to
become a standard procedure for National Health Ser-
vice patients—not only for cancer treatment but also rare
diseases testing, targeting of drugs etc.
With decreasing sequencing costs, periodic and tissue

specific sequencing will be the next step forward. Thus,
storage requirements are ever increasing and long-term
data protection schemes become more complex. While
genomic privacy is attracting much attention recently
[2–4], the assurance of genomic data integrity has almost
not been discussed yet. Genomic data not only requires
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hundreds of gigabytes of storage but also needs to be
secured against loss and tampering for at least a human
life span.
This paper is concerned with the integrity protection of

genomic data for decades after data generation. As crypto-
graphic primitives such as hash algorithms and signatures
may become insecure in the future this undertaking is
challenging.

1.1 Motivation
Endeavors like the 100,000 Genomes Project [5] in the
UK show that one important scenario to consider is the
outsourcing of genomic data storage to a trusted third
party. The key challenge is to guarantee that none of the
outsourced data gets ever modified, either by an outside
attacker or even an insider, over a hundred years. In the
future, doctors might get authorized access to parts of a
patient’s genome, stored in a national database, to support
personalized medicine decisions. A renowned example
from pharmacogenomics is the dosage determination for
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drug Warfarin based on just a few single-nucleotide poly-
morphisms (SNPs) [6–8]: for certain variants of CYP2C9,
only a fifth of the normal dose is recommended. This
prime example shows why even the change, or suppres-
sion, of a few entries in a database of genomic variants can
have disastrous consequences on treatment decisions with
implications for liability and legal procedures.
On the technical side, cryptographic primitives

like symmetric encryption schemes, digital signature
schemes, or hash functions are deemed to break over
time. For example, in 1997 the widely used symmetric
encryption scheme DES was broken by brute force for the
first time1 and can nowadays be broken for a small fee on
crack.sh. Also in 1997, the results of Shor [9] showed
that the RSA signature scheme is insecure against quan-
tum computers. In 2004, Wang et al. [10] for the first time
found collisions for the three then popular hash func-
tions MD5, HAVAL-128, and RIPEMD. Thus, long-term
security needs to take future breaches of cryptographic
primitives into account.

1.2 Contribution
In this paper, we propose a solution that allows to store
genetic data in a database, while guaranteeing integrity
and authenticity over long time periods. Data may be
stored in plain-text, encrypted, or secretly shared form.
We examine a scenario in which a full set of raw sequencer
reads, alignments, and genomic variant data files are gen-
erated and stored in a certified database (see Sections 2
and 3).
We propose a long-term protection scheme (Section 4)

that uses unconditionally hiding commitments, Merkle
hash trees, and digital signatures for protecting the
integrity of the data while preserving confidentiality. The
scheme allows querying and proving of integrity and
authenticity of specific positions in the genomewhile leav-
ing the remaining data undisclosed. No information can
be inferred about adjacent positions. The scheme sup-
ports updating the integrity protection in case one of the
used cryptographic schemes (i.e., commitments, hashes,
or signatures) is expected to become insecure in the near
future. The integrity update procedure uses timestamping
while it is guaranteed that no information is leaked to the
involved timestamp servers.
We also evaluate the performance of our scheme

(Section 5), in a scenario with periodic updates of the
timestamps, commitments and hashes. Our performance
evaluation shows that long-term integrity protection of a
human genome of size 3 · 109 is feasible on current hard-
ware. Furthermore, verification of the integrity of a small
subset of genomic data is fast.

1Achieved by the DESCHALL Project, the winners of the first $ 10,000 DES
Challenge by RSA Security.

1.3 Related work
Various timestamping-based long-term integrity protec-
tion schemes for various use cases have been proposed in
the literature [11, 12]. However, these schemes leak infor-
mation to the involved timestamp services and therefore
do not preserve long-term confidentiality of the protected
data. Braun et al. [13] use unconditionally hiding com-
mitments to combine long-term integrity with long-term
confidentiality protection. However, they only consider
the protection of a single large data item while genomic
databases consist of a large number of relatively small
data items. Computation and storage costs of their scheme
scale unfavorably for such databases, because each data
item needs to be protected by a separate signature-
timestamp pair, which is costly to generate and store. We
resolve this issue by using Merkle Hash Trees [14] which
enable us to protect a whole dataset with just a single
signature-timestamp pair.
As an alternative to computationally secure signature

schemes, proposals for unconditionally secure signature
schemes which do not rely on computational assumptions
[15] exist as well. However, these schemes function inher-
ently differently from their computationally secure coun-
terparts and require a number of other strong assump-
tions, e.g., that data verifiers are known and active at
scheme initialization. They are thus not applicable to the
scenarios discussed here.
In the field of genomic data security, the recent work

by Bradley et al. [16] explores several methods for the
integrity protection of genomic data. Merkle hash trees
are also studied to deliver integrity protection of single
positional mutations while keeping the remaining posi-
tions confidential. Instead of commitments, they use a
similar approach by salting the leaf values before hashing.
The authors argue that, without salting, up to 32 neigh-
boring base nucleotide leafs could be revealed by learning
the hashes along the path to the MHT root. However,
the paper does not consider the long-term aspect of data
storage, with cryptographic primitives becoming insecure
over time. Achieving long-term security is the main focus
of this work.
The same can be said about recent works on blockchain-

based integrity protection [17, 18]. While decentralized
blockchain technology is a novel and promising approach
to data integrity and time-stamping, it faces the same
long-term security issues like any other scheme that does
not include regular updates of hash functions. Hence,
these works do not solve the problem of long-term protec-
tion. Recently, Bansarkhani et al. [19] explored long-term
integrity of blockchains. When the time comes to replace
a hash function, the authors propose to hash the whole
blockchain and store this hash in a new block, result-
ing in extended data integrity. However, this approach is
not applicable to the random-access queries that we will

https://crack.sh
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introduce, where we only want to proof integrity of parts
of the genomic data.

2 Genomic data
For completeness, we give a short overview of all relevant
genomic file formats even thought our actual scheme will
only be applied to variant data (VCF files).

2.1 File types
The initial data produced by genome sequencers goes
through several steps of processing to reach differ-
ent levels of representation and abstraction. In our
scenario, we are interested in storing genomic varia-
tions, which have high utility in personalized medicine.
They allow random access to specific positions and,
at the same time, protection of adjacent genomic
positions.
Sequencers produce short raw reads, that, in a first step,

are aligned to form a contiguous genome. Those aligned
genomes can then be compared to a reference genome to
deliver a more interpreted view, highlighting the genomic
variation.

2.1.1 Raw reads
Typically, sequencing machines produce output in the
FASTQ format, consisting of billions of small unaligned
so-called reads (of nucleotides, making up the full DNA)
together with a quality score for each nucleotide. FASTQ
files are usually stored in compressed form [20]. Depend-
ing on coverage and read length, they are typically of size
between 10 GB and 70 GB.

2.1.2 Aligned reads
Assembly of raw reads to a full genome is performed via
an alignment of the short reads in FASTQ format to a ref-
erence genome (e.g., GRCh38 [21]). The alignment infor-
mation is most commonly stored in SAM/BAM [22] or
CRAM [23] files. By applying lossy compression to quality
scores, CRAM achieves the smallest file sizes [24]. For
example, the 1000 Genomes Project [5] distributes CRAM
files with quality scores compressed into 8 bins. Depend-
ing on coverage, file sizes vary between 3 GB and 14 GB
for full genome alignments [25] (excluding high-coverage
alignments).

2.1.3 Variant calls
Variant calls2 of aligned genomes are usually stored in the
variant call format (VCF) [26], or its binary counterpart
BCF. They represent a difference against the reference
genome and are thus an abstract representation in com-
parison to the aforementioned alignment formats. Cover-
age and read length do not play a role anymore, as each

2In the context of genomics, the verb to call is often used in the sense to
determine. E.g. a variant call is a variant determined from the underlying data.

line in a VCF file represents a called mutation at a unique
position of the reference genome.
A human genome has approximately 4 to 5 million vari-

ations compared to a reference genome [27]. VCF files
that store this information typically require a few hundred
megabytes of storage. Usually, a single file per genome, or
per chromosome, is produced. This translates to an aver-
age storage requirement of about 100 bytes per variation
in VCF.

2.1.4 Efficient random access
Efficient random access for SAM, BAM, CRAM, and VCF
files is realized by storing the data sorted by chromosome
and position and then creating an index map, which stores
for a chosen set of positions the corresponding location in
the file.

2.2 Data access scenarios
The following scenarios describe different access patterns
to genomic data for real-world applications. In particular,
the first scenario motivates the solution developed in this
work.

2.2.1 Personalizedmedicine and testing
A typical workflow in personalized medicine requires
access to a few mutations in the genome during regu-
lar visits to a doctor or hospital. This random access
to genomic variant data (e.g., stored in VCF) is roughly
required at most once a month for older patients who rou-
tinely need to see a doctor. The same is true for ancestry
and paternity tests, which primarily access tandem repeat
variations.

2.2.2 Cancer
Cancer researchers need access to the full alignments
(BAM/CRAM) of healthy and cancer tissue. That is, sev-
eral full-genome datasets per patient are accessed.

2.2.3 Studies
Pan-genome studies like genome-wide association studies
(GWAS) will probably access whole BAM/CRAM files to
produce study-specific input files, for each study partici-
pant’s genome.

3 Application scenario
We consider an application scenario for personalized
medicine that involves a patient, a sequencing laboratory,
a certified genome database and the patient’s doctors and
hospitals. The genome of the patient is stored in the cer-
tified database and the doctors regularly request parts of
the patient’s genome (e.g., to identify the best medication
and dosage, or to detect possible genomic predisposi-
tions). The patient may also want to prove the authenticity
of its genomic data towards a third party verifier (e.g., a
judge in court in case of a law suit because of a wrong
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treatment). An overview of the application scenario is
depicted in Fig. 1 and the details are described in the
following subsections.

3.1 Data generation
When the genome of the patient is sequenced for the first
time (e.g., at birth), the sequencing laboratory timestamps
and signs the resulting FASTQ files. The laboratory then
creates an alignment of those raw reads against some stan-
dardized current version of a human reference genome in
the CRAM format. Additionally, variants are called and
stored in a VCF file. Both the alignment and variants are
timestamped and signed by the laboratory.
The data is then transferred to the genome database,

who will also conduct future integrity proof updates, with-
out any interaction with the laboratory. From this point
on, the laboratory is not involved in any further protocol.
The data may be stored in blocks of plain-text, encrypted
with a symmetric block-cipher, or secretly shared, since
our scheme works on any kind of data blocks. The block
cipher would need to be seekable, e.g., AES in counter
mode, so that blocks can be decrypted individually. A
position in the human genome takes �log(3 · 109)� = 32
bits. A pseudorandom permutation could be applied to
the 32-bit index of each block to hide the accessed posi-
tions. A detailed analysis of the different kinds of block
storage are out of scope of this work and we focus on the
long-term integrity of data blocks.
Note that we do not consider the scenario of re-

sequencing a human’s genome and the subsequent regen-
eration of the genomic data. This case is discussed in the
outlook Section 6.3.

3.2 Data access
Consider a doctor who wants to identify the best medicine
and dosage for their patient, or detect possible genomic
predispositions that could influence future treatment.
Such a procedure requires to query dozens (and in the
future, possibly thousands) of variants from the most
recently stored VCF file. A current real-world exam-
ple is the medicine Warfarin, whose optimal dosage
is highly dependent on a patient’s genome (cf. moti-
vation Section 1.1). More precisely, eight SNPs3 were
identified that significantly influence a person’s dosage
dependent response to the drug.
If the data blocks are stored in encrypted form, the

patient or a designated doctor or hospital would need
to manage the secret keys to assist the decryption of
retrieved data blocks.

3.3 Protection goals and threat model
We demand that a solution for holistic genomic data
protection achieves the following protection goals:

3two in gene CYP2C9, one in gene GGCX and five in gene VKORC1

Integrity. The integrity of the genomic data as pro-
duced by the laboratory should be protected. That
is, it should be infeasible for an adversarial entity
to modify the data at rest or in transit without the
modifications being detected at a subsequent data
access.

Confidentiality. The confidentiality of genomic data that
is not revealed should be protected. An authorized
querier should only learn the requested genomic
data. That is, a patient or database must be able to
prove the integrity of parts of the genomic data with-
out leaking information about the remaining parts of
the data.

Authenticity. The database or patient should be able to
prove authenticity of the genomic data to a third
party verifier.

We allow the querier to be adversarial, i.e., they may try
to infer any additional information beyond the authorized
parts of the genomic data from their interaction with the
database. An adversary within the certified database may
have full read and write access to the, possibly encrypted,
genomic data blocks. We furthermore consider two cases:
if the database provider can be trusted to keep the data
confidential, it may be stored in plain text. Otherwise, it
should be encrypted or secretly shared. Note that after ini-
tial data generation and signing by the laboratory, only the
database and requesters are involved in any protocol.

4 Protection scheme
To meet the above stated demands of long-term integrity
and confidentiality protection, we have derived a protec-
tion scheme, which is described in this chapter.

4.1 Full-retrieval data
Unprocessed raw reads, e.g., stored in compressed FASTQ
format, and resulting alignments, e.g., stored in CRAM
format, are usually only accessed as a whole and a long-
term protection scheme for that use case was proposed in
[13]. The scheme presented here in Section 4.3 enhances
the integrity protection scheme of [13], so that a large
number of small data items can be protected together
efficiently.

4.2 Random access data
As opposed to whole-data integrity proofs, our scheme
provides random access integrity proofs of genomic vari-
ation data on the finest level possible—per position in the
reference genome.
We view genomic variation data like VCF/BCF files as

a table G, where for each genome position i, G[i] denotes
the corresponding variant data entry in G. If there is no
mutation at position i, we set G[i] to 0. Note that we do
not need to actually store those 0s as the absence of a
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Fig. 1 Overview of the application scenario for our protection scheme

variation implicitly represents a 0. However, the scheme
also needs to create commitments for the absence of vari-
ants so that absence can also be proven. Since a human
genome has about 3 · 109 positions, this is the size of
table G and the number of commitments that have to be
created, independent of the underlying data format.
For genome data G, generated and signed by a sequenc-

ing laboratory, the scheme generates an integrity proof
P. The validity period of such a proof is limited in time
because the cryptographic primitives used for its gen-
eration have a limited validity period. Therefore, the
proof is updated regularly. Furthermore, we describe
how a partial integrity proof for a subset G′ ⊂ G
can be extracted from P, and how such a partial
integrity proof is verified. Our scheme thus delivers ran-
dom access to G′ ⊂ G with integrity proofs while
keeping the remaining data G \ G′ private. We also
present a security analysis of the proposed scheme.
The scheme uses components of the schemes Lincos
[13] and Mops [12]. More information on the used
cryptographic primitives (i.e., timestamps, commitments,
hashes, and signatures) can be found in the respective
publications.

4.3 Scheme description
Our scheme for long-term integrity protection of genomic
data provides the algorithms Protect,Update, PartialProof,
and Verify. Algorithm Protect generates the initial
integrity proof when genomic data is stored. Algorithm
Update updates the integrity proof if a used crypto-
graphic primitive (e.g., the hash function) is threatened
to become insecure. Algorithm PartialProof generates
a partial integrity proof for verification of a subset of
the genomic data. Algorithm Verify allows a verifier to

verify the integrity of a given genomic dataset using a
given partial integrity proof.

4.3.1 Initial protection
The initial integrity proof P for sequenced genome data
G is generated by the sequencing laboratory using algo-
rithm Protect (Algorithm 1). The algorithm obtains as
input genome data G, an information-theoretic hiding
commitment algorithm Com [28], a hash algorithm Hash,
a signing algorithm Sign, and a time-stamping algorithm
TS. The algorithm first uses algorithm Com to gener-
ate commitments and decommitments to all entries in
G. The commitments can be used as placeholders for
the data items, which itself do not leak information, and
the decommitments can be used to prove the connec-
tion between the commitment and the corresponding data
item. Then, it uses the hash algorithm Hash to compute a
Merkle hash tree (MHT) [14] for the generated commit-
ment values. The root node of the generated tree is then
signed using algorithm Sign and timestamped using the
trusted timestamp authority TS [29]. Output of the initial
protection algorithm is an integrity proof P which con-
tains the commitments, the decommitments, the MHT,
the signature, and the timestamp.
In our algorithm listings we denote by MHT :

(Hash, L) → T an algorithm that on input a hash algo-
rithm Hash and a set of leaf nodes L, outputs a MHT T .
Furthermore, we denote the root of a MHT T by T .r.

4.3.2 Protection update
Timestamps, hash values, and commitments have a lim-
ited validity periods, which in turn limits the validity
period of the corresponding integrity proof. The overall
validity of an integrity proof is therefore prolonged regu-
larly by the genome database by running Algorithm 2. The
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Algorithm 1: Protect(G,Com,Hash, Sign, TS) → P
/* commit to all entries of G */
for i ∈ G do

(c1,i, d1,i) ← Com(G[i] );
C1 ←[ c1,i]i∈G; D1 ←[ d1,i]i∈G;
/* create merkle hash tree for

commitments, sign root of tree,
and timestamp signature with tree
root */

T1 ← MHT(Hash,C1); σ ← Sign(T1.r);
ts1 ← TS([ σ ,T1.r] );
op1 ← init; P1 ← (op1,C1,D1,T1, ts1); P ←[ σ ,P1];
return P;

input parameter op ∈ {upCHT,upHT,upT} determines
which primitives are updated; op = upCHT updates com-
mitments, hashes, and timestamps; op = upHT updates
only hashes and timestamps; and op = upT updates only
timestamps. For op = upCHT, first new information the-
oretically hiding commitments are generated. Then, a new
MHT T is generated and finally the root of T is times-
tamped. Output of the update algorithm is an updated
integrity proof P′.
In the algorithm listings, we denote by AuthPath(T , i)

→ A an algorithm that on input MHT T and leaf index i,
outputs the authentication path A from leaf node i to root
node T .r.

4.3.3 Generate partial integrity proof
A data owner may want to create a partial integrity proof
P′ for a subset G′ ⊂ G such that P′ does not reveal any
information about G \ G′. This can be done using Algo-
rithm 3. The algorithm extracts from P all information rel-
evant for proving the integrity of G′ and outputs them in
form of a partial integrity proof P′. In particular, the partial
integrity proof contains the commitments corresponding
to the positions contained in G′, the corresponding hash
tree authentication paths, as well as the corresponding
timestamps and the corresponding signature.

4.3.4 Verification
A verifier receives partial genome data G′ and a corre-
sponding partial integrity proof P′. Additionally, it uses a
trusted verification algorithm Ver and reads the current
time tn+1. It then uses Algorithm 4 to verify the integrity
of G′.
The trusted verification algorithm Ver is used for verify-

ing the validity of timestamps, hashes, commitments, and
signatures. It can be realized by leveraging trusted public
key certificates that include verification parameters and
validity periods. It must provide the following function-
ality. If VerTS(m, ts; t) = 1, then ts is a valid timestamp

Algorithm 2:
Update(op,G,P,Com,Hash, Sign, TS) → P′

P → (σ ,P1, . . . ,Pn);
∀i ∈[n]: Pi → (opi,Ci,Di,Ti, tsi);
if op = upCHT then

/* if update commitment, then
create a new commitment to the
corresponding entry and
decommitments */

for i ∈ G do
(cn+1,i, dn+1,i) ←
Com([G[i] ,D1[i] , . . . ,Dn[i] ] );

Cn+1 ←[ cn+1,i]i∈G; Dn+1 ←[ dn+1,i]i∈G;
else

Cn+1 ← ⊥; Dn+1 ← ⊥;
if op ∈ {upCHT,upHT} then

/* if update hash, then create a
new hash tree to the
corresponding commitments and
authentication paths */

CA(i) :=
[ [C1[ i] , . . . ,Cn+1[ i] ] , [AuthPath(T1, i), . . . ,
AuthPath(Tn, i)] ];
Tn+1 ← MHT(Hash, [CA(i)]i∈G );

else
Tn+1 ← ⊥;

/* timestamp signature with tree
roots and timestamps */

tsn+1 ← TS([ σ , (T1.r, . . . ,Tn+1.r), (ts1, . . . , tsn)] );
opn+1 ← op;
Pn+1 ← (opn+1,Cn+1,Dn+1,Tn+1, tsn+1);
P′ ←[ σ ,P1, . . . ,Pn+1];
return P′;

Algorithm 3: PartialProof(G′,P) → P′

P → (σ ,P1, . . . ,Pn);
∀i ∈[ n]: Pi → (opi,Ci,Di,Ti, tsi);
for i ∈ {1, . . . , n} do

/* extract the commitments,
decommitments, and
authentication paths
corresponding to G′ from Pi */

if Ci �= ⊥ ∧ Di �= ⊥ then
C′
i ←[Ci[ j] ]j∈G′ ; D′

i ←[Di[ j] ]j∈G′ ;
if Ti �= ⊥ then

A′
i ←[AuthPath(Ti, j)]j∈G′ ;

P′
i ← (opi,C′

i ,D′
i,A′

i,Ti.r, tsi);
P′ ←[ σ ,P′

1, . . . ,P′
n];

return P′;
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Algorithm 4: Verify(Ver,G′,P′; tn+1) → b
P′ → (σ ,P′

1, . . . ,P′
n);

∀i ∈[ n]: P′
i → (opi,C′

i ,D′
i,A′

i,Ti.r, tsi), ti ← tsi.t;
b ← 1;
for i ∈ {n, . . . , 2} do

if op ∈ {upCHT,upHT,upT} then
/* check that timestamp tsi is

valid at time tNxTs(i) for the
signature, the previous tree
roots, and the previous
timestamps */

R := (T1.r, . . . ,Ti.r); T := (ts1, . . . , tsi−1);
b ← b ∧ VerTS([ σ , R, T] , tsi; tNxTs(i));

for j ∈ G′ do
if op ∈ {upCHT,upHT} then

/* check that A′
i[ j] is a valid

authentication path at
time tNxHa(i) from root Ti.r to
the previous commitments
and authentication paths

*/
CA′(i, j) :=
[ [C′

1[ j] , . . . ,C′
i[ j] ] , [A′

1[ j] , . . . ,A′
i−1[ j] )];

b ←
b ∧ VerMHT(CA′(i, j),A′

i[ j] ,Ti.r; tNxHa(i));
if op = upCHT then

/* check that D′
i[ j] is a valid

decommitment at time tNxCo(i)
from commitment C′

i[ j] to the
corresponding entry and
previous decommitments */

GD :=[G′[ j] ,D′
1[ j] , . . . ,D′

i−1[ j] ];
b ← b ∧ VerCom(GD,C′

i[ j] ,D′
i[ j] ; tNxCo(i));

/* check that the first timestamp is
valid for the initial signature
and the first tree root */

b ← b ∧ VerTS([ σ ,T1.r] , ts1; tNxTs(1));
/* check that the signature is valid

for the first tree root */
b ← b ∧ VerSign(T1.r, σ ; t1);
for i ∈ G′ do

/* check that A′
1[ i] is a valid

authentication path from the
first tree root T1.r to the
corresponding commitment C′

1[ i] */
b ← b ∧ VerMHT(C′

1[ i] ,A′
1[ i] ,T1.r; tNxHa(1));

/* check that D′
1[ i] is a valid

decommitment from commitment
C′
1[ i] to genome entry G′[ i] */

b ← b ∧ VerCom(G′[ i] ,C′
1[ i] ,D′

1[ i] ; tNxCo(1));
return b;

for m at time t, meaning that the cryptographic algo-
rithms used for generating the timestamp are considered
secure at time t. The time that the timestamp ts refers to
is denoted by ts.t. Hence, VerTS(m, ts; t) = 1 means that
it is safe to believe at time t that data m existed at time
ts.t. Similarly, VerMHT(m, a, r; t) = 1 means that at time t,
a is a valid authentication path for m through a hash tree
with root r. VerCom(m, c, d; t) = 1 means that at time t, d
is a valid decommitment from commitment c to message
m. VerSign(m, σ ; t) = 1 means that at time t, σ is a valid
signature for messagem. We refer to Section 5.2 for more
details on how the validity periods of the cryptographic
primitives are derived.
We use the following shorthand notations tNxTs(i),

tNxHa(i), tNxCo(i) to denote update times with respect to
a given partial integrity proof P′ = [

σ ,P′
1, . . . ,P′

n
]
. By

tNxTs(i) we denote the time of the next timestamp update
after Pi, i.e., tNxTs(i) = min{tsj.t : j > i}. Likewise, by
tNxHa(i) we denote the time of the next hash tree update
after Pi, and by tNxCo(i) we denote the time of the next
commitment update after Pi.
The verification function Verify of the genome data

protection scheme works as follows. It checks whether
the integrity proof has been constructed correctly, and
whether the cryptographic primitives have been updated
before becoming invalid. We refer the reader to the next
section (Section 4) for more details on the security of this
scheme.

4.4 Security analysis
We now analyze the security of the proposed scheme
and argue that it fulfills the requirements described in
Section 3.3.

4.4.1 Confidentiality
We observe that a partial integrity proof P′ for genome
data G′ ⊂ G does not reveal any information about the
remaining data G \ G′ by the following argument. Let
P′ = (σ ,P′

1, . . . ,P′
n) be a partial integrity proof for G′,

where P′
i = (opi,C′

i ,D′
i,A′

i,Ti.r, tsi). We observe that for
every i ∈ {1, . . . , n}, opi, C′

i , and D′
i are independent

of G \ G′ because of the information-theoretic hiding
property of the commitments. Furthermore, A′

i contains
authentication paths that only depend on information the-
oretically hiding commitments and thus does not reveal
any information as long as the decommitment values are
not revealed. Hence, also the tree root Ti.r, the timestamp
tsi, and the signature σ are independent of G \ G′.

4.4.2 Integrity
Next, we show that it is infeasible for an adver-
sary, who cannot break any of the used cryptographic
primitives within their validity period, to present a
valid partial integrity proof P′ for partial genome
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data G′ if G′ has not been originally signed by the
laboratory.
For our security analysis, we consider an adversary that

can potentially become computationally more powerful
over time and use methods developed in [30–32] for argu-
ing about the knowledge of an adversary at an earlier
point in time. For this, we require that the timestamp,
commitment, and hash algorithms chosen by the user are
extractable. Thereby, we are able to show that if an adver-
sary presents a valid integrity proof, then the signed data
together with the signature must have been known at a
point when the corresponding signature scheme was con-
sidered valid. If the signature is valid for the data, then it
follows that the data is authentic.
Here, we use the following notation to express the

knowledge of the adversary. For any datam and time t, we
write m ∈ K[ t] to denote that the adversary knows m at
time t. We remark that for any t < t′, m ∈ K[ t] implies
m ∈ K[ t′].
Extractable timestamping [30, 32] guarantees that if at

some time t, a timestamp ts andmessagem are known and
ts is considered valid for m at time t, then m must have
been known at time ts.t, or in the notation introduced
above:

(m, ts) ∈ K[t]∧VerTS(m, ts; t) =⇒ m ∈ K[ ts.t] . (1)

Moreover, extractable commitments [31] guarantee that
if a commitment value is known at time t, and a message
m and a valid decommitment value are known at a later
time t′ > t, then the message m was already known at
commitment time t, i.e.:

c ∈ K[t]∧(m, d) ∈ K[t′]∧VerCom(m, c, d; t′)
=⇒ m ∈ K[t] .

(2)

Extractable hash trees [32] provide similar guarantees,
i.e., for any hash tree root value r, time t, messagem, hash
tree authentication path a, and times t, t′:

r ∈ K[t]∧(m, a) ∈ K[t′]∧VerMHT(m, a, r; t′)
=⇒ m ∈ K[ t] .

(3)

Furthermore, we know that if a signature σ and a mes-
sagem are known at some time t, and σ is considered valid
form at time t, then by the existential unforgeability of the
signatures it follows thatm is authentically signed [30, 33]:

(m, σ) ∈ K[ t]∧VerSign(m, σ ; t) =⇒ m is authentic .
(4)

Finally, it is known that signing the root of a Merkle
tree preserves the integrity of the leafs. Furthermore, if the
leafs are commitments, the authenticity of the committed
messages is preserved. That is, for any hash tree root value

r, signature σ , commitment c, hash tree authentication
path a, messagem, decommitment d, and times t, t′, t′′:

(r, σ) ∈ K[ t]∧VerSign(r, σ ; t)∧
(c, a) ∈ K[ t′]∧VerMHT

(
c, a, r; t′

) ∧
(m, d) ∈ K[ t′′]∧VerCom

(
m, c, d; t′′

)

=⇒ m is authentic .
(5)

We now show that it is infeasible to produce a valid
integrity proof for genome data that is not authentically
signed. Assume an adversary outputs (G′,P′) at some
point in time tn+1 and let Ver be a verification function
trusted by the verifier. We show that if P′ is a valid par-
tial integrity proof for data G′ (i.e., Verify(Ver,G′,P′) = 1),
then the signature σ for G′ is not a forgery.
Let P′ = (σ ,P′

1, . . . ,P′
n), where P′

i = (opi,C′
i ,D′

i,A′
i,

Ti.r, tsi). Define P′′
i = (σ ,P′

1, . . . ,P′
i) and ti = tsi.t. In

the following, we show recursively for i ∈[ n, . . . , 1], that
given Verify(Ver,G′,P′) = 1, statement St(i) = 〈(G′,P′′

i ) ∈
K[ ti+1] 〉 holds.
We observe that St(n) is trivially true because the

adversary presents valid (G′,P′) at tn+1 by assump-
tion. Next, we show that assuming St(i) holds, then
also St(i − 1) holds. Given St(i), we observe that by
VerTS([ σ , (T1.r, . . . ,Ti.r), (ts1, . . . , tsi−1)] , tsi; tNxTs(i)) =
1 and (1), we have [ σ , (T1.r, . . . ,Ti.r), (ts1, . . . , tsi−1)]∈
K[ ti]. Furthermore, by

VerMHT(CA′(i, j),A′
i[j] ,Ti.r; tNxHa(i)) = 1

and (3), we have CA′(i, j) ∈ K[ti] for every j ∈ G′. Finally,
by

VerCom([G′[ j] ,D′
1[j] , . . . ,D′

i−1[j] ] ,C′
i[j] ,D′

i[j] ;
tNxCo(i)) = 1

and (2) we have [G′[ j] ,D′
1[ j] , . . . ,D′

i−1[ j] ]∈ K[ ti] for
every j ∈ G′. Combined, we obtain (G′,P′′

i−1) ∈ K[ ti],
which means that St(i − 1) holds.
We observe that St(1),VerTS([ σ ,T1.r] , ts1; tNxTs(1)) = 1,

and (1) implies that [ σ ,T1.r]∈ K[ t1]. Furthermore,
by VerSign(T1.r, σ ; t1) = 1 and (4), we obtain that
σ is genuine for T1.r. Finally, we observe that for
every i ∈ G, VerMHT(C′

1[ i] ,A′
1[ i] ,T1.r; tNxHa(1)) = 1,

VerCom(G[ i] ,C′
1[ i] ,D′

1[ i] ; tNxCo(1)) = 1, and we obtain
by (5) that σ is a genuine signature for G′.

5 Performance evaluation
In order to illustrate the applicability of our scheme to
today’s challenges in bioinformatics and medicinal infor-
matics, in the following, we evaluate the performance of
the scheme described in Section 4.3 in this chapter.



Buchmann et al. EURASIP Journal on Information Security         (2019) 2019:16 Page 9 of 14

5.1 Protection scenario
We focus on the following situation: a human genome
is sequenced and protected for a human lifespan of
100 years. The scenario starts with sequencing the
genomic data G in 2019 and creating an integrity proof P.
Here, we are only interested in the protection of a single-
genome dataset, that is, we do not consider additional
genomic data generated due to resequencing.
We assume that the lifetime of signature-based times-

tamps is based on the lifetime of the corresponding public
key certificate, which is typically 2 years. For our com-
mitments and hash functions, we assume a longer valid-
ity period of 10 years, as they are not dependent on
secret parameters which may leak over time. The integrity
protection update schedule is summarized in Table 1.

5.2 Instantiation of cryptographic primitives
For our analysis, we instantiatiate the cryptographic algo-
rithms of our protection scheme as follows. As hash
functions, we use the ones from the SHA-2 hash function
family [34], which are extractable if modeled as a random
oracle [35]. As timestamp schemes, we employ signature-
based timestamps [29] based on the XMSS signature
scheme [36], which is a hash-based signature scheme
conjectured secure against quantum computers. As com-
mitment schemes, we use the construction proposed by
Halevi and Micali [37], which uses a hash function and is
extractable if the hash function is extractable [35]. When
generating Merkle hash trees, we use an optimization
where we take commitments to the data directly as the
leafs of the hash trees in order to save one hash tree
level. Cryptographic parameters are chosen based on the
recommendations by Lenstra and Verheul [38, 39]. The
chosen parameters are summarized in Table 2.

5.3 Evaluation results
We show the storage space consumed by an integrity proof
P corresponding to genome data G containing 3 · 109
entries, which is roughly the number of nucleotides of a
human genome. We also show the storage space required
by a partial integrity proof P′ corresponding to partial
genome data G′ containing 1, 100 or 105 entries. As the
Warfarin example shows, current personalized medicine
applications would only be concerned with a few dozen
entries. To take future medical scientific advances into
accounts, we choose to evaluate partial proofs of size up

Table 1 Schedule for updating the integrity proof

Update method Update time

Initial protection Once in the beginning (i.e., in 2019)

Update Ts Every 2 years (i.e., 2021, 2023, . . . )

Update ComHashTs Every 10 years (i.e., 2029, 2039, . . . )

Table 2 Parameter selection based on Lenstra and Verheul
[38, 39]

Validity Hashes Signatures Commitments

2066 SHA-224 XMSS-256 HM-224

2090 SHA-256 XMSS-256 HM-256

2186 SHA-384 XMSS-512 HM-384

to 105. We also measure the time it takes to generate the
initial integrity proof, to update an integrity proof, and to
verify a partial integrity proof.
We remark that we measure the space consumed in

terms of the size of the commitments, timestamps, and
hashes to be stored. Likewise, we measure the time con-
sumed for generating and updating an integrity proof in
terms of the computation time required to generate the
commitments, timestamps, and hashes. For the verifica-
tion time, we sum up the time required for verification of
the individual cryptographic elements. The time and sizes
required for hashing, signing, and committing to a mes-
sage of size 128 B are shown in Table 3. This is an upper
bound on the average storage requirement for a variation
in VCF, cf. 2.1.3. For XMSS, the height parameter is cho-
sen as 10. The timings were taken on a computer with a
2.9 GHz Intel Core i5 CPU and 8 GB RAM running Java.

5.3.1 Size of integrity proof
Figure 2 shows the storage space over time required
for storing the full integrity proof. The size of the ini-
tial integrity proof in year 2019 is 391 GB. The size
only increases minimally when updating the timestamps.
When updating the commitment, hashes, and timestamps
together, the size grows significantly. After the first such
update, the size of the integrity proof is 782 GB. After
100 years, the size of the integrity proof is 5309 GB. Com-
paring this to the size of an average 600MBVCF file shows
that after 100 years, the integrity proof is roughly 10,000
times larger than the actual variant data.

Table 3 Space and time required for storing, generating, and
verifying, hashes (SHA), commitments (HM), and signatures
(XMSS)

Primitive Size Generation Verification

SHA-224 224 bit 1.33 μs 1.3 μs

SHA-256 256 bit 1.29 μs 1.29 μs

SHA-384 384 bit 1.43 μs 1.43 μs

HM-224 896 bit 5.68 μs 3.20 μs

HM-256 1024 bit 6.16 μs 3.11 μs

HM-384 1536 bit 6.08 μs 5.71 μs

XMSS-256 20000 bit 17.00 ms 2.43 ms

XMSS-512 72736 bit 46.37 ms 7.67 ms
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Fig. 2 Size of integrity proof for whole-genome data G

For |G′| ∈ {1, 100, 105}, Fig. 3 shows the size of a par-
tial integrity proof P′ for G′ over time. As the number of
elements covered by the partial integrity proof is consider-
ably smaller, also its size is much smaller compared to the
full integrity proof. For the largest partial proof parameter
|G′| = 105, the size of P′ ranges from 9.62 MB in 2019 to
130.67 MB in 2118, growing roughly linearly. For a fixed
point in time and |G′| ≥ 100, the size also grows roughly
proportionally to |G′|.
5.3.2 Cost projection for integrity proof storage
Although it is impossible to predict long-term storage
costs, we will nevertheless try to give a rough cost pro-
jection into the future. We examined two sources of his-
torical hard disk prices and found that between 1980 and
2010HDD storage costs per gigabyte roughly halved every
14 months [40], leading to a cost reduction by a factor
of 10 roughly every 4 years. Then since 2009, this rapid
decline in storage costs has slowed down, only showing a
reduction in storage costs by a factor of 4–5 over the last
10 years 4. However, new technologies like HAMR and
MAMR [41] are on the horizon, which are expected to
show HDDs of size 4 TB by 2025, according to Western
Digital [42].
We calculated yearly expenses for the storage of a full

integrity proof, considering three cost-per-storage pro-
jection scenarios: no change in storage costs and cost
reductions by rates of R = 2 and 4 per 10 years. In view
of past developments, we deem those rates conservative.
We furthermore assumed that HDDs have to be replaced
every 5 years and started with storage costs of $ 15 per
TB[4].
The results can be seen in Fig. 4. The first year of stor-

age costs 0.391TB · $ 15/5 = $ 1.15. From then on, while
the amount of data increases, thanks to the exponential
decline in costs, the overall yearly costs decline sharply for
R = 2 and 4. For R = 1, it is proportional to the amount
of storage (Fig. 2). Even in the unrealistic case that storage
costs do not drop over 100 years, the costs still only grow
to $ 15.55 yearly in 2190. For R = 2, the costs decline
to 22 cents in 2069 and 2 cents in 2119. For R = 4, the
costs reach 1 cent in 2069 and after that are well below

4On 28 July 2019, there were available a 4 TB HDD for $ 64 and 6 TB for
$ 90 at the price comparison website newegg.com.

1 cent. To be fair, in reality, this data would probably be
stored redundantly to protect against data loss, so the
actual costs would need to be multiplied by the amount of
redundancy.

5.3.3 Computation time
The time required for the initial integrity proof generation
in year 2019 is 5.85 h, for G with |G| = 3 · 109. Figure 5
shows the time required for performing a commitment,
timestamp, and hash update of the integrity proof. Com-
putation time for each full update every 10 years is compa-
rable to the computation time of the initial integrity proof.
However, it should be considered that with more pow-
erful computers in the future these update times can be
expected to decrease significantly.
Figure 6 shows the time required for verifying a partial

integrity proof P′ corresponding to partial genome dataG′
with |G′| ∈ {1, 100, 105}. The computation time required
for verification of P′ of the largest partial size, generated
in 2019, is 0.46 s. For P′ generated in 2119 the verification
time is 5.37 s.

5.4 Comparison with [13]
We briefly compare the performance of our scheme with
performance of the integrity protection scheme of [13].
We observe that for protecting a dataset with [13], for each
data item, a separate commitment, decommitment, sig-
nature, and timestamp need to be generated and stored.
This results in an initial proof generation time of 28338 h
(or 3.2 years) and a size of 14283 GB. In comparison, our
scheme generates the initial proof in 5.9 h and the proof
has a size of 391 GB.

6 Conclusion and future work
6.1 Conclusion
We have evaluated a scenario where the integrity of
genomic data is protected over a time span of 100 years.
We first described a scenario in which genomic data is
generated and accessed for medical treatment and ana-
lyzed the protection requirements. Next, we proposed a
long-term integrity protection scheme suitable for this
scenario. Then, we analyzed the performance of the
proposed scheme for the given scenario. We estimate
that long-term integrity protection of a genome database
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Fig. 3 Size of partial integrity proof for partial genome data G′

Fig. 4 Projected yearly storage costs of integrity proofs. The calculation starts with initially $ 15 per TB, then reduces the costs per TB by a rate of
R = 1, 2 and 4 per 10 years. HDDs are assumed to be replaced every 5 years

Fig. 5 Computation time for updating integrity proof for whole-genome data G

Fig. 6 Computation time for verifying partial integrity proof for partial genome data G′
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with 3 · 109 independently verifiable entries for 100 years
requires a storage space of approximately up to 5.3 TB in
2119.We estimated the yearly storage costs of the integrity
proof to start at $ 1.15 and, depending on the assumed
reduction in general storage prices, reach $ 15.55 in 2119
(no reduction) or fall to negligible levels for reduction
rates of R = 2 or 4 per 10 years. We therefore deem
this 10,000-fold increase in storage compared to the actual
variation data as acceptable, considering the possible dan-
gers of unprotected integrity and low actual yearly costs.
It takes approximately 5.9 h to generate the initial integrity
proof and up to 6.3 h to update it when used crypto-
graphic primitives must be replaced. The size of a partial
integrity proof for a genome subset of size 105, assumed to
be a future-proof choice for personalized medicine, after
100 years is approximately 130 MB and the verification
takes approximately 5 s. The computation times can be
expected to decrease in the future when more powerful
computers will be available.

6.2 Confidentiality
In Section 3.1 we explain that our scheme works on any
data that is stored in blocks, also in encrypted form. If
the database is an untrusted cloud, it obviously makes
sense to not store the data in plain text. To achieve certain
long-term confidentiality, only information-theoretically
secure methods such as secret sharing should be used.
This stems from the simple fact that once data is obtained
in encrypted form by an adversary, they only have to wait
until the encryption is broken in the future. We leave it as
future work to combine Oblivious RAM techniques [43]
with our long-term integrity scheme to achieve better
query pattern hiding.

6.3 Genome re-sequencing
Our scenario only considered a single production of
genomic data, e.g., at birth. After that, only updated
integrity proofs were generated. However, it is foresee-
able that advanced sequencing technology will be used
to re-sequence a human’s genome periodically, e.g., every
10 years, once personalized medicine has gone main-
stream. Additionally, it is already becoming standard pro-
cedure to sequence somatic cancer tissue of patients with
certain types of cancers [44, 45]. More cancer types will
follow to be subjected to genetic analysis. Furthermore,
once cancer is detected, a re-sequencing of cancer tissue
every few weeks seems plausible in the future, to observe
the development of the cancer’s genome.
Every (re)sequencing of either healthy or cancer tissue

follows the alignment and variant calling procedures, so
FASTQ, CRAM, and BCF files, or future enhanced ver-
sions thereof, are produced. How to provide long-term
protection of this additional data, in combination with
existing data, will be investigated in future work.

It could also become feasible to redo the alignment and
variant calling step, once a new reference genome might
be agreed upon on a (super)national health governance
level.
An open question is whether alignments against obso-

lete reference genomes could be safely deleted, since they
could still be reproduced from the raw reads. This, how-
ever, is solely determined by medical needs and legislative
issues (liability and regulatory mechanisms).

6.4 Omics data
Other data apart from the genome itself, typically summa-
rized under the term omics, like genome methylation pat-
tern sequencing [46, 47] is receiving increasing attention
in the area of precision medicine [48]. For these advanced
but forseeable areas, an all-encompassing data integrity
solution needs to combine integrity proofs of newly gen-
erated and updated data, taken at different time intervals.
Such a full solution, however, is beyond the scope of the
present study and will be pursued in the future.
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