
EURASIP Journal on
Information Security

Fang et al. EURASIP Journal on Information Security (2019) 2019:5
https://doi.org/10.1186/s13635-019-0090-6

RESEARCH Open Access

A deep learning framework for
predicting cyber attacks rates
Xing Fang1* , Maochao Xu2, Shouhuai Xu3 and Peng Zhao4

Abstract

Like how useful weather forecasting is, the capability of forecasting or predicting cyber threats can never be
overestimated. Previous investigations show that cyber attack data exhibits interesting phenomena, such as
long-range dependence and high nonlinearity, which impose a particular challenge on modeling and predicting
cyber attack rates. Deviating from the statistical approach that is utilized in the literature, in this paper we develop a
deep learning framework by utilizing the bi-directional recurrent neural networks with long short-term memory,
dubbed BRNN-LSTM. Empirical study shows that BRNN-LSTM achieves a significantly higher prediction accuracy when
compared with the statistical approach.

Keywords: ARIMA, GARCH, RNN, Hybrid models, LSTM, Deep learning, BRNN-LSTM

1 Introduction
Cyber attacks have become a prevalent and severe threat
against the society, including its infrastructures, econ-
omy, and citizens’ privacy. According to a 2017 report
by Symantec1, cyber attacks in year 2016 include multi-
million dollar virtual bank heists as well as overt attempts
to disrupt the U.S. election process; according to another
2017 report by NetDiligence2, the average cyber breach
cost is $394K and companies with revenues greater than
$2B suffer an average breach cost of $3.2M.
Given the severe consequence of cyber attacks, cyber

defense capability needs to be substantially improved. One
approach to improving cyber defense is to forecast or pre-
dict cyber attacks, similar to how weather forecasting has
benefited the society in mitigating natural hazards. The
prediction capability can guide defenders to achieve cost-
effective, if not optimally, allocation of defense resources
[1–4]. For example, the defender may need to allocate
more resources for deep packet inspection [5] to accom-
modate the predicted high cyber attack rate. Moreover,
researchers have studied how to use a Bayesian method to
predict the increase or decrease of cyber attacks [6], how
to use a hidden Markov model to predict the increase or
decrease of Bot agents [7], how to use a seasonal ARIMA

*Correspondence: xfang13@ilstu.edu
1School of Information Technology, Illinois State University, Normal 61761, IL,
USA
Full list of author information is available at the end of the article

model to predict cyber attacks [8], how to use a FARIMA
model to predict cyber attack rates when the time series
data exhibits long-range dependence [1], how to use a
FARIMA+GARCH model to achieve even more accurate
predictions by further accommodating the extreme val-
ues exhibited by the time series data [9], how to use a
marked point process to model extreme cyber attack rates
while considering bothmagnitudes and inter-arrival times
of time series [10], how to use a vine copula model to
quantify the effectiveness of cyber defense early-warning
mechanisms [11], and how to use a vine copula model to
predict multivariate time series of cybersecurity attacks
while accommodating the high-dimensional dependence
between the time series [12]. We refer to two recent sur-
veys on the use of statistical methods in cyber incident and
attack detection and prediction [13, 14].
A particular kind of cyber threat data is the time series

of cyber attacks observed by a cyber defense instru-
ment known as honeypots, which passively monitor the
incoming Internet connections. Such datasets exhibit rich
phenomena, including long-range dependence (LRD) and
highly nonlinearity [1, 9].
It is worth mentioning that the usefulness of predic-

tion capabilities in the context of cyber defense ultimately
depends on the degree of prediction accuracy, a situ-
ation similar to the usefulness of weather forecasting.
This factor should be made fully aware to cyber defense
practitioners. Although the prediction accuracy could be

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-019-0090-6&domain=pdf
http://orcid.org/0000-0001-8574-9149
mailto: xfang13@ilstu.edu
http://creativecommons.org/licenses/by/4.0/

Fang et al. EURASIP Journal on Information Security (2019) 2019:5 Page 2 of 11

assured by leveraging large amounts of data, which is
indeed true to the case of weather forecasting, the col-
lection of large amounts of cyber attack data may be
challenging. Nevertheless, understanding the usefulness
of prediction capabilities in the context of cyber security is
a problem of high importance but has yet to be thoroughly
investigated.

1.1 Our contributions
The contribution of the present paper is in two-fold.
First, we propose a novel bi-directional recurrent neu-
ral networks with long short-term memory framework,
or BRNN-LSTM for short, to accommodate the statisti-
cal properties exhibited by cyber attack rate time series
data. The framework gives users the flexibility in choosing
the number of LSTM layers that are incorporated into the
BRNN structure. Second, we use real-world cyber attack
rate datasets to show that BRNN-LSTM can achieve a
substantially higher prediction accuracy than statistical
prediction models, including the one proposed in litera-
ture [9] and the ones that are studied in the present paper
for comparison purposes.

1.2 Related work
Statistical methods have been widely used in the context
of data-driven cyber security research, such as intru-
sion detection [15–18]. However, deep learning has not
received the due amount of attention in the context
of cyber security [13, 14]. This is true despite the fact
that deep learning has been tremendous successful in
other application domains [19–21] and has started to
be employed in the cyber security domains, including
adversarial malware detection [22, 23] and vulnerability
detection [24, 25].
In the context of vulnerability detection, supervised

machine learning methods inlcuding logistic regression,
neural network, and random forest, have been proposed
for this purpose [26, 27]. These models are trained using
large-scale vulnerability data. However, unlike deep learn-
ing models that can directly work on raw data, those
models require the data to be preprocessed to extract
features. There are also other approaches to detecting
vulnerabilities. For example, an architectural approach to
pinpointing memory-based vulnerabilities has been pro-
posed in [28], which consists of an online attack detector
and an offline vulnerability locator that are linked by a
record and replay mechanism. Specifically, it records the
execution history of a program and simultaneously mon-
itors its execution for attacks. If an attack is detected by
the online detector, the execution history is replayed by
the offline locator to locate the vulnerability that is being
exploited. Formore discussions on the vulnerability detec-
tion, please refer to [24, 25, 27, 28], and the references
therein.

In the context of time series analytics, various statistical
approaches have been developed. For example, ARIMA,
Holt-Winters, and GARCH models are among the most
popular statistical approaches for analyzing time series
data [1, 8, 9, 29]. Other statistical models, such as Gaus-
sian mixture models, hidden Markov models, and state
space models have been developed to analyze time series
data with uncertainties and/or some unobservable factors
[17, 30]. Recently, it was discovered that deep learning
is very efficient in time series prediction. For example,
deep learning has been employed to predict financial
data, which contains some noise and volatility [21]. In the
context of transportation application, deep learning has
been used to predict passenger demands for on-demand
ride service [31]. In particular, it is discovered that deep
learning can achieve a higher accuracy than statistical
time seriesmodels (e.g., ARMA andHolt-Wintersmodels)
in predicting transportation traffic [32–34]. It is further
argued in [32] that a particular class of deep learning
models, known as feed-forward neural networks, are the
best predictors when taking into account both prediction
precision and model complexity. In [34], the prediction
performances of the deep learning approach and of the
statistical ARIMA approach are compared against each
other. It is shown that the deep learning approach can
significantly (more than 80%) reduce the error rate when
compared with the ARIMA models.
The rest of the paper is organized as follows. In the

“Preliminaries” section, we review some concepts of deep
learning that are related to the deep learning framework
we will propose in this paper. In the “Framework” section,
we present the framework we propose for predicting cyber
attack rates. In the “Empirical study” section, we present
our experiments on applying the framework to a dataset
of cyber attack rates and compare the resulting predic-
tion accuracy with the accuracy of the statistical approach
reported in the literature. In the “Conclusion” section, we
conclude the present paper with future research direc-
tions.
In order to improve the readability of the paper, we sum-

marize the main notations that are used in the present
paper in Table 1:

2 Preliminaries
In this section, we review three deep learning concepts
that are related to the present work: recurrent neural net-
work (RNN), bi-directional RNN, and long short-term
memory (LSTM).

2.1 RNN
Figure 1 highlights the standard RNN structure, which
updates its hidden layers according to the information
received from the input layer and the activation from
the previous forward propagation. When compared with

Fang et al. EURASIP Journal on Information Security (2019) 2019:5 Page 3 of 11

Table 1 Summary of notations

Wx Weight matrix connecting the input layer and the hidden layer

Wh Weight matrix connecting two consecutive hidden states

Wy Weight matrix connecting the hidden state and the output layer

bh Bias vector in hidden layer

by Bias vector in output layer

ht Hidden state at time t

σ(·) Activation function

xt Input at time t

yt Real output at time t

ŷt Predicted output at time t

J Objective function

feed-forward neural networks, RNN can accommodate
the temporal information embedded into the sequence of
input data (see, e.g., [35, 36]). Intuitively, this explains why
RNN is suitable for natural language processing and time
series analysis (see, e.g., [36–39]). This observation moti-
vates us to leverage RNN as a starting point in designing
our framework that will be presented later.
As highlighted in Fig. 1, the computing process at each

time step of RNN is

ht = σ(Wx · xt + Wh · ht−1 + bh),

where Wx ∈ Rm×n is the weight matrix connecting the
input layer and the hidden layer with m being the size of
the input and n being the size of the hidden layer, Wh ∈
Rn×n is the weight matrix between two consecutive hid-
den states ht−1 and ht , bh is the bias vector of the hidden
layer, and σ is the activation function to generate the hid-
den state. As a result, the network output can be described
by

yt = σ(Wy · ht + by),

where Wy ∈ Rn is the weight connecting the hidden layer
and the output layer, by is the bias vector of the output
layer, and σ is the activation function of the output layer.

2.2 Bi-directional RNN
A uni-directional RNN is a RNN that only takes one
sequence as the input. A uni-directional RNN cannot take
full advantage of the input data in the sense that it only
learns information from the “past.” In order to overcome
this issue, the concept of bi-directional RNN is intro-
duced to make a RNN learn from both the past and the
future [40]. Technically speaking, a bi-directional RNN
is essentially two uni-directional RNNs that are com-
bined together, where one learns from the past and the
other learns from the “future”; the results of the two uni-
directional RNNs are merged together to compute a final
output.

2.3 LSTM
The training process of RNNs can suffer from the gradient
vanishing/exploding problem [41], which can be alleviated
by another RNN structure known as LSTM [42]. LSTM
is composed of units calledmemory blocks, each of which
contains some memory cells with self-connections, which
store (or remember) the temporal state of the network,
and some special multiplicative units called gates. Each
memory block contains an input gate, which controls the
flow of input activations into the memory cell; an output
gate, which controls the output flow of cell activations into
the rest of the network; and a forget gate.
As highlighted in Fig. 2, the activation at step t, namely,

ht , is computed based on four pieces of gate input, namely,
the information gate it , the forget gate ft , the output gate
ot , and the cell gate ct [43]. Specifically, the information
gate input at step t is

it = σ (Ui · ht−1 + Wi · xt + bi) ,

where σ(·) is a sigmoid activation function, bi is the bias,
xt is the input vector at step t, and Wi and Ui are weight
matrices. The forget gate input and the output gate input
are respectively computed as

ft = σ
(
Uf · ht−1 + Wf · xt + bf

)
,

ot = σ (Uo · ht−1 + Wo · xt + bo) ,

Fig. 1 A standard unfolded RNN structure at time t

Fang et al. EURASIP Journal on Information Security (2019) 2019:5 Page 4 of 11

Fig. 2 LSTM block at step t with information gate it , forget gate ft , output gate ot , and cell gate ct

whereUf ,Uo,Wf , andWo are weight matrices, and bf and
bo are biases. The cell gate input is computed as

ct = ft ·ct−1+it ·kt with kt = tanh (Uk · ht−1+Wk · xt+bk) ,

where tanh is the hyperbolic tangent function, Uk and
Wk are weights, and bk is bias. The activation at step t is
computed as

ht = ot · tanh(ct).

Intuitively, the key component of LSTM is the cell state,
which flows throughout the network. Given input ht−1
and xt , the forget gate ft decides to throw away what infor-
mation from the previous cell state ct−1. The forget gate ft
takes ht−1 and xt as input and uses the sigmoid activation
function σ(·) to generate a number between 0 and 1 for
each value in cell state ct−1. The information gate it deter-
mines what new information in the current cell state ct to
be stored, via two steps: a set of candidate values are com-
puted by kt based on the current input; the information
gate it then uses σ(·) to decide which candidate values will
be stored in ct . The cell gate will then compute ct . Finally,
ht is computed based on ct and ot , where the latter is the
information from the output gate.

3 The bi-directional RNNwith LSTM framework
The framework we propose for predicting cyber attack
rates is called bi-directional RNN with LSTM or BRNN-
LSTM for short, which incorporates some LSTM layers
into a bi-directional RNN. BRNN-LSTM has three com-
ponents: an input layer, a number of hidden layers, and an
output layer, where each hidden layer is replaced with a
LSTM cell. The same sequential input, denoted by xt =
{x0, ..., xt}, is passed to the two states of the LSTM lay-
ers, the forward state, and the backward state. There is no
connection in between the two states. The outputs from

the two states are then combined together to predict a tar-
get value at each step. Figure 3 highlights the structure of
BRNN-LSTM with three LSTM layers.
For training a BRNN-LSTM model, we propose using

the following objective function:

J = 1
2m

·
m∑

i=1
(ŷi − yi)2 + λ

2
(||W||22 + ||U||22

)
, (1)

where m is the size of the input, ŷi and yi are respectively
the output of network and the observed values at step i,
W and U are weight matrices, W = {Wf ,Wi,Wk ,Wo},
U = {Uf ,Ui,Uk ,Uo}, ||·||22 represents the squared L2 norm
of weight matrices, and λ is a user-defined penalty param-
eter. Note that the second term in Eq. (1) is the penalty
term for avoiding overfitting. The optimization is defined
as

�∗ = argmin
�

J ,

where � = (W,U) are model parameters and can be
solved by using the gradient descent method [42, 44].

4 Empirical study
4.1 Accuracy metrics
Let (y1, . . . , yN) be observed values and

(
ŷ1, . . . , ŷN

)
be the

predicted values. In order to evaluate the accuracy of the
BRNN-LSTM framework, we propose using the following
widely used metrics [1, 9, 45].

• Mean square error (MSE):
MSE = ∑N

i=1
(
yi − ŷi

)2
/N .

• Mean absolute deviation (MAD):
MAD = ∑N

i=1
∣
∣yi − ŷi

∣
∣ /N .

• Percent mean absolute deviation (PMAD):
PMAD = ∑N

i=1
∣
∣yi − ŷi

∣
∣ /

∑N
i=1 |yi|.

• Mean absolute percentage error (MAPE):
MAPE = ∑N

i=1
∣
∣(yi − ŷi)/yi

∣
∣ /N .

Fang et al. EURASIP Journal on Information Security (2019) 2019:5 Page 5 of 11

Fig. 3 BRNN-LSTM with three LSTM layers

4.2 Data collection
The dataset we analyze is the same as the dataset ana-
lyzed in [1]. The dataset was collected by a low-interaction
honeypot consisting of 166 consecutive IP addresses dur-
ing five periods of time in the interval between year 2010
and year 2011. These five periods of time are respectively
1,123, 421, 1,375, 528, and 1920 h, each of which is rep-
resented by a separate dataset. The honeypot runs the
following four honeypot programs: Dionaea3, Mwcollec-
tor4, Amun5, and Nepenthes [46], which run some vul-
nerable services such as SMB (with Microsoft Windows
Server Service Buffer Overflow vulnerability MS06040
and Workstation Service Vulnerability MS06070), Net-
BIOS, HTTP, MySQL and SSH. A honeypot computer
runsmultiple honeypot programs, each of whichmonitors
(i.e., is associated to) one IP address. A dedicated com-
puter collects the raw network traffic coming to the hon-
eypot as pcap files. Honeypot-captured data are treated
as cyber attacks because no legitimate services are associ-
ated to the honeypot computers. We refer to [1] for more
details about the honeypot instrument.

4.3 Data preprocessing
As in [1] and many analyses, we treat flows (rather than
packets) as attacks, while noting that flows can be based

on the TCP or UDP protocol. A TCP flow is uniquely
identified by an attacker’s IP address, the port used by
the attacker to wage the attack, a victim IP address
(belonging to the honeypot), and the port of the victim
IP address under attack. An unfinished TCP handshake
is also treated as a flow or attack because the unsuc-
cess may be attributed to the fact that the connection is
dropped because the port in question is busy. Also as in
[1], the preprocessing contains the following steps. First,
we disregard the cyber attacks that are waged against the
non-production (i.e., unassigned) ports (i.e., any ports that
are not associated with the honeypot programs) because
these TCP connections are often dropped. Since low-
interaction honeypot programs do not collect adequate
traffic information that would allows us to determine
specific attacks, we only consider the attack rate or the
number of attacks (rather than specific types of attacks).
Second, the following two widely used parameters [47] are
also used to preprocess network traffic flows not ending
with the FIN flag (meaning that these flows are termi-
nated unsafely) or the RST flag (meaning that these flows
are terminated unnaturally): 60 s for the flow timeout time
(meaning that an attack or flow expires after being idle for
60 s) and 300 s for the flow lifetime (meaning that an attack
or flow does not span over 5 min or 300 s).

Fang et al. EURASIP Journal on Information Security (2019) 2019:5 Page 6 of 11

Algorithm 1 Algorithm for computing fitted values.
INPUT: Historical time series data {(t, yt)|t = 1, . . . ,m};
iteration b = 10, 000; penalty parameter λ = .001.

1: for r ∈ {20, 30, 40} do
2: Split the data set into mini-batch of size r
3: for l ∈ {2, 3, 4, 5} do
4: Randomly initialize a l-layer BRNN-LSTM with

parameters saved in �

5: j ← 0
6: while j <= b do
7: Compute J in Eq. (1) by performing forward

propagation
8: Update � using the Adam optimizer [44]
9: j ← j + 1

10: end while
11: for each data point at t do
12: Compute ŷt by performing forward

propagation
13: Fitted value ← ŷt
14: end for
15: return Fitted values for combination (r, l).
16: end for
17: end for
OUTPUT: Fitted values for various combinations of
(r, l)’s.

For each period or dataset, the data is represented by
{(t, xt)} for t = 0, 1, 2, . . ., where xt is the number of
attacks (i.e., attack rate) that are observed by the hon-
eypot at time t. Unlike [1], we further preprocess the
derived attack rate time series by normalizing attack rates
into interval (0, 1]. Then, small data batches (periods)
are selected based on a pre-defined mini-batch size. For
prediction purposes, we split each time series into an in-
sample part (for model training) and an out-of-sample
part (for prediction). As in [1], we set the last 120 h of each
period as the out-of-sample part for evaluating prediction
accuracy.

4.4 Model training and selection
In the training process, we use the mini-batch gradient
descent method to compute the minimum of the objec-
tive function, which is described in Eq. (1). We use 10,000
iterations to train a network and set the penalty param-
eter λ = .001 because other parameters do not lead
to any significantly better result. For each dataset, we use
Algorithm 1 to compute the fitted values with varying
model parameters. We select the model that achieves the
minimumMSE.
Table 2 describes the selected model and MSE for each

dataset. We observe that the selected model for different

datasets may use different batch size r and different
number l of LSTM layers. For datasets I, IV, and V, the
selected batch size is 20; for datasets II and III, the selected
batch size is respectively 30 and 40. For the number of
LSTM layers, datasets I and IV prefer to 4 layers; datasets
II and V prefer to 2 layers; and period IV prefers to 3
layers.
Figure 4 plots the fitting of the selected model corre-

sponding to each dataset. We observe that the selected
models have satisfactory fitting accuracy. In particular, the
extreme values are fitted well in every dataset.

4.5 Prediction accuracy
We use Algorithm 2 to predict cyber attack rates corre-
sponding to the out-of-samples, which allow us to calcu-
late the prediction accuracy.

Algorithm 2 Algorithm for predicting cyber attack rates
INPUT: Historical time series data with in-sample set
{(t, yt)|t = 1, . . . ,m} and out-of-sample set
{(t, ys)|s = m + 1, . . . , n}; iteration b = 10, 000; penalty
parameter λ = .001; (r, l) selected in model training.
1: Split the in-sample set into mini-batches of size r
2: Randomly initialize a l-layer BRNN-LSTM, with all

the parameters saved in �

3: j ← 0
4: while j < b iteration do
5: for Each mini-batch from the in-sample set do
6: Compute J by performing forward propagation
7: Update � using the Adam optimizer ([44])
8: end for
9: j ← j + 1

10: end while
11: Predictions ← ∅
12: for Each data point, s, in the out-of-sample set do
13: Compute ŷs by performing forward propagation
14: Predictions ← ŷs
15: end for
16: return Predicted values
OUTPUT: Predicted values.

Table 3 describes the prediction results in terms of
the accuracy metrics mentioned above. Based on metrics
PMAD and MAPE, BRNN-LSTM achieves a remarkable
prediction accuracy for datasets I, II, III, and V because
prediction errors are less than 5%. However, for dataset IV,
Table 2 Parameters (r, l) of selected model and MSE for each
dataset

Dataset I II III IV V

r 20 30 40 20 20

l 4 2 4 3 2

MSE 4051.685 935.0724 251061.7 2898.278 9132.973

Fang et al. EURASIP Journal on Information Security (2019) 2019:5 Page 7 of 11

(a) (b) (c)

(d) (e)
Fig. 4 BRNN-LSTM fitting results of cyber attack rates in the five datasets (black line: observed values; red circles: fitted values)

the prediction accuracy in metric PMAD is around 17%
and in metric MAPE is around 27%. Fortunately, BRNN-
LSTM can be easily calibrated to improve its prediction
accuracy via a rolling approach as follows. For period IV,
we re-estimate model parameters in � via Algorithm 1
after observing 20 more data points; the corresponding
prediction accuracy, indicated by “IV*” in Table 3, is much
better than the original prediction accuracy. For example,
the rolling approach reduces the PMADmetric to 10% and
reduces the MAPE metric to 13%.
Figure 5 plots the prediction results. We observe that

predicted values match observed values well, but some
observed values that are still missed by BRNN-LSTM. For
example, for dataset III, the extreme value is missed and
some observed values are over-predicted. Nevertheless,
we conclude that the prediction accuracy is satisfactory.

4.6 Model comparisons
In order to further evaluate the prediction accuracy of
the proposed framework, we now compare it with other
popular models.

4.6.1 ARIMA
The first model we consider (as a benchmark) is the
AutoRegressive Integrated Moving Average or ARIMA
(p, d, q), which is perhaps the most well-known model
in time series analysis [29, 30]. The ARIMA model is
described as

φ(B)(1 − B)dYt = θ(B)et ,

where B is the backshift operator, and φ(B) and θ(B) are
respectively the AR and MA characteristic polynomials
evaluated at B. In order to select the ARIMA model for

Table 3 Parameters of selected models and prediction accuracy metrics of these selected models, where IV* indicates the rolling
approach for dataset IV

Dataset Test r l MSE MAD PMAD MAPE

I 120 20 4 3,628,266 463.2715 .01243741 .01387808

II 120 30 2 16,497,941 1036.6035 .04012863 .04819186

III 120 40 4 30,637,599 675.7551 .04299127 .02304677

IV 120 20 3 2,165,707 508.3557 .1658243 .26563720

IV* 120 20 3 1,085,361 297.3440 .1034426 .13385770

V 120 20 2 20,415,119 1396.7624 .03564086 .04787385

Fang et al. EURASIP Journal on Information Security (2019) 2019:5 Page 8 of 11

(a) (b) (c)

(d) (e)
Fig. 5 Prediction accuracy of BRNN-LSTM (black line: observed values; red circles: predicted values)

prediction purpose, we use the AIC criterion while allow-
ing the orders of p and q to vary from 0 to 5 and d to vary
from 0 to 2.

4.6.2 ARMA+GARCH
The second model we consider further incorporates the
Generalized AutoRegressive Conditional Heteroscedastic
or GARCH model, which is widely used in financial time
series applications. We use GARCH(1, 1) to model the
conditional variance and the ARMA model to accommo-
date the conditional mean. This leads to the following
ARMA+GARCH model:

Yt = E(Yt|Ft−1) + εt ,

where E(·|·) is the conditional expectation function, Ft−1
is the historic information up to time t − 1, and εt is
the innovation of the time series. Since the mean part is
modeled as ARMA(p, q), the model can be rewritten as

Yt = μ +
p∑

k=1
φkYt−k +

q∑

l=1
θlεt−l + εt , (2)

where εt = σtZt with Zt being i.i.d. innovations. For the
standard GARCH(1, 1) model, we have

σ 2
t = w + α1ε

2
t−1 + β1σ

2
t−1, (3)

where σ 2
t is the conditional variance and w is the inter-

cept. After some preliminary analysis, we set the order

of ARMA to (1, 1) as a higher order does not provide
significant better predictions.

4.6.3 Hybridmodel
The third model we consider is based on the recently
developed hybrid approach, which is a two-step proce-
dure [48, 49]. The hybrid model first extracts the linear
relationship using an ARIMAmodel, and then uses a non-
linear approach to determine the nonlinear relationship.
The nonlinear step can be considered as a prediction on
the error term. The resulting hybrid model is written as

Yt = Lt + Nt ,

where Lt is the linear part and Nt is the nonlinear part.
Since Lt is modeled by an ARIMA model, the residuals at
time t are

et = Yt − Ŷt ,

where Ŷt is the fitted value. The residuals are modeled by
a nonlinear model, which utilizes the lag information. We
consider the following three types of hybrid models:

H1 : Nt = f (et−1, et−2, . . . , et−n) + εt ,
H2 : Nt = f (et−1, et−2, . . . , et−n, yt−1, yt−2, . . . ,yt−m)+εt ,
H3 : Nt = f (yt−1, yt−2, . . . , yt−n) + εt ,

where epsilont is the random error at time t and f is a
nonlinear function. For nonlinear function f, we consider
the following three popular machine learning approaches

Fang et al. EURASIP Journal on Information Security (2019) 2019:5 Page 9 of 11

[50]: random Forest or RF [49], support vector machine or
SVM [51], and artificial neural network or ANN [48, 52].
In order to achieve the best prediction accuracy, we

examine a number of models. For the linear part of
ARIMA(p, d, q), we use the AIC criterion to select mod-
els in the training process, where p and d vary from 0 to
5 and d varies from 0 to 1. For the nonlinear model, we
vary the lag parameter from 1 to 12. All of the models are
trained by using 10-folder validation. For RF, we set the
number of trees to 1000; for SVM, we consider the follow-
ing kernel functions: linear, polynomial, radial basis, and
sigmoid; for ANN, we set the number of hidden layers to
one while varying the number of hidden nodes from 1 to
10.

4.6.4 Comparison
We select the highest prediction accuracy in terms of
the MSE metric derived from the predicted values and
the out-of-sample data. For dataset I, the best predic-
tion model is ARIMA(2,1,1)+ANN+H3 with the number
of lags being 5 and 8 hidden nodes. For dataset II, the
best predictionmodel is ARIMA(3,1,1)+“linear SVM”+H2
with the number of lags being 6. For dataset III, the
best predictionmodel is ARIMA(3,0,1)+“radial SVM”+H3
with the number of lags being 8. For dataset IV, the
best predictionmodel is ARIMA(0,1,2)+“radial SVM”+H1
with the number of lags being 4. For dataset V, the best
prediction model is ARIMA+“radial SVM”+H3 with the
number of lags being 7.
Table 4 summarizes the one-step ahead rolling predic-

tion accuracy. Considering the MSE metric, we observe
that the ARIMA model has the worst prediction accuracy
for datasets I–IV, and the hybrid model outperforms the
ARMA+GARCHmodel for every dataset; we also observe
that the ARIMAmodel has the smallestMSE for dataset V.
Considering the MAD metric, we observe that the hybrid
model outperforms the other two models for datasets I,
III, and IV, but the ARMA+GARCH model outperforms
the other two models for dataset II; we also observe that
the ARIMA model has the smallest MAD for dataset IV.
Considering metrics PMAD and MAPE, we observe that
the hybrid model outperforms the other two models for
datasets I, III, IV, and V, and the ARMA+GARCHmodel is
slightly better than the hybrid model for dataset II; we also
observe that all of the models have the worst prediction
accuracy for datasets IV and V, which coincides with the
conclusion drawn in [9], namely, that the PMADs of one-
step ahead rolling prediction of the FARIMA+GARCH
model are respectively 0.138,0.121,0.140,0.339, and 0.378
for the five datasets. By comparing Tables 3 and 4, we
draw:

Insight 1 The BRNN+LSTM framework achieves a
higher prediction accuracy than the FARIMA+GARCH

Table 4 Prediction accuracy of the selected model with respect
to each dataset

Dataset MSE MAD PMAD MAPE

ARIMA

I 40,054,811 5,038.95 0.1352803 0.1378065

II 100,487,103 6,763.351 0.2618205 0.314159

III 47,486,461 3,478.307 0.2212886 0.2573687

IV 17,002,355 2,353.409 0.8187241 0.8372556

V 456,948,359 15,919.9 0.4062245 0.5932768

ARMA+GARCH

I 38,077,842 4908.317 0.1317732 0.1361043

II 93,164,156 5,861.041 0.2268906 0.2530479

III 56,736,538 3431.358 0.2183016 0.2395564

IV 3,837,969 1,356.005 0.4717387 0.5876807

V 553,535,870 16,671.04 0.4253909 0.5267857

Hybrid

I 36,177,293.39 4,652.507998 0.124905523 0.127347065

II 93017462.9 6169.871649 0.238845915 0.281375049

III 39,425,972.04 2,807.162152 0.178590549 0.206457204

IV 3,162,758.321 1,063.447725 0.369961347 0.384547602

V 493,400,639.5 16,787.20604 0.385329179 0.516025677

model proposed in [9] and the ARIMA, ARIMA+GARCH,
and hybrid models considered above.

5 Conclusion
We proposed a BRNN-LSTM framework for predict-
ing cyber attack rates. The framework can accommo-
date complex phenomena exhibited by datasets, including
long-range dependence and highly nonlinearity. Using five
real-world datasets, we showed that the framework sig-
nificantly outperforms the other prediction approaches in
terms of prediction accuracy, which confirms that LSTM
cells can indeed accommodate the long memory behav-
ior of cyber attack rates. From these five datasets, we
found that only dataset IV requires to re-training the
model in order to achieve a better prediction accuracy.We
compared the prediction accuracy of BRNN-LSTM and
other prediction approaches, which use rolling predic-
tions (i.e., re-building the prediction model after observ-
ing a new value). We hope the present work will inspire
more research in deploying deep learning to prediction
tasks in the cybersecurity domain.

Endnotes
1 https://www.symantec.com/security-center/threat-

report
2 https://netdiligence.com/portfolio/cyber-claims-

study/

https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report
https://netdiligence.com/portfolio/cyber-claims-study/
https://netdiligence.com/portfolio/cyber-claims-study/

Fang et al. EURASIP Journal on Information Security (2019) 2019:5 Page 10 of 11

3 http://dionaea.carnivore.it/
4 https://alliance.mwcollect.org/
5 http://amunhoney.sourceforge.net/

Abbreviations
ARIMA: Autoregressive integrated moving average; BRNN: Bi-directional
recurrent neural network; GARCH: Generalized autoregressive conditional
heteroskedasticity; LSTM: Long short-term memory; RNN: Recurrent neural
network

Acknowledgements
Not applicable.

Funding
Not applicable.

Availability of data andmaterials
Data used in this work is not suitable for public use. The source code used in
the present paper is available at https://github.com/xingfang912/time-series-
analysis

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
XF constructed the deep learning framework and performed the deep
learning experiments. MX and PZ performed the experiments on the statistical
models. SX drafted the manuscript. All authors reviewed the draft. All authors
read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Information Technology, Illinois State University, Normal 61761, IL,
USA. 2Department of Mathematics, Illinois State University, Normal 61761, IL,
USA. 3Department of Computer Science, University of Texas at San Antonio,
San Antonio 78249, TX, USA. 4Department of Computer Science, Jiangsu
Normal University, Xuzhou 221110, China.

Received: 29 November 2018 Accepted: 3 May 2019

References
1. Z. Zhan, M. Xu, S. Xu, Characterizing honeypot-captured cyber attacks:

Statistical framework and case study. IEEE Trans. Inf. Forensic Secur. 8(11),
1775–1789 (2013)

2. E. Gandotra, D. Bansal, S. Sofat, Computational techniques for predicting
cyber threats. Intell. Comput. Commun. Devices Proc ICCD 2014. 1, 247
(2014)

3. S. Xu, in Proc. Symposium on the Science of Security (HotSoS’14).
Cybersecurity dynamics (ACM, Raleigh, 2014), pp. 14–1142

4. S. Xu, in Proactive and Dynamic Network Defense, ed. by Z. Lu, C. Wang.
Cybersecurity dynamics: A foundation for the science of cybersecurity
(Springer International Publishing, New York City, 2018)

5. L. D. Carli, R. Sommer, S. Jha, in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, Scottsdale, AZ, USA,
November 3-7, 2014. Beyond pattern matching: A concurrency model for
stateful deep packet inspection (ACM, Scottsdale, 2014), pp. 1378–1390

6. C. Ishida, Y. Arakawa, I. Sasase, K. Takemori, in Proceedings of PACRIM. 2005
IEEE Pacific Rim Conference on Communications, Computers and signal
Processing, August 24-26. Forecast techniques for predicting increase or
decrease of attacks using bayesian inference (IEEE, Victoria, 2005),
pp. 450–453

7. D. H. Kim, T. Lee, S.-O. D. Jung, H. P. In, H. J. Lee, in Information Assurance
and Security, 2007. IAS 2007. Third International SymposiumOn. Cyber threat
trend analysis model using HMM (IEEE, Manchester, 2007), pp. 177–182

8. Z. Yong, T. Xiaobin, X. Hongsheng, in Computational Intelligence and
Security, 2007 International Conference On. A novel approach to network
security situation awareness based on multi-perspective analysis (IEEE,
Harbin, 2007), pp. 768–772

9. Z. Zhan, M. Xu, S. Xu, Predicting cyber attack rates with extreme values.
IEEE Trans. Inf. Forensic Secur. 10(8), 1666–1677 (2015)

10. C. Peng, M. Xu, S. Xu, T. Hu, Modeling and predicting extreme cyber attack
rates via marked point processes. J. Appl. Stat. 44(14), 2534–2563 (2017)

11. M. Xu, L. Hua, S. Xu, A vine copula model for predicting the effectiveness
of cyber defense early-warning. Technometrics. 59(4), 508–520 (2017)

12. C. Peng, M. Xu, S. Xu, T. Hu, Modeling multivariate cybersecurity risks. J.
Appl. Stat. 45(15), 2718–2740 (2018)

13. N. Sun, J. Zhang, P. Rimba, S. Gao, Y. Xiang, L. Y. Zhang, Data-driven
cybersecurity incident prediction: A survey. IEEE Commun. Surv. Tutor.,
1–1 (2018). https://doi.org/10.1109/COMST.2018.2885561

14. M. Husák, J. Komárková, E. Bou-Harb, P. Čeleda, Survey of attack
projection, prediction, and forecasting in cyber security. IEEE Commun.
Surv. Tutor. 21(1), 640–660 (2019)

15. D. E. Denning, An intrusion-detection model. IEEE Trans. Softw. Eng.
SE-13(2), 222–232 (1987)

16. M. Markou, S. Singh, Novelty detection: a review part 1: statistical
approaches. Sig. Process. 83(12), 2481–2497 (2003)

17. V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey. ACM
Comput. Surv. (CSUR). 41(3), 15 (2009)

18. J. Neil, C. Hash, A. Brugh, M. Fisk, C. B. Storlie, Scan statistics for the online
detection of locally anomalous subgraphs. Technometrics. 55(4),
403–414 (2013)

19. L. Deng, D. Yu, et al., Deep learning: methods and applications. Found.
Trends® Sig. Process. 7(3–4), 197–387 (2014)

20. M. Längkvist, L. Karlsson, A. Loutfi, A review of unsupervised feature
learning and deep learning for time-series modeling. Pattern Recogn.
Lett. 42, 11–24 (2014)

21. R. C. Cavalcante, R. C. Brasileiro, V. L. Souza, J. P. Nobrega, A. L. Oliveira,
Computational intelligence and financial markets: A survey and future
directions. Expert Syst. Appl. 55, 194–211 (2016)

22. D. Li, Q. Li, Y. Ye, S. Xu, Enhancing robustness of deep neural networks
against adversarial malware samples: Principles, framework, and aics’2019
challenge. CoRR. abs/1812.08108 (2018). http://arxiv.org/abs/1812.
08108

23. D. Li, R. Baral, T. Li, H. Wang, Q. Li, S. Xu, Hashtran-dnn: a framework for
enhancing robustness of deep neural networks against adversarial
malware samples. CoRR. abs/1809.06498 (2018). http://arxiv.org/abs/
1809.06498

24. Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, Y. Zhong, in 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018. Vuldeepecker: A deep learning-based
system for vulnerability detection (Internet Society, San Diego, 2018)

25. Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, S. Wang, J. Wang, Sysevr: A
framework for using deep learning to detect software vulnerabilities.
CoRR. abs/1807.06756 (2018). http://arxiv.org/abs/1807.06756

26. G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, L. Mounier, in Proceedings
of the Sixth ACM Conference on Data and Application Security and Privacy.
CODASPY ’16. Toward large-scale vulnerability discovery using machine
learning (ACM, New York, 2016), pp. 85–96

27. Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, J. Hu, in Proceedings of the 32nd Annual
Conference on Computer Security Applications, ACSAC 2016, Los Angeles, CA,
USA, December 5-9, 2016. Vulpecker: an automated vulnerability detection
system based on code similarity analysis (ACM, Los Angeles, 2016),
pp. 201–213

28. Y. Chen, M. Khandaker, Z. Wang, in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. ASIA CCS ’17.
Pinpointing vulnerabilities (ACM, New York, 2017), pp. 334–345

29. J. D. Cryer, K.-S. Chan, Time Series Analysis With Applications in R. (Springer,
New York, 2008)

30. P. J. Brockwell, R. A. Davis, Introduction to Time Series and Forecasting.
(Springer, Switzerland, 2016)

31. J. Ke, H. Zheng, H. Yang, X. M. Chen, Short-term forecasting of passenger
demand under on-demand ride services: A spatio-temporal deep
learning approach. Transp. Res. C Emerg. Technol. 85, 591–608 (2017)

32. M. Barabas, G. Boanea, A. B. Rus, V. Dobrota, J. Domingo-Pascual, in
Intelligent Computer Communication and Processing (ICCP), 2011 IEEE

http://dionaea.carnivore.it/
https://alliance.mwcollect.org/
http://amunhoney.sourceforge.net/
https://github.com/xingfang912/time-series-analysis
https://github.com/xingfang912/time-series-analysis
https://doi.org/10.1109/COMST.2018.2885561
http://arxiv.org/abs/1812.08108
http://arxiv.org/abs/1812.08108
http://arxiv.org/abs/1809.06498
http://arxiv.org/abs/1809.06498
http://arxiv.org/abs/1807.06756

Fang et al. EURASIP Journal on Information Security (2019) 2019:5 Page 11 of 11

International Conference On. Evaluation of network traffic prediction based
on neural networks with multi-task learning and multiresolution
decomposition (IEEE, Cluj-Napoca, 2011), pp. 95–102

33. A. Azzouni, G. Pujolle, A Long Short-Term Memory Recurrent Neural
Network Framework for Network Traffic Matrix Prediction. CoRR.
abs/1705.05690 (2017). http://arxiv.org/abs/1705.05690

34. S. Siami-Namini, A. S. Namin, Forecasting Economics and Financial Time
Series: ARIMA vs. LSTM. CoRR. abs/1803.06386 (2018). http://arxiv.org/
abs/1803.06386

35. C.-M. Kuan, T. Liu, Forecasting exchange rates using feedforward and
recurrent neural networks. J. Appl. Econ. 10(4), 347–364 (1995)

36. T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, S. Khudanpur, in Proceesings
of the 11th Annual Conference of the International Speech Communication
Association. Recurrent neural network based language model
(International Speech Communication Association (ISCA), Makuhari,
Chiba, 2010), pp. 1045–1048

37. M. Sundermeyer, I. Oparin, J. L. Gauvain, B. Freiberg, R. Schlüter, H. Ney, in
2013 IEEE International Conference on Acoustics, Speech and Signal
Processing. Comparison of feedforward and recurrent neural network
language models (IEEE, Vancouver, 2013), pp. 8430–8434

38. Z. Huang, G. Zweig, B. Dumoulin, in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Cache based recurrent
neural network language model inference for first pass speech
recognition (IEEE, Florence, 2014), pp. 6354–6358

39. X. Liu, Y. Wang, X. Chen, M. J. Gales, P. C. Woodland, in Acoustics, Speech
and Signal Processing (ICASSP), 2014 IEEE International Conference On.
Efficient lattice rescoring using recurrent neural network language
models (IEEE, Florence, 2014), pp. 4908–4912

40. M. Schuster, K. K. Paliwal, Bidirectional recurrent neural networks. IEEE
Trans. Sig. Process. 45(11), 2673–2681 (1997)

41. Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with
gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

42. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput.
9(8), 1735–1780 (1997)

43. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning. (MIT Press, MA, 2016)
44. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization. CoRR.

arXiv preprint arXiv:1412.6980 (2014)
45. R. J. Hyndman, A. B. Koehler, Another look at measures of forecast

accuracy. Int. J. Forecast. 22(4), 679–688 (2006)
46. P. Baecher, M. Koetter, T. Holz, M. Dornseif, F. Freiling, in International

Workshop on Recent Advances in Intrusion Detection. The nepenthes
platform: An efficient approach to collect malware (Springer, Berlin,
Heidelberg, 2006), pp. 165–184

47. S. Almotairi, A. Clark, G. Mohay, J. Zimmermann, in 2008 IFIP International
Conference on Network and Parallel Computing. Characterization of
attackers’ activities in honeypot traffic using principal component analysis
(IEEE, Shanghai, 2008), pp. 147–154

48. G. P. Zhang, Time series forecasting using a hybrid arima and neural
network model. Neurocomputing. 50, 159–175 (2003)

49. M. Kumar, M. Thenmozhi, Forecasting stock index returns using
arima-svm, arima-ann, and arima-random forest hybrid models. Int. J.
Bank. Account. Financ. 5(3), 284–308 (2014)

50. J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning, vol.
1. (Springer, New York, 2001)

51. P.-F. Pai, C.-S. Lin, A hybrid arima and support vector machines model in
stock price forecasting. Omega. 33(6), 497–505 (2005)

52. Y. Chen, B. Yang, J. Dong, A. Abraham, Time-series forecasting using
flexible neural tree model. Inf. Sci. 174(3-4), 219–235 (2005)

http://arxiv.org/abs/1705.05690
http://arxiv.org/abs/1803.06386
http://arxiv.org/abs/1803.06386

	Abstract
	Keywords

	Introduction
	Our contributions
	Related work

	Preliminaries
	RNN
	Bi-directional RNN
	LSTM

	The bi-directional RNN with LSTM framework
	Empirical study
	Accuracy metrics
	Data collection
	Data preprocessing
	Model training and selection
	Prediction accuracy
	Model comparisons
	ARIMA
	ARMA+GARCH
	Hybrid model
	Comparison

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	Author details
	References

