
EURASIP Journal on
Information Security

Küçük et al. EURASIP Journal on Information Security         (2019) 2019:14 
https://doi.org/10.1186/s13635-019-0091-5

RESEARCH Open Access

Managing confidentiality leaks through
private algorithms on Software Guard
eXtensions (SGX) enclaves
Minimised TCB on secret-code execution with Early Private Mode (EPM)

Kubilay Ahmet Küçük1* , David Grawrock2 and Andrew Martin1

Abstract

Many applications are built upon private algorithms, and executing them in untrusted, remote environments poses
confidentiality issues. To some extent, these problems can be addressed by ensuring the use of secure hardware in
the execution environment; however, an insecure software-stack can only provide limited algorithm secrecy.
This paper aims to address this problem, by exploring the components of the Trusted Computing Base (TCB) in
hardware-supported enclaves. First, we provide a taxonomy and give an extensive understanding of trade-offs during
secure enclave development. Next, we present a case study on existing secret-code execution frameworks; which
have bad TCB design due to processing secrets with commodity software in enclaves. This increased attack surface
introduces additional footprints on memory that breaks the confidentiality guarantees; as a result, the private
algorithms are leaked. Finally, we propose an alternative approach for remote secret-code execution of private
algorithms. Our solution removes the potentially untrusted commodity software from the TCB and provides a minimal
loader for secret-code execution. Based on our new enclave development paradigm, we demonstrate three industrial
templates for cloud applications: 1© computational power as a service, 2© algorithm querying as a service, and 3©
data querying as a service.

Keywords: Trusted Computing Base (TCB), Software Guard eXtensions (SGX) Enclave, Private Algorithms,
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(ED) Responsibilities, Side-Channels, Early Private Mode (EPM), Internal Enclave Functions (IEF), Public Internal Enclave
Functions (PIEF), Serialised Secret Internal Enclave Functions (SSIEF)

1 Introduction
Managing trust in remote execution environments is an
enduring challenge. This is due to the fact that privacy-
sensitive data and private algorithms remain unprotected
in remote computers. There are a number of reasons
why owners of private algorithms may need to run their
algorithms in an untrusted environment. This may occur
when the Algorithm Owner (AO) requires the capabil-
ities of a Hardware Owner (HO), for example, to gain
larger computing power in the cloud. In this case, the
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cloud infrastructure provider would be compensated and
should take responsibility for an algorithm and system
security. An alternative reason to run a private algorithm
in a remote environment would be for the benefit of the
HO, for example, the distribution of an industrial software
product to end-users. In this case, the AO would be com-
pensated, and thus responsible for security. It may also be
the case that the consumer, whether that be the AO, or the
HO, is responsible for security.

1.1 Ownership taxonomy
We use the following taxonomy throughout the rest of this
paper. A HardwareOwner (HO) refers to any entitymanag-
ing its own computational system. An Algorithm Owner
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(AO) refers to any entity who owns the intellectual prop-
erty of the secret code. Cloud infrastructure providers
offer computational power, and they maintain the hard-
ware and the software stack. In a cloud environment, the
HO is a threat against the secrecy of private algorithms of
the customers. Similarly in DRM1, a HO is considered to
be the end-user who may threaten the private algorithms
with a commercial interest. From the AO’s position, the
HO is considered to be both the cloud-provider (executing
server-side code) and the end-user (executing client-side
code). In short, the HO may be one or both of the follow-
ing entities:

– An entity who generates revenue by selling the
computational power

– And/or, an entity that needs the private algorithm to
compute a secret value in her environment.

For both reasons, the HO must offer a trustworthy
confidentiality service - either procedurally or through
technical means - in order to convince the AO to use its
services. Otherwise, the AO must take countermeasures
before releasing its private algorithm.
The AO can use obfuscation techniques to protect the

code before sending it to an execution environment. How-
ever, obfuscation methods are open to reverse engineer-
ing. On the other hand, theHOmustmake an effort within
confidentiality management to gain the trust of the AO.
For example, the HO develops the software stack to offer
isolated execution environments and it aims to provide a
remotely verifiable trusted computing base (TCB).
ADataOwner (DO) refers to an entity who has privacy-

sensitive inputs. In Section 7, we consider two cases: 1©
Between the AO and the HO and 2© between the AO and
the DO where the DO controls the HO. The case where
the HO may collude with the AO against the DO is out of
the scope of this paper.

1.2 Taxonomy of the private and public assets
The AO and the DO have a choice to keep their assets
as private or public. An asset, either an algorithm or
a data-set, might be weakly or strongly private/public.
We summarised the meanings of these new concepts in
Table 1. In the rest of this paper, we use private or public
keywords for the assets which are desired to be strongly
private or public. We consider theweakly private or public

assets to be not private and not public. These concepts are
defined as follows.

Weak-private assets An algorithm or a data-set may not
be publicly accessible, and be private against any third-
party entities. Suppose that the asset owner sends this
piece of information to a cloud platform for a remote
computation. We classify this caseWeakly Private, as the
cloud operator may access to the assets.

Strong-private assets A security mechanism in the cloud
may protect the confidentiality of these assets. Suppose
that the threat model of this mechanism considers a mali-
cious cloud owner. We call the assets Strongly Private, as
they are protected against the insider threats in the cloud.
A private asset, therefore, can be a strongly private asset

if the executionmodel satisfies the confidentiality require-
ment. We describe our secret-code execution model in
Section 6 which allows Private Algorithms and Private
Data to be strongly private.

Weak-public assets An asset might be accessible, but
it may be too complex to analyse or too big to pro-
cess. If an asset does not give much evidence about its
trustworthiness, we call itWeakly public.

Strong-public assetsWe often use the keyword public to
refer to the inspectable and attestable assets. For example,
a public algorithm refers to a piece of code that is 1© open
for inspection by members of public, and 2© attestable
through a trustworthy evidence. These are the Strongly
Public assets.

1.3 Distinguishing the private data and the private
algorithm

Much of the current research [9, 14, 31, 34, 41, 44, 48,
51] is to keep data confidential in a Trusted Execution
Environment (TEE). The novelty of our work is that, in
addition to the input values and constant values used in
an algorithm, we are adding algorithm secrecy. Our aim is
to keep additional information secret how andwhere these
values are used.
A function in a computer programme may include mul-

tiple assets such as sub-methods, operators, and constant
values. The AO defines the order and types of these assets
in a function.

Table 1 Definition of the private and public modifiers

Called as Refers to Properties Example

Private data or private algorithm Strongly private Secret and protected A secrecy-critical application logic or data-set

Not private Weakly private Special but not protected A code or data uploaded to today’s cloud servers

Not public Weakly public Open but not trusted A code or data; too complex or too big for inspection

Public data or public algorithm Strongly public Inspected and attestable A code or data with an evidence of trustworthy measurement
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We summarise these assets in the following expres-
sion (1) to distinguish the data and the algorithm. For
the given function (f ), the AO may not necessarily pro-
vide the data (input (x) and constant (c)). To point out the
difference, the AO nevertheless defines the mathematical
operations and the application logic. In a decentralised
setting, one or more DO(s) can provide confidential val-
ues, such as the inputs and the constants. The AO would
provide the secret behaviour of how the algorithm uses
the given values.

1.4 The problem of secret-code execution (SCE) with
private algorithms

The success of a commercial algorithm may be measured
on how widely it is distributed. However, the integrity
and confidentiality of this algorithmmust also be ensured.
The problem arises when either party cannot trust the
other, whether that be the execution environment, or the
product.
The problem is that theAO needs to run code on theHO

and the AO does not want the HO to discover any details
regarding the code.
In untrusted remote environments, a computation

including commercially valuable algorithms - for example,
feature engineering in machine learning, business logic,
or financial applications - may pose confidentiality con-
cerns. Ideally, anAOwould keep their private algorithm in
their own physical location. A decentralised setting, how-
ever, requires the AO to send their private algorithm to
an execution environment that may be owned by another
entity (e.g. the DO or the HO). A hospital holding secret
data may require all computations to be performed in
their environment (considered as the DO or HO), while
the hospital environment is a threat against secrecy of the
algorithm. If the AO uses a cloud service for more com-
putational power, uploading the secret binary to cloud
service may leak the application code due to reverse engi-
neering. In another case, an authority may need to run a
private algorithm on computers of end-users (considered
as the HO), requiring security guarantees to be managed
by the AO or the HO.

1.4.1 The security problem on hardware software
composition

In order to solve the problem of private algorithms, both
distrustful parties could utilise secure hardware enclaves.
A fundamental question rises as to whether theAO should
develop its enclave, or trust to the enclave developed by
the HO.
In Section 2, we explain the enclave concept and its

development model in detail. In short, the term enclave
refers to the area of one entity that is surrounded
by another entity. Intel introduced the enclave concept
into the security world with their Trusted Execution

Environment (TEE) on a new instruction set called SGX
[23]. Enclaves are developed by an entity called Enclave
Developer ED, explained in Section 2.2.
Developers may use the existing application binaries

inside secure hardware enclaves with small or no port-
ing effort. However, third-party packages programmed
with no security in mind will surely bring security risks.
TEEs cannot convert a non-secure application to a secure
application. In the building-block approach to application
design, even if each block is secure, the overall systemmay
not be secure due to non-compositionality of security [16].
Practical TEEs [19] are currently the subject of

widespread research, as their correct use and capabilities
are not yet fully known. The aim of this paper is to answer
the following research questions:
– How can we correctly utilise TEEs’ security

guarantees to protect private algorithms?
– What are the responsibilities of TEE application

developers?
– What is the impact of the software TCB components

to code confidentiality?
In this paper, we examine these questions in recent

studies and in our solution. We show the challenges and
responsibilities on the TCB design and its requirements
for secret-code execution in a remote environment. We
analyse the existing frameworks for confidentiality man-
agement, and we evaluate the attacks against code secrecy
in the software stack. Finally, we present a new solution
with a smaller TCB size and address a stronger adversary
model.

1.5 Paper structure
Section 2 provides a background on current binary execu-
tion mechanisms, as well as responsibilities of application
developers for the chosen development model. Section 3,
explains the trade-offs between design choices in TCB for
private algorithms. We analyse the TCB components of
existing frameworks with practical attacks against code
secrecy in Section 4 and Section 5 explains the bad prac-
tices in enclave design and development. Section 6 shows
our design for secret code execution with reduced TCB
that is providing better security. Finally, Section 7 demon-
strates our method in practice with three use cases of
private algorithms for industrial use.

functionf (inputx) = methodm(inputx)operatoro(constantc)
(1)

Equation (1) Splitting the Algorithm and the Data in a
function.

1.6 The motivation
The motivation for TCB minimisation comes from the
secrecy guarantees that depend on a remote system’s
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TCB components. There are a number of ways in which
developers can cause security problems in a system. It
is common for developers to include third-party soft-
ware in their enclave TCB. Unfortunately, they often fail
to perform security and compliance analysis between the
third-party package and the underlying hardware. Addi-
tionally, developers may fail to understand hardware and
software co-design while constructing secure systems.
Careless construction of composite parts within a TCB
may also cause the loss of initial security guarantees of the
hardware. This may be the main, sometimes initial, source
of security problems. In this paper, we analyse two existing
frameworks that address client-side secret code execution,
but their TCB suffers from bad practices explained below.
To solve these architectural design problems, we present a
solution with a smaller TCB, and secure TCB composition
for secret-code execution in remote environments.
We aim to eliminate these bad practices, summarising

the motivation for this paper in three points:

– Increase of TCB size—The TCB size must always be
minimal in order to avoid security risks, and enable
possibility of formal verification.

– Weak software in the TCB—The third-party software
packages included in a TCB must pass the security
requirements of the all assets.

– Non-compositionality of security—Two secure
components may not necessarily comprise a single
secure composition. Even secure software in the TCB
may create additional security issues due to
composition problems with the underlying hardware.
This may also void the hardware security guarantees.

1.7 Related work
In this section, we provide an overview of the studies
on TCB minimisation and secure TCB design. Beyond
the CPU and memory protections, Ports and Garfinkel
demonstrate [43] the impact of malicious OS behaviour
against the secure application design. Their arguments
outline the attacks and mitigations via the trusted inter-
face, and they explain utilisation of partitioning methods
to reduce the TCB size. Singaravelu et al. [52] also demon-
strated three case studies in which they were able to
use kernelised TCB at OS security level on a commodity
computer.
Similar to the arguments found within this paper,

Piessens et al. [42] argue that developers have limited
understanding of security guarantees offered by the exe-
cution infrastructure. Their work [42] focuses on lan-
guage safety and full abstraction in programming lan-
guage translations. McCune et al. [38] utilise TPM, AMD
SVM, and Intel TXT to provide secure hardware prim-
itives for minimised software TCB. Strackx et al. [56]
discuss the use of memory-safe languages on protected

module architectures for code and data security, and
they explain how secure enclaves might be written. In
our work, we focus on confidentiality issues due to the
TCB components for secret-algorithms in a practical TEE
called SGX.
Linn et al.’s work [37] in binary obfuscation aims tomake

reverse engineering difficult for application binaries. The
work [60] from Wu et al. focuses on malware evasion,
which hides the application code against the analysis. Sim-
ilar techniques can partially protect the application code;
however, they fail to maintain the algorithm secrecy in
stronger adversarial assumptions. These cases include the
decentralised settings where mutually distrustful parties
are involved, and where the adversary has full physi-
cal access over the host platform. Even though binary
obfuscation methods seem to have similar goals to our
work, they remain in the scope of reverse engineering.
Our work is in the domain of securing private algorithms
executed in an untrusted cloud. The forensic tools can
recover evidences from the memory about an operation.
This information retrieval applies mainly to the data.
Some forensic techniques can recover [1] the execution
states of a known software. However, these techniques do
not threaten the algorithm secrecy directly. We protect
the private algorithms at runtime and provide protection
before the execution.
A recent work called GolemNetwork2 provides a decen-

tralised marketplace for computational power. The golem
enclaves are similar to the interpreter enclaves we dis-
cuss in this paper. The third-party libraries included in
the TCB of interpreter enclaves may break the security
guarantees offered by the SGX. The difference to our
approach is that a Golem enclave has a large TCB size
due to the Library OS (Graphene-ng) and the unmodified
applications (e.g., Blender). With a larger TCB size, formal
analysis becomes more difficult. Second, Golem Network
provides data secrecy only, and inherited security guar-
antees might be limited, as we show in a case study on
similar interpreter enclaves in Section 4. Similarly, in one
of our industrial use cases, we present a template for com-
putational power in Section 7. Our template does not
use third-party libraries to process secrets, and it enables
running algorithms strongly-private in remote computers.
The novelty of our work is as follows: 1© we consider

mutually distrustful entities (HO, DO, AO) with conflict-
ing interests in the cloud, 2© we differentiate the private
algorithms and the private data, 3©we show the bad prac-
tices on use of TEE in the cloud, 4© we create a taxonomy
for secure execution of private algorithms in untrusted
remote environments, 5© we provide practical insights
to enclave development, 6© we perform a security anal-
ysis on existing dynamic code loaders with interpreter
enclaves, and 7©we evaluate our executionmodel in three
adversarial settings in the cloud.
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1.7.1 Research direction
The Horizon2020 funded research projects under
SERECA3 focus on a number of goals to build secure
enclaves. These goals include application partitioning
[36], trusted architectures for web services [8, 33],
container architecture [3] and library support for unmod-
ified applications (SGX-LKL4), better integrity [5] and
isolation [7], and enclave memory safety [35] in the cloud.
European Commission funded several projects on TEE

research under SecureCloud (TRUSTEE)5. The main
direction of TRUSTEE projects is dependability in the
cloud. In the context of SecureCloud, the dependability6
notion includes confidentiality, but this applies to data
only. The SecureCloud solutions [9, 14, 31, 44, 51] focus
on processing confidential data via public algorithms in
an untrusted cloud. There is no concern about keeping
the algorithms secret in SecureCloud projects. The advan-
tage of our work is that we keep the algorithms secret
in the untrusted cloud. Both SERECA and SecureCloud
projects consider the confidentiality and the privacy of the
data only.
The nature of enclaves requires enclave code to be

publicly known. The existing work focuses heavily on
private data processing through those enclaves. The dif-
ference with this paper is that we use the publicly
known enclaves to enable private algorithms in the
cloud. We show two different approaches in Section 2.3:
1© the HO develops an enclave that maintains the
code-secrecy after its release, and 2© the AO devel-
ops an enclave that ensures the code-secrecy before its
release.
There are other projects worth mentioning listed under

Intel SGX Academic Research7 page. GrapheneSGX [58]
provides library support for unmodified binaries. Projects
[12, 13, 34, 41, 48] on privacy-preserving data-analysis
provide data confidentiality. Ryoan [24] provides a two-
way sandbox for enclaves. Moat [53] helps to formally
verify the enclave code. AsyncShock [59] exploits the
time-of-check-to-time-of-use (TOCTTOU) bugs. VC3
[45] from Microsoft provides both data and code con-
fidentiality, but this applies to MapReduce functions
only. Controlled-channel attacks [61] can leak the secret
data. We analysed these attacks against the other frame-
works [17, 20] executing private algorithms client-side in
Section 4.

2 Background
Intel’s SGX is a trusted hardware solution [2, 23,
39], which provides a novel development model for
enclave binaries, as well as hardware-maintained (ring -3)
integrity guarantees for computations at user-level (ring
3). It also provides trusted computing primitives such as
Root of Trust for Measurement (RoTM) for its own exe-
cution, Root of Trust for Reporting (RoTR), Root of Trust

for Storage (RoTS), and access control for multiple isolated
memory regions.
The RoTM, at the lowest privilege level, generates trust-

worthy evidence about the state of a system [2]. In
the case of SGX, RoTM provides evidence about the
enclave’s memory layout, not about the system outside of
the enclave memory. SGX’s enclave development model
helps by securing sensitive parts of user-level applications
[39]. Enclaves can prove their identity to verifier enti-
ties who require evidence before proceeding to execution.
Therefore, SGX is a good TEE solution for application
developers.
Other than the SGX instruction set, the SGX SDK

includes SGX drivers, architectural enclaves and SGX
trusted libraries. Intel actively improves the SDK and
plans to add more instructions in SGX Version 2. SGX,
together with SDK, is an ever-evolving software technol-
ogy that provides pratical understanding of a TEE.

2.1 How universal is the enclave research?
This paper is in the domain of the Enclaves and TEEs. We
currently use SGX-enabled hardware and we make our
contributions with Intel SGX enclaves. However, enclave
research goes beyond Intel’s SGX hardware. ARM and
AMD also provide TEE solutions. Microsoft recently
announced8 the OpenEnclave SDK which provides an
abstraction to the underlying hardware.
An enclave programming model may be considered

as independent from the SGX hardware. For example,
a trusted hardware [15] may adopt Intel’s SGX enclave
programming model. Ideally, developers may replace the
underlying hardware with an open hardware solution,
providing stronger security guarantees.

2.2 How do SGX enclaves work?
The enclave programming model requires an Enclave
Developer (ED) to programme, compile and trigger the
binary into allocated enclave memory before execution
[26]. In a decentralised setting, there could be three sep-
arate entities who program, access, and call the enclave
binary. An issue may occur, however, if these entities are
from different parties with conflicting interests.
A key feature of SGX hardware is that the CPU can

measure the enclavememory [39]. Thismeasurement rep-
resents the identity of the enclave. An enclave can contain
any C functions except a few illegal instructions [25].
Enclaves can directly or indirectly communicate with the
system, other applications, other enclaves, and other enti-
ties in the network. We give further information 1© on
enclave development with different SDKs in Section 3, and
2© explain some good and bad practices on enclave TCB
design in Section 5.
Other than splitting an application into Trusted and

Untrusted components (partitioning), the trusted part



Küçük et al. EURASIP Journal on Information Security         (2019) 2019:14 Page 6 of 22

Fig. 1 Default Enclave Execution Mechanism of SGX between the Algorithm Owner (AO) and Hardware Owner (HO). The operator of the machine,
the HO, can inspect the enclave code by reverse engineering the enclave binary. Enclaves must not include any secrets embedded in binary.
Enclaves can, however, receive secrets through a secure channel or recover sealed data

(for example, enclave binary as a shared object; .so file
in Linux) contains [28] two parts. These are the Internal
Enclave Functions (IEF), which contain application logic,
and the Interface Functions. Along with other parts of
the enclave, the IEF are open for inspection before the
initialisation process (Fig. 1). As is standard, if the AO
(who places the application logic into enclave binary) and
the HO (who calls the binary and executes the binary)
are mutually distrustful, then the HO may gain informa-
tion about the IEF and the algorithms compiled into the
enclave binary.

2.3 What differs on protecting the private algorithms
before releasing it or after receiving it?

There are two ways to secure private algorithms between
parties with conflicting interests. The AO may secure the
private algorithm via early operations on the algorithm
prior to delivery. Alternatively, the HO may preserve the
secrecy of the private algorithm after the delivery.
Both Approach 1 (protection before) and Approach

2 (protection after) (Fig. 2) have advantages and disad-
vantages in terms of usability and security. In Approach
2 (Fig. 2), the HO provides an enclave containing the
dynamic code loader and execution method for the pri-
vate algorithm. To provide this, the ED works with the
HO to create a publicly known enclave for common use.
The publicness of this enclave code is required, as the
HO must convince the users to trust her enclave imple-
mentation. If this enclave code is not open-sourced, the
HO can implement hidden functionalities. She will be free
to signal the secret-code and the secret-data to herself

through covert channels. In this case, the AO does not
need to perform any extra operations on the private algo-
rithm. This approach gives better usability to the AO, but
it requires her to trust to the TCB designed by the ED and
the HO. Section 4 evaluates the confidentiality manage-
ment of secret-code handled by the HO, as is displayed in
Approach 2 (Table 2). We classify the development types
as follows: Enclave-aware coding: The developers cre-
ate the algorithms to operate as the enclave code, with
no intermediary layer. Enclave-independent coding: The
developers create the algorithms for an intermediary layer
(such as interpreters). This layer may or may not run in an
enclave.
SGX hardware can help to preserve the confidentiality

of the enclave applications against direct memory peeping
andmemory snooping attacks. Also, the ED can optionally
implement the enclave with resilience to a set of side-
channel attacks in order to address a stronger adversary
model. To use an enclave for secret computation, develop-
ers may create publicly known enclaves with code-loading
ability combined with interpreters, and load a secret-code
on top of the interpreter to execute it. A weakly developed
enclave may provide neither confidential data processing
nor confidential execution of the secret-code.

3 SDK and TCB for the interpreter enclaves
Interpreter enclaves for private algorithms may consist
of two parts: the dynamic secret-code loader mechanism
and the script interpreter mechanism. The interpreter
mechanism with rich functionalities may have system
dependencies.
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Fig. 2 This figure shows the three separate stakeholders in running private algorithms inside enclaves and two approaches to secret code
protection. Approach 1: Enclave Developer (ED) works with the Algorithm Owner (AO) to protect the code within a secret part of the enclave. This
requires the AO to perform early operations on the private algorithm before release. Approach 2: The ED works with the Hardware Owner (HO) to
develop a publicly known interpreter enclave. This does not require the AO to perform early operations on the private algorithm

At the time of writing this paper, Intel SGX SDK only
supported the use of C programming language to cre-
ate an SGX enclave. A recent survey by Data Science
[30] shows that researchers prefer Python and other
languages over C and C++ for data analytics. In addi-
tion to this, web applications and computations on the
client side widely use the Javascript language. To exe-
cute Python or Javascript code inside an enclave, the
language interpreter must be embedded or ported to
the enclave binary. A common way is that ED may pre-
fer to port or adopt the open-sourced interpreters. To
develop such an enclave, the ED can use the partition-
ing method using Intel SDK (recommended if no system
library dependency is required). This can be achived by
removing or replacing the illegal instructions and provid-
ing a trusted interface to the ported binary. In thismethod,
the TCB size stays smaller in comparison to unmodified
binaries (e.g., an enclave comprising an unmodified appli-
cation code) supported with a Library Operating System
(LibOS). If developers prefer running unmodified binaries

Table 2 Two approaches on secret-code execution through SGX
enclaves

Approach 1 Approach 2

Responsible for secrecy Algorithm Owner Hardware Owner

Secrecy ensured Before sending the
code

After receiving
the code

Development type Enclave-aware coding Enclave-
independent
code

TCB/threat analysis In Section 6 In Section 4

Enclave developer The Private Algorithm
must be developed
for Enclave

The Enclave must
be made for
Private Algorithm

that require system support inside an enclave, they must
either use a shim layer [50] to forward the calls or embed
the unmodified binary interpreter within a LibOS, (e.g.,
Graphene LibOS with Graphene SGX SDK). The Linux
Kernel Library (LKL) is an alternative LibOS for this
goal. Both of these LibOSs can support unmodified inter-
preters, but the act of using a LibOS increases the TCB
size dramatically. The interpreters are able to handle com-
plicated tasks and provide rich functionality; however,
they require a LibOS support.

3.1 Understanding the TCB of enclaves
The SGX development model helps developers to cre-
ate applications that, ideally, have a minimal TCB size.
Because the larger TCB on a commodity computer may
contain potential vulnerabilities, minimising the TCB
reduces the risk of having vulnerable code. Develop-
ers are responsible for deciding what to include in the
TCB of an enclave. If a developer includes an arbitrary
code from third-party resources in an enclave, this may
weaken or destroy the integrity guarantees, or fully
destroy the integrity and confidentiality guarantees of
the SGX hardware. The design and implementation of
enclave (i.e., TCB) components are crucial for the secu-
rity of the application. In other words, the underlying
secure hardware may not protect the assets processed by
the bad software stack. The co-design of hardware and
software ensures proper management of the integrity and
confidentiality guarantees.

3.2 Comparison of SDKs for enclaves
An application may require system calls to operate, or
it may run entirely independently without any system
dependencies. Depending on the requirements of an
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application, there are three different ways of developing
enclaves:

– Partitioning an application and using trusted
interfaces within the enclave. We describe
application partitioning with Intel SDK in 3.3.

– Using LibOS inside an enclave to support the
dependencies. We describe development with LibOS
with Graphene SDK [58] in 3.4.

– Using shim layers to filter system calls from enclave
to outside world [50].

3.3 Developing enclaves with Intel SDK
Intel’s SGX SDK requires developers to split an application
into two parts: trusted and untrusted. Developers com-
pile both parts into executable binaries. The untrusted
application calls the trusted binary and maps it into a
memory area allocated for the enclave. Now, the untrusted
application can interact with the enclave via the trusted
interface. The trusted interface then passes the data or
requests to the internal enclave functions via Enclave
CALLs (ECALLs). If any internal enclave function needs a
system call, this request goes through the Outside CALLs
(OCALLs) to the untrusted application in the outside
world. If the internal enclave function does not require the
use of system calls, it may perform all of its computations
without OCALLs, further reducing the risk of a system
call-based attack [11].

3.4 Developing enclaves on Graphene SDK
The Graphene SDK places the Graphene LibOS [58] (sim-
ilar to the LKL9), into an enclave. In this setting, the
enclave does not need to make any OCALLs for system
dependencies to the untrusted operating system, as the

Graphene LibOS can handle all necessary system calls.
Graphene-supported enclaves can contain unmodified
binaries. The amount of code inside an enclave, however,
can extend to tens of thousands of line of code, making
the process of formal verification very difficult. Both the
larger enclave code and the larger TCB size can increase
the risk of security vulnerabilities.

3.5 Private algorithms on SGX enclaves
Once an interpreter is either ported or embedded into an
enclave, a dynamic loader is required to fetch, decrypt and
load the code for execution. Figure 3 shows the feasibil-
ity of three approaches to deploy interpreters in enclaves
based on their TCB components. The interpreter enclave
would ideally have a small TCB size and support rich
functionalities.

Loader + MuJS10 JavaScript Interpreter + Intel SDK
Developers can use a dynamic code loader at runtime
to fetch Javascript code and decrypt the blob inside the
enclave. MuJS interpreter ported for Intel SDK can inter-
pret the loaded secret-code in the execution phase. This
method provides a small TCB size compared to that which
is used with LibOSes. Enclave 1 within Fig. 3a shows
the TCB components of this approach. It provides com-
parably minimal TCB size to that shown in Fig. 3b for
an interpreter enclave. The Enclave 1 is used [17, 20] by
Goltzsche et al. and Fernandez et al., as analysed and
evaluated in Section 4.

Loader +MuJS JavaScript Interpreter + Graphene SDK
The second method (Enclave 2 in Fig. 3) to create an
interpreter enclave is to deploy MuJS on Graphene SDK.
This method reduces the development effort because

Fig. 3 Three different TCB to deploy Dynamic Code Loaders and Interpreter Enclaves for Private Algorithms. a) TCB Size may vary depending on SDK
and interpreter of the language. Graphene SDK TCB > Intel SDK TCB. CPython TCB > MuJS TCB. b) TCB Size vs Functional Capabilities in design of
Interpreter Enclaves. Ideally, the Interpreter Enclave will provide rich functionalities and will have a small TCB size
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Graphene Library OS can support an unmodified MuJS
interpreter, though it increases the TCB size. MuJS inter-
preter is smaller in comparison to CPython interpreter
(while there are advanced JS engines, such as V8, MuJS
is a lightweight option). As such, deploying a lightweight
interpreter on a LibOS would not be an ideal model,
because the majority of the TCB would not be in use.

Loader + CPython Python Interpreter + Graphene
SDK The third method to deploy an interpreter enclave
is to use Python, running over the Graphene LibOS, and
to combine a dynamic code loader to fetch encrypted
Python code at runtime and load it into the interpreter.
This method can provide richer functionality for data
analytics applications. The practical example of CPython
Interpreter and Graphene SDK, without a dynamic secret-
code loader, is available in the Graphene SGX SDK
repository11.

4 Case study: leaks on frameworks enabling
confidential code execution

Both TrustJS [20] and SecureJS [17] frameworks enable
a dynamic load of JS code at runtime. These frameworks
use the first method described in Section 3.5. This method
involves porting the MuJS for the Intel SDK, and creat-
ing a JavaScript Interpreter Enclave. Their performance
results and a detailed comparison is available in this study
[17]. However, direct porting of a third-party interpreter
may not help to hide a private algorithm. According to
the threat model of Intel SGX described in Section 5, the
ED is responsible for the security of interpreter enclaves.
We evaluate the attack surfaces and the software attack
vectors in the following sections.

4.1 Attack surface on interpreter enclaves
The load and execution flow is the same in both frame-
works of TrustJS and SecureJS. First, the Interpreter
Enclave fetches the secret Javascript code in an encrypted
blob. Inside the enclave memory area, MuJS needs
to read the Javascript code as plaintext. The enclave
dynamic loading mechanism prepares the received blob

for the interpreter. Secondly, the interpreter parses each
Javascript operation and calls the corresponding C func-
tions. Frameworks use a custom application-specific code
for the first phase of the preparation of the encrypted blob.
Then, the MuJS interpreter (open-source) performs the
second phase of execution.
TrustJS is not an open-sourced enclave12, however,

SecureJS was open-sourced13 in June 2018. To analyse the
code execution in SecureJS’s TCB, we focus on debugging
MuJS on Intel SDK displayed in Fig. 4, phase 3.

Attack vectors A straight-forward composition of
ported third-party software packages on secure hardware
enclaves introduces new attack vectors. Previously
performed attacks [6, 21, 22, 40, 61] have shown
how commodity software leaks secrets, while defence
mechanisms explain how to mitigate these attacks on
SGX enclaves. For this paper, we chose a non-trivial
attack [61], performed with data-dependent data
access and data-dependent control flow
weaknesses in interpreter enclaves. If the enclave code
has input-dependent control-transfer; e.g., calling dif-
ferent methods based on an input, the adversary can
observe the called page externally and learn the private
input. Similarly, if the data access pattern is based on
an input parameter, the adversary can learn the private
input.

Evaluation of TrustJS and SecureJS MuJS was not
designed to be an oblivious interpreter, and its use in an
enclave for secret-execution requires secure composition
and further isolation techniques. The direct use of the
unmodified binary of MuJS in an enclave in a security
domain brings potential security threats. We have identi-
fied two examples of weaknesses in MuJS used in TrustJS
and SecureJS frameworks. These frameworks rely on the
implementation of the MuJS interpreter.
Along with the interpreter, the dynamic code loader

can be another target for secret code leaks. By design,
the dynamic code loader must be public, and therefore
open for inspection. This is because, as explained in

Fig. 4 Attack surfaces on TrustJS and SecureJS in two phases (2 and 3). Phase 1: Browser extension receives the code. Phase 2: Dynamic code loaders
prepare the code blob. Phase 3: Interpreter executes the code. The confidential code may leak due to attacks placed on surface 1 and 2, targeting
the weakly developed enclave
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Section 2.3, the HO (the platform owner, the cloud owner,
the infrastructure provider) has to convince the public
that her enclave does not perform any dishonest oper-
ations. Open-sourcing the interpreter enclave is in the
interest of the HO. The HO can increase her profit in this
type of cloud scenario, if she can convince more users to
upload their secrets.
In this case study, the AO needs to attest the public

code loaders. The attestation guarantee, however, would
only prove that a known component is in execution. In
building-block enclave design, developers must carry out
security analyses on binaries and utilised third-party pack-
ages.

Analysing the TCB size The interpreter enclaves of this
analysis have used the trust relationship shown in Fig. 2
(Approach 2). The Interpreter Enclave must, therefore, be
public to gain the trust of the AO. Unfortunately, TrustJS
framework is closed-sourced; i.e., the interpreter enclave
is not open for inspection. Thanks to similar open-source
framework SecureJS, we were able to analyse its TCB.
Table 3 shows the size14 of the Software TCB compo-
nents in the SecureJS framework. The MuJS Interpreter
ca 13 KLoC takes %92 of the full TCB (ca 14 KLoC).
The rest of the interpreter enclave (1137 LoC) includes a
small loader, a decrypter code base (excluding the crypto
implementations) and one ECALL that handles all enclave
operations in a single flow. For the components other than
the interpreter, a formal verificationmight be feasible. The
MuJS executes the secret Javascript code, and processes
the secret parameters of given secret Javascript functions.
By porting the MuJS interpreter to SGX, the compiled
binary can provide the required functionality, however,
the SGX hardware cannot turn an insecure design into
a secure one. In fact, an incorrect composition weakens
the security guarantees of the hardware. The Interpreter
Enclave must satisfy the secrecy requirement for confi-
dential execution. These frameworks rely on implementa-
tion ofMuJS for confidential execution. As a consequence,
using the commodity software package for secret pro-
cessing becomes a weakness due to the confidentiality
requirement.

Table 3 TCB Components and their size in line of C code. Based
on software TCB size of SecureJS

TCB component TCB size (LoC)

Main ECALL 110

Internal enclave functions 387

Crypto functions 254

Attestation mechanism 386

MuJS interpreter 13.022

Trusted Intel libraries Not included

4.2 Weaknesses in MuJS interpreter
MuJS is a lightweight Javascript interpreter, not designed
in the security domain. The EDmust, therefore, be careful
about including third-party source code in the TCB. For
this paper, we debugged theMuJS interpreter for the input
dependent methods including the data access and the
control flow. These particular weaknesses may leak the
confidential source code and the confidential parameters.
Therefore, our aim is to observe two parts of confidential
information on source code; first leaking the Javascript
functions, and secondly, leaking the secret string
parameters.

Leaking the called Javascript functions via data-
dependent control flow weakness MuJS parses
Javascript code to extract the necessary operation
code (opcode). The opcode for the JS function is used
to call the relevant C method that corresponds with
the Javascript method. The corresponding C methods
are placed in different memory pages. We report that
the control flow in the jsrun.c file containing the
jsR_run method shown in Fig. 5 is dependent on the
input parameter of opcode containing the Javascript
method. The jsR_run method is used to parse and call
C methods. This may leak the function names of confi-
dential Javascript methods. The control-flow is therefore,
non-oblivious.

Leaking the string parameters via data-dependent
data access weakness inMuJS MuJS contains utf8 and
rune string operations for performing string transforma-
tion operations. The string operations are performed over
look-up tables. The number of accesses to a look-up table
tells the position of the character searched in given table.
An often called function for table look-up bsearch in
utftype.c exposed in Fig. 5 may leak the position of
the character in the table. This means the execution has
non-oblivious data-access.

5 Managing the Software-TCB on SGX enclaves
Both of the fundamental security notions, namely
integrity and confidentiality management, require hard-
ware and software co-design and implementation. A
secure hardware (a TEE or SGX v1.0 in practice) provides
limited security guarantees if its software contains weak-
nesses. For example, a buffer overflow vulnerability allows
an attacker to break the integrity of the target software.
If an enclave contains a run-time vulnerability, attack-
ers may take the control of the execution, compromising
its integrity. The ED should avoid any run-time vulner-
ability to ensure the integrity guarantees of underlying
instructions.
For confidentiality management, SGX can provide page-

level secrecy in its enclave memory. The content of a
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Fig. 5 Disadvantage of Third-party Packages for Confidentiality Management in Enclaves. Direct port of commodity software may leave additional
side-channel traces which ruins the confidentiality guarantees of the hardware. a) Excerpt showing the Input Dependent Control Flow in js_run
method of jsrun.c in MuJS interpreter. b) Excerpt showing the Input Dependent Data Access in bsearchmethod of utftype.c in MuJS
interpreter. (Both Accessed on May 2018 Revision.)

memory page is encrypted by the hardware. An enclave
that contains commodity software (i.e., unmodified binary
programmed without security in mind) may allow attack-
ers to learn the secrets processed by that software. The ED
should follow secure programming practices.
SGX hardware threat model states the ED’s responsi-

bilities in SGX Blogs and SGX Documentations [25–29]
since the time of launching SGX in 2015 (SGX Pro-
gramming Reference, SGXDevelopers Guide, SGXDevel-
oper Reference, SGX Enclave Writers Guide). The ED
must keep their development environment malware-free.
During programming or compiling an enclave, a malware
may infect the enclave and perform malicious operations.
The ED must also keep their enclave code vulnerability-
free. An important post by Intel [29] mentioned that15 the
type of side-channel attack identified on the RSA imple-
mentation was well-known. Developers must avoid any
weak or vulnerable code in the enclave that plays a role in
an attack.
Secure programming techniques can help to keep

enclaves free against runtime bugs. The ED has the
responsibility to program their enclaves with resistance to
software-based side-channel attacks. SGX hardware can-
not bring automatic security guarantees for an enclave
that contains vulnerabilities.
SGX hardware can provide integrity control for mem-

ory accesses so that an enclave can only access to its
own address space. The untrusted operating system, nev-
ertheless, controls the allocation of the enclave memory
pages. By design, SGX cannot provide any protection
against any denial of service attacks; if the operating sys-
tem refuses to give the enclave resources, they cannot
operate. If the enclave binary programmed by the ED

is weak (i.e., performing any data access or control flow
based on input data), the operating system can observe
the pages requested or used during execution. It has
been shown by Hahnel et al. [22] and Tsai et al. [61]
how the ED can mitigate some potential side-channel
attacks.
If the ED places vulnerable code inside the SGX enclave,

code flaws may cause integrity problems which can be
no longer be controlled by SGX (or similar trusted hard-
ware solution). The enclave implementation must contain
no code that intentionally causes information leakage
through side-channel attacks or covert-channel attacks.
These kinds of attacks do not showweakness in SGX tech-
nology [29]. The ED must analyse its implementation to
prevent the side-channel attacks [6, 21, 40] against the
software running in SGX enclaves.
Previous studies [10, 18, 47, 49] have shown solutions

for page-level and cache-level side-channel attacks. Seo et
al. [49] provided a solution for the controlled page-level
attacks with a compiler-level scheme, and this [18] study
solved the same attack with verifiable page faults. Another
study [10], solved the issue of data leakage in side chan-
nels via randomisation. Additionally, recent work [47] has
enabled Address Space Layout Randomisation (ASLR) for
SGX enclaves. The EDs may benefit from these solutions.
Utilising an oblivious RAM solution [54, 57] may also
reduce the attack surface by hiding memory content, and
the memory access patterns.

5.1 Bad practices in enclave development
5.1.1 Integrity and confidentiality
SGX technology is a practical TEE solution for securing
application secrets. The enclave TCB design is crucial for
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providing integrity and confidentiality. For confidentiality
management, third-party software included in the TCB
may fail to provide secrecy for private algorithms. As
such, TCB components that perform sensitive opera-
tions require special attention from developers as it
is possible for arbitrary software, running on trusted
hardware, to leak application secrets. Due to their
weak TCB components, TrustJS and SecureJS frame-
works may fail to preserve the confidentiality of pri-
vate algorithms. Secrets must not be processed by arbi-
trary software unless required security mechanisms are
in place.

Impact of TCB size on integrity and confidentiality
management Increasing the TCB size reduces the chance
of formal verification of the source code. SGX hard-
ware provides strong integrity guarantees for execution
and memory isolation. However, a weak software stack
included in the TCB may leak secrets that are stored or
processed in the enclave. Similarly, a run-time exploit may
give control of the enclave to an attacker.

The New Attack Vectors against the software run-
ning on trusted hardwareCommodity software products
and unmodified binaries running on trusted hardware
need additional memory protections for confidential-
ity management. Table 4 shows the ED’s responsibilities
to preserve security guarantees provided by the trusted
hardware. The non-oblivious software stack shown in
Section 4 may cause confidentiality leaks, otherwise.
Without deploying the security mechanisms that are nec-
essary in a remote environment, the performance metrics
becomes obsolete. We list the bad practices in SGX devel-
opment as following:

– Building a software stack with commodity software:
Developers lose security guarantees of the underlying
SGX hardware due to weak TCB construction caused
by commodity software. Porting the commodity
software to SGX does not directly compose it with
SGX.

Table 4 Hardware-enhanced security guarantees in enclaves,
and the cases when bad software stack may break these
guarantees. Enclave Developers (ED) are responsible for the
secure development

Notion Hardware feature May Break

Integrity Memory access
checks

Runtime vulnerability in TCB

Confidentiality Page-level secrecy Non-oblivious software stack

Fault tolerance Sealed storage Bad software implementation

Enclave availability Refuses to operate
open

Vulnerabilities in microcode

– Runtime vulnerabilities are still a threat: Developers
cause serious integrity flaws due to runtime
vulnerabilities. Enabling the features of the SGX
technology within applications does not mitigate the
runtime vulnerabilities. Consequently, a developer
who places a runtime vulnerability in the software
TCB of a SGX enclave does not show security flaw in
the SGX technology.

5.1.2 Two aspects of the availability
Availability of an SGX enclave may refer to two sub-
notions. First, the SGX enclave binary would refuse to
operate if there is no legitimate Intel SGX hardware. This
notion is independent of the ED. The security issues may
arise if SGX instructions have a design flaw. Nonetheless,
this would not threaten the validity of enclave research.
Because the microcode can receive patches, and the
secure hardware solutions in future can avoid the known
security issues.
The second point of availability is related to fault tol-

erance. An enclave-based cloud service must be available.
As the operating system controls the resources, it can
force an enclave to die. In case of a failure, the enclave
can recover from a sealed state. The recovery process
would, however, be dependent on how this fault toler-
ance mechanism is implemented. A bad software imple-
mentation may cause enclave to fail on execution, or
at recovery. The ED, therefore, are responsible for the
secure development of an enclave that is resilient to the
failures.

6 Secret-code execution (SCE) in reduced TCB
We extended the enclave development model with a
new mode called Early Private Mode (EPM), shown
as State 1 (S1) in Fig. 7. The EPM helps to SCE in
enclaves preserving strong security guarantees and avoids
the issues explained in Section 5.1. The overall archi-
tecture in Fig. 12 in the Appendix, 1© provides con-
fidential execution of private algorithms, 2© keeping a
minimal TCB size, 3© without the inclusion of any com-
modity software. The EPM runs when an AO executes
the enclave in their own execution environment by set-
ting the EPM flag as ‘true’. The enclave then outputs
the given function reference by reading from runtime
memory.
The conventional enclave lifecycle contains three states.

The developer firstly compiles the enclave binary, which
is then delivered and executed, before attesting the iden-
tity of the loaded enclave binary. In our design, we
added an Early Private Mode (EPM; or State 1; S1) to
serialise the secret code before compiling the standard
enclave binary. The S1 serialises the given secret inter-
nal enclave function and outputs it to an encrypted blob.
After verifying the enclave identity via remote attestation,
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we load the serialised secret code for execution (Fig. 8,
State 5; S5).

6.1 Further enclave partitioning: public and private
internal enclave functions

By default, in enclave development [4], binaries are split
into trusted and untrusted parts. Trusted enclave part
includes a Trusted Interface (TI), ECALLs and OCALLs,
along with Internal Enclave Functions (IEF). We extend
this paradigm with Public IEF (PIEF), and Secret IEF
(SIEF) as shown in Fig. 6. In S1 (Fig. 7), the AO produces
Serialised Secret Internal Enclave Function (SSIEF)
called Asset 1 (A1) within EPM. At this early stage,
a copy of the SIEF is created and sealed to enclave
state, to be loaded later in S5 (After Remote Attestation)
(Fig. 8).
The second state (S2) is not different from the ordinary

release mode16, but includes one additional configuration
parameter. By setting the EPM flag as ‘false’, the build pro-
cess excludes the Private Enclave Part, and outputs the
standard enclave binary. The compiled binary includes
the TI, ECALL and OCALL functions, the PIEF and the
Private Code (PC) Loader.

6.2 Late-load of secret code at the fifth state
Before execution of the enclave at State 3 (S3), the HO
has a chance to investigate the enclave code known as
Asset 2 (A2). A2 will contain no secrets that have been
embedded in advance. First, the A2 is loaded into themain
memory at State 4 (S4) via the SGX APIs triggered by the
Untrusted Application (UApp) binary. Afterwards, the

HO cannot see the content of the A2 in the enclave mem-
ory (other than the side-channel footprints explained in
Section 5). To reduce information leaks via side-channels,
we keep the TCB clean from third-party commodity
software, not processing any secrets in the PIEF. After
Remote Attestation (either TLS-based [32, 55] or Diffie-
Hellman & SigMA based [27]) between the AO and A2
(i.e., the AO attests the A2 enclave binary), the PC Loader
extracts A1, including the SSIEF, to the pre-allocated exe-
cutable memory. To execute the secret code, A2 calls the
address of A1, passing the execution flow. This opera-
tion provides runtime recovery of the secret code invisible
to the HO.

6.3 Managing security: adversarial AO vs adversarial HO
In addition to the classic threat model of SGX applica-
tions, where malicious OS and software stack threaten the
enclave, we consider a two-way adversarial case. The HO
aims to learn the secret code sent by the AO. To do so,
the HO can query the SIEF offline with all possible input
set, depending on the application. In order to prevent this,
the AO has to bind the SIEF to the HO’s input parame-
ter, while attesting A2. The parameterisation of the SIEF is
kept out of the scope in this paper. Nevertheless, AO can
mitigate the offline-querying attacks by locking the SIEF
into a specific input. In contrast, the AOmay take control
of the enclave via a malicious SSIEF in order to signal back
anyHO-specific private data used in the PIEF or SIEF. This
possibility threatens the privacy of the HO if it represents
multiple end-users (Data Owners,DO). As a countermea-
sure, the HO can physically limit any information leakage

Fig. 6 Extending the Enclave development model with Private and Public parts. In addition to the application partitioning into trusted and
untrusted, we introduce the enclave partitioning for internal functions. These functions never communicate directly with the outside world
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Fig. 7 The Early Private Mode (EPM) runs before releasing the enclave binary. It creates the Asset 1 (A1) that includes the Serialised Secret Internal
Enclave Functions (SSIEF). The standard release mode in State 2 (S2) creates the enclave binary including the Private Code Loader

by isolating their environment after loading the SIEF. We
do not, however, consider PIEF to be malicious against
the HO, as it must be open for inspection, and it must be
trusted by both parties. This requirement of PIEF being
trusted, comes from standard enclave development where
the all enclave code is being public. In our model, we keep
a part of the enclave private, while rest of it is still known
and being open for inspection. In short, the AO can lock
the SIEF against offline attacks targeting code secrecy,
and the HO can control the physical execution environ-
ment including the network infrastructure to mitigate the
covert-channels.

6.4 Comparing the Approach 1 and Approach 2
The secret code execution in reduced TCB (Approach 1)
uses direct export and import of the C code. The inter-
preter enclave method (Approach 2) enables the use of
high-level languages.

Usability Approach 1 requires the AO to be aware of
enclave development, and it requires them to take an
additional step of EPM before releasing the code. In

Approach 2, the AO does not need to have informa-
tion about the enclave development, as the interpreter
provides a layer of abstraction.

Security Using an interpreter leaves more memory
traces, potentially leaking information via side-channels.
It requires oblivious interpreters and oblivious memory
layout in order to hide the control flow. Loading native
C functions with the size of memory pages do not leave
further traces (at page-level granularity), other than the
number of calls.

TCB size Even though using a very small interpreter,
Approach 2 dramatically increases the TCB while weak-
ening the threat model. The native C execution method
in Approach 1, the TCB contains approx. 1500 LoC
for PC Loader, Attestation and other Enclave func-
tions (excluding any application-specific functionalities
of the enclave). In comparison to interpreter enclaves of
14 KloC, our method provides a TCB that is at least
10 times smaller. Also, Approach 1 addresses a stronger
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Fig. 8 The Standard Execution of an enclave, and the Extended Execution flow with EPM for private algorithms. The difference is that the AO takes also
a role in development of the enclave for private parts. The Asset 1 containing the private algorithms is loaded late in the HO’s environment for
secret-code execution after verifying the attestation report

threat model towards side-channel attacks by leaving less
footprints.

7 Industrial and practical use cases
The AO needs to run private algorithms on a remote,
untrusted computer. We show (Table 5) three examples
where our execution model can achieve this goal. These
scenarios differ from each other by the execution environ-
ments and the participant who receives the result.

7.1 Secret-code execution on computational power
(SCE-CP)

In the first scheme, the AO has a set of private algorithms,
such as 1© a private compression algorithm and 2© a
private sorting algorithm. These algorithms need high
computational power. The AO, therefore, rents a remote

server from the HO. This computation includes embed-
ded constant values and the algorithm provided by theAO
only. The DO does not involve in this scenario. The AO
wants to get the secret output of the computation.

7.1.1 SCE-CP in practice
The AO creates the SSIEF containing the algorithm
and the enclave binary. 1© The AO sends the enclave
binary to the HO. The HO executes the enclave on a
SGX-enabled machine. 2© The AO attests the enclave,
and establishes a secure channel. 3© After verifying
the enclave identity, the AO sends the encrypted SSIEF.
The HO loads the encrypted content and execution
begins. The result of the computation is encrypted
with the AO’s key. 4© The AO receives the result and
decrypts it.

Table 5 Three use cases on secret-code execution through SGX enclaves

No. Use case for Alg. status Data status Result Execution

1 Computing power (CP) Private Alg. by AO Public/no data by DO A.O. gets Only at H.O.’s environment

2 Algorithm querying (AQ) Private Alg. by AO Private data by DO D.O. gets D.O. controls H.O.’s env.

3 Data querying (DQ) Private Alg. by AO Private data by DO A.O. gets D.O. controls H.O.’s env.
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Fig. 9 Secret-Code Execution (SCE) Computational Power. The AO creates a session with the enclave binary, and shares the SSIEF. The SSIEF is
extracted into the enclave memory at runtime

7.1.2 SCE-CP establishing themutual trust
The AO designs and implements the enclave binary.
Sharing the SSIEF after the attestation process gives
the AO an inherited trust. The SSIEF is decrypted
and executed only inside the Non-Inspectable Time
Period (in Fig. 9). This scheme removes the chance
of the HO to disassemble any content of the enclave
code.

7.1.3 SCE-CPmalware in SGX argument
There is a long-lasting argument [46] that an SGX enclave
may include malicious code. We evaluate this argument
for the SCE-CP use case. Our execution model allows
the AO to include arbitrary software in the enclave.
Without the use of EPM and SSIEF, the AO may send
the enclave code in plain text, or the AO may entirely
avoid utilising enclaves. This, however, does not stop
the AO from sending malware to the cloud environ-
ment. In fact, the AO is free to run an experiment with
malicious or benign code in the cloud. At the bottom,
theHO controls the hardware resources, and observes the
usages. The HO charges more to the AO, if the resources
are used more. At all times, the HO can observe all
I/O traffic of the enclave. The HO can refuse to give
resource at any time. The enclave, resource-wise, is one
of the most visible parts in the system. Through the
enclave or not, the malicious AO has full access to the
cloud machine. We conclude that use of an enclave does
not increase the existing attack surface in the SCE-CP
scenario.

7.2 Secret-code execution on algorithm querying
(SCE-AQ)

In the second scheme, theDO has private input data, such
as 1© an image containing health data and 2© a data-set
collected from sensors. As an untrusted entity, the AO
has a private algorithm that can process this private input.
The SCE-AQ scheme (Fig. 10) outputs a private value
that the DOmust receive only. We assume that both enti-
ties are mutually distrustful. They do not want to share
their private assets with each other. A collusion between
the AO and the HO against the DO can leak the secret
data. We, therefore, consider the HO to be controlled
by the DO.

7.2.1 SCE-AQ in practice
The AO uses the EPM and creates the SSIEF containing
the algorithm, and the enclave binary. 1© The AO sends
the enclave binary to the HO that is controlled by the DO.
2© Different from the SCE-CP, the DO interacts first with
the enclave and commits the input. 3© The AO attests the
enclave and verifies the identity. 4© If convinced, the AO
shares the SSIEF with the enclave. The key point is that
neither the DO nor the enclave can change the execution
after this stage. 5© The result of the computation is
returned to the DO.

7.2.2 SCE-AQ brute-forcing the algorithm secrecy
This scheme returns the computation result to the DO.
This allows theDO to gradually learn about the algorithm.
A malicious the DO may want to find the all possible
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Fig. 10 Secret-Code Execution (SCE) Querying the Algorithm. The DO provides an input to the secret algorithm and receives the output. Input
commitment prevents querying the secret-code with a different parameter in an offline repeated execution

input and output streams of the algorithm. The Table 6
shows an example to learn the function behaviour by brute
forcing the input streams. The DO can freeze and clone
the memory state of the machine to perform an attack
against the algorithm. In our mechanism, however, the
independent input from the DO comes before the SSIEF.
Once the DO commits to an input parameter ( 2© step,
Fig. 10), the enclave does not accept any other interac-
tion other than accepting the SSIEF ( 4© step, Fig. 10). If
the DO clones the enclave at any stage, the result does not
change. The AO can thus measure how much secrecy of
the algorithm has been already leaked.

7.2.3 SCE-AQ preventing the data leaks
In contrast, the AO may want to leak the secret inputs.
Even though the AO can execute any code, the SSIEF
cannot communicate with any other entity. The DO phys-
ically controls the environment, and does not allow any
I/O operation (Fig. 11).

Table 6 Brute-force querying the algorithm by re-using the
enclave

No. Example Input_x Example method Example Result_y

001/256 00-1111-00 SSIEF(function_f()) 11

002/256 11-0101-11 SSIEF(function_f()) 10

.. .. ..... .. SSIEF(function_f()) ..

256/256 00-0110-01 SSIEF(function_f()) 00

7.3 Secret-code execution on data querying (SCE-DQ)
In the third scenario, theAO and theDO goes into another
joint computation. The difference is that the result must
be returned to the AO only. The DO has a special private
data-set. The AO wants to run a secret query on this
data-set.
Suppose that, the DO is an authority who collects

road-data and driving experiences of citizens through
sensors. In another example, the DO can be a car
manufacturer company who collects data from their cars.
The AO is an insurance company, or a government
authority, who wants to run a private algorithm on that
data-set.

7.3.1 SCE-DQ in practice
Similar to SCE-AQ, 1© the AO sends the binary, 2©
the DO commits the input, 3© the AO attests the enclave,
and 4© the AO shares the SSIEF. Differently, at step 5©,
the DO reduces the bandwidth of the result. 6© The AO
receives the result and decrypts it.

7.3.2 SCE-DQ limiting the data leakage
The difference in the SCE-DQ from the SCE-AQ is
that the AO receives the secret result. At the end of
the computation, the DO does not let SSIEF to return
an arbitrary value directly. In this example, we allow
returning only 1 bit of data (boolean) as a result. This
operation means, the DO does not know what software
has processed her input, and does not know the result.
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Fig. 11 Secret-Code Execution (SCE) Querying the Data. The AO runs a secret query on a secret data set. After the secret-code execution, the DO has
control of the bandwidth for filtering the return value

The DO, however, knows the type of the value, and
permits SSIEF to return this secret value to the AO. By
doing so, the DO can control how much secrecy of data is
disclosed.

7.4 The overhead in SCE components
We observed two types of computational costs in our
use cases: 1© The asynchronous operations that are
independent of the main computation. 2© The syn-
chronous time cost that our model adds on top of the
existing cost. Table 7 summarises the memory space (m)
and computing time (t) overheads of the components. In
the worst case, the SSIEF recovery costs an equal amount
of time to the cost of the enclave creation (t). This over-
head sums up to Worst(2t) of total time for the SSIEF
execution. The computation itself, however, can take time
andmemory as required by theAO. The SSIEF is executed
in the preallocated memory area during enclave creation.
This operation, therefore, does not require additional

Table 7 Overhead of three use cases on secret-code execution

Description SCE CP SCE AQ SCE DQ

Development time public/private partitioning: asynchronous

Compile time EPM and enclave: asynchronous

t Time cost,mmemory size 1. Step: Execute the enclave

Worst case 2t total time cost 3. Step: Exec SSIEF 4. Step: Exec SSIEF

Other operations: existing costs

memory. We keep the remote attestation costs and opera-
tions out of the scope in this study.

8 Conclusion and future work
In summary, this paper presents a security analysis on
interpreter enclaves and has aimed to demonstrate how
a third-party commodity software can become the weak-
est link in a security chain. We provided a new design
for secret-code execution in remote computers, and
demonstrated such design in three practical generic tem-
plates. Our model reduced the TCB size by a power of ten,
in comparison to the alternative design approach using
interpreters. Approach 1 brings an extra step in devel-
opment, requiring additional enclave partitioning (pub-
lic and private parts). In Approach 2, we showed it is
difficult to hide the called functions, thus requiring an
additional strong sandbox for function secrecy. This sand-
box would, ideally, need to call a set of similar functions
for each function. It is very likely to have an exponen-
tial computational overhead, and this overhead may grow
with the size of the interpreter. Despite its shortcom-
ings on usability, our approach provides stronger security
guarantees. Future work may explore automated ways
of deploying our design, however, Approach 2 will con-
tinue to have better usability. In conclusion, our late-load
method for secret-code execution provides stronger secu-
rity and native execution performance, requiring only a
small additional development effort from the Algorithm
Owner.
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