
EURASIP Journal on
Information Security

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4
https://doi.org/10.1186/s13635-019-0087-1

RESEARCH Open Access

Machine learning-based dynamic
analysis of Android apps with improved
code coverage
Suleiman Y. Yerima1†, Mohammed K. Alzaylaee2*† and Sakir Sezer2

Abstract

This paper investigates the impact of code coverage on machine learning-based dynamic analysis of Android
malware. In order to maximize the code coverage, dynamic analysis on Android typically requires the generation of
events to trigger the user interface and maximize the discovery of the run-time behavioral features. The commonly
used event generation approach in most existing Android dynamic analysis systems is the random-based approach
implemented with the Monkey tool that comes with the Android SDK. Monkey is utilized in popular dynamic analysis
platforms like AASandbox, vetDroid, MobileSandbox, TraceDroid, Andrubis, ANANAS, DynaLog, and HADM. In this
paper, we propose and investigate approaches based on stateful event generation and compare their code coverage
capabilities with the state-of-the-practice random-based Monkey approach. The two proposed approaches are the
state-based method (implemented with DroidBot) and a hybrid approach that combines the state-based and
random-based methods. We compare the three different input generation methods on real devices, in terms of their
ability to log dynamic behavior features and the impact on various machine learning algorithms that utilize the
behavioral features for malware detection. Experiments performed using 17,444 applications show that overall, the
proposed methods provide much better code coverage which in turn leads to more accurate machine
learning-based malware detection compared to the state-of- the- art approach.

Keywords: Android malware detection, Code coverage, Monkey, DroidBot, Dynamic analysis, Machine learning,
Event generation, State-based input generation, Model-based input generation, Random input generation

1 Introduction
With nearly 80% market share, Google Android leads
other mobile operating systems. Over 65 billion down-
loads have been made from the official Google play store,
and there are currently more than 1 billion Android
devices worldwide [1]. According to Statista [2], there will
be around 1.5 billion Android devices shipped worldwide
by 2021. Due to the increasing popularity of Android,
malware targeting the platform has increased significantly
over the last few years. According to a recent report from
McAfee, there are around 2.5 million new Android mal-
ware samples exposed every year, thus increasing the total

*Correspondence: malzaylaee01@qub.ac.uk
†Suleiman Y. Yerima and Mohammed K. Alzaylaee contributed equally to this
work.
2Centre for Secure Information Technologies (CSIT), Queen’s University Belfast,
Belfast, BT7 1NN Northern Ireland, UK
Full list of author information is available at the end of the article

number of malware samples discovered in the wild to
more than 12 million [3]. Android malware can be found
in a variety of applications such as gaming apps, banking
apps, social media apps, educational apps, and utility apps.
Malware-infected applications can have access to privacy-
sensitive information, send text messages to premium rate
numbers without user approval, or even install a rootkit
on the device allowing it to download and execute any
code the malware developer wants to deploy etc.
In order to mitigate the spread of malware, Google

introduced Bouncer to its store in Feb 2012. Bouncer is the
system used to monitor submitted applications for poten-
tially harmful behaviors by testing the submitted apps in a
sandbox. However, Bouncer has been shown to be vulner-
able to unsophisticated detection avoidance techniques
that can evade sandbox-based dynamic analysis [4]. Fur-
thermore, most third party app stores do not have any
screening mechanism for submitted applications. There

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-019-0087-1&domain=pdf
http://orcid.org/0000-0002-3791-3458
mailto: malzaylaee01@qub.ac.uk
http://creativecommons.org/licenses/by/4.0/

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 2 of 24

is therefore a need to further research more efficient
approaches for detecting Android malware in the wild.
Android applications are heavily user interface (UI)

driven. Because of the UI operation, efficient input gener-
ation is crucial for testing applications and many tools are
available to support developers. Likewise, efficient input
generation is needed to drive automated dynamic analysis
for malware detection. On the Android platform, malware
can hide their malicious activities behind events/actions
that require user interaction. Hence, in order to facil-
itate effective malware detection, researchers integrate
(into their analysis platforms) tools that can simulate the
human interaction with the UI. The main goal is to reach
a high percentage of code coverage such that most of
the suspicious activities are revealed during the analy-
sis. However, as highlighted in [5], some challenges still
remain with automated test input generation. Many of
the existing dynamic analysis systems rely on a random-
based input generation strategy based on the Android
Monkey UI exerciser tool. In fact, the random-based test
input generation tool Monkey, is currently the most pop-
ular input generation tool used in most dynamic analysis
systems. Its popularity can be attributed to being readily
available as part of the Android developer’s toolkit and its
ease of use.
An empirical study conducted in [6] compared the

Monkey tool to other input generation tools. The study
found that the highest code coverage was achieved by
the random-based Monkey tool compared to the other
tools. However, the study did not evaluate the impact on
machine learning-based detection of Android malware.
In our previous work [7], preliminary experiments con-
ducted on 2444 Android apps (containing 1222 benign
and 1222 malware samples) showed that dynamic analysis
behavioral footprint enabled by the random-based Mon-
key tool could be improved further. The results showed
that stateful approaches enabled better code coverage
than the random-based approach. Out of the stateful
approaches, the hybrid method performed better than
the stand-alone state-based approach. The code cover-
age was quantified by the number of apps where specific
dynamic behavioral features were traced or discovered
from.
This paper extends the preliminary work in [7],

and presents a more extensive comparative analysis
of the code coverage by the random-based, state-
based and hybrid input generation methods by means
of a larger dataset of 15,000 apps. The study in
this paper focuses on investigating the impact of the
input generation methods on performance of machine
learning-based Android malware detection, which has
not yet been addressed in previous works. In particu-
lar, our paper seeks to answer the following research
questions:

• Given that the random-based test input generation
approach is widely utilized, does this method enable
the best possible code coverage for effective detection
of Android malware?

• Does the state-based method produce larger
behavioral footprints for dynamic analysis compared
to the random- based method?

• When the state-based method is combined with the
random-based method to enable hybrid input test
generation, does this increase the behavioral
footprint?

• Lastly, what are the comparative performance
differences for various machine learning classifiers
that utilize the dynamic behavioral features logged
using the random-based vs. state-based vs. the hybrid
method? Most importantly, does the use of stateful
methods increase classifier performance?

The reminder of the paper is structured as follows.
Section 2 discusses the input generation methods investi-
gated in the paper. Section 3 details the methodology and
experiments undertaken. Section 4 presents and discusses
the results. Section 5 gives an overview of related work,
followed by conclusions and future work in Section 6.

2 Input/event generationmethods for Android
application dynamic analysis

In this section, we describe the input/event generation
methods investigated in this paper. The input genera-
tion schemes are incorporated into an extended version
of our dynamic analysis framework (DynaLog) for com-
parative analysis. DynaLog [8] enables dynamic analysis
of Android apps by instrumenting the apps with API-
Monitor [9] and then logging real-time behavioral fea-
tures. DynaLog is extended to enable dynamic analysis
on real devices (as described in [10]) in order to mitigate
the potential impact of anti-emulation and environmental
limitations of emulators on our dynamic analyses. Figure 1
shows an overview of the dynamic analysis process using
DynaLog. It logs features from API calls and Intents. On
the Android platform, Intents are used to signal to the
system that a certain event has occurred. Examples of
Intents include SMS_RECEIVED, PACKAGE_INSTALL,
BOOT_COMPLETED, and PACKAGE_REMOVED. In
order to receive the signal for an Intent, an app must
register for that particular Intent.

2.1 Random input generation method
The random input generation method is a stateless
approach that sends pseudo-random events of clicks,
swipes, touch screens, scrolling etc. during run-time test-
ing of an application in an emulator or real device. As
mentioned before, the state-of-the-practice events gener-
ator for run-time testing of Android apps is the Monkey

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 3 of 24

Fig. 1 Extracting app behavioral footprint using Dynalog [10]

tool, which has been incorporated into many dynamic
analyses systems (such as AASandbox [11], ANANAS
[12], Mobile Sandbox [13], and vetDroid [14]). Monkey is
a random-based events generation tool that is part of the
Android Developers’ toolkit [15]. It is a command line tool
that can be run on any emulator instance or on a device. It
sends a pseudo-random stream of user events into the sys-
tem and includes several configuration options. The seed
value for the pseudo-random number generator can be
set, and if you re-run Monkey with the same seed value
it would generate the same sequence of events. A fixed
delay can be inserted between the events and if not spec-
ified, there is no delay and the events are generated as
rapidly as possible. Monkey can be configured to ignore
crashes, timeouts or security exceptions and continue to
send events to the system until the count is complete.
Although Monkey is quite effective as an event genera-

tion tool for dynamic analysis systems, it does not operate
with any awareness of the current state of the system. For
this reason, the code coverage might not be optimal, and
this could reduce effectiveness of detection systems that
utilize on it for event generation. This is what we will
be investigating in the experiments presented later in the
paper by comparative analysis with alternative approaches
that have not been utilized in previous works.
The main advantage of the random input generation

method is the speed, since events can be sent contin-
uously without pausing to determine the current state
of the app’s UI. The main disadvantage is that unin-
tended consequences, such as turning off Internet con-
nectivity, could occur as observed in [7]. Since the
input/event generation is not guided, the phone’s set-
tings could be inadvertently changed by indiscriminate
streams of generated input. This may impact the extent
of coverage of the behavioral footprint thus leaving

out key features that could be indicative of malicious
activities.

2.2 State-based input generation method
This approach is also known as model-based input gen-
eration or model-based exploration [16–20]. The method
utilizes a finite state machine model of the app with activ-
ities as “states” and events as “transitions.” The finite
state model can be built by statically analyzing the app’s
source code to understand which UI events are relevant
for a specific activity. Alternatively, the model can be built
dynamically and terminated when all events that can be
triggered from all the discovered state lead to already
explored states.
In order to implement state-based test input generation

for our study, we employed DroidBot [21], an open-source
automated UI event generation tool for Android. Droid-
Bot was integrated into our DynaLog framework and
configured to operate in the state-based input generation
mode. DroidBot generates UI-guided test inputs based
on a state transition model generated on-the-fly from the
information monitored at run-time. Hence, it does not
require any prior knowledge of unexplored code. A depth-
first exploration algorithm is used to generate the events.
Figure 2 shows a simplified example of a state transi-
tion model. It shows a directed graph in which each node
represents a device state, and the edge between the two
nodes represents the input event that triggered the state
transition. A state node typically contains the GUI infor-
mation and the running process information, while an
edge node contains details of the input event. The cur-
rent state information is maintained, and after sending
an input to the device, the state change is monitored.
Once the device state is changed, the input is added
as a new edge while a new node is added to represent

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 4 of 24

Fig. 2 Simplified state transition model example [21]

the new state. Further details on DroidBot are given
in [21].
DroidBot was selected for our work because compared

to other model-based/state-based tools it is (a) open
source, (b) easier to integrate with our existing anal-
ysis environment (DynaLog) since it does not require
system/framework instrumentation, and (c) usable with
common of the shelf Android devices without modifica-
tion. The main disadvantage of the state-based approach
is that it is considerably slower than the random-based
approach. This is due to the fact that the app’s current
state needs to be constantly tracked in between sending
events. Note that the time taken to traverse the possible
states of the app depends on the size and complexity of the
apps. Running times therefore vary from app to app.

2.3 Hybrid input generation method
The hybrid input method is a stateful approach that
combines the random-based method with the state-
based method as described in [7]. This was moti-
vated by desire to exploit the strengths of each method
for possible improvement in behavioral footprint. Fur-
thermore, we want to determine whether a combined
scheme will impact the detection accuracy of machine
learning-based systems built upon the dynamic analy-
sis process that utilize the resulting run-time behavioral
features.
The hybrid input generation system runs a random-

based event generation script based on Monkey first.

Afterwards, it commences the state-based phase by
starting DroidBot (with dynamic policy mode). It also
checks the device configuration in order to restore
the device to its original starting configuration, in
case this has been altered by any generated ran-
dom events. Figure 3 shows a flow chart of the pro-
cess [7]. Note that the execution order (i.e., running
Monkey before DroidBot) is mandated by technical con-
straints that made it infeasible to start with DroidBot
first.

3 Methodology and experiments
Two sets of experiments were performed to address the
research questions outlined in Section 1: (a) Compara-
tive analysis of the random-based, state-based, and hybrid
input generation in terms of behavioral footprint. (b)
Investigating the impact of the resulting behavioral foot-
prints on the performance of various machine learning-
based classifiers. In this section, we present the setup of
our experiments.

3.1 Testbed configurations
The experiments were performed using real phones with
the following configurations. Eight smartphones of dif-
ferent brands with each processing an average of 100
apps per day were utilized. The phones are equipped
with Android 6.0 “Marshmallow” OS, 2.6 GHz CPU,
4GB RAM, 32GB ROM, and 32 GB of external SD card
storage. Moreover, each phone was installed with a credit-

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 5 of 24

Fig. 3 Checking and restoring device configurations on the hybrid input generation system comprising both random and state-based subsystems [7]

loaded sim card to allow sending SMS, outgoing calls,
and 3G data usage. The phones were also connected to
an Internet-enabled Wi-Fi access point. The aim was to
ensure that the dynamic analysis environment mimicked
real smartphone operations as much as possible.
The running time was different depending on the input

generationmethod.With the random-basedmethod, each
of the applications was installed on a phone and run
for 300 s. Preliminary investigation confirmed that 300 s
was a sufficient time to generate at least 2000 ran-
dom events. The preliminary studies found that for most
apps, 2000 events provided optimum coverage beyond
which no improvement is observed. With the state-based
input generation method, we specified a running time
of 180 s which was enough to allow the possible states
to be traversed and all relevant events invoked. This
was also confirmed via preliminary studies. Therefore,
for the hybrid test input generation, we adopted the
sum of the times used in the two individual methods,
i.e., 480 s.

3.2 Datasets
In order to evaluate behavioral footprints and sub-
sequently measure the accuracy performance of the
machine learning-based classifiers, we utilized two
datasets. The first one (Dataset1) consisted of 2444 apps

with equal numbers of benign and malware apps. The
malware apps in Dataset1 are from 49 families of the
AndroidMalware Genome project samples [22], while the
benign samples are fromMcAfee Labs.
The second dataset (Dataset2) had 15,000 apps consist-

ing of 6500 clean apps and 8500malware apps all obtained
from McAfee labs. Some of the apps in Dataset2 could
not be processed successfully due to errors, crashes, or
absence of “activity” components in the app. Out of the
initial 6500 benign apps, 6069 were processed successfully.
Also, out of 8500 malware apps, only 7434 were processed
successfully. Thus, in the end, a total of 13,530 apps were
utilized from Dataset2.

3.3 Extracting behavioral features
The behavioral footprints were extracted during app pro-
cessing on the smartphones. Each of the smartphones was
connected via the android debug bridge (adb) to a San-
toku Virtual Machine [23]. Within the Santoku Virtual
Machine, an instance of our dynamic analysis tool Dyna-
log was used to extract the behavior features for each app
at run-time and then further process the behavior logs
from all apps into a .csv file. The entire process was per-
formed for each of the three analyses scenarios, i.e., with
random-based, state-based, and hybrid input generation
methods respectively.

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 6 of 24

For each application, a total of 178 dynamic features
based on API calls and Intents were extracted. These
features were utilized for the comparative behavioral foot-
print analyses of the input generation methods using the
Dataset1 and Dataset2 respectively. After pre-processing,
the total number of features that remained out of the ini-
tial 178 for training and evaluating the machine learning
classifiers were 102 for random-based method, 110 for
state-based method, and 110 for hybrid method.

3.4 Investigated machine learning classifiers
In the second set of experiments, the extracted behav-
ioral features were used to investigate the performance of
seven popular machine learning classifiers. The classifiers
include the following: Sequential Minimal Optimization
(SMO), Naive Bayes (NB), Simple Logistic (SL), Multi-
layer Perceptron (MLP), Partial Decision Trees (PART),
Random Forest (RF), and J48 Decision Tree. These classi-
fiers are all implemented in the popular machine learning
software WEKA (Waikato Environment for Knowledge
Analysis), and we used the default configurations of the
classifiers within the software for our experiments. For
each input generation method, we studied the perfor-
mance of each classifier on the two datasets. The results of
our experiments are presented in Section 4 using the “pre-
cision,” “recall,” and “weighted F-measure” performance
metrics defined as follows:
Recall or sensitivity is the “true positive ratio” given by:

Rec = TP
TP + FN

(1)

Precision (also known as “positive predictive rate”) is
given by:

Prec = TP
TP + FP

(2)

where TP is the true positives, i.e., number of correctly
classified instances. FN stands for false negatives, i.e.,
the number of instances within a class that were incor-
rectly classified as the other class. FP is false positives,
i.e., the number of instances of the other class that were
incorrectly classified as the current class.
F-measure is ametric that combines precision and recall

as follows:

FM = 2 ∗ recall ∗ precision
recall + precision

(3)

As the F-measure is calculated for both malware and
benign classes, the combined measure known as weighted
F-measure is the sum of the F-measures weighted by the
number of instances in each class as follows:

W − FM = (Fm.Nm) + (Fb.Nb)

Nm + Nb
(4)

where Fm and Fb are the F-measures of the malware
and benign classes respectively, while Nm and Nb are the
number of instances in the malware and benign classes
respectively.

4 Results and disscussions
4.1 Comparisons of behavioral footprint: state-based vs.

random vs. hybrid
4.1.1 Random-based approach vs. state-based approach
In this subsection, the results of the behavioral footprint
analysis of the random-based method compared to the
state-based method (from both Datasets 1 and 2) are
presented. Figures 4 and 5 show the top 10 extracted
run-time features with the largest differences between
the two methods, from the malware and benign samples
respectively in Dataset1. In this experiment, we discov-
ered that some API calls were logged at a higher number
with random-based method whereas others were logged
at a higher number with state-based method.

Fig. 4 Top 10 logged API calls from the malware subset (Dataset1) where the state-based method was better than the random-based method

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 7 of 24

Fig. 5 Top 10 logged API calls from the benign subset (Dataset1) where the state-based method was better than the random-based method

In Fig. 4, the top10 featureswhere the state-based method
had a larger overall behavioral footprint are depicted
for the malware subset. The feature NetworkInfo;-
>getTypeName, logged 114 more with the state-based
method than the random-based method. While the
feature Landroid/telephony/TelephonyManager;-
>getDeviceId logged 100 more with the state-based
method. In Fig. 5, much larger differences can be seen
with the experiments performed on the benign subset
of Dataset1. This also corresponds with the fact that
the benign apps were generally larger in size than the
malware apps in Dataset1.
Figures 6 and 7 show results of experiments performed

on Dataset2 to compare random-based to state-based. In
Fig. 6, the top 10 features with the largest differences
where the state-based method triggered higher number

of logs than the random-based method are shown for
the malware subset. Similarly, Fig. 7 illustrates the same
for the benign subset. We can see that with Dataset2
there are much higher differences in behavioral footprint
between the two test input generation methods compared
the Dataset1 scenario.
Figure 8 shows the results of a few exceptional cases

where the random-based method outperformed the state-
based approach from themalware subset of Dataset1. This
indicates that for some applications, the random-based
approach could sometimes reach parts of the applications
that the state-based method was unable to reach. How-
ever, it is worth noting that the overall differences in Fig. 8
are smaller than those shown in Fig. 4 thus indicating
that the overall footprint is larger with the state-based
approach.

Fig. 6 Top 10 logged API calls from the malware subset (Dataset2) where the state-based method was better than the random-based method

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 8 of 24

Fig. 7 Top 10 logged API calls from the benign subset (Dataset2) where the state-based method was better than the random-based method

4.1.2 Random-based approach vs. hybrid approach
The results of the behavioral footprint analysis of the
random-based method compared to the hybrid method
(from both Datasets 1 and 2) are presented. Tables 1
and 2 show the top-10 extracted run-time features
with the largest differences between the two methods,
from the malware and benign samples respectively in
Dataset1. Both tables show that more of the API calls
were logged from larger number of APKs when the
hybrid input test generation method was used com-
pared to the random-based method. The API method
call Ljava/io/File;->exists, for instance, was logged from
677 malware APKs using the hybrid test input method,

while it was only logged from 477 malware APKs
using the random-based approach. Similarly, the method
Landroid/telephony/TelephonyManager;>getDeviceId in
Table 1, was discovered from 429 malware APKs using the
hybrid method, whereas only 315 malware APKs logged
the same API method when random-based method was
used.
Similar results were obtained with the benign samples

with even higher differences observed as shown in Table 2.
For example, the method Landroid/net/Uri;>parse was
logged from 492 benign APKs using the hybrid method,
while the same method was extracted from only 192
benign APKs using the random-based approach.

Fig. 8 Top 10 logged API calls from the malware subset (Dataset1) where the random-based method was better than the state-based method

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 9 of 24

Table 1 Top 10 API calls logged from malware samples where
the hybrid approach was better than the random-based
approach (Dataset1)

API signatures Random Hybrid Difference

Ljava/io/File;->exists 477 667 190

Ljava/security/MessageDigest;-
>getInstance

338 473 135

Landroid/content/pm/ApplicationInfo

;->getApplicationInfo 435 563 128

Ljava/security/MessageDigest;-
>digest

310 431 121

Ljava/util/zip/ZipInputStream;-
>read

219 336 117

Landroid/telephony/
TelephonyManager;->getDeviceId

315 429 114

Ljava/util/TimerTask;->< init> 808 921 113

Landroid/content/pm/

PackageManager 651 756 105

Lorg/apache/http/client/HttpClient;-
>execute

89 188 99

Ljava/io/File;->mkdir 274 366 92

The same experiment was repeated with the larger
Dataset2 and the results are presented in Tables 3 and
4. The tables show the top-10 features with the largest
differences. In Table 3 (malware subset), the hybrid
method shows larger collective behavioral feature foot-
prints than the random-based method. For example, the
Ljava/util/zip/ZipInputStream;>read feature was logged
from 2446moremalware APKs when the hybrid test input
methodwas used compared to the random-basedmethod.
Likewise, the Ljava/lang/reflect/Method;->getClass fea-
ture was discovered from 4346 malware samples using
the hybrid method compared to only 2468 using the

Table 2 Top 10 API calls logged from benign samples where the
hybrid approach was better than the random-based approach
(Dataset1)

API Signatures Random Hybrid Difference

Landroid/net/Uri;->parse 192 492 300

Ljava/util/zip/ZipInputStream;->read 173 408 235

Ljava/security/MessageDigest;->digest 297 519 222

Ljava/security/MessageDigest;->getInstance 327 549 222

Lorg/apache/http/client/HttpClient;->execute 56 264 208

Ljava/lang/reflect/Method;->getClass 359 565 206

Ljava/lang/Class;->getName 217 422 205

Landroid/content/Context;->getResources 437 639 202

Ljava/util/TimerTask;->< init> 575 774 199

Landroid/content/pm/

PackageManager;->checkPermission 164 359 195

Table 3 Top 10 API calls logged from malware samples where
the hybrid approach was better than the random-based
approach (Dataset2)

API signatures Random Hybrid Difference

Ljava/util/zip/ZipInputStream;-
>read

1270 3716 2446

Lorg/apache/http/client/methods/
HttpPost;->< init>

1128 3501 2373

Ljava/security/MessageDigest;-
>Instance

2406 4660 2254

Ljava/security/MessageDigest;-
>digest

2213 4442 2229

Landroid/content/Context;-
>getResources

2754 4870 2116

Landroid/net/Uri;->parse 917 2992 2075

Ljava/security/MessageDigest;-
>update

2023 4072 2049

Landroid/telephony/
TelephonyManager;-
>getDeviceId

2277 4223 1946

Ljava/lang/reflect/Method;-
>getClass

2468 4346 1878

Ljava/lang/Class;->getName 1879 3742 1863

random-based method. From Table 6, out of 122 features
with differences in Dataset2, the random-based method
had only two features where it logged higher than the
hybrid-based method. The results from the benign sam-
ples shown in Table 4 depict the same pattern of larger

Table 4 Top 10 API calls logged from benign samples where the
hybrid approach was better than the random-based approach
(Dataset2)

API signatures Random Hybrid Difference

Ljava/lang/Class;-
>getName

1622 2764 1142

Ljava/util/zip/ZipInputStream;-
>read

817 1943 1126

Ljava/security/MessageDigest;-
>update

866 1983 1117

Ljava/security/MessageDigest;-
>digest

934 2040 1106

Ljava/security/MessageDigest;-
>getInstance

1079 2177 1098

Ljava/util/Date 811 1847 1036

Ljava/lang/reflect/Method;-
>getClass

2052 3058 1006

Ljava/util/Date;->< init> 784 1785 1001

Ljava/util/List 784 1785 1001

Landroid/content/Context;-
>bindService

434 1396 962

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 10 of 24

behavioral footprint with the hybrid input test genera-
tion method compared to the random-based input test
generation method.

4.1.3 State-based approach vs. hybrid approach
The results of the behavioral footprint analysis of the
state-basedmethod compared to the hybridmethod (from
both Datasets 1 and 2) are presented. Tables 5 and 6 show
the top-10 extracted run-time features with the largest dif-
ferences where the hybrid method logged higher than the
state-based method (in Dataset1). Both tables show that
more of the API calls were logged from larger number of
APKs when the hybrid input test generation method was
used compared to the state-based method. It can be seen
that the hybrid approach allows for the discovery of more
API calls with a difference of over 100 in some cases. For
instance, the class Ljava/util/Date was extracted from only
177 malware samples using state-based test input gener-
ation, while with the hybrid method, it was logged from
124 more malware samples. The differences decreased to
less than 20 samples when we applied the same analysis to
the benign sample set.
Tables 7, 8, and 9 present results of comparative anal-

ysis with Dataset2. In Tables 7 and 8, we show the top
10 features where the hybrid approach has larger behav-
ioral footprints than the state-based approach within the
APK subsets. With 125, the feature Landroid/net/Uri;-
>parse has the largest difference in the malware sample
set, followed by the Landroid/content/ContextWrapper;-
>sendBroadcast feature with 92. Similarly, with 117,
the feature Landroid/os/Process->;myPid has the largest
difference in the benign sample set, followed by the
Ljava/Lang/ClassLoader->;loadClass feature with 61.
In Table 9, we depict the top 10 features where the state-

based approach has larger behavioral footprints than the
hybrid approach within the APK subsets. It was stated

Table 5 Top 10 API calls logged from malware samples where
the hybrid approach was better than the state-based approach
(Dataset1)

API signatures State Hybrid Difference

Ljava/util/Date 177 301 124

Ljava/util/Date;->< init> 171 289 118

Ljava/util/List 171 289 118

Ljava/util/Timer;->schedule 222 339 117

Ljava/util/GregorianCalendar;->getTime 107 207 100

Ljava/util/zip/ZipInputStream;->read 242 336 94

Ljava/io/File;->exists 602 667 65

Ljava/security/MessageDigest;->digest 366 431 65

Lorg/apache/http/client/HttpClient;->execute 133 188 55

Ljava/security/MessageDigest;->update 288 335 47

Table 6 Top 10 API calls logged from benign samples where the
hybrid approach was better than the state-based approach
(Dataset1)

API signatures State Hybrid Difference

Landroid/os/Process;->myPid 87 106 19

Landroid/net/Uri;->parse 480 492 12

Landroid/media/AudioManager;-
>getStreamVolume

37 47 10

Landroid/content/res/AssetManager;-
>open

320 328 8

Landroid/net/NetworkInfo;-
>getExtraInfo

23 30 7

Ljava/lang/reflect/Method;-
>getClass

559 565 6

Landroid/telephony/TelephonyManager;-
>getSimOperator

72 77 5

Ljava/lang/reflect/Method;-
>getMethod

245 249 4

Ljava/util/GregorianCalendar;-
>getTime

188 191 3

Landroid/content/Context;-
>getAssets

243 246 3

in [7] that out of 76 features with differences, only 4
had the state-based method showing higher logs than the
hybrid method, using Dataset1. However, with Dataset2,
there were several more features where the state-based
method showed higher logs than the hybrid method, as evi-
dent from Table 9. The largest difference can be found
in the HttpClient;->execute feature which was found

Table 7 Top 10 API calls logged from malware samples where
the hybrid approach was better than the state-based approach
(Dataset2)

API signatures State Hybrid Difference

Landroid/net/Uri;->parse 2867 2992 125

Landroid/content/ContextWrapper;-
>sendBroadcast

693 785 92

Landroid/net/NetworkInfo;-
>getExtraInfo

115 156 41

Landroid/telephony/SmsManager;-
>sendTextMessage

26 44 18

Landroid/telephony/SmsManager;-
>divideMessage

3 16 13

Landroid/net/wifi/WifiManager;-
>setWifiEnabled

9 18 9

Ljava/lang/System;->loadLibrary 1867 1872 5

Landroid/content/ContextWrapper;-
>startActivity

19 23 4

Ljava/lang/Process;-
>getOutputStream

80 84 4

enfperm 1453 1456 3

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 11 of 24

Table 8 Top 10 API calls logged from benign samples where the
hybrid approach was better than the state-based approach
(Dataset2)

API signatures State Hybrid Difference

Landroid/os/Process;->myPid 761 878 117

Ljava/lang/ClassLoader;->loadClass 637 698 61

Ljava/lang/Class;->getClassLoader 715 775 60

Landroid/net/Uri;->parse 2322 2378 56

Landroid/media/AudioManager;-
>getStreamVolume

76 127 51

Ljava/lang/ClassLoader 1130 1177 47

Ljava/util/GregorianCalendar;-
>getTime

1196 1236 40

Landroid/content/ContentResolver 1223 1258 35

Ljava/io/File;->delete 1221 1256 35

Ljava/io/File;->mkdir 1961 1996 35

in 726 more malware APKs, followed by the Network-
Info;>isConnected feature found in 547 more malware
APKs. The methods getSubscriberId and getSimOpera-
tor from the TelephonyManager class, were logged from
373 and 356 more malware samples respectively using the
state-based compared to the hybrid method.
In a nut shell, much larger differences can be seen in

Dataset2 with the features were the state-based approach
logged higher than the hybrid approach than vice-versa
(for instance 726 vs. 125). Hence, this suggests that the
state-based method enabled an overall larger behavioral
footprint than the hybrid method. Investigating how these
differences will impact on the machine learning-based

Table 9 Top 10 API calls logged from malware samples where
the state-based approach was better than the hybrid approach
(Dataset2)

API signatures State Hybrid Difference

Lorg/apache/http/client/HttpClient;-
>execute

2732 2006 726

Landroid/net/NetworkInfo;->isConnected 3068 2521 547

Ljava/util/zip/ZipInputStream;->read 4221 3716 505

Lorg/apache/http/client/methods/
HttpPost;->< init>

3958 3501 457

Landroid/telephony/TelephonyManager;-
>getSubscriberId

1300 927 373

Landroid/telephony/TelephonyManager;-
>getSimOperator

1893 1537 356

Ljavax/crypto/Cipher;->init 2146 1812 334

Ljavax/crypto/SecretKey; 1960 1629 331

Ljavax/crypto/Cipher;->getInstance 2037 1709 328

Ljavax/crypto/spec/SecretKeySpec;-><
init>

1891 1566 325

detection systems trained on these set of features is the
goal of the experiments presented in the next subsection.
The summary of the overall differences in number of

features where one method logged higher that the other
(far Dataset1 and Dataset 2) are shown in Tables 10
and 11.
From Table 10, out of 76 features with differences, the

random-based method had 23 features where it logged
higher than the state-basedmethod. Conversely, the state-
based method had higher logs than the random-based
method in 49 different features. In Dataset2 (Table 11)
(out of 103 features with differences), the random-based
is higher than state-based in 3 features, whereas the state-
based is higher than the random-based in 100 features.
These numbers suggest that the behavioral footprint is
larger in both Datasets for the state-based compared to
the random-based test input generation method.
Table 10 also shows that the hybrid method is higher

than the random-based method in 62 features, while
the random-based is higher than the hybrid in 10 fea-
tures. Similarly, from Table 11 (Dataset2), hybrid exceeds
random-based for 93 features and random-based exceeds
hybrid for only 1 feature. These numbers also suggest
that the behavioral footprint is larger in both datasets
for the hybrid compared to the random-based test input
generation method.
In Dataset 1 (Table 10) the state-based exceeds hybrid in

4 features while hybrid exceeds state-based in 64 features.
This suggests that the behavioral footprint of the hybrid
approach is larger than that of the state-based approach.
In Dataset 2 (Table 11), we have the opposite, i.e., state-
based exceeds hybrid in 80 features, while hybrid exceeds
state-based in 22 features. This suggests that the behav-
ioral footprint is larger for the state-based compared to the
hybrid with Dataset2. In the Appendix, we present a full
table of the features and number of apps that logged each
feature for each respective test input generation method
(Table 6).

4.1.4 Explanation of the obtained results
The random-based method generates test input events at
a much faster rate but a large percentage of these are usu-
ally redundant or irrelevant to the current state of the

Table 10 Number of features out of 76 total features with
differences, where one method had a higher log than the other
(Dataset1)

Random-based State-based Hybrid

Random-based - 23 10

State-based 49 - 4

Hybrid 62 64 -

Method on the left column is greater than the compared to the method on the top
row by the value given in the intersecting box

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 12 of 24

Table 11 Number of features out of 103 total features with
differences, where one method had a higher log than the other
(Dataset2)

Random-based State-based Hybrid

Random-based - 3 1

State-based 100 - 80

Hybrid 93 22 -

Method on the left column is greater than the compared to the method on the top
row by the value given in the intersecting box

application. This explains why some of the behavioral fea-
tures might not be triggered and logged by the system
despite sending thousands of events to the UI. On the
other hand, the state-based approach although slower and
with much less events being sent to the UI is more accu-
rate because of the relevance of the events sent in response
to the current state.
The accuracy of the state-based method may be the

reason why it enables larger numbers of the apps to log
the behavioral features when tested in the dynamic anal-
ysis system. Another issue that was observed with the
random-based method is that app being analyzed, or the
phone was sometimes driven into a state where no fur-
ther progress could be made in traversing the app. This
also contributed to limiting the extent of the collected
behavioral footprint.
In the smaller dataset (Dataset1), the hybrid approach

logged higher for more features than the state-based
approach. Whereas, with the larger dataset (Dataset2)
the state-based approach logged higher for more fea-
tures than the hybrid approach. This was counter-
intuitive to our original expectation since the combined

approach was designed to exploit the advantages of
both state-based and random-based methods. This sug-
gests that in the hybrid system, rather than enhance the
code coverage, the accuracy of the state-based method
was affected by integrating it with the random-based
method.
Looking back at Fig. 3, during the experiments we dis-

covered that it was not always possible to restore the
device configuration (i.e., airplane mode and/orWiFi con-
nectivity) whenever it had been altered by the random-
based subsystem (Monkey) within the hybrid system. In
most cases the device was restored properly before the
state-based subsystem was invoked. Instances where the
proper restoration failed contributed to the lowering the
accuracy of the state-based subsystem within the hybrid
system. This explains the reason why the stand-alone
state-based system had better code coverage than the
hybrid system consisting of both state-based and random-
based components. In the next subsection, we shall
examine the impact of the different code coverage capac-
ities of the three methods on various machine learning
classifiers.

4.2 Comparisons of impact of the code coverage on
machine learning classifiers

In this section the performance of the three input gen-
eration approaches are compared using seven popular
machine learning classifiers. From the experiments we can
gain insight into the impact of their relative code coverage
capacities on machine learning-based Android malware
detection performance.
First, we discuss the performance evaluation results

from Dataset1 (i.e., 1146 malware and 1109 benign
samples). All results are obtained using 10 fold

Fig. 9W-FM for the three test input generation methods using Dataset1

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 13 of 24

cross-validation approach. Figure 9 summarizes the
weighted F-measures (W-FM) of the seven classi-
fiers for the three input generation methods. The
Random Forest (RF) classifier performs best for the
three methods. The state-based method achieved the
best W-FM of 0.943, followed by the hybrid method
with 0.934 and then the random-based method
with 0.926.
In the remaining 6 classifiers, both state-based and

hybrid methods outperformed the random-based method
with higher W-FM results. These results can be seen in
Table 15 in the Appendix. The hybrid approach showed
slightly higher W-FM results for the SMO and J48 classi-
fiers. For the MLP, PART, SL and NB classifiers, the state-
based approach obtained better W-FM results. Thus, we
can conclude that for Dataset1, the overall best accuracy
performance is achieved with the state-based, followed by
the hybrid method and lastly the random-based method.
Table 16 in the Appendix contains the performance

evaluation results for the seven classifiers, from a second
experiment with Dataset2 (i.e., 7434 malware and 6069
benign samples). Figure 10 summarizes the weighted F-
measures (W-FM) of the seven classifiers for the three
input generation methods. These results for Dataset2
shows more significant performance differences between
the three methods. Again, for each of the test input gen-
eration methods, RF achieves the best accuracy perfor-
mance. For the RF classifier, the state-based method has
WFM of 0.878, followed by the hybrid with 0.868 and
then the random-based method with 0.832. Furthermore,
both hybrid and state-based methods performed signifi-
cantly better than the random-based method in the other

6 classifiers. Figure 10 shows that the W-FM results for
PART, J48, MLP, SL, SMO, and NB were higher for the
state-based method compared to the hybrid method.
Figures 11 and 12 show the results from top 20, 40,

60, 80, and 100 information-gain ranked features for the
analyzed Dataset1 and Dataset2 respectively. It illustrates
the W-FM performance obtained for the RF algorithm
trained on both datasets. In all cases, the random-based
test input generation method achieved the lowest perfor-
mance as the number of features is increased. In addition,
from the figures it is clear that the overall detection per-
formance of the state-based method surpassed the others
especially from 60 features and above.
Even though the analyses in the previous section (as

summarized in Tables 10 and 11) showed that each test
input generation approach collected higher logs for some
specific features, it is the “importance” of the features that
will ultimately impact the machine learning performance.
The relative importance of the features can be computed
by a feature ranking algorithm such as information gain.
In Tables 12 and 13, the total information gain scores for
each method are presented.
In both datasets, the combine scores for the state-based

method is highest (with 1.735 and 1.661487 respectively).
This is followed closely by that of the hybrid method, and
both of them surpass the random-based method. Even
when considering only the top 20 or top 40 ranked fea-
tures, the combined information gain scores maintained
the same ranking. These results show that the different
code coverage capacities of the three methods had an
impact on the most important/significant behavioral fea-
tures, which ultimately affected the performance of the

Fig. 10W-FM for the three test input generation methods using Dataset2

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 14 of 24

Fig. 11W-FM for the RF classifier vs. the top 20, 40, 60, 80, and 100 features (Dataset1)

machine learning classifiers. It shows that compared to the
state-based approach, the random-basedmethod is not an
optimal choice for dynamic behavioral analysis of Android
apps for malware detection.

4.3 Evaluating accuracy performance with additional
statically obtained permission features.

In this section we explore accuracy performance improve-
ment of the RF dynamic classifiers (trained fromDataset2)
with additional static features. In order to achieve
this, we extended the dynamically obtained features

(API calls + Intents) with static permission features.
Using only Dataset2, the overall W-FM results are illus-
trated in Fig. 13. From the Figure we can see that for
state-based, hybrid and random-based methods, the W-
FM improves from 0.8774, 0.8674, and 0.8319 to 0.93,
0.926 and 0.918 respectively. This illustrates that machine
learning-based malware detection systems that utilize
both static and dynamic features still need to consider
more effective test input generation for the run-time
feature extraction aspect in order to maximize accuracy
performance.

Fig. 12W-FM for the RF classifier vs. the top 20, 40, 60, 80, and 100 features (Dataset2)

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 15 of 24

Table 12 Combined Information gain score for the top ranked
features within the different test input generation methods

Random-based State-based Hybrid

Dataset1 1.24779 1.735 1.53881

Dataset2 0.586078 1.661487 1.325491

5 Related work
This section reviews related work on Android mal-
ware detection and automated test input generation for
Android. Previous work on Android malware detection
can be categorized under static analysis or dynamic anal-
ysis, although some systems combine both techniques. In
the static analysis approach, the code is usually reverse
engineered and examined for presence of any malicious
code. [24–34] are examples of detection solutions based
on static analysis. Dynamic analysis on the other hand,
involves executing apps in a controlled environment such
as a sandbox, virtual machine, or a physical device in order
to trace its behavior. Several automated dynamic analy-
sis systems such as [8, 19, 35–44] have been proposed
for detecting suspicious behaviors from Android applica-
tions. However, the efficiency of these systems depend on
the ability to effectively trigger the malicious behaviors
hidden within an application during the analysis.
Dynamic analysis systems seek to improve behavioral

footprint of apps under analysis by applying automated
test input generation tools. Hence, test input generation
needs to be as efficient as possible because it impacts
on the discovery of malicious behavior. Several test input
generation tools have been developed in order to trigger
Android applications under testing.
Monkey [15], is the most frequently used tool for test-

ing Android apps. Linares-Vàsquez et al. [5] stated that
Monkey is the only random testing tool available for the
researchers. It does not require any additional installa-
tion effort as it is part of the Android developers’ toolkit.
Monkey implements a random exploration strategy that
considers the application under test as a black box to
which it continuously sends UI events, until the specified
maximum upper bound is reached. Monkey can be used
on both emulators and real devices.

Table 13 Combined Information gain score for the top 20 and
top 40 ranked features within the different test input generation
methods

Dataset1 Dataset2

Top-20 Top-40 Top-20 Top-40

Random 0.9 1.13724 0.448147 0.548407

Hybrid 0.94289 1.31038 0.988139 1.202276

State 1.00912 1.45324 1.227877 1.505216

Dynodroid [45] is a random-based test input genera-
tion tool for Android. It can generate both IU events and
system events. It also has the ability to allow users to
manually provide inputs (e.g., for authentication) when
exploration is stalling. Its drawback is the need to instru-
ment the Android framework in order to generate system
events. Also, Dynodroid can only run on an emulator and
cannot be used with real devices.
ORBIT [17], is proprietary tool developed by Fujitsu

Labs. It implements a model-based exploration strategy
(i.e., a state based approach). ORBIT statically analyses the
application’s source code to understand which UI events
are relevant for a specific activity. Unlike ORBIT, Mobi-
GUITAR [46], formerly known as GUIRipper [16] dynam-
ically builds the GUI model of the application under test.
It implements a depth-first search strategy and re-starts
its exploration from its starting state when it can no longer
detect new states during exploration. It can only generate
UI events and not system events. Also, it is not an open
source tool and is only available as a Windows binary.
A3E [18] is publicly available tool that consists of

two strategies to trigger the applications: the DFS
(depth first search) and a taint-targeted approach. How-
ever, the open source A3E repository does not pro-
vide the taint-targeted strategy. ACTEve [47] is devel-
oped to support both system events and UI events
which is based on concolic-testing and symbolic exe-
cution. However, ACTEve needs to instrument both
the Android framework and the application in order
to perform the test. For this reason, ACTEve cannot
be used for analysing apps on “common off the shelf”
devices.
PUMA [20] is a tool designed to be a general pur-

pose UI automator for Android. It provides the random
exploration approach using Monkey. It is also extensible
to implement different exploration strategies because it
provides a finite state machine representation of the app.
However, PUMA is only compatible with the most recent
releases of the Android framework.
Choudhary et al. [6] performed a thorough compar-

ison of the main existing test input generation tools
for Android. They evaluated the effectiveness of these
tools using four metrics: ability to detect faults, ability to
work on multiple platforms, ease of use, and code cover-
age. They evaluated Monkey, ACTEve, Dynodroid, A3E,
GUIRipper, SwiftHand, and PUMA on 68 applications.
For the code coverage, on averageMonkey and Dynodroid
(which are both random-based) performed much better
than the other tools. Overall, Monkey achieved the best
code coverage. Their results also showed that maximum
coverage was achieved by all tools within 5 to 10 min.
The study in [6], however, quantified code coverage by the
average number of Java statements covered by each tool.
By contrast this paper uses the number of apps that logged

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 16 of 24

Fig. 13W-FM of RF classifier for the three test input generation with static permission features included (Dataset2)

each feature as an indicator of code coverage, which has
more relevance to malware detection systems.
Unlike [6], this paper focused on code coverage analy-

sis of random-based, state-based and a hybrid approach
to test input generation using a much larger number of
applications consisting of benign and malware samples.
As mentioned earlier, the Monkey tool was used to imple-
ment the random-based approach, while DroidBot, was
used to implement the state-based approach. Both of
these tools best met our requirements as representative
candidates for the different methods due to the following
reasons: (a) open source; (b) usable with common off the
shelf Android devices without modification; (c) Android
framework and platform independence, i.e., no require-
ment for platform or app instrumentation; (d) amenable
to large scale automation for malware detection. Note that
DroidBot was not one of the test input generation tools
evaluated in [6].
Several dynamic analysis tools for characterizing

Android apps have been published in the literature. The
majority of these rely on random-based test input gen-
eration using Monkey, for example, AASandbox [11],
ANANAS [12], Mobile-Sandbox [13], vetDroid [14],
TraceDroid [48], Andrubis [49], Dynalog [8], HADM [50],
Maline [51], Glassbox [52], NetworkProfiler [53], Andlatis
[54], Hu & Neamtiu [55], and Cai & Ryder [56]. Oth-
ers such as AppsPlayground [38] used a more intelligent
event generation technique, but unlike our paper, did not

investigate code coverage capabilities in the context of on
performance analysis of machine learning-based malware
detection.
Furthermore, several works have presented machine

learning-based Android malware detection systems built
upon dynamically obtained features. Marvin [57] applies
a machine learning approach to features extracted from
a combination of static and dynamic analysis techniques.
Shabtai et al [58] presented a dynamic framework called
Andromaly which applies several different machine learn-
ing algorithms, including random forest, naive Bayes,
multilayer perceptron, Bayes net, logistic, and J48 to clas-
sify the Android applications. However, they assessed
their performances on only four self-written malware
applications. MADAM [59] is also a dynamic analysis
framework that uses machine learning to classify Android
apps. MADAM utilizes 13 features extracted from the
user and kernel levels. Other systems include Droidcat
[60], STREAM [61], Mobile-Sandbox (2014) [62], Dysign
[63], Massarelli et. al [64], Alzaylaee et. al. [10], and
Afonso et al. [65]. All of these machine learning-based
malware detection systems employ the random-based
Monkey tool for test input generation.
From the literature, it is clear that there has been exten-

sive research and publications in the area of Android
malware detection. However, unlike this paper, no study
has been undertaken to date that comparatively evaluates
the impact of automated test input generation methods

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 17 of 24

on machine learning-based Android malware detection.
Such a study provides valuable insights that will be useful
for optimizing and improving dynamic analysis systems
designed for future Android malware detection.

6 Conclusion
In this paper, stateful input generation approaches are
proposed for machine learning-based dynamic analysis
for malware detection. These include a state-based
approach and a hybrid approach that combines the
state-based with the random-based method. The state-
ful approaches were compared to the commonly used
random-based method (utilizing the Monkey tool)
by evaluating their respective code coverage capac-
ities within a dynamic analysis system using real
devices. The code coverage capacities were deter-
mined based on their respective behavioral footprints
measured from logged API calls and Intents cap-
tured at run-time from two datasets each consist-
ing of benign and malware applications. The state-
based approach is implemented using DroidBot, while
the hybrid approach combines the Monkey tool with
DroidBot.
The paper also presents experiments conducted to study

the impact of the respective code coverage capacities of

the input generation systems on various machine learning
classifiers. It was found that both state-based and hybrid
approaches provided much better code coverage than
the random-based method. Contrary to expectation, the
hybrid method was unable to improve the code coverage
over the state-based method. This was because the ran-
dom component of the hybrid system frequently interferes
with device operation (despite our implementation of
mitigating measures) leading to sub-optimal code cover-
age. The state-based approach ultimately enabled the best
accuracy performance in majority of the machine learning
classifiers.
Based on our findings, it is clear that Android

dynamic analysis systems need to incorporate better
input generation methods than the currently popu-
lar random-based Monkey tool. Furthermore, machine
learning-based malware detection systems that employ
dynamically obtained features need better input gen-
eration tools to improve code coverage. Utilizing a
state-based/model-based tool such as DroidBot is def-
initely a step towards more robust dynamic analy-
sis systems and higher accuracy malware detection
capability.

Appendix

Table 14 A full table of the features and number of apps that logged each feature for each respective test input generation method

Dataset2 Dataset1

Malware Benign Malware Benign

API signatures RB SB H RB SB H RB SB H RB SB H

1 Ljava/util/TimerTask;->< init> 4373 5893 5776 2785 3499 3465 808 883 921 575 779 774

2 pm/PackageManager 4282 5667 5567 2975 3485 3487 651 723 756 563 742 731

3 Context;->getResources 2754 4994 4870 2536 3410 3414 583 595 639 437 647 639

4 Ljava/security/MessageDigest;->getInstance 2406 4892 4660 1079 2169 2177 338 427 473 327 568 549

5 Ljava/security/MessageDigest;->digest 2213 4538 4442 934 2020 2040 310 366 431 297 533 519

6 Ljava/io/File;->exists 2821 4453 4361 2065 2816 2807 477 602 667 346 501 495

7 Ljava/lang/reflect/Method;->getClass 2468 4433 4346 2052 3084 3058 522 512 540 359 559 565

8 TelephonyManager;->getDeviceId 2277 4512 4223 446 872 874 315 415 429 278 387 378

9 Ljava/security/MessageDigest;->update 2023 4259 4072 866 1951 1983 259 288 335 297 512 465

10 pm/ApplicationInfo;->getApplicationInfo 2538 4019 3893 1485 2088 2078 435 530 563 210 305 300

11 Ljava/lang/Class;->getName 1879 3885 3742 1622 2801 2764 216 175 219 217 434 422

12 Ljava/util/zip/ZipInputStream;->read 1270 4221 3716 816 1927 1943 219 242 336 173 460 408

13 client/methods/HttpPost;->< init> 1128 3958 3501 354 967 927 68 116 150 179 380 369

14 Ljava/util/Date 1351 3295 3212 811 1824 1847 296 177 301 182 342 338

15 Ljava/util/Date;->< init> 1330 3232 3161 784 1752 1785 293 171 289 177 331 329

16 Ljava/util/List 1330 3232 3161 784 1752 1785 293 171 289 177 331 329

17 pm/PackageManager;->checkPermission 1284 3198 3128 301 795 812 76 77 89 164 368 359

18 Landroid/net/Uri;->parse 917 2867 2992 1448 2322 2378 279 241 287 192 480 492

19 Ljava/lang/reflect/Method;->getMethod 1237 2904 2780 711 1442 1440 259 269 285 163 245 249

20 Ljava/io/File;->mkdir 1384 2735 2704 1277 1961 1996 274 326 366 223 362 363

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 18 of 24

Table 14 A full table of the features and number of apps that logged each feature for each respective test input generation method
(Continued)

Dataset2 Dataset1

Malware Benign Malware Benign

API signatures RB SB H RB SB H RB SB H RB SB H

21 Ljava/io/FileOutputStream;->write 868 2723 2674 409 1382 1352 320 344 372 90 147 139

22 Landroid/net/NetworkInfo;->isConnected 666 3068 2521 523 1510 1448 73 84 98 70 210 197

23 Landroid/content/Context;->getFilesDir 1200 2508 2423 1008 1483 1485 49 67 68 96 156 155

24 Landroid/content/res/AssetManager;->open 1452 2300 2277 948 1355 1369 169 187 207 221 320 328

25 wifi/WifiManager;->getConnectionInfo 883 2282 2112 238 582 593 6 14 20 60 120 116

26 intent.BOOT_COMPLETED 2090 2088 2090 1100 1103 1104 621 622 622 170 171 171

27 Lorg/apache/http/client/HttpClient;->execute 333 2732 2006 122 863 785 89 133 188 56 325 264

28 TelephonyManager;->getNetworkOperator 564 2147 1994 124 558 559 86 70 102 68 226 216

29 Ljava/lang/System;->loadLibrary 1538 1867 1872 861 1035 1021 29 22 33 176 207 200

30 Landroid/content/Context;->getAssets 1170 1873 1835 735 1175 1177 125 119 134 155 243 246

31 Landroid/content/Context;->getCacheDir 644 1894 1824 594 1132 1131 15 42 48 38 181 181

32 Ljavax/crypto/Cipher;->init 501 2146 1812 357 1133 1159 41 51 51 69 151 139

33 Ljava/util/GregorianCalendar;->getTime 519 1905 1797 386 1196 1236 224 107 207 64 188 191

34 Ljava/io/File;->delete 527 1956 1776 397 1221 1256 72 88 93 55 118 120

35 Landroid/net/NetworkInfo;->getTypeName 393 1979 1736 122 330 322 103 217 192 48 130 119

36 Landroid/net/NetworkInfo;->getState 621 1922 1726 99 238 241 191 119 135 80 153 145

37 Ljavax/crypto/Cipher;->getInstance 517 2037 1709 303 980 995 47 57 56 73 146 136

38 Ljavax/crypto/SecretKey; 429 1960 1629 333 1071 1095 41 51 51 59 137 127

39 Ljavax/crypto/spec/SecretKeySpec;->< init> 382 1891 1566 326 1061 1086 15 13 15 47 118 112

40 TelephonyManager;->getSimOperator 576 1893 1537 111 245 243 61 109 131 29 72 77

41 Ljavax/crypto/Cipher;->doFinal 413 1562 1480 237 901 918 29 40 40 47 100 88

42 enfperm 1456 1453 1456 2963 2963 2963 47 47 47 147 146 146

43 Ljava/lang/ClassLoader 557 1556 1420 544 1130 1177 190 191 201 34 75 72

44 Landroid/content/Context;->bindService 430 1287 1248 434 1457 1396 1 2 2 31 59 61

45 Ljava/util/Timer;->schedule 404 1240 1213 274 1055 1015 331 222 339 52 120 122

46 Ljava/lang/ClassLoader;->getParent 438 1246 1187 422 917 923 85 76 87 78 173 158

47 Landroid/content/ContentResolver 266 1203 1178 551 1223 1258 101 96 100 52 77 80

48 Ljava/lang/Runtime;->getRuntime 643 1162 1124 465 982 1016 79 56 66 65 85 86

49 Ljava/lang/Class;->getClassLoader 400 1129 990 317 715 775 183 186 196 23 51 49

50 TelephonyManager;->getSubscriberId 478 1300 927 96 154 155 161 232 230 51 78 78

51 com.android.vending.INSTALL_REFERRER 905 907 905 2091 2089 2090 29 29 29 195 196 197

52 Landroid/os/Process;->myPid 318 852 850 326 761 878 6 5 12 32 87 106

53 Ljava/lang/Process 394 798 789 76 265 275 112 122 142 43 70 67

54 ContextWrapper;->sendBroadcast 217 693 785 110 338 332 9 10 13 36 67 65

55 Ljava/net/URLConnection;->connect 6 925 774 3 421 402 12 47 73 2 108 93

56 Ljava/lang/ProcessBuilder;->start 218 777 752 77 251 271 70 122 132 18 56 52

57 Ljava/lang/ClassLoader;->loadClass 239 768 738 283 637 698 0 1 2 16 30 32

58 TelephonyManager;->getLine1Number 322 785 720 71 115 111 114 141 159 34 92 64

59 Landroid/content/Context;->unbindService 84 719 695 70 557 579 0 0 0 4 8 11

60 Ljava/lang/ClassLoader;->getResource 295 766 652 167 275 259 175 182 193 8 23 22

61 TelephonyManager;->getSimCountryIso 178 667 641 123 290 316 2 2 3 16 50 53

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 19 of 24

Table 14 A full table of the features and number of apps that logged each feature for each respective test input generation method
(Continued)

62 PackageManager;->getInstalledApplications 122 776 617 98 166 191 4 4 6 14 59 41

63 USER_PRESENT 565 564 565 202 202 201 45 45 45 24 24 24

64 PACKAGE_ADDED 564 566 564 218 215 215 3 3 3 14 14 13

65 CONNECTIVITY_CHANGE 551 551 551 659 658 657 22 22 22 30 30 29

66 Ljava/lang/Runtime;->exec 330 440 442 66 179 186 70 31 40 38 48 47

67 TelephonyManager;->getSimSerialNumber 245 477 425 62 100 103 132 133 159 17 23 18

68 PACKAGE_REMOVED 406 407 406 284 282 283 10 10 10 34 33 32

69 ClassLoader;->getResourceAsStream 235 446 406 85 139 130 175 182 191 3 15 15

70 Ljava/lang/ProcessBuilder;->< init> 97 417 396 18 108 116 50 97 110 6 24 24

71 AudioManager;->getStreamVolume 117 375 378 43 76 127 17 20 25 20 37 47

72 TelephonyManager;->getCellLocation 136 362 335 3 13 14 25 24 29 15 18 21

73 SMS_RECEIVED 281 282 281 177 177 177 71 71 71 8 8 8

74 PACKAGE_REPLACED 263 263 263 665 664 664 15 15 15 17 18 17

75 ContextWrapper;->openOrCreateDatabase 125 254 253 40 82 82 19 21 22 8 31 30

76 Document;->getDocumentElement 45 214 166 11 108 91 4 4 6 11 32 29

77 Ljava/net/Socket;->getOutputStream 85 171 162 17 106 100 48 7 15 7 11 12

78 Landroid/net/NetworkInfo;->getExtraInfo 49 115 156 1 22 16 90 194 149 8 23 30

79 sqlite/SQLiteDatabase;->openDatabase 75 138 134 27 81 79 2 2 2 5 10 10

80 action.PHONE_STATE 132 133 132 101 101 101 68 68 68 11 11 11

81 TelephonyManager;->getCallState 13 120 122 15 57 53 6 18 6 2 4 4

82 NEW_OUTGOING_CALL 104 105 104 50 50 50 50 51 50 13 13 13

83 Ljava/net/URL;->openStream 16 96 98 5 66 74 0 0 0 4 16 16

84 reflect/Method;->getDeclaringClass 33 94 94 38 165 161 1 1 1 1 1 1

85 Ljava/lang/Process;->getOutputStream 68 80 84 6 10 9 48 7 15 3 3 3

86 Socket;->getInputStream 17 91 78 11 98 92 0 0 0 4 8 9

87 Landroid/net/wifi/WifiManager;->getWifiState 38 71 72 34 65 69 3 5 8 14 20 21

88 SmsManager;->sendTextMessage 22 26 44 0 0 0 1 2 2 0 0 0

89 Ljava/io/DataInputStream;->available 16 37 40 4 12 16 22 7 17 5 10 8

90 ContextWrapper;->openFileOutput 15 35 33 7 28 26 0 0 0 5 6 6

91 ACTION_POWER_CONNECTED 28 28 28 119 117 117 44 44 44 1 1 1

92 TelephonyManager;->isNetworkRoaming 17 26 27 17 36 28 0 0 0 6 9 8

93 PACKAGE_RESTARTED 26 26 26 33 33 33 0 0 0 3 3 3

94 WAP_PUSH_RECEIVED 24 24 24 25 25 26 14 14 14 3 3 3

95 PACKAGE_INSTALL 22 23 23 9 9 9 16 16 16 2 2 2

96 ContextWrapper;->startActivity 6 19 23 2 4 7 0 0 0 1 4 3

97 wifi/WifiManager;->setWifiEnabled 19 9 18 10 8 14 0 1 1 2 2 5

98 SmsManager;->divideMessage 0 3 16 0 0 0 0 0 0 0 0 0

99 Ljava/net/Socket;->isConnected 1 17 11 3 39 49 0 0 0 0 1 1

100 ContextWrapper;->openFileInput 5 7 10 5 7 12 0 0 0 2 2 3

101 ACTION_POWER_DISCONNECTED 9 9 9 152 153 153 0 0 0 1 1 1

102 BATTERY_LOW 7 7 7 20 20 19 0 0 0 1 1 1

103 Landroid/app/Service;->onDestroy 0 17 7 0 0 1 0 0 0 0 23 1

104 Ljava/lang/ProcessBuilder;->command 4 6 6 4 37 39 0 0 0 2 2 2

105 UMS_CONNECTED 5 5 5 0 0 0 0 0 0 1 1 1

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 20 of 24

Table 14 A full table of the features and number of apps that logged each feature for each respective test input generation method
(Continued)

Dataset2 Dataset1

Malware Benign Malware Benign

API signatures RB SB H RB SB H RB SB H RB SB H

106 PACKAGE_CHANGED 3 3 3 65 65 65 0 0 0 3 3 3

107 BATTERY_OKAY 3 3 3 16 16 16 0 0 0 0 0 0

108 Landroid.content.ContentProviderClient 0 3 3 17 32 37 0 0 0 0 0 0

109 SIG_STR 2 2 2 0 0 0 31 31 31 0 0 0

110 Ljava/lang/Runtime;->exec_Chmod775 0 1 2 0 0 0 4 4 4 0 0 0

111 Landroid/app/Service;->onCreate 6 3 2 6 3 2 3 0 0 0 0 0

112 UMS_DISCONNECTED 1 1 1 2 2 2 184 183 184 0 0 0

113 SIM_FULL 1 1 1 4 4 4 0 0 0 0 0 0

114 SEND_MESSAGE 1 1 1 2 2 2 9 9 9 0 0 0

115 SmsManager;->sendMultipartTextMessage 0 0 1 0 0 0 0 0 0 0 0 0

116 Landroid/content/ServiceConnection 0 2 1 0 0 0 0 0 0 0 0 0

117 fdaccess 0 1 0 0 0 0 0 0 0 0 0 0

118 recvnet 0 1 0 0 0 0 0 0 0 0 0 0

119 init_APIMonitor 0 1 0 0 0 0 0 0 0 0 0 0

120 ContextWrapper;->sendOrderedBroadcast 0 0 0 0 2 2 0 0 0 0 0 0

121 getInstance_APIMonitor 0 1 0 0 0 0 0 0 0 0 0 0

122 SmsManager;->sendDataMessage 0 1 0 0 0 0 0 0 0 0 0 0

RB random-based, SB state-based, H hybrid

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 21 of 24

Table 15 Performance evaluation of the machine learning classifiers trained on Dataset1 using random-based, state-based and hybrid
approaches

Classifier PrecM RecM PrecB RecB W-FM

Random-based approach

RF 0.926 0.919 0.927 0.933 0.9267

MLP 0.902 0.902 0.911 0.911 0.9067

SL 0.897 0.899 0.908 0.906 0.9027

SMO 0.88 0.912 0.917 0.887 0.8991

J48 0.89 0.894 0.903 0.9 0.8972

PART 0.884 0.903 0.91 0.893 0.8834

NB 0.81 0.63 0.72 0.866 0.7493

State-based approach

RF 0.953 0.925 0.934 0.959 0.9427

MLP 0.93 0.921 0.929 0.937 0.9292

SMO 0.918 0.923 0.93 0.925 0.9241

J48 0.918 0.905 0.915 0.927 0.9167

PART 0.91 0.916 0.923 0.917 0.9167

SL 0.905 0.918 0.925 0.913 0.9157

NB 0.741 0.843 0.836 0.732 0.7843

Hybrid approach

RF 0.948 0.911 0.922 0.954 0.9337

MLP 0.937 0.911 0.921 0.944 0.9282

SMO 0.921 0.92 0.928 0.928 0.9247

J48 0.92 0.912 0.921 0.928 0.9202

PART 0.902 0.92 0.926 0.909 0.9147

SL 0.912 0.906 0.915 0.92 0.9137

NB 0.746 0.814 0.816 0.748 0.7795

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 22 of 24

Table 16 Performance evaluation of the machine learning classifiers trained on Dataset2 using random-based, state-based and hybrid
approaches

Classifier PrecM RecM PrecB RecB W-FM

Random-based approach

RF 0.855 0.835 0.804 0.827 0.8319

PART 0.828 0.805 0.77 0.796 0.8011

J48 0.819 0.79 0.754 0.787 0.7887

MLP 0.825 0.741 0.719 0.809 0.7720

SMO 0.733 0.795 0.721 0.647 0.7265

SL 0.731 0.794 0.719 0.643 0.7241

NB 0.741 0.536 0.577 0.772 0.6391

State-based approach

RF 0.904 0.87 0.848 0.887 0.8774

PART 0.872 0.84 0.813 0.849 0.8447

J48 0.862 0.828 0.8 0.838 0.8333

MLP 0.868 0.814 0.789 0.85 0.8301

SMO 0.866 0.759 0.745 0.856 0.8031

SL 0.847 0.772 0.749 0.83 0.7985

NB 0.744 0.665 0.639 0.721 0.6917

Hybrid approach

RF 0.891 0.864 0.84 0.871 0.8671

PART 0.862 0.835 0.806 0.838 0.8358

J48 0.848 0.825 0.793 0.82 0.8229

MLP 0.842 0.831 0.797 0.81 0.8217

SL 0.837 0.773 0.747 0.816 0.7932

SMO 0.846 0.754 0.735 0.833 0.7898

NB 0.732 0.646 0.622 0.711 0.6761

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 23 of 24

Acknowledgements
Not applicable.

Funding
This work was supported by EPSRC under Grant CSIT-2 EP/N508664/1.

Availability of data andmaterials
The datasets supporting the conclusions of this article are included within the
article (and its additional files)."

Authors’ contributions
We have read the ICMJE guidelines and can confirm that the authors SY, MA,
and SS contributed intellectually to the material presented in this manuscript.
MA is the corresponding author of the paper. All authors read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1De Montfort University, Leicester, LE1 9BH England, UK. 2Centre for Secure
Information Technologies (CSIT), Queen’s University Belfast, Belfast, BT7 1NN
Northern Ireland, UK.

Received: 17 April 2018 Accepted: 4 April 2019

References
1. Google Play: number of downloads 2010-2016 | Statistic. https://www.

statista.com/statistics/281106/number-of-android-app-downloads-
from-google-play/. Accessed Jan 2019

2. Global smartphone shipments by OS 2016-2021 | Statistic. https://www.
statista.com/statistics/309448/global-smartphone-shipments-forecast-
operating-system/. Accessed Feb 2019

3. McAfee Labs Threats Predictions Report | McAfee Labs. https://www.
mcafee.com/uk/resources/reports/rp-quarterly-threats-mar-2016.pdf.
Accessed Feb 2019

4. J. Oberheide, C. Miller. Dissecting the Android Bouncer. SummerCon2012,
(New York, 2012), p. 110

5. M. Linares-Vàsquez, K. Moran, D. Poshyvanyk, in 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME). Continuous,
evolutionary and large-scale: A new perspective for automated mobile
app testing, (2017), pp. 399–410. https://doi.org/10.1109/ICSME.2017.27

6. S. R. Choudhary, A. Gorla, A. Orso, in In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). Automated test
input generation for android: Are we there yet? (IEEE, 2015), pp. 429–440

7. M. K. Alzaylaee, S. Y. Yerima, S. Sezer, in 2017 International Conference on
Cyber Security And Protection Of Digital Services (Cyber Security). Improving
dynamic analysis of android apps using hybrid test input generation,
(2017), pp. 1–8. https://doi.org/10.1109/CyberSecPODS.2017.8074845

8. M. K. Alzaylaee, S. Y. Yerima, S. Sezer, in 2016 International Conference On
Cyber Security And Protection Of Digital Services (Cyber Security). Dynalog: an
automated dynamic analysis framework for characterizing android
applications, (2016), pp. 1–8. https://doi.org/10.1109/CyberSecPODS.
2016.7502337

9. APIMonitor. https://github.com/pjlantz/droidbox/wiki/APIMonitor.
Accessed Sept 2018

10. M. K. Alzaylaee, S. Y. Yerima, S. Sezer, in Proceedings of the 3rd ACM on
International Workshop on Security And Privacy Analytics. IWSPA ’17.
Emulator vs real phone: Android malware detection using machine
learning (ACM, Scottsdale, 2017), pp. 65–72. https://doi.org/10.1145/
3041008.3041010. http://doi.acm.org/10.1145/3041008.3041010

11. T. Bläsing, L. Batyuk, A. D. Schmidt, S. A. Camtepe, S. Albayrak, in 2010 5th
International Conference onMalicious and Unwanted Software. An android
application sandbox system for suspicious software detection, (2010),
pp. 55–62. https://doi.org/10.1109/MALWARE.2010.5665792

12. T. Eder, M. Rodler, D. Vymazal, M. Zeilinger, in 2013 International
Conference on Availability, Reliability and Security. Ananas - a framework for

analyzing android applications, (2013), pp. 711–719. https://doi.org/10.
1109/ARES.2013.93

13. M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, J. Hoffmann, in
Proceedings of the 28th Annual ACM Symposium on Applied Computing. SAC
’13. Mobile-sandbox: having a deeper look into android applications
(ACM, New York, 2013), pp. 1808–1815. https://doi.org/10.1145/2480362.
2480701

14. Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, B. Zang, in
Proceedings of the 2013 ACM SIGSAC Conference on Computer;
Communications Security. CCS ’13. Vetting undesirable behaviors in
android apps with permission use analysis (ACM, New York, 2013),
pp. 611–622. https://doi.org/10.1145/2508859.2516689

15. UI/Application Exerciser Monkey (2017). https://developer.android.com/
studio/test/monkey.html. Accessed Sept 2018

16. D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, A. M. Memon,
in Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering. ASE 2012. Using GUI ripping for automated testing
of android applications (ACM, New York, 2012), pp. 258–261. https://doi.
org/10.1145/2351676.2351717

17. W. Yang, M. R. Prasad, T. Xie, in FundamentalApproaches to Software
Engineering. FASE 2013. LectureNotesinComputer Science, Vol. 7793, ed. by
Cortellessa V., Varró D. A grey-box approach for automated GUI-model
generation of mobile applications (Springer, Berlin, 2013), pp. 250–265

18. T. Azim, I. Neamtiu, Targeted and depth-first exploration for systematic
testing of android apps. SIGPLAN Not. 48(10), 641–660 (2013). https://doi.
org/10.1145/2544173.2509549

19. W. Choi, G. Necula, K. Sen, in Proceedings of the 2013 ACM SIGPLAN
international conference on Object oriented programming systems
languages & applications (OOPSLA ’13). Guided GUI testing of android apps
with minimal restart and approximate learning, vol. 48 (ACM, New York,
2013), pp. 623–640. https://doi.org/10.1145/2509136.2509552

20. S. Hao, B. Liu, S. Nath, W. G. Halfond, R. Govindan, in Proceedings of the 12th
Annual International Conference onMobile Systems, Applications, and
Services (MobiSys ’14). Puma: Programmable UI-automation for large-scale
dynamic analysis of mobile apps (ACM, New York, 2014), pp. 204–217.
https://doi.org/10.1145/2594368.2594390. http://doi.acm.org/10.1145/
2594368.2594390

21. Y. Li, Z. Yang, Y. Guo, X. Chen, in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). Droidbot: a
lightweight UI-guided test input generator for android, (2017), pp. 23–26.
https://doi.org/10.1109/ICSE-C.2017.8

22. Z. Yajin, J. Xuxian, Android Malware Genome Project. http://www.
malgenomeproject.org/. Accessed Sept 2018

23. L. Santoku. https://santoku-linux.com/. Accessed July 2018
24. D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, K. Rieck, Drebin: effective

and explainable detection of Android malware in your pocket.
Symposium on Network and Distributed System Security (NDSS)
(February), 23–26 (2014). https://doi.org/10.14722/ndss.2014.23247

25. Y. Aafer, W. Du, H. Yin, DroidAPIMiner:miningAPI-level features for robustmalware
detection in Android. Security and Privacy in Communication Networks.
127, 86–103 (2013). https://doi.org/10.1007/978-3-319-04283-1_6

26. S. Y. Yerima, S. Sezer, I. Muttik, in Science and Information Conference (SAI),
2015. Android malware detection: an eigenspace analysis approach (IEEE,
London, 2015), pp. 1236–1242. https://doi.org/10.1109/SAI.2015.7237302

27. M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, T. Liu, Dapasa: detecting android
piggybacked apps through sensitive subgraph analysis. IEEE Trans. Inf.
Forensics Secur. 12(8), 1772–1785 (2017). https://doi.org/10.1109/TIFS.
2017.2687880

28. S. Y. Yerima, S. Sezer, I. Muttik, High accuracy android malware detection
using ensemble learning. IET Inf. Secur. 9(6), 313–320 (2015). https://doi.
org/10.1049/iet-ifs.2014.0099

29. B. Kang, S. Y. Yerima, S. Sezer, K. McLaughlin, N-gram opcode analysis for
android malware detection. CoRR. abs/1612.01445 (2016). 1612.01445

30. L. Cen, C. S. Gates, L. Si, N. Li, A probabilistic discriminative model for
android malware detection with decompiled source code. IEEE Trans.
Dependable Secure Comput. 12(4), 400–412 (2015). https://doi.org/10.
1109/TDSC.2014.2355839

31. Westyarian, Y. Rosmansyah, B. Dabarsyah, in 2015 International Conference
on Electrical Engineering and Informatics (ICEEI). Malware detection on
android smartphones using api class and machine learning, (2015),
pp. 294–297. https://doi.org/10.1109/ICEEI.2015.7352513

https://www.statista.com/statistics/281106/number-of-android-app-downloads-from-google-play/
https://www.statista.com/statistics/281106/number-of-android-app-downloads-from-google-play/
https://www.statista.com/statistics/281106/number-of-android-app-downloads-from-google-play/
https://www.statista.com/statistics/309448/global-smartphone-shipments-forecast-operating-system/
https://www.statista.com/statistics/309448/global-smartphone-shipments-forecast-operating-system/
https://www.statista.com/statistics/309448/global-smartphone-shipments-forecast-operating-system/
https://www.mcafee.com/uk/resources/reports/rp-quarterly-threats-mar-2016.pdf
https://www.mcafee.com/uk/resources/reports/rp-quarterly-threats-mar-2016.pdf
https://doi.org/10.1109/ICSME.2017.27
https://doi.org/10.1109/CyberSecPODS.2017.8074845
https://doi.org/10.1109/CyberSecPODS.2016.7502337
https://doi.org/10.1109/CyberSecPODS.2016.7502337
https://github.com/pjlantz/droidbox/wiki/APIMonitor
https://doi.org/10.1145/3041008.3041010
https://doi.org/10.1145/3041008.3041010
http://doi.acm.org/10.1145/3041008.3041010
https://doi.org/10.1109/MALWARE.2010.5665792
https://doi.org/10.1109/ARES.2013.93
https://doi.org/10.1109/ARES.2013.93
https://doi.org/10.1145/2480362.2480701
https://doi.org/10.1145/2480362.2480701
https://doi.org/10.1145/2508859.2516689
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://doi.org/10.1145/2351676.2351717
https://doi.org/10.1145/2351676.2351717
https://doi.org/10.1145/2544173.2509549
https://doi.org/10.1145/2544173.2509549
https://doi.org/10.1145/2509136.2509552
https://doi.org/10.1145/2594368.2594390
http://doi.acm.org/10.1145/2594368.2594390
http://doi.acm.org/10.1145/2594368.2594390
https://doi.org/10.1109/ICSE-C.2017.8
http://www.malgenomeproject.org/
http://www.malgenomeproject.org/
https://santoku-linux.com/
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1109/SAI.2015.7237302
https://doi.org/10.1109/TIFS.2017.2687880
https://doi.org/10.1109/TIFS.2017.2687880
https://doi.org/10.1049/iet-ifs.2014.0099
https://doi.org/10.1049/iet-ifs.2014.0099
http://arxiv.org/abs/1612.01445
https://doi.org/10.1109/TDSC.2014.2355839
https://doi.org/10.1109/TDSC.2014.2355839
https://doi.org/10.1109/ICEEI.2015.7352513

Yerima et al. EURASIP Journal on Information Security (2019) 2019:4 Page 24 of 24

32. B. Kang, S. Y. Yerima, K. Mclaughlin, S. Sezer, in 2016 International
Conference On Cyber Security And Protection Of Digital Services (Cyber
Security). N-opcode analysis for android malware classification and
categorization, (2016), pp. 1–7. https://doi.org/10.1109/CyberSecPODS.
2016.7502343

33. G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, L. Cavallaro,
in Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy. Droidsieve: fast and accurate classification of
obfuscated android malware (ACM, 2017), pp. 309–320

34. S. Y. Yerima, S. Sezer, Droidfusion: A novel multilevel classifier fusion
approach for android malware detection. IEEE Trans. Cybern. 49(2),
453–466 (2018). Feb 2019, https://doi.org/10.1109/TCYB.2017.2777960

35. W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, A. N. Sheth,
TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. Osdi ’10. 49, 1–6 (2010). https://doi.org/10.
1145/2494522

36. G.gleA.rchive. DroidBox. https://code.google.com/archive/p/droidbox/.
Accessed Jan 2019

37. K. Tam, S. J. Khan, A. Fattori, L. Cavallaro, CopperDroid: automatic
reconstruction of android malware behaviors. Ndss (February), 8–11
(2015). https://doi.org/10.14722/ndss.2015.23145

38. V. Rastogi, Y. Chen, W. Enck, AppsPlayground : automatic security analysis
of smartphone applications. CODASPY ’13 (3rd ACM conference on Data
and Application Security and Privac), 209–220 (2013). https://doi.org/10.
1145/2435349.2435379

39. Tracedroid. http://tracedroid.few.vu.nl/. Accessed Feb 2019
40. NVISO ApkScan - Scan Android applications for malware. https://apkscan.

nviso.be/. Accessed Feb 2019
41. R. Mahmood, N. Mirzaei, S. Malek, in Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE
2014). Evodroid: segmented evolutionary testing of android apps (ACM,
New York, 2014), pp. 599–609. https://doi.org/10.1145/2635868.2635896

42. K. Mao, M. Harman, Y. Jia, in Proceedings of the 25th International
Symposium on Software Testing and Analysis. ISSTA 2016. Sapienz:
multi-objective automated testing for android applications (ACM, New
York, 2016), pp. 94–105. https://doi.org/10.1145/2931037.2931054. http://
doi.acm.org/10.1145/2931037.2931054

43. N. Mirzaei, H. Bagheri, R. Mahmood, S. Malek, in 2015 IEEE 26th International
Symposiumon Software Reliability Engineering (ISSRE). Sig-droid: automated
system input generation for android applications (IEEE, 2015), pp. 461–
471. Gaithersbury, MD, https://doi.org/10.1109/ISSRE.2015.7381839

44. S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder, L.
Cavallaro, in 2016 IEEE Security and PrivacyWorkshops (SPW). Droidscribe:
classifying android malware based on runtime behavior (IEEE, 2016),
pp. 252–261

45. A. Machiry, R. Tahiliani, M. Naik, in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2013). Dynodroid: an
input generation system for android apps (ACM, New York, 2013),
pp. 224–234. https://doi.org/10.1145/2491411.2491450

46. D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, A. M. Memon,
Mobiguitar: automated model-based testing of mobile apps. IEEE Softw.
32(5), 53–59 (2015). https://doi.org/10.1109/MS.2014.55

47. S. Anand, M. Naik, M. J. Harrold, H. Yang, in Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering
(FSE ’12). Automated concolic testing of smartphone apps (ACM, New
York, 2012), p. 11. https://doi.org/10.1145/2393596.2393666

48. V. Van Der Veen, H. Bos, C. Rossow, Dynamic analysis of android malware
(2013)

49. L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio, V.
van der Veen, C. Platzer. Andrubis: Android malware under the
magnifying glass, (2014). Vienna University of Technology, Tech. Rep.
TR-ISECLAB-0414- 001.

50. L. Xu, D. Zhang, N. Jayasena, J. Cavazos, in Proceedings of SAI Intelligent
Systems Conference (IntelliSys), ed. by Bi Y., Kapoor S., and Bhatia R. Hadm:
Hybrid analysis for detection of malware (Springer, Cham, 2016). IntelliSys
2016. Lecture Notes in Networks and Systems, vol 16.

51. M. Dimjašević, S. Atzeni, I. Ugrina, Z. Rakamaric, in Proceedings of the 2016
ACM on International Workshop on Security And Privacy Analytics. IWSPA ’16.
Evaluation of android malware detection based on system calls (ACM,
New York, 2016), pp. 1–8. https://doi.org/10.1145/2875475.2875487.
http://doi.acm.org/10.1145/2875475.2875487

52. P. Irolla, E. Filiol, Glassbox: dynamic analysis platform for malware android
applications on real devices. CoRR. abs/1609.04718 (2016). 1609.04718

53. S. Dai, A. Tongaonkar, X. Wang, A. Nucci, D. Song, in 2013 Proceedings IEEE
INFOCOM. Networkprofiler: towards automatic fingerprinting of android
apps, (2013), pp. 809–817. https://doi.org/10.1109/INFCOM.2013.6566868

54. M. Bierma, E. Gustafson, J. Erickson, D. Fritz, Y. R. Choe, Andlantis:
large-scale android dynamic analysis. CoRR. abs/1410.7751 (2014).
1410.7751

55. C. Hu, I. Neamtiu, in Proceedings of the 6th International Workshop on
Automation of Software Test. AST ’11. Automating gui testing for android
applications (ACM, New York, 2011), pp. 77–83. https://doi.org/10.1145/
1982595.1982612. http://doi.acm.org/10.1145/1982595.1982612

56. H. Cai, B. G. Ryder, V. Tech, Understanding Android application
programming and security: a dynamic study. 1, 1–12 (2017). https://doi.
org/10.1109/ICSME.2017.31

57. M. Lindorfer, M. Neugschwandtner, in 2015 IEEE 39th Annual Computer
Software and Applications Conference. Marvin: efficient and comprehensive
mobile app classification through static and dynamic analysis, (Taichung,
2015), pp. 422–433. https://doi.org/10.1109/COMPSAC.2015.103

58. A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. Weiss, “Andromaly”: a
behavioral malware detection framework for android devices. J. Intell. Inf.
Syst. 38(1), 161–190 (2012). https://doi.org/10.1007/s10844-010-0148-x

59. G. Dini, F. Martinelli, A. Saracino, D. Sgandurra, MADAM: a multi-level
anomaly detector for android malware. Lect. Notes Comput. Sci (Incl.
subseries Lect. Notes Artif. Intell. Lect. Notes Bioinforma.) 7531 LNCS,
240–253 (2012). https://doi.org/10.1007/978-3-642-33704-8-21

60. H. Cai, N. Meng, B. Ryder, D. Yao, Droidcat : unified dynamic detection of
android malware (2017)

61. B. Amos, H. Turner, J. White, Applyingmachine learning classifiers to
dynamic androidmalware detection at scale, (2013), pp. 1666–1671.
https://doi.org/10.1109/IWCMC.2013.6583806

62. M. Spreitzenbarth, T. Schreck, F. Echtler, D. Arp, J. Hoffmann,
Mobile-sandbox: combining static and dynamic analysis with
machine-learning techniques. Int. J. Inf. Secur. 14(2), 141–153 (2015)

63. E. B. Karbab, M. Debbabi, S. Alrabaee, D. Mouheb, in 2016 11th International
Conference onMalicious and Unwanted Software (MALWARE). Dysign:
dynamic fingerprinting for the automatic detection of android malware,
(2016), pp. 1–8. https://doi.org/10.1109/MALWARE.2016.7888739

64. L. Massarelli, L. Aniello, C. Ciccotelli, L. Querzoni, D. Ucci, R. Baldoni,
Android malware family classification based on resource consumption
over time (2017). ArXiv e-prints. 1709.00875

65. V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera, P. L. de Geus,
Identifying android malware using dynamically obtained features. J.
Comput. Virol. Hacking Tech. 11(1), 9–17 (2015)

https://doi.org/10.1109/CyberSecPODS.2016.7502343
https://doi.org/10.1109/CyberSecPODS.2016.7502343
https://doi.org/10.1109/TCYB.2017.2777960
https://doi.org/10.1145/2494522
https://doi.org/10.1145/2494522
https://code.google.com/archive/p/droidbox/
https://doi.org/10.14722/ndss.2015.23145
https://doi.org/10.1145/2435349.2435379
https://doi.org/10.1145/2435349.2435379
http://tracedroid.few.vu.nl/
https://apkscan.nviso.be/
https://apkscan.nviso.be/
https://doi.org/10.1145/2635868.2635896
https://doi.org/10.1145/2931037.2931054
http://doi.acm.org/10.1145/2931037.2931054
http://doi.acm.org/10.1145/2931037.2931054
https://doi.org/10.1109/ISSRE.2015.7381839
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1109/MS.2014.55
https://doi.org/10.1145/2393596.2393666
https://doi.org/10.1145/2875475.2875487
http://doi.acm.org/10.1145/2875475.2875487
http://arxiv.org/abs/1609.04718
https://doi.org/10.1109/INFCOM.2013.6566868
http://arxiv.org/abs/1410.7751
https://doi.org/10.1145/1982595.1982612
https://doi.org/10.1145/1982595.1982612
http://doi.acm.org/10.1145/1982595.1982612
https://doi.org/10.1109/ICSME.2017.31
https://doi.org/10.1109/ICSME.2017.31
https://doi.org/10.1109/COMPSAC.2015.103
https://doi.org/10.1007/s10844-010-0148-x
https://doi.org/10.1007/978-3-642-33704-8-21
https://doi.org/10.1109/IWCMC.2013.6583806
https://doi.org/10.1109/MALWARE.2016.7888739
http://arxiv.org/abs/1709.00875

	Abstract
	Keywords

	Introduction
	Input/event generation methods for Android application dynamic analysis
	Random input generation method
	State-based input generation method
	Hybrid input generation method

	Methodology and experiments
	Testbed configurations
	Datasets
	Extracting behavioral features
	Investigated machine learning classifiers

	Results and disscussions
	Comparisons of behavioral footprint: state-based vs. random vs. hybrid
	Random-based approach vs. state-based approach
	Random-based approach vs. hybrid approach
	State-based approach vs. hybrid approach
	Explanation of the obtained results

	Comparisons of impact of the code coverage on machine learning classifiers
	Evaluating accuracy performance with additional statically obtained permission features.

	Related work
	Conclusion
	Appendix
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

