
EURASIP Journal on
Information Security

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6
https://doi.org/10.1186/s13635-018-0075-x

RESEARCH Open Access

OMMA: open architecture for
Operator-guided Monitoring of Multi-step
Attacks
Julio Navarro1,4*†, Véronique Legrand2,3†, Aline Deruyver1,4 and Pierre Parrend1,4,5†

Abstract

Current attacks are complex and stealthy. The recent WannaCry malware campaign demonstrates that this is true not
only for targeted operations, but also for massive attacks. Complex attacks can only be described as a set of
individual actions composing a global strategy. Most of the time, different devices are involved in the same attack
scenario. Information about the events recorded in these devices can be collected in the shape of logs in a central
system, where an automatic search of threat traces can be implemented. Much has been written about automatic
event correlation to detect multi-step attacks but the proposed methods are rarely brought together in the same
platform. In this paper, we propose OMMA (Operator-guided Monitoring of Multi-step Attacks), an open and
collaborative engineering system which offers a platform to integrate the methods developed by the multi-step
attack detection research community. Inspired by a HuMa access (Navarro et al., HuMa: A multi-layer framework for
threat analysis in a heterogeneous log environment, 2017) and Knowledge and Information Logs-based System
(Legrand et al., Vers une architecture «big-data» bio-inspirée pour la détection d’anomalie des SIEM, 2014) systems,
OMMA incorporates real-time feedback from human experts, so the integrated methods can improve their
performance through a learning process. This feedback loop is used by Morwilog, an Ant Colony Optimization-based
analysis engine that we show as one of the first methods to be integrated in OMMA.

Keywords: Advanced persistent threats, Event correlation, Intrusion detection systems, Multi-stage attacks, Network
security

1 Background
Recent cyberattacks are highly targeted and more sophis-
ticated than ever [1]. The economic gains through extor-
tion or stealth can be very attractive for cybercriminals,
so they are willing to expend lots of resources to abuse
specific victims. Sophistication has also reached global
malware campaigns, as we have seen with WannaCry
malware, which has recently infected more than 230,000
computers all over the world in a few days1.
The termmulti-step is assigned to these complex attacks

because they are composed of different steps, either legal
or not, with no evident link between them. Therefore,

*Correspondence: navarrolara@unistra.fr
†Equal contributors
1Laboratoire ICube, Université de Strasbourg, 11, Rue Humann, Strasbourg,
France
4Unitwin UNESCO Complex System-Digital Campus, Paris, France
Full list of author information is available at the end of the article

multi-step attacks cannot be described by less than two
events [2]. The set of events involved in amulti-step attack
is also called an attack scenario. It is important to note
that individual events which seem innocuous may be part
of an attack scenario.
Attack detection has evolved to face these new threats,

but a lot of work remains to be done. The execution
of a multi-step attack usually leaves traces in several
assets in the network and can only be detected from a
global perspective, considering the whole attack strategy.
Traces can be collected by a System of Information and
Event Management (SIEM), a security system able to deal
with data coming from heterogeneous sources. A SIEM
incorporates mechanisms for analysis and also automatic
detection engines [3], generally based on handcrafted
signatures coding the behavior of an attacker during a
multi-step attack. The detection of threats through the
identification of several traces with an attack scenario is

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-018-0075-x&domain=pdf
mailto: navarrolara@unistra.fr
http://creativecommons.org/licenses/by/4.0/

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 2 of 25

called correlation. As a result of detection, the SIEM raises
an alert, which is sent to the human expert through a
computer interface.
Given the complexity of the conception of a SIEM, the

global perspective of Engineering Systems brings signif-
icant insights. While classical system design focuses on
technical details first to elaborate the overall architec-
ture, Engineering Systems are conceived starting with an
abstract framework [4]. This is expressed in an architec-
ture meeting the requirements of the system. In a later
phase, the defined modules are implemented and the
global design can evolve to be adapted to new technical
requirements.
Despite the numerous publications proposing auto-

matic multi-step attack detection methods based on event
correlation (see Section 3), we have not found in the lit-
erature any proposal to combine them in a single system.
Moreover, some of them [5, 6] do not even disclose the
details about how the detection method works, so the
method cannot be reproduced by other researchers. Open
research can help the development of more advanced
methods able to deal with current multi-step attacks. The
challenge is to develop a framework where these methods
can work together and around which the exchange of
ideas contributing to the development of multi-step attack
detection could take place.
In response to this, we propose the architecture of

an engineering system called OMMA, Operator-guided
Monitoring of Multi-step Attacks, for integration of
multi-step attack detection methods working with het-
erogeneous sets of events. OMMA proposes a frame-
work for merging different detection techniques in order
to improve research collaborations and profit from past
work. OMMA is one of the architecture proposals
developed in the context of the HuMa project. It is
directly inspired by HuMa reference architecture [7] and
Knowledge and Information Logs-based System (KILS)
system [3]. As them, OMMA incorporates real-time feed-
back from the human expert, which can be used by
the integrated methods to improve their performance
through a learning process. We consider that the last
verdict about what is a threat for the system must
be given by a human analyst, whose creative thinking
and knowledge about the network allow him to deter-
mine the consequences of events marked as malicious by
the system.
However, OMMA differs from HuMa and KILS in some

aspects:

• Unlike HuMa [7], which is oriented towards threat
analysis and forensic investigation, OMMA is focused
on real-time detection, taking the approach of classic
signature-based SIEM but giving elements for the
integration of machine learning algorithms.

• OMMA differs from KILS [3] in that it offers an open
architecture for the integration of different detection
methods. KILS presents a general cognitive model
but not the details about the architecture or included
analysis methods.

The main contribution of OMMA is that it offers to the
research community an open platform where no matter w
hich multi-step attack detection algorithm based on event
correlation could be integrated. The name OMMA comes
from ancient greek ὄμμα, which means “the eye of heaven”
[8]. Apart from the architecture of OMMA, in this paper,
we present the example of integration of Morwilog [9]
in OMMA, an Ant Colony Optimization (ACO)-based
method which was presented in the 2016 IEEE Sympo-
sium Series on Computational Intelligence (SSCI).
The rest of the paper is organized as follows. We

first present the main challenges on multi-step attack
detection in Section 2. In Section 3, we review related
work, and we continue in Section 4 with a descrip-
tion about the methodology used in our research. Then,
we present definitions of core concepts of the proposed
framework in Section 5. OMMA architecture is pre-
sented in Section 6. We then explain the Morwilog algo-
rithm in Section 7 and provide experimental results in
Section 8. We finish the paper with the discussion in
Section 9 and state the conclusions and future work
in Section 10.

2 Challenges on event correlation for multi-step
attack detection

In this section, we present some challenges of event cor-
relation in the context of multi-step attack detection. We
start explaining what is a log in the context of network
security. After that, we present a summary of the chal-
lenges posed by multi-step attacks, from which we can
infer that event correlation is a pertinent approach to
detect this type of attacks. We end the section with a
brief analysis about classical correlation and its challenges,
which constitutes the base of the development of OMMA.

2.1 Log entries
An event is “an identifiable action that happens on a
device and is recorded in a log entry,” according to the
Standard on Logging and Monitoring published by the
European Commission in 2010 [10]. Log entries are also
simply referred to as logs and are the real manifestation of
events in the network. A log is generally expressed in plain
text, using a language previously defined and dependent
on the type of device that registers it [11]. Logs provide a
valuable source of information for knowing what is hap-
pening in a network. From the point of view of security,
the utility of logs resides in the fact that they can be pro-
duced by an ample variety of elements connected to the

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 3 of 25

network, so that information from different origins can
be merged to discover threats that would be impossi-
ble to discover with information from a single source. It
is necessary to translate the logs from different types of
source to a common format if we want to use them as
a source for event correlation. This process is known as
normalization.
A log contains both static, dynamic, and semantic infor-

mation [12]. The static information is composed of the
separators and words that depend on the type of log.
The dynamic information codes the particularities of each
event, usually following certain rules about format. In an
already normalized log, the static information is the name
of each field and the dynamic one is their value. Finally,
semantic information refers to the meaning of the log, to
why that log was generated.

2.2 Challenges posed by multi-step attacks
Multi-step attacks are popularly known as Advanced
Persistent Threats (APT) [13, 14]. We prefer the first
name because it is more descriptive about the nature
of these attacks and because the multi-step technique,
originally linked to targeted attacks, has been already
used in global malware campaigns, as WannaCry infec-
tion demonstrates. “Multi-step” is no longer an exclusive
characteristic of targeted attacks. Anyways, we consider
that the term APT has become distorted after its adop-
tion in the industry, as it is frequently used as a marketing
technique2.
The multi-step nature of these attacks brings with it a

number of challenges for detection:

• Multi-step attacks cannot be described by less than
two events [2].

• An isolated event can be part of an attack scenario
even if it seems innocuous.

• Events that belong to the same attack scenario have
as a common point that they are the representation
of actions leading to a single objective, but this is not
necessarily explicit in the events.

• Detection methods count only with a limited amount
of information, such as the one contained in events or
network packets, to infer attack scenarios.

In event correlation [15], ensembles of primitive events
are combined to form composite events [16]. These lat-
ter are a conceptual construct, as the events are observed
indirectly only, and they allow inferring the strategy
of the attacker. As multi-step attacks cannot be fully
detected from the observation of individual events, the
need of composite event derivation becomes appar-
ent. Moreover, events involved in a multi-step attack
can happen in several assets of different types in the
network. The only mechanism present in current net-
works to get information from all the affected sources

is log collection through a SIEM. A SIEM-like archi-
tecture can offer a framework where the logs repre-
senting events can be collected and normalized to a
common format. Then, an algorithm for detection can
be applied on the collected data. Event correlation is
therefore a convenient approach for multi-step attack
detection.

2.3 SIEM and classical correlation
Security systems in charge of log collection and correla-
tion [17] are known as SIEM (System of Information and
Event Management). They aim to detect new incidents
but also to unify and to reinterpret the alerts generated by
other security devices.
Classical SIEMs generally apply rule-based reasoning

[18], based on identifying the match between static rules
and events in the set. Rules are written by an expert
according to the nature of composite events correspond-
ing to an attack and, in some cases, to the characteristics of
the network where the device is placed. Rules can always
be expressed as branches in a tree, with the events as
nodes in the shape of a regular expression. Many commer-
cial SIEMs still base their detection mechanisms on rules
furnished by the vendor [19] in combination with specific
rules crafted by the user.
There exist many ways for evaluating the rules, the

simplest one being the linear check of each rule against
incoming events. In classical correlation, if the system
detects an event matching the beginning of a rule, a detec-
tion thread is opened to wait for other events matching
the rest of the conditions in that rule. This is done con-
currently for all the rules whose beginning is matched
by the incoming event. The system triggers an alert if
all the components of a rule are matched. For instance,
one of the rules of the system can be “generate an alert
after 3 failed login attempts against service X.” In this
case, if a log from service X representing a failed login
attempt is detected, the security system opens a new
thread which looks for two more failed attempts com-
ing from the same user. If these events occur, the alert is
fired. If nothing is found after a certain period of time,
the detection thread is closed in order to free the mem-
ory of the system. Chains of events with some events in
common can be represented in the shape of a tree as
shown in Fig. 1. The rule we propose as example could be
represented by the sequence {A, B, C}. Each of the com-
ponents in the sequence would be identified with a failed
attempt.
This classical method is used by many correlation

systems, such as OSSIM3 (Open Source SIEM), whose
open code has widely disseminated the idea of security
event correlation. Inside OSSIM, an event traverses sev-
eral steps in the form of a log [20], such as assignation
of risk score to the target asset or comparison with

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 4 of 25

Fig. 1 Example of an event tree for classical correlation with three
multi-step attacks

reputation data, among others, before arriving at the cor-
relation engine. The rules defining the sequences of events
representing a threat are previously coded by a security
expert. Alarms are triggered according to the rule-based
reasoning approach, following the process we have just
described.
The most positive aspect of rule-based reasoning is

that it uses a language easily understood by humans,
as rules are expressed in the form of statements “if ...
then.” Anyways, event correlation needs to be reinvented
and improved to be adapted to current scenarios. We
have identified several challenges in classical correlation
methods:

• Rule definition is manual and requires a lot of efforts
by security analysts, not only for their creation but
also for updating them, as rules are static.

• The quality of detection depends on the expert’s
ability.

• Security experts spend too much time looking for
incidents in raw records. A greater autonomy of
detection systems would reduce this waste of time.

• Rules are just suited to known threats.
• The heterogeneity of events in a network and their

great increase in terms of volume and variety in the
last few years hinder detection. Sets of rules and
parsers become difficult to maintain and control.

OMMA offers an architecture for the integration of
methods addressing these challenges. Some issues for
solving these challenges are:

• The combination of machine learning algorithms,
trained with reference data. We can obtain a better
performance in the classification of events as
malicious or not if we add up the results from
different methods.

• The mix of results obtained in a supervised way with
some others coming from unsupervised methods and
statistics. Unsupervised learning does not assure the
causality implications of links between the events but
allows the exploration of unknown sequences and a
predefined model does not need to be built [21].

• The evaluation from a human expert, incorporated
through a feedback system, as it is proposed by
HuMa [7] and KILS [3]. Doing so, causality could be
added to the models found in an unsupervised way
and the system can learn from experience.

3 Related work
We start this section presenting some security engineer-
ing systems working with logs that have inspired us in the
development of OMMA. We then review what has been
done in the domain of multi-step attack detection through
event correlation. Finally, we provide context to Morwilog
[9], the ACO-based detection system whose integration in
OMMA is proposed.

3.1 Engineering Systems for cybersecurity
Attack detection generally requires the combination of
different modules for easing the design and development
of the system. Starting from the definition of the frame-
work for later focusing on the technical details allows not
to lose sight of the purpose of the system, something really
important if it is intended to work within a real network.
This is why much work in the field has been done follow-
ing the approach of Engineering Systems, which considers
the definition of the whole system in an abstract way for
later proceeding to the implementation.
The main reference in the conception of OMMA is the

HuMa reference architecture [7]. It has been proposed in
the context of the HuMa project, the same one financ-
ing the development of OMMA. Unlike this latter, HuMa
is a framework for log analysis, not for attack detection.
Its main objective is to deal with massive and hetero-
geneous sets of logs. It considers the human expert as
the main actor in the analysis process. This idea is the
one we have adapted to the context of multi-step detec-
tion. HuMa organizes the analysis around three layers: the
event layer, where individual traces are represented; the
context and attack pattern layer, which gathers informa-
tion about technical requirements of the attacks; and the
assessment layer, where information from complex attacks
is extracted. HuMa contains a set of analysis methods for
the assessment layer. Morwilog has been adapted to be
included in both frameworks, HuMa and OMMA.

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 5 of 25

KILS (Knowledge and Information Logs-based System)
is a model also working with logs and it is in the ori-
gin of HuMa. It is proposed by Legrand et al. [3] and it
is built under the perspective of Big Data, as the amount
of logs daily generated in an organization is exceeding
the capabilities of current solutions. The authors hold
that knowledge from a human expert is fundamental for
identifying complex and targeted attacks. Thanks to a
feedback loop, this knowledge is introduced into the sys-
tem, so the attack detection algorithms contained on it
can learn and improve their results. The interface with
the human is eased by the decomposition of events into
abstract concepts. Inspiration is taken from Action The-
ory, criminal investigations, and bio-inspired methods,
but not much detail is given about the implementation of
the system. OMMA follows a similar approach in its defi-
nition of domains than the levels defined for KILS, called
real world, storage, inference, and expert knowledge.
Finally, Abreu et al. [6] propose a framework for detect-

ing APTs from log information. Activities are first clas-
sified, then ranked according to the priority of generated
alerts. The link between activities is found from the set
of vulnerabilities an attacker should exploit for accessing
the victim. This framework directly comes from industrial
research, as all their authors work in security compa-
nies. Even if they do not describe the implementation in
detail, the paper offers a complete idea about the design of
commercial security devices.

3.2 Finding multi-step attacks in datasets of events
The basis of OMMA is the consideration of attacks as
an ensemble of events, a strategy composed of differ-
ent steps. A system would not be able to deduce the
objective and nature of the attack considering only one
of these individual events. These attacks are denoted as
multi-stage [22],multistage [23], ormulti-step [2] attacks.
Some papers about the topic also refer to them as attack
strategies [24], attack plans, [25] or attack scenarios [26].
Lastly, many authors use the name of Advanced Persistent
Threats (APT) [13], a vague denomination which is much
used in the industry.
The first public mention of attack strategy as an impor-

tant point for attack detection is probably in the work by
Huang et al. [24]. Taking inspiration from battleground
management, they propose a communication protocol
between IDS (Intrusion Detection System) agents dis-
tributed through the network, with a master controlling
their behavior. Agents are responsible for local data analy-
sis and classical intrusion detection. The master analyzes
possible strategies, represented in the form of goal-trees,
for determining in which kind of event each agent should
be focused.
Most of the work about multi-step attack detection

focuses on alerts generated by an IDS and considers the

construction of attack scenarios through the linking of
these alerts. This is the case of the work done by one
of the pioneers in the field of multi-step attack detec-
tion, Peng Ning [27], one of the prime integrator of pre-
requisites and consequences in IDS alerts. We consider
significant that most of the work in the field of multi-
step attack detection do not directly analyze events but
alerts generated by a signature-based Intrusion Detec-
tion System, looking for scenarios whose bricks are in
turn composed of detected attacks. DARPA 2000 Intru-
sionDetection Scenario-Specific datasets are broadly used
as the main data source for evaluating the performance
of these systems, sometimes combined with tests over
private network data.
OMMA has been conceived to work with heteroge-

neous events, not only with IDS alerts, which are a type
of security event. That is why we focus only in the lit-
erature about multi-step attack detection from general
events. For this purpose, some specific languages have
been developed to allow a security expert to code the
behavior of multi-step attacks as a set of events. Two
examples are STATL (State Transition Analysis Technique
Language), developed by Eckmann et al. [28], and EDL
(Event Description Language). EDL was first proposed
by Meier [29] and later improved by Jaeger et al. [2].
Basic EDL is built on the intuitive idea of constructing
a sequence of nodes for representing the concatenation
of different events using a colored Petri net. The idea
seems simple but its formal specification includes very
innovative mechanisms for defining the rules, such as
the use of tokens going through the network of nodes
as search agents for indicating which events the system
should look for. The automatic derivation of EDL rules has
been recently explored by the same laboratory [30]. They
automatically extract signatures from log events, arranged
in a taint graph. They have evaluated the approach with
the simulation of a multi-step attack (see Fig. 2).
The distributed system proposed by Vogel et al. [5, 31] is

also based on signatures written in EDL, which are divided
in minimal parts and sent to the local agents. Another
example of a distributed system applyingmulti-step attack
signatures, expressed in a language different from EDL, is
Quicksand [32]. Signatures in Quicksand are expressed as
graphs, whose nodes are used by each of the agents for
local detection.
Hidden Markov Models (HMMs) have also been used

for multi-step attack detection. The HMMs represent
sequences of normal events and are derived from a clean
dataset of events. If a sequence does not correspond to any
of the models, it is considered as anomalous and identified
as a potential multi-step attack. This approach is used by
Anming et al. [33], who propose the use of the segmental
K-means algorithm to create the HMMs. They just work
with OS audit data, thus coming from only one source,

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 6 of 25

Fig. 2 Example of an EDL signature called UserLogin for a simple login onto a Windows system, by Jaeger et al. [2]

but the method could be applied to a set of heterogeneous
events if they are conveniently normalized.
Another system based on anomaly detection is the one

developed by Mathew et al. [26]. It uses principal com-
ponent analysis (PCA). They take attack-free data for
building a model using PCA and then they project new
data on the created clusters so abnormal behavior is eas-
ily identified. They consider a sequence of states for the
network, each state composed of information from het-
erogeneous security data, such as IDS alerts, network
sensors, events, or others. They select certain features
for defining the states of the network in each moment.
This method finds anomaly behavior not necessarily cor-
responding to an attack, so it is eventually able to find the
traces of unknown attacks.
Skopik et al. [13, 34] also focus on the abnormal char-

acter of attacks. Their security system detects anomalies
after learning from a test set clean of attacks. They have
developed a whole mathematical framework for defin-
ing hypothesis, rules, and anomalies. Each event class is
defined by the combination of a mask �Cm, indicating if
a field in the event is relevant or not, and a value �Cv,
showing if a field is enforced or prohibited for that class.
Giura and Wang [35, 36] propose a model for multi-

step attack detection where the stages of the attack are
arranged in a layered pyramid. The goal of the attack
is placed at the top of the pyramid and the previous
steps are distributed in layers. Each face of the pyramid
corresponds to a different domain, such as physical, net-
work, application, and user. They implement the model
in a detection framework based on correlation signatures,
profiles, and security policies.

Finally, Pei et al. [37] propose what they call “attack story
reconstruction.” They implement HERCULE, a method
inspired by relationships in social networks. A list of pos-
sible relationships between events is defined as a first step.
Then, the relationships are used to create graphs of events.
Each edge in the graphs have an assigned weight value,
calculated using a quadratic optimization algorithm. The
result of HERCULE is a graph containing all the events
related to a multi-step attack.
More information about multi-step attack detection ref-

erences, together with our conclusions about the state of
the field, can be found in our systematic survey [38].

3.3 Ant Colony Optimization
Morwilog, the first integrated module in OMMA, is based
on Ant Colony Optimization (ACO) [39], a metaheuristic
oriented to solve discrete optimization problems through
indirect cooperation within a colony of artificial ants.
When real ants search for food, they depose pheromones
and create trails other ants can follow to the food source.
This process of indirect communication through themod-
ification of the environment is called stigmergy [40]. The
higher the concentration of pheromones in a path, the
higher the probability for an ant to follow it. This leads to
the convergence to the shortest path to food. Pheromone
evaporation avoids trail stagnation to a sub-optimal path.
A complex behavior arises from the individual actions of
the ants, which are not able to see the plan of the whole
group. We call it a process of emergence. The results
obtained by the colony exceed so much the capabilities of
an individual ant that it is difficult not to think that there
is an invisible score [41].

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 7 of 25

The first algorithm applying ACO, Ant System, was
published in 1991 [42], with the traveling salesman prob-
lem (TSP) as an example application, in the context of
Dorigo’s Ph.D. thesis [43]. Application of ACO to TSP is
fairly straight, as routes can be directly translated to the
artificial trails of ants. Since then, it has been successfully
applied to many NP-hard optimization problems such
as optimizing traffic control signals [44] or scheduling a
galvanizing line [45].
An interesting version of ACO is theHommilière (Manhill)

system developed by Valigiani [46] in his Ph.D. thesis.
It was created to be applied in an e-learning platform
for recommending the best learning path for each user,
according to the results obtained by other students and
the previous students’ results. As the number of users
is big enough (more than 150,000 in the tested environ-
ment), each of them can be associated to an ant. The ant
goes through the different lessons, arranged as a graph,
depositing pheromones according to the student’s success
at each step [47].
Independent of its results or its real applicability to e-

learning, the most relevant contribution of this work to
ACO metaheuristic is the idea of using an element of the
real world associated to each ant, instead of generating
a base population of artificial ants. This leads to a dif-
ferent point of view in ACO and brings the possibility
of incorporating the complexity of natural processes to
the generation of ants. Other works have proposed that
each ant simulates a real entity, as Mahanti et al. [48] do
for simulating attackers in a honeypot environment, but
the Manhill algorithm is the first one, as far as we know,
directly associating the ants to real-world entities.
The bibliography concerning ant algorithms includes

plenty of papers trying to give answers to the problem
of network attack detection. However, the only ant-based
work we know addressing the problem of multi-step
attack is Janus, a model developed by Zhang et al. [49]. It
is based on Partially Observable Markov Decision Process
and it is two-sided, as it has a double point of view, that of
the attacker and that of the defender. Based on this repre-
sentation, the objective is to search for attack paths with
minimum action cost in the case of the attackers and to
highlight the most critical points for a successful attack in
the case of the defenders.
Several ACO-based papers related to security directly

translate the ant metaphor to software agents moving
through the network [50, 51]. Nonetheless, if we consider
the analysis of events in a central location, as we do in this
paper, the most widespread technique is anomaly detec-
tion through the clustering of network data [52–54], in
some cases combined with supervised methods such as
SVM [55]. There are also some approaches introducing
fuzzy systems [56] or relying on the importance of dis-
tributed clustering [57]. Other examples can be found in

[58]. The limitations of all these centralized approaches
are that they consider an attack as characterized by only
one event and they do not consider the multi-step attack
perspective.

4 Methods
The development of OMMA has the objective of provid-
ing an operational and open architecture for the detection
of multi-step attacks with human assistance. The ideas
reflected on its design are based on three axes: our expe-
rience in security research, our knowledge about attack
detection methods used in the industry, and the study of
bibliography about multi-step attack detection. The two
main goals of OMMA are the following ones:

• One of our goals is to make OMMA an open system,
in the sense that its components should be modular
and other researchers could develop new detection
methods or adapt existing ones for including them
into the system. Nowadays, event correlation systems
are closed and not very customizable. Commercial
ones are black boxes which only allow the inclusion
of custom static rules, adapted to customer
environment. Users cannot include any new machine
learning detection method or any custom heuristic
mechanism. In a competition to keep their know-how
safe, security companies do not even disclose the
name of the kind of methods they use, let alone expose
the details of their operation. On the other end of the
spectrum, most of the systems proposed by public
research are oriented towards a specific method of
detection and they do not provide such a modularity.

• Another prerequisite is to keep the human in a
central role during the detection process [3, 7]. In our
experience, determining the malicious nature of a set
of events is in most of the cases only within reach of a
security expert’s creativity. Full automation in attack
detection is far from being reached. As the expert is
outside the network dimension, he or she can check
the consequences of the supposed attack using
external mechanisms such as testing the availability
of services or interviewing the personnel about
actions outside the scope of logging facilities. The
possible forms of network threats are so ample that
security experts usually have to deal with problems in
real time. The idea is to provide the specialist with
tools for easing the detection with the minimum
waste of time.

With these objectives in mind, we have started to con-
ceive OMMA as a full architecture covering the entire
chain for detecting and mitigating multi-step attacks.
We have begun with the development of Morwilog [9],
the first module to be integrated in OMMA using the

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 8 of 25

feedback loop. Morwilog uses an ACO paradigm mainly
inspired by the Manhill algorithm [47]. We wanted to
apply the algorithm developed by Valigiani to attack
detection, something that has never been done. As we said
in Section 3, ACO has been extensively applied to attack
detection, but we do not know any work where there was a
relationship between real entities and the creation of new
ants.
Once Morwilog is built, we need a dataset accomplish-

ing a certain number of characteristics for testing the
system:

• Firstly, the feedback provided by the operator has to
be simulated during the experiments. We assume the
human expert is infallible so no mistakes are
introduced in the system. For simulating this, we need
the data to be labelled4, so the evaluating system can
know if an event is part of a multi-step attack or not.

• Another requisite of the dataset is that events should
be sent by a broad range of devices. This is the case in
real networks, where SIEM devices are able to deal
with any kind of events at the same time. Moreover,
most of the attacks we want to detect have to be
detected through their traces in different locations of
the network.

• The final requisite is that attacks injected in the
dataset have to represent a multi-step strategy.
Single-step attacks can be detected by specific
security systems without the need for processing
events from different sources at the same time.

We then have to find a labelled dataset of heterogeneous
logs where attacks are represented as being composed of
several events. During our research, we have not been able
to find an up-to-date dataset meeting all these require-
ments. Because of that, we use an artificial dataset for this
initial implementation of the system. The details of this
artificial dataset are explained in Section 8.

5 Preliminary definitions
The proposed engineering system is based on a set of con-
cepts which are worth being rigorously defined to ease
the explanation. Defining a formal framework for working
with logs does not only allow us to use general mathemati-
cal concepts, but also to establish a common notation that
could be used by the rest of the research community.

5.1 Event operations
OMMA uses the events generated by the devices in the
network as data source. An event e is the record of an
action happening in a given device. It can be considered
as an entity in the set of all possible events E. We can view
the event as a finite set of identifier/value pairs contain-
ing information about certain aspects of the event. The

event is then expressed as a tuple of components idn/vn,
so e = {idb/vb, idc/vc, . . . , ida/va, . . .}. This abstract con-
struction is represented as a log in the context of a net-
work. The identifier idn defines a uniquemeaning for each
value e (idn) = vn in the event e. Thanks to the identifiers,
it is easy to find a correspondence with other events. They
determine the meaning of each of the fields we can find
in a log. They should be universal and easy to understand,
so any kind of log can be merged with others generated
by different devices after proper mapping. An identifier
unambiguously defines the type of value vn, which could
be a real number, a string element from a finite set, or an IP
address, among others. We can find identifiers as “source,”
“timestamp,” or “action,” for instance. Basically, the identi-
fier is the static information of the log and the value is the
dynamic one, as it was defined in Section 2. The seman-
tic information can be coded as additional identifier/value
pairs.
When working in a network, we can assume we have

a set of events ordered in time. This can be expressed
as E = (e1, e2, . . . , eNE), with NE the number of events.
From all the collected events, only a subset is used for
attack detection, as duplicated events are grouped or dis-
carded and basic filtering is made in the Collector, as
described in Section 6. We call this subset Ein.
The sequence s = (s0, s1, . . . , sLs) = (el, en, . . . , eq, . . .),

with el, en, eq ∈ E and q > n > l, defines a relationship
of correspondence between Ls + 1 events from a set E.
The set of all possible sequences in the set of events E is
denoted by SE .
These sequences can potentially represent a multi-step

threat. The set of all sequences representing a threat is
denoted by AE , with AE ⊆ SE . The task of OMMA,
through the algorithms integrated on it, is to find a
sequence s ∈ AEin . We define ÂEin as the set of alerts in
Ein. That means ÂEin is the set of sequences marked by
OMMA as threats but where we can find a proportion of
false positives. In an infallible system, ÂEin = AEin .
We need a way to define a subset of events through

an ensemble of constraints, to be able to work with sev-
eral events without the need for listing them all. For this
purpose, we use the concept of abstract representation
e∗. We can see e∗ as being composed of rules e∗ (idn)
to apply to the different components of the event for a
finite set of identifiers idn. The most simple rule is the
equality between elements. For example, we can define
a rule to refer with an abstract representation to all the
events with the field “protocol” equal to “HTTP.” How-
ever, other relationships could be defined, such as numer-
ical intervals (e.g., “connection number” higher than
650), discrete ranges (e.g., “destination” in the IP address
range 175.68.22.0/24), sets of values (e.g., “port” is 80
or 443), or complementary definitions (e.g., “user” is not
“admin”).

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 9 of 25

We call E∗ the set of all the possible e∗. The set of all the
possible abstract representations of event ei is denoted as
E∗
i . E

∗
i can be finite or infinite depending on the attributes

of the fields represented in ei. We also define the opera-
tor �, which operates between an event ei and an abstract
representation e∗ and returns the information about the
matching between the two. More precisely, ei � e∗ = 1
if e∗ ∈ E∗

i , while ei � e∗ = 0 if e∗ /∈ E∗
i . Considering the

vision of e∗ as a set of rules as we just did after the defi-
nition, ei � e∗ = 1 only if ei (idn) agrees with the rule
defined in e∗ (idn) ∀ idn represented in e∗.

5.2 The event tree
An important concept for OMMA, used by detection
methods such as Morwilog, is the event tree. Each of its
nodes contains an abstract representation which could
match with a set of events, as it is shown in Fig. 3. Each
tree is unambiguously defined by its root node, which rep-
resents the first event of the set of suspicious sequences
contained in the tree. This concept is directly extracted
from themechanisms followed in classical correlation (see
Section 2 and Fig. 1). We can always represent a set of
multi-step rules in a tree, with each node as the abstract
representations of a set of events. Once a suspicious
event is identified, the tree whose root node matches this
event is identified and the system waits for one or several
events matching the root node’s children. For not wasting
the resources of the system, a maximum waiting time is
defined, after which the analysis thread is closed even if
there are no results. The process of matching and waiting

continues from the top to the bottom of the tree until
the end is reached and a suspicious sequence is returned,
generating an alert. The nodes are then distributed in dif-
ferent levels, each of them representing events later in
time as we go down through the branches of the tree.
We should not confound this with the attack trees,

extensively used in the literature [59] but where the root
represents the final objective of the attacker and paths are
sequences of exploitable vulnerabilities.
More rigorously, each tree δj is represented by an

ensemble of nodes κn, so δj = {κ0, κ1, . . . , κNj
κ
}, with Nj

κ

the total number of nodes in tree δj in a given moment
and κ0 the root node. The set of all possible nodes is de-
noted by K.
Nodes κn = (e∗

n,Fn, κ
(α)
n) contained in a tree are for-

mally composed of three elements:

• An abstract representation of an event e∗n ∈ E
∗.

• A set Fn of Nf children κm ∈ δj.
• A pointer to its ancestor κ

(α)
n ∈ δj. This is not strictly

necessary for the definition of the tree, but it is very
useful if we work on the tree with a system that needs
to propagate information from the deepest node of
the tree to κ0, as with ant pheromones in Morwilog.

On the element e∗n, we can use the operator� previously
defined.With this operator, a system could look for events
matching e∗n in a dataset. For easing the representation,
we extend the operator � for working between nodes and
events, so e � κn = e � e∗

n ∀ κn ∈ K, e ∈ E.

Fig. 3 Representation of an event tree δj

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 10 of 25

If we want to work with heterogeneous events, they
should be normalized to a common format before apply-
ing the operator, so the components represented in e∗n
mean the same in terms of security independently of the
event’s origin.

6 System architecture
OMMA engineering system is oriented towards multi-
step threat detection through event analysis. This orien-
tation has been chosen as events can be collected from a
broad range of devices, irrespective of whether they gen-
erate visible IP traffic or not. We have considered a strong
presence of the human analyst, who has to verify the alerts
and gives some feedback to the system about what is or is
not a real attack, called Fb in some of the diagrams. The
contribution of a human expert is still needed for detec-
tion [3, 7], no matter how effective automatic methods
used nowadays can appear.
OMMA is within the framework of Artificial Immune

Ecosystems (AIE) developed by ICube Laboratory, in
Strasbourg (France). This kind of systems, inspired by
immune system mechanisms, propose a continuous cycle
of detection, analysis, and reaction against external
anomalies. AIE also proposes the definition of a detector’s
life cycle, ranging from their design to the application, plus
the learning phase. Apart from multi-step attack detec-
tion, it has been previously applied to anomaly detection
in time series [60].
In Fig. 4 we can see the global architecture of the

system. Defining an architecture is one of the most impor-
tant steps in the definition of an Engineering System [4].
OMMA architecture is divided in different modules, con-
sidered as black boxes for the rest of the system. We

can group them in four domains, according to their pur-
pose and place in the analysis chain: Connection, Analysis,
History, and Knowledge. These domains are compliant to
levels in the KILS model [3].
The modules are briefly introduced here and explained

in more detail in the following subsections. Each one has a
unique two-letter code for better referring to the modules
in a diagram.

• Connection: communication with the network

– Collector (CT): collection, normalization, and
pre-filtering of events

– Actuator (AC): execution of automatic
defensive actions in the network

• Analysis: automatic detection and learning

– Matcher (MT): signature-based attack
detection

– Classifier (CS): detection of suspicious events
using supervised and unsupervised methods

– Orchestrator (OR): coordination of the whole
system and application of the feedback loop

• History: archive of raw and processed data

– Logger (LG): event and alert storage and
forensic search

• Knowledge: management and storage of information
from human and machine experience

– Advisor (AD): management of expert data
– Visualizer (VZ): visual representation for the

operator

Fig. 4 Global architecture of OMMA (Operator-guided Monitoring of Multi-step Attacks). Ein = input events filtered by the Collector.
Eout = enriched events

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 11 of 25

6.1 Connection
In the domain called Connection, we find modules act-
ing as an interface between OMMA and the network, the
Collector, and the Actuator.

6.1.1 Collector (CT)
Before being able to analyze the events, it is necessary to
extract the information contained in the logs. This is the
task of the Collector in OMMA. The difficulty resides in
being able to process the events coming from different
kinds of sources. Each source uses a specific log format
defined by the vendor, which forces the Collector to have
different parsers adapted to these formats. Parsers map
the fields from original logs to the fields used by the sys-
tem, translating the information into a normalized format
common to all the sources.
In the industry, parsers are usually manually developed

by experts familiar with the log format used by each
device. Vendors make these parsers available to their cus-
tomers in the form of plugins, which can be integrated
into the same machines where the correlation system is
installed, into a different server, or even into the device
generating the logs itself. They also include some tool
or language so customers can develop their own custom
parsers. The problem of manual creation of parsers is
that technologies change and so do log formats, so their
operation should be checked after each system update.
Even if there are some interesting alternatives for auto-

matic parsing, such as the ones based on NLP (Natural
Language Processing) [61] or the LTE (Log Template
Extraction)method [11], they cannot be applied to all kind
of logs and need further development. As the aim of our
system is detection and not normalization, we consider a
regular custom normalization, adapted to the format of
log registered by each of the elements in the network. The
Collector could even be replaced by a commercial event
sensor if it has a well-developed interface to retrieve the
normalized logs.
Log collection is made by several daemons running in

parallel, called captors. There are two general kinds of cap-
tors, one push-based and another pull-based. The first one
is for log sources able to send the logs to the Collector by
themselves, using syslog [62] or a similar mechanism. On
the other side, we need pull-based daemons for devices
which need to be periodically requested to send the logs
(e.g., Microsoft Windows operating system).
The Collector could also apply basic filtering, discard-

ing events we do not want to include in the analysis and
merging duplicate ones. The output of this module is a set
of normalized events, which come out from it in real time.

6.1.2 Actuator (AC)
The Actuator is the module responsible for perform-
ing prescribed actions in the network so as to stop or

prevent the development of an attack. The actions per-
formed can be very diverse, from applying a firewall rule
to disconnecting a server from the Internet.
This is the most difficult element to develop in this

architecture. Being able to determine an automatic asso-
ciation between a defensive action and the nature of an
attack is not an easy task. Even a security expert may not
directly have the answer and has to try different methods
before arriving at blocking the attack. Anyways, the Actu-
ator could play an important role in the final system, and
its implementation could be optional and selective, only
taking part for attacks against which automatic defensive
mechanism can be applied.

6.2 Analysis
The modules which belong to the Analysis domain per-
form the automatic detection of multi-step attacks. The
static signature-based detection is done in the Matcher,
while the Classifier is in charge of applying machine learn-
ing or heuristic techniques. The central coordinator of
this domain, and of the whole OMMA system, is the
Orchestrator.

6.2.1 Matcher (MT)
The Matcher applies classical correlation and attack
detection based on signatures, so well-known threats can
be rapidly detected. Events composing them are tagged as
malicious, so the rest of the modules know about their
nature as threats. They are still included in later analysis
for checking if they are part of a more complex multi-
step attack scenario. The resulting tagged set of events is
called Etag .
This module can be implemented by any event-based

attack detection system. The only constraint is the input
and output format, which has to be adapted to be under-
stood by the rest of the modules. Tags can be simply
considered as an additional field in the logs.

6.2.2 Classifier (CS)
This module has the task of classifying the events in terms
of security. Sets of events clearly corresponding to good
behavior have to be excluded from the analysis. Suspicious
ones, with all those related to them, have to be preserved
for being further handled by the Orchestrator. Detection
of threats can be reduced to a mere classification between
good and bad events.
Classification can be made using machine learning in

a supervised or unsupervised way. The idea is to com-
bine the power of several algorithms for later obtaining
a verdict in the Orchestrator. This bank of methods is
adaptable, and any new event-oriented algorithm could
be incorporated to the analysis. New algorithms should
adapt their input and output formats to the ones defined
in the implementation of the system. Not every algorithm

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 12 of 25

is valid for every type of data, so a pre-selection is made in
the Orchestrator.
Once the classification mechanisms are defined, events

can be classified as they are collected and grouped into
batches to ease the analysis.

6.2.3 Orchestrator (OR)
After the Matcher, events are sent to the Orchestrator.
This is the central module of the system, the one coordi-
nating the detection process andmaking the final decision
about which set of events is a threat for the network. It
takes the information given by the Classifier and the Advi-
sor about tagged events coming from the Matcher (Etag),
evaluates it, and sends the results to the Visualizer, the
Actuator, and the Logger. It also gets feedback from the
human expert through the Visualizer and sends the results
to the detection methods.
The Orchestrator is in charge of evaluating the results

returned by the different methods included in the Clas-
sifier. For that, it follows a voting process. It knows the
nature of each involved algorithm and its degree of reli-
ability, so it focuses in one or another depending on the
kind of data to be analyzed. This voting system gets feed-
back from the false positives and false negatives as they are
introduced by the human analyst through the Visualizer.
The Orchestrator also coordinates the delivery of data

from the Advisor to the different methods in the Classifier,
periodically requesting the information needed by each of
them. It is important to note that the Classifier is just in
charge of the algorithm execution, but the decision about
which ones are applied to which set of events is made by
the Orchestrator.
Once a verdict is issued about the nature of the events,

alerts
(
ÂEout

)
are sent to the Visualizer, to the Actuator,

and to the Logger, which also receives the events, enriched
during the process (Eout). Alerts generated in this phase
are arising from the events which are clearly labelled as
malicious.

6.3 History
The domain in charge of storing historical data is called
History, and in our design, it includes just one module, the
Logger.

6.3.1 Logger (LG)
This module manages the historical data of the system,
both logs and alerts. Periodically, a routine is executed for
writing to disk logs and alerts on memory. It happens that
for some algorithms in the Classifier, events come too fast
to be analyzed. The storage in the Logger allows applying
these algorithms later, during forensic investigation.
The Logger also includes routines for log and alert

searching, so the analyst can do forensic investigations
through the Visualizer.

6.4 Knowledge
The Knowledge domain is where the feedback from the
human expert is introduced. Expert information can come
through two different ways. The Advisor stores expert
data from past experiences, while the Visualizer takes
input from the human in real time, also providing a con-
sole output showing events, alerts, and the state of the
system.

6.4.1 Advisor (AD)
The Advisor is the module in charge of managing and
storing knowledge on events and attacks, which is either
manually introduced by security experts or automatically
learned by machine learning algorithms. Such knowledge
contains, for instance, the event trees used by Morwilog.
The Orchestrator distributes this information to the
corresponding methods in the Classifier. Moreover, it
receives feedback after positive or negative detection, so
expert data is updated and improved.
One of the aims of this module is to unify the data

format used by correlation algorithms as much as it is pos-
sible, not only inside our security system but also in the
communication with external systems. Attack description
has to be legible both for humans and machines, as well as
easy to exchange between modules. So far, the event trees
used by the system are general enough for being generated
by any tool, even in real time during the analysis.

6.4.2 Visualizer (VZ)
The Visualizer is the module that represents the informa-
tion of alerts and logs to the human user. This module
controls the presentation of the data generated by the
other modules but also transmits the input from the user
into the feedback loop, so pheromones in Morwilog can
be modified and the algorithms in the Classifier can iden-
tify false and true positives and learn and modify the
classification methods for improving the detection rate.
New alerts are generated and represented in a console
so that the human expert can progressively evaluate and
mark them as attacks or not. The Visualizer is also pro-
vided with tools for doing forensic investigation on events
and alerts stored in the Logger.

6.5 Some comments onmodularity
The architecture of OMMA is totally modular. Each mod-
ule has been conceived for being independent from the
others, and its functions can be replicated in more than
one instance. On the other hand, some modules can be
also grouped in the same network element.We follow here
the perspective of Artificial Immune Ecosystems (AIE)
[60], which conceives a design where centralized elements
are combined to distributed ones, according to the needs
of the implemented system.
We list below some reasons why modularity is interest-

ing for this system.

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 13 of 25

• Different types of event can be processed separately.
We can decide to have certain modules dedicated to
specific tasks. We can have, for instance, several
Classifiers, each one with a set of algorithms
dedicated to a specific type of event. This can also
ease the combination of modules developed by
different research units.

• A hierarchical design is possible, with an instance of
one module acting as master and some others as
slaves. This is important if we deploy the system in a
large network. We can, for example, have an
Orchestrator master controlling some other ones
acting as agents, in different areas of the network or
remote sites.

• We can do load balancing between different
instances of the same module. Doing so, we can
combine small modules for having a processing
power equivalent to a bigger unit, therefore saving
cost. For example, we can think of some instances of
the Collector module working together for
processing a high volume of events.

• A module can be doubled for High Availability. If one
instance fails, the other one can automatically take its
place, avoiding system interruptions. The most
suitable element for High Availability is the Logger,
as it stores sensitive information which is worthy to
be replicated, avoiding data loss in case of failure.

• It can lead to economies of hardware or design, as
several modules can be grouped into the same device,
specially the ones belonging to the same domain. For
example, we can have an instance of each of the
modules belonging to the Analysis domain, the
Orchestrator, the Classifier, and the Matcher, in the
same box.

In Fig. 5, we present the diagram of a possible imple-
mentation of the system in a network, where we can see
how the idea of modularity is applied. We have a Collec-
tor for each of the subnetworks A and B. Both of them
report to the same Matcher, and only one Actuator works
for both subnetworks. Subnetwork C counts with its own
Actuator and Matcher but also with two active Collectors
doing load balancing. The Orchestrator, the Classifier, and
the Advisor are all located in the same device. This allows
not sending the data they exchange out in the network.
Moreover, shared hardware eases the implementation and
reduces delays in information transmission. The Visual-
izer is implemented as a device by its own. Finally, we find
two Loggers in High Availability configuration (HA) form-
ing a cluster. All the information is copied into the two
devices, so it is well preserved in case one of them would
stop working.

7 Morwilog
The most important element in our engineering system
is the feedback loop, as it is responsible for the learning
process. Thanks to the feedback from the human experts,
the system improves its multi-step attack detection rate.
Here we present theMorwilog system, which directly uses
the feedback data retrieved from the expert [9]. Once sus-
picious events have been selected, Morwilog tries to find
the links between the events belonging to the same multi-
step attack using the historical data of event trees. The
database of event trees can be built through training data
or manually from experience. A mechanism of random
generation of trees, which is used in the experiments pre-
sented in this paper, is also integrated in Morwilog, so if
there is no tree corresponding to an input sequence of
logs, a new event tree is built.

Fig. 5 Example of an implementation of OMMA where we can see its modularity

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 14 of 25

7.1 FromManhill to Morwilog
Morwilog is based on ACO [39] and, especially, Manhill
[46]. The name Morwilog comes from the prefix meaning
“ant” in Proto-Indo-European [63] (“morwi-” in latin char-
acters). The Proto-Indo-European is a theoretical recon-
struction of the common ancestor of the Indo-European
languages [64], the supposed mother of English or Latin,
among many others.
Themost relevant idea behindMorwilog is that the gen-

eration of the artificial ants, called morwis, takes places
from the detection of real entities, the events. This idea
directly comes from the Manhill algorithm, where the real
entities are the students connecting to the e-learning plat-
form, each of them represented as an artificial ant. The
real entity generating the artificial agent does not have to
be necessarily a living one, but it can be anything gener-
ated by such an entity and therefore unpredictable, such
as the events.
The generation of morwis from the events arriving at

the system follows the same principle as the generation
of analysis thread in a classical correlation system. Each
morwi follows a path in an event tree, a decision tree
with representations of events as nodes (see Section 5).
Pheromones are added between each pair of nodes on
this path. These pheromones, or counters, are modified
by themorwis according to their success in detecting valid
sequences. The sequences returned by themorwis as rep-
resenting an attack are sent to the Visualizer and they
are evaluated by a security expert, which reviews alerts as
is performed for instance in a SOC (Security Operations
Center).
To implementMorwilog as part of the OMMA architec-

ture, we have first developed an instance of the Collector
(see Section 6 and Fig. 4). Logs used are already prepro-
cessed and their fields are normalized [65]. The Collector
reads directly from a log file and then iterates through the
logs, which are ordered in time. A function called LogSub-
setIterator is the one in charge of the consecutive arrival
of logs to Morwilog.
All the code has been written in C++ following an

object-oriented programming paradigm. There are classes
corresponding to the event trees (AttackTree) which are
grouped in objects representing a forest (AttackForest).
Morwis are also objects, which are created with the arrival

of each log and destroyed after they finish to go through
the tree and the level of pheromones is updated. The
class responsible for the execution of the algorithm and
the coordination of the morwis is called Loghill. A simple
instance of the Classifier has been also developed. It sep-
arates the logs according to the maximum time between
logs Tmax. To summarize, the flow of the implemented
program starts with the collection of logs from a file by
an instance of the Collector and ends with the execution
of Morwilog by the module Loghill after a classification of
logs in time windows.

7.2 The stigmergic scenario
The event tree we have defined in Section 5 is the scenario
where the pheromones from the morwis are deposited
and therefore where the stigmergic process takes place.
When an event ei arrives at the Morwilog system, amorwi
is generated and it starts its search in a node κ0 match-
ing ei (Table 1). The search of the following events in the
sequence takes place during a maximum time Tmax, as the
system does not have an unlimited amount of resources.
The arcs connecting two nodes κn and κm have a par-

ticular level of pheromones τn,m ∈ R. The pheromones
give information to the morwis about which path they
should choose with higher probability. If κm is a child of κn
and it has further children, the level of pheromones τn,m
associated to the path to κm is the sum of the elements
τm,l ∀ κl ∈ Fm, so pheromones in Fn always depend on
values in the deepest nodes.
It is important to note that the way we implement

the set of event trees in the final system has to take
into account possible limitations, such as system perfor-
mance or structural simplicity. In the implementation of
Morwilog, we have arranged the event trees in a finite set
� = {δ1, δ2, . . . , δNδ } called forest. When a morwi is cre-
ated, one of the Nδ trees present in the system at that
moment is selected according to the match between the
event generating the process and e∗0 in node κ0 of that tree.

7.3 Pheromone evolution
As in classic ACO, the level of pheromones evolves
according to the results returned by the morwi after
traversing the tree. The level of pheromones (τ) can be
incremented for reinforcing a path leading to a real threat

Table 1 Nodes in the example represented in Fig. 7, containing the propagation steps in WannaCry

Level Node Matched event Origin

0 κ0 Unsuccessful HTTP request from a host, called A, to long domain name Proxy

1 κ1 Successful connection in port TCP 445 from A to any another endpoint (B) in the local network Internal firewall

1 κ2 Successful HTTP request to the same domain name as in κ0 Proxy

2 κ3 SMBv1 communication between A and other machine using command “transaction2_secondary” Internal firewall

2 κ4 Malformed SMB headers for the NEGOTIATE PROTOCOL REQUEST from A to B (CVE-2009-3103) Endpoint B

2 κ5 SQL injection alert coming from A IDS

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 15 of 25

or decremented for penalizing one resulting in a false
alarm. This evolution of the level of pheromones takes
place once the sequences have been analyzed and tagged
by a security expert through the Visualizer. New attacks
are identified from their consequences in the real environ-
ment and the network’s normal functioning. The morwi
only generates an alert if the level of pheromones associ-
ated to the path is above τatkmin, defined as a parameter of
the system.
The amount pheromones incremented is called �τ+,

while the decrement is �τ−. We have that �τ+ > 0 and
�τ− < 0. If we consider τ [n] as the level of pheromones
after update n, with n ∈ N:

τ [n + 1]= τ [n]+�τ+,− (1)

For avoiding stagnation, a mechanism of pheromone
evaporation is necessary. This avoids the morwis to con-
centrate themselves around sequences that have become
well-known threats. The detection of these sequences
can be made using pattern matching techniques, so new
threats discovered by themorwis should be translated into
static rules and sent to the Matcher.
The evaporation consists in the decrease of the previous

level of pheromones by an evaporation rate ρ, with ρ ∈ R

and 0 < ρ < 1. The equation for calculating the level of
pheromones after evaporation is:

τ [n + 1]= (1 − ρ) · τ [n] (2)

The evaporation mechanism is only applied to nodes in
the same branch as the chosen path for not penalizing rare
events. If evaporation was applied to every link in the tree,
there would be many nodes that cannot be chosen since
there is no event matching them. This would not mean
that they could have a high possibility of leading to an
attack. Evaporation is always applied before incrementing
or decrementing the level of pheromones.
More generally, modification of pheromones is applied

directly only to nodes with the same ancestor as the last
node in the path returned by themorwi. Modifications are
then propagated up in the tree to the root node κ0, added
up for preserving the definition of pheromones in every
Fn. This is the reason why we have defined pointers to the
ancestors in the tree nodes.
There is here an important variation with regard to

the classic ACO literature, where both increment and
decrement are constant and independent of the level of
pheromones. Combining this with the evaporation leads
to a variation of pheromones whose absolute value decays
as the system evolves. However, as we still want a higher
decay in pheromone evolution for strongly penalizing
badly chosen paths, we have introduced a dependence on
τ [n] in �τ+ and �τ−, making �τ+ with the shape of a
Gaussian function and �τ+ = − �τ−.

�τ+(τ [n]) = �τ+
0 e−

(τ [n]−τ [0])2
2w2 (3)

The value τ [0] is the initial level of pheromones, and it
is fixed as a parameter. This is the value to which the
pheromones of all the node-to-children links are initial-
ized when a new tree is created. The Gaussian function is
centered to τ [0] because we want the higher change right
after a new node joins the tree. �τ+

0 is the increment of
pheromones when τ [n] = τ [0], and w is a parameter
determining how spread the increment function is.
In classical ACO, the difference between consecutive

updates of the level of pheromones is smaller in later
stages of the execution, as the level of pheromones is
further away from the initial value. This ends up in the
convergence to an upper limit of pheromones in absolute
value, as it has been proven in [39]. Increment in Eq. 3
should also converge to a maximum value. We can imag-
ine an infinite succession of increments in one of the arcs
during the execution. After each step, we have a new value
of pheromones for the arc:

τ [n + 1]= (1 − ρ) · τ [n]+�τ+
0 e−

(τ [n]−τ [0])2
2w2 (4)

Calculating the limit of this recursive function when we
have an infinite number of steps n is not as trivial as in
classical ACO. We can prove this upper limit exists for
certain values of the parameters just running the recursive
function during a high number of pheromone updates.
This prevents the system to unlimitedly favor an arc.
In the curve “Increment” of the diagram in Fig. 6, we

represent the evolution of pheromones in Eq. 4 if we sup-
pose there is an increment in every step. We use the
parameters shown in Table 2. In around 10 updates, the

Fig. 6 Graph representing the evolution of pheromones

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 16 of 25

Table 2 Parameters of Morwilog

Name Description Simulation

Tmax Maximum search time 62 s

τ [0] Initial number of pheromones 1000

ρ Evaporation rate 0.02

w Spreading of �τ+,− function 1000

�τ+
0 Change of pheromones when τ [n] = τ [0] 500

τmin Minimum level of pheromones 100

τ atkmin Minimum level of ph. for attack 200

Ptree Prob. of creating a new tree if no match 0.5

Pjump Prob. of adding a random sequence 0.1

level of pheromone is very close to the upper limit, which
in this case is 3051.
We want to compare the evolution of pheromones with

the one in classic ACO, where the value of increment is
fixed. To do that, we have also represented it in the curve
“Classic.” We have chosen an increment value of 61.02,
the exact value for reaching the same upper limit as in
the curve “Increment,” 3015. We see that our approach
reaches the limit much earlier than the classical one.
Following the same logic for �τ−, we also arrive at a

lower limit but negative this time. As we want the level of
pheromones to be always positive, it is necessary to arti-
ficially set a minimum value τmin so we force the quantity
of pheromones to never go below it. The result of a suc-
cession of decrements in an arc starting from τ [0] is also
represented in Fig. 6, in the curve “Decrement.”

7.4 The algorithm
We called Eclas to the set of events coming from the Clas-
sifier. From this set, we only send to Morwilog suspicious
events that could potentially be part of an attack, accord-
ing to the verdict issued by the Orchestrator from the
results returned by the Classifier. This data is divided
in batches before going into Morwilog according to the
maximum search time Tmax, defined as a parameter. We
define EMin = (eb, ec, . . . , ea, . . .) as a subset of suspicious
events contained in Eclas, with its elements ordered in time
(a > c > b) and with the time difference between
two consecutive events in the list less than Tmax. A better
accuracy in the detection of suspicious events by the Clas-
sifier allows incrementing Tmax preserving at the same
time the performance of the system, as Morwilog has to
process a lower number of events. With a higher Tmax, the
system is able to detect multi-step attacks lasting longer.
It is important to note that we use a slightly different

notation in OMMA than the one presented in the original
Morwilog paper [9].
The sequence of actions performed by each morwi is

summarized in pseudocode form in Algorithm 1. We

now explain the whole process carried out by the morwi,
which begins when a suspicious event ei is chosen by the
Orchestrator and arrives at Morwilog.

Algorithm 1Morwi algorithm
Require: EMin ⊆ Eclas; ei ∈ EMin
Ensure: s ∈ SEMin , δj ∈ �; isresult ∈ {true, false}
1: isresult ← false
2: δj ← δ ∈ � | ei � κ0 = 1
3: if δj = ∅ then
4: if random(0,1) < Ptree then
5: s ← random sequence ∈ SEMin | s0 = ei
6: δj ← create_tree(s)
7: τl ← τ [0]
8: end if
9: else

10: Add ei to s
11: κn ← κ0 in δj
12: while Fn in κn 	= ∅ do
13: C, s′ ← find_nodes(EMin , i, Fn)
14: if C 	= ∅ then
15: (κm, ei, τl) ← c ∈ C, rand τ -based choice
16: if ei = s′0 then
17: Add branch to κn from s′, τ ← τatkmin
18: Append s′ to s
19: isresult ← true
20: return isresult
21: else
22: κn ← κm
23: Add ei to s
24: end if
25: else
26: return isresult
27: end if
28: end while
29: end if
30: if τl ≥ τatkmin then
31: isresult ← true
32: end if
33: return isresult

First of all, the morwi checks if there is already � in a
tree δj with an upper node κ0 such that ei � κ0 = 1. If
there is no tree matching the event (δj = ∅), with a cer-
tain probability Ptree, the morwi forms a sequence from
random events in EMin . This sequence has ei as its first
element.
The length of the sequence can be statically defined in

the system or be a random variable, which could depend
on the average number of actions for reaching a critical
piece of the network. The sequence s = (s0, s1, . . . , sLs) ∈
SEMin is considered as a result by the morwi, which invokes

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 17 of 25

the function create_tree for creating a tree with a number
of nodes equal to the number of events in the sequence,
every one of them being traversed by the same path. The
number of pheromones assigned to the links between
nodes is τ [0]. In Eq. 5, we can find the formal defini-
tion of the tree generated by create_tree, knowing that
sp � e∗p = 1, sp � κp = 1 ∀sp ∈ s.

δj = {κp} =

⎧⎪⎪⎨
⎪⎪⎩

(
e∗0, (κ1, τ [0]),∅

)
p = 0(

e∗p, (κp+1, τ [0]), κp−1
)

0 < p < Ls(
e∗Ls ,∅, κLs−1

)
p = Ls

(5)

If a tree δj is found, themorwi starts going through the tree
starting in node κ0. This process is repeated node after
node until a node without children (Fn = ∅) is found
or a random sequence is chosen. The reader can find the
method find_nodes described in Algorithm 2.
Before continuing, we have to define the vectorC, which

contains a set of vectors. Each of the vectors contains
an event ea, a node κm matching to it, and the level of
pheromones τx,m from the arc leading to κm in the tree.
The method find_nodes looks for events matching any

of the children of κn among events coming after ei in EMin ,
storing them in an instance of C together with the node
κm ∈ Fn representing it and τn,m associated to it. Apart
from that, with a certain probability Pjump, it chooses a
random sequence s′ and adds its first event to C with τatkmin
as the level of pheromones.

Algorithm 2 find_nodes algorithm
Require: EMin ⊆ Eclas; i, index of ei; Fn, set of pairs K/R

Ensure: C = {
(κm, ea, τx,m) ∈ (

K,EMin ,R
)}
; s′ ∈ SEMin

1: for each κm ∈ Fn do
2: During time < Tmax, find eq | q > i, eq � κm = 1
3: Add (κm, eq, τn,m) to C if eq found
4: end for
5: if random(0,1) < Pjump then
6: s′ ← random ∈ SEMin | n > i ∀sn ∈ s′

7: Add
(
{e∗p,∅,∅}, s′0, τatkmin

)
to C | s′0 � e∗p = 1

8: else
9: s′ ← ∅

10: end if

Once the morwi has the vector of found events and
their corresponding nodes, it chooses the next event to
jump from this list. Following a weighted random selec-
tion, the event with higher level of pheromones has more
probabilities to be chosen. If the event starting the ran-
dom sequence s′ is chosen, then the sequence should be
added as a new branch to tree δj with pheromones τatkmin in

each node-to-node link. In this case, this is the solution
proposed by themorwi.

7.5 Human feedback
We have called Morwihill the module that generates the
morwis and manages the results returned by them. We
can find the pseudocode describing the functioning of this
module in Algorithm 3. This module creates the morwi
and receives the returned result s ∈ SEMin once the execu-
tion is finished. Then, it can obtain the sequence of nodes
that the morwi has traversed in the construction of s. If it
is a valid result, it evaporates the pheromones leading to
the nodes with the same ancestor of the last node in the
sequence, according to Eq. 2.

Algorithm 3Morwihill algorithm
Require: EMin ⊆ Eclas
1: for each ei in EMin do
2: s, δj, isresult ← Morwi

(
EMin , ei

)
3: if isresult = true then
4: (κ0, . . . , κl) path from δj matching s
5: Evap. τ in paths, ∀κn ∈ δj with κ

(α)
n = κ

(α)

l
6: if �(s) = 1 then � It is an attack
7: Increment τ in link leading to κl
8: else � It is not an attack
9: Decrement τ in link leading to κl

10: end if
11: Propagate change in τ from κl to κ0
12: end if
13: end for

After evaporation, the human expert determines if s
is malicious or not. Feedback information is provided
through the Visualizer module and makes the Morwilog
algorithm able to learn. So far, we have considered binary
feedback information. The human has to decide if it is an
attack or if it is a false positive. For doing so, sequences
returned by Morwilog are shown in a console. Each
sequence contains all the information about the involved
events for easing the investigation launched by the human
expert.
In our case, the behavior of the human expert is mod-

eled by the function �(s), which returns 1 if s is an attack
and 0 otherwise. The level of pheromones leading to the
last node is incremented if �(s) = 1 and decremented
if �(s) = 0, following Eqs. 1 and 3, so attack sequences
are reinforced and innocuous ones are penalized. Finally,
changes in pheromones are propagated to the rest of the
tree and the analysis thread is closed.

7.6 Example
We present here an example of how Morwilog works
for better understanding the algorithm. The example

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 18 of 25

is inspired by recent WannaCry malware campaign5.
The ransomware used in WannaCry attack tries to con-
nect to an external domain name. The propagation
mechanism inside the local network, which uses proto-
col SMB6, starts when this connection is not success-
ful. The infected machine scans the network looking
for endpoints accepting connections in port TCP 445,
the one used in SMB. If the endpoint uses SMBv1,
a vulnerability7 is exploited and the endpoint is also
infected.
Figure 7 illustrates the example, and the kind of event

matched by each node is shown in Table 1.
The steps followed by amorwi are described hereunder.

Parameters used in the example are shown in Table 2.

(a) Each time a suspicious event ei arrives at Morwilog, a
morwi is generated and it looks for the tree whose
root node matches the event, in this case δj. If it had
not found any, it would have created with probability
Ptree a new tree with one branch from a random
sequence of actions.

(b) Starting in the root node, the morwi searches the
events matching each of the nodes in the second
level. The maximum search time is Tmax. In this case,
both events ej and ek corresponding to κ1 and κ2,

respectively, are found. Now, the morwi has to
decide a node for continuing its trip through the tree
doing a pheromone-based weighted random
selection. That means the path with a higher level of
pheromones has a higher probability of being chosen.
There is also a probability Pjump of choosing a
random event instead of the ones proposed in the
tree. This allows the exploration of other events.

(c) The most probable option is κ1. Imagine the morwi
chooses ej, which corresponds to node κ1. Now it has
to search the events matching the nodes in the
following level. In this case, no event is found
corresponding to κ4, which represents the
exploitation of a vulnerability in SMBv28. Only
events el and en are matching κ3 and κ5. The morwi
needs to choose between these two nodes, the first
one having a higher probability.

(d) We can imagine the morwi chooses κ3. It stops
because it has arrived at the end of the tree. Finally, if
we follow the most probable paths, the sequence
(ei, ej, el) is returned as a possible attack since the
level of pheromones for the last arc is higher than
τatkmin, which in this case is 200. The resulting
sequence is the one followed by WannaCry malware
for propagating the infection.

a

c

b

d
Fig. 7 Example about the progress of amorwi through an event tree with parameters in Table 2. a ei arrives,morwi chooses tree δj with ei � κ0 = 1,
bmorwi has to choose between found events in level 2, c Pheromone-based weighted random selection, d

(
e∗0 , e∗1 , e∗3

)
and (ei , ej , el) as possible

attack if τ1,3 > τ atkmin

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 19 of 25

The following step is to update the pheromones in the
tree according to the feedback from the human expert. As
we know, there are two processes of pheromone change,
the evaporation and the increment/decrement. Evapo-
ration avoids stagnation, and it is proportional to the
previous pheromone level by the evaporation rate. It is
applied to all the sibling nodes of the last node of the
selected sequence. The increment/decrement is a way of
rewarding good paths and punishing bad ones, and it has
an exponential dependence on the pheromone level.
The next step is to evaporate pheromones in the last arc

of selected sequence and in the ones leading to its siblings.
If the sequence is confirmed to be an attack, we increment
the level of pheromones of the last arc of the sequence.
Then, the changes are propagated up through the tree.We
can see a schema presenting this process in Fig. 8.
In the WannaCry attack, it can happen that command

“transaction2_secondary” in SMBv1, represented in node
κ3, is used for testing purposes and not with a malicious
objective. In this remote case, the expert considers it is
a false alert and the level of pheromones is decremented.
Remember we have fixed a lower limit τmin for avoiding
negative values. The evolution of pheromones for a false
positive is shown in Fig. 9.

7.7 The integration in OMMA
Morwilog is directly integrated in the Orchestrator of
OMMA. The structure of this module after the integra-
tion of Morwilog is shown in Fig. 10. Morwilog closes the
feedback loop for the modification of event trees. As we
have described, it is composed of the central Morwihill
and the morwis it generates. Its inputs are events marked
as suspicious once they are processed by the Classifier.
The Orchestrator itself, after the return obtained from the
Classifier, chooses which events are potential members

of a multi-step attack and sends them to this submodule.
Feedback information is used to update the pheromones
in the event trees. It is also sent to the Classifier, so the
methods within it can also improve their results, chang-
ing their parameters or telling the Advisor to change the
event trees stored in it.

8 Results
Among all the elements composing OMMA, we have
already developed Morwilog as a submodule of the
Orchestrator, which is explained in Section 7. Even if we
have not yet completed the development of the Collector,
we have also implemented some of its functionalities for
being able to collect the events to be used by Morwilog.
The system has been developed in C++.
We have performed a set of experiments for evaluating

the performance of Morwilog. As we do not have the pre-
vious phases in OMMA yet, we can make Morwilog work
with events already processed, as if they had been classi-
fied. The goal of these experiments is to show the positive
effect of pheromone evolution. As we do not have a set of
pre-built event trees yet, trees are built during the execu-
tion of the algorithm, using the mechanism used when no
matching tree is found.
As we explained in Section 4, we have worked with an

artificial dataset. We have created it using Splunk Event
Generator9. It is composed of a total of 1038 different
types of events, represented in the shape of logs. They are
stored following the standard audit trail format developed
by Bishop [65]. Event types are randomly taken by the gen-
erator program in different proportions according to the
event type, and a random IP source is included. We have
defined several devices and the probabilities of occurrence
of an event from this device. Inside each one of them,
we have also defined a probability of appearance of each

Fig. 8 Example of pheromone evolution if the attack hypothesis is confirmed. Parameters are in Table 2

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 20 of 25

Fig. 9 Example of pheromone evolution if the attack hypothesis is refused. Parameters are in Table 2

possible type of event. Timestamps are generated by a
counter, with intervals of increment that are also random.
Once the events have been generated, we inject

sequences of events with the IP source as the overarch-
ing element. These sequences represent 40% of events in
the dataset. Half of them are labelled as attacks, while the
others are innocuous. In each dataset, there are at least
10 types of attacks and 40 types of innocuous sequences.

The types have been randomly defined. The exact com-
position of an attack during the test does not matter, the
important thing is that we are able to identify it as a differ-
ent sequence. The length of the sequences is a parameter
of each simulation.
Simulations have been carried out on an Intel Core i5

machine running at 1.4 GHz with 8 GB RAM. Each sim-
ulation has been repeated 50 times and then taken the

Fig. 10 Diagram of the structure inside the Orchestrator. Input is coming from the Matcher. Output goes towards the Logger, the Visualizer, and the
Actuator

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 21 of 25

average of the results. Morwilog needs nine parameters
to be determined before execution. The values chosen for
these simulations are shown in Table 2.
The execution time grows linearly with the number of

events to analyze, as we can see in Fig. 11.
The metrics for evaluating Morwilog have been taken

from the classical definitions collected by Marchette [66].
The probability of detection (PD) and the probability of
false alarm (PFA) are used. PD is the number of detections
made correctly over the total number of attacks presented
in the dataset. PFA is the quantity of false alerts over the
total number of alerts generated by Morwilog.
Simulation results are shown in Fig. 12 as a ROC curve.

Horizontal axis represents the PFA and vertical one, PD.
Each point in the graph corresponds to the average result
from 50 simulations over datasets with different sizes.
Each one is tagged with the number of events used, from
100 to 40,000 (40k). We have represented the results for
different lengths (L) of sequences.
On the other hand, we have also represented a ROC

curve for simulations with the same parameters but
removed the pheromone update. The results are shown in
Fig. 13.
We have clearly better results when there are more

events contained in the dataset. We see that the curves
in Fig. 12 move closer to the upper left corner of the plot
when the number of events analyzed are higher. There is
also a variation in results with the length of the sequences.
If they are higher, results are worse, because the sequences
are more intercalated with normal traffic. Moreover, if we
compare with the ROC curve in Fig. 13, we can verify
the positive effect of pheromone update, since the results

Fig. 11Morwilog execution time vs. number of events in Ein . Each
point is the average of the result of 50 simulations with the
parameters in Table 2

Fig. 12 ROC curve (PFA vs. PD) representing the results from
simulations of Morwilog. Each point is the average of the result of 50
simulations with the parameters in Table 2. The size of the dataset is
indicated next to the points. L is the length of injected sequences

obtained are much worse for any length of sequence in the
pheronome-free case.

9 Discussion
Nowadays, organizations seem more protected than ever
against cyberattacks. Systems, software, and protocols are
created with security in mind from the first stages, and
security devices contain more detection tools and mech-
anisms than ever. Infecting an organization seems harder
than in the era when simple malware campaigns were suc-
cessful. Consequently, attacks are evermore sophisticated.
As they require a lot of resources, attackers give priority
to large victims. The actions of the attackers are hidden

Fig. 13 ROC curve (PFA vs. PD) representing the results from
simulations of Morwilog without doing the pheromone update.
Conditions are the same as in Fig. 12

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 22 of 25

into the vast volume of events generated daily within the
organization.
OMMA, the Engineering System we have presented in

this paper, provides security researchers with a frame-
work to develop effective algorithms for multi-step attack
detection. It proposes a collaborative and open architec-
ture where the feedback from human experience is a key
piece. The full implementation of the system still has a
long way to go, but first results are promising and pro-
vide a significant milestone in the definition of an open
common architecture for alert correlation in the case of
multi-step attacks. Other researchers can take advantage
of the proposed solution and contribution to its future
evolution.

9.1 Towards an open architecture
As stated in Section 4, one of our goals is to make OMMA
an open system. Most of the research contributions to
attack detection are controlled by private companies,
who do not make public the details about the methods
they use for keeping their competitive advantage. Find-
ing multi-step threats is becoming an important issue
for everybody. Only the collaboration between the pub-
lic and private sectors and the open access to information
about attacks and defenses can lead to the development
of robust and performing systems for protecting society
against current cyberattacks. Vendors should know about
new exploits right after they are discovered, so they can
develop patches for their products as soon as possible.
This way, the effect of massive attacks making use of old
undisclosed exploits could be mitigated. It is the case of
the already citedWannaCry attack, which has the Eternal-
Blue exploit, which has been disclosed two months before
the attack, as one of its elements.
With OMMA, we propose a platform where detection

methods with diverse origins can be adapted for working
together in the detection ofmulti-step threats. Its modular
design allows even the combination of different hard-
ware as soon as a standard for communication between
modules is defined.

9.2 External human feedback
We consider the human expert as a central piece in the
detection process, as Legrand et al. [3] do. We take up
their idea about the human experts possessing an acquired
knowledge which is difficult to replicate in a machine as
a simple set of rules. We will not be able to get rid of the
human presence and develop a fully automated system.
The expert has to be involved in the detection process for
providing this know-how to the detection system, which
can thereby improve its results.
Apart from this idea, which we firmly believe in after

many contacts with security experts, we think another
important reason why the security expert is necessary is

that it is an actor external to the system. That means this
person is able to check the consequences of a suspicious
scenario using elements outside the network domain,
while devices are restricted to it. For example, a net-
work device cannot interrogate the personnel or remove
infected disks from a server to do forensic investigation.
Moreover, human creative thinking is still far from being
reached by a machine, but its results can be introduced on
it through a feedback module.
This explains the projection of OMMA on the feed-

back loop, which is used by Morwilog, the first element
we have developed and tested. While in classical correla-
tion manual intervention is required for the development
of the rules, in our system it is incorporated during the
analysis, as a continuous task. We expect our work can
move researchers to consider the presence of security
experts’ role in detection, not only during preliminary rule
definition and subsequent investigation phases.

9.3 Answer to challenges
We conclude the discussion by listing how OMMA offers
a platform to give answer to the challenges in classic
correlation identified in Section 2.

• Rules are manually defined. The proposed system is
mainly oriented to the application of machine
learning algorithms. These algorithms do not need
the explicit definition of rules. They can automatically
learn from verdict of the human expert and
interpretation of past events. The Matcher module,
which is based on rules, is a complement for detecting
known attacks and alleviating the effort done by the
other modules, but it is not the core of the system.

• Detection accuracy depends on the expert’s ability.
An error in a manually defined detection rule stays in
the system until an expert finds and corrects it.
However, an error in the verification of threats in
OMMA is autocorrected by statistics. Punctual errors
are statistically negligible if the proportion of correct
answers is higher.

• A lot of time is spent in log analysis. OMMA is
conceived for highlighting relevant events in terms of
threat. The expert only needs to review the
suspicious scenarios returned by the system. Diving
into raw logs is not necessary either, as in the
presented architecture every log arriving at the
system is parsed, normalized, and enriched.

• Rules are just suited to known threats. In contrast,
machine learning algorithms included in OMMA
could detect unknown ones, especially unsupervised
ones. Unknown attacks are never completely new, so
some parts of it can be identified from historic data
and from the feedback the human expert provides.
However, trying to predict future attacks and

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 23 of 25

preserving the common parts in rule format is a
titanic task.

• Systems are difficult to maintain and control due to
log heterogeneity. As the system is not based on
rules, we do not need to create new ones if unknown
types of logs arrive to the system. Parsers need to be
updated and automatic parsing methods need to be
verified for the new events. Once this is done, the
analysis methods use normalized events, so they can
continue working without changes.

10 Conclusions
In this paper, we have presented OMMA, an open engi-
neering system for multi-step attack detection with the
assistance of a human security expert. The architecture of
the system has been explained, and we have shown the
details of Morwilog as a submodule integrated in OMMA.
We have seen that the modular design of OMMA allows
the adaptation to any network. The contribution of other
researchers can be incorporated to any of the modules.
As modules are independent, each contributor can work
on their development without considering what is done
in the others. So far, Morwilog, contained in the Orches-
trator, and part of the Collector have been developed.
Results from experiments on a representative artificial set
of events have been presented.
Even if the results obtained from Morwilog show the

positive effect of pheromone evolution, we still need to try
on a heterogeneous labelled set of events with multi-step
attacks on it. This brings us to the problem of find-
ing proper open datasets in security research. OMMA is
conceived under the perspective of open collaboration.
Our aim is to establish the foundations of a platform for
multi-step attack detection through event analysis where
methods with different origins can work together. This
framework already considers the inclusion of the human
expert in the detection process as a key piece whose cre-
ative thinking we find indispensable for threat verification.
Our objective is to continue the development both of

OMMA general framework and the instantiation of their
elements. The next step is to formally define the inter-
faces of the different modules to promote standardization.
The detection of traces left by multi-step attacks in log
files and the generation of event trees are key challenges
for enabling production-level deployment of the OMMA
framework.

Endnotes
1 https://www.enisa.europa.eu/publications/info-notes/

wannacry-ransomware-outburst
2 https://www.fireeye.com/blog/threat-research/2012/

05/advanced-persistent-threat-apt-malware.html
3 https://www.alienvault.com/products/ossim

4 http://www.mlsecproject.org/blog/the-importance-
of-good-labels-in-security-datasets

5 https://www.us-cert.gov/ncas/alerts/TA17-132A
6https://logrhythm.com/de/blog/a-technical-analysis-

of-wannacry-ransomware/
7 https://logrhythm.com/de/blog/using-netmon-to-

detect-wannacry-initial-exploit-traffic/
8 http://seclists.org/fulldisclosure/2009/Sep/39
9 https://github.com/splunk/eventgen

Acknowledgements
We thank all colleagues from the HuMa project for their valuable feedback on
the Morwilog model, as well as the CSTB Team of the ICube laboratory for their
support.

Funding
This work was partially supported by the French Banque Publique
d’Investissement (BPI) under program FUI-AAP-19 in the frame of the HuMa
project, as well as by the ICube SENSAI Project.

Availability of data andmaterials
Data and material cannot be shared because industrial contributors to the
HuMa project reserve the right to not publish code, details about the
implementation, or datasets until at least 6 months after the final presentation
of the project.

Authors’ contributions
JN was responsible for the concretion of the architecture, development and
conception of Morwilog, main tasks of redaction and exposition, composition
of images, and execution of experiments. VL contributed in the redaction and
exposition, conception of the main ideas, and revision and corrections. AD
participated in the revision and corrections, and additional precisions. PP
contributed in the redaction and exposition, revision and corrections,
collaboration in the conception of Morwilog, concretion of the architecture,
and definition of the structure of the article. All authors read and approved the
final manuscript.

Authors’ information
Julio Navarro is a PhD student at the “Complex Systems and Translational
Biology” (CSTB), a research team part of the ICube Laboratory at the University
of Strasbourg. His research topic is the development of multi-step attack
detection methods from network traces. He obtained his M.S. in
Telecommunication Engineering from the University of Granada in 2012 with
the highest results. He spent his last year abroad at the University of California
Los Angeles (UCLA), where he presented his Master Project on mobile
communications. He got the Spanish National Degree Award to the second
most outstanding graduate in Engineering. Before starting his PhD, he spent
three years in Madrid working as a Security Project Engineer.
Véronique Legrand is a Professor in Computer Security at Cnam (Conservatoire
national des arts et métiers) and Project Manager of Innovation and Research
at Intrinsec. She is currently one of the coordinators of the HuMa project.
Before 2016, she held a professor position at INSA Lyon for 15 years. She got
her PhD in the domain of Computer Security in 2013.
Aline Deruyver is a tenured senior Associate Professor in computer science at
the University of Strasbourg. She is a member of the CSTB (Complex System
and Translational Bioinformatic) team from the ICube Laboratory of
Strasbourg, France. She obtained a PhD in Computer Science from the
University of Lille I in 1991, and she obtained an accreditation to supervise
research from the University of Auvergne in 1999. She is a member of the
Technical Committee TC15 of IAPR: representation of images by graphs and a
proofreader in the workshop of the technical committee “Graph Based
Representation For Pattern Recognition”.
Dr. Pierre Parrend is the head of the Computer Science and Mathematics
Department at ECAM Strasbourg-Europe engineer school. He is a member of
the research team “Complex Systems and Translational Biology” at ICube
Laboratory of the University of Strasbourg and the head of the e-laboratory

https://www.enisa.europa.eu/publications/info-notes/wannacry-ransomware-outburst
https://www.enisa.europa.eu/publications/info-notes/wannacry-ransomware-outburst
https://www.fireeye.com/blog/threat-research/2012/05/advanced-persistent-threat-apt-malware.html
https://www.fireeye.com/blog/threat-research/2012/05/advanced-persistent-threat-apt-malware.html
https://www.alienvault.com/products/ossim
http://www.mlsecproject.org/blog/the-importance-of-good-labels-in-security-datasets
http://www.mlsecproject.org/blog/the-importance-of-good-labels-in-security-datasets
https://www.us-cert.gov/ncas/alerts/TA17-132A
https://logrhythm.com/de/blog/a-technical-analysis-of-wannacry-ransomware/
https://logrhythm.com/de/blog/a-technical-analysis-of-wannacry-ransomware/
https://logrhythm.com/de/blog/using-netmon-to-detect-wannacry-initial-exploit-traffic/
https://logrhythm.com/de/blog/using-netmon-to-detect-wannacry-initial-exploit-traffic/
http://seclists.org/fulldisclosure/2009/Sep/39
https://github.com/splunk/eventgen

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 24 of 25

“4PFactory: the factory of the future” of the UNESCO Unitwin Complex System-
Digital Campus. His research interests encompass attack detection, software
security, artificial immune ecosystems, evolutionary strategies for optimization
and anomaly detection, and emergent properties of human organizations.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Laboratoire ICube, Université de Strasbourg, 11, Rue Humann, Strasbourg,
France. 2CEDRIC, Conservatoire National des Arts et Métiers (CNAM), 2 Rue
Conté, Paris, France. 3Intrinsec Security, 215 Avenue Georges Clemenceau,
Nanterre, France. 4Unitwin UNESCO Complex System-Digital Campus, Paris,
France. 5ECAM Strasbourg-Europe, 2, Rue de Madrid, Schiltigheim, France.

Received: 30 November 2017 Accepted: 2 April 2018

References
1. M-Trends 2017: a view from the front lines [Generic]. FireEye (2017). The

publication date is March 14, 2017. https://www.fireeye.com/blog/threat-
research/2017/03/m-trends-2017.html. Accessed 23 Apr 2018

2. D Jaeger, M Ussath, F Cheng, C Meinel, in IEEE 2nd International Conference
on Cyber Security and Cloud Computing (CSCloud). Multi-step attack pattern
detection on normalized event logs (IEEE, New York, 2015), pp. 390–398

3. V Legrand, P Parrend, P Collet, S Frénot, MMinier, in Cesar 2014: Detection et
reaction face aux attaques informatiques. Vers une architecture «big-data»
bio-inspirée pour la détection d’anomalie des SIEM (Rennes, France, 2014)

4. E Crawley, O De Weck, C Magee, J Moses, W Seering, J Schindall, et al., The
influence of architecture in engineering systems. (MIT, Cambridge, 2004)

5. M Vogel, S Schmerl, in OASIcs-OpenAccess Series in Informatics. Efficient
distributed intrusion detection applying multi step signatures, vol. 17
(Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Wadern, 2011),
pp. 188–193

6. R Abreu, D Bobrow, H Eldardiry, A Feldman, J Hanley, T Honda, et al.,
in Proceedings of the 26th International Workshop on Principles of Diagnosis
(DX-2015). Diagnosing advanced persistent threats: a position paper,
(2015), pp. 193–200

7. J Navarro, V Legrand, S Lagraa, J François, A Lahmadi, G De Santis, et al.,
in The 10th International Symposium on Foundations & Practice of Security
(FPS). HuMa: a multi-layer framework for threat analysis in a
heterogeneous log environment (Springer International Publishing,
Nancy, 2017)

8. Aristophanes, Clouds. Wasps. Peace. Loeb Classical Library. (Hardvard
University Press, Cambridge, MA, 1998)

9. J Navarro, A Deruyver, P Parrend, in IEEE Symposium Series on
Computational Intelligence (SSCI). Morwilog: an ACO-based system for
outlining multi-step attacks (IEEE, Athens, 2016)

10. Standard on logging and monitoring [Standard]. European Commission
(2010). https://www.eba.europa.eu/documents/10180/1449046/Annex+
5+Standard+on+Logging+and+Monitoring.pdf/4e9f17de-4589-424c-
a670-c0cdc1b5f67b. Accessed 23 Apr 2018

11. J Ya, T Liu, H Zhang, J Shi, L Guo, in IEEE Military Communications
Conference (MILCOM). An automatic approach to extract the formats of
network and security log messages (IEEE, Tampa, 2015), pp. 1542–1547

12. D Jaeger, A Azodi, F Cheng, C Meinel, in IFIP International Conference
on Information Security Theory and Practice. Normalizing security events
with a hierarchical knowledge base (Springer, Heraklion, 2015),
pp. 237–248

13. I Friedberg, F Skopik, G Settanni, R Fiedler, Combating advanced
persistent threats: from network event correlation to incident detection
[Journal Article]. Comput. Secur. 48, 35–57 (2015)

14. J Navarro, ¿Quién teme a la APT feroz? [Magazine Article]. eSecurity. 50,
52–57 (2014)

15. G Suarez-Tangil, E Palomar, JM De Fuentes, J Blasco, A Ribagorda, in
Proceedings of the 2nd International Workshop on Computational
Intelligence in Security for Information Systems (CISIS’09). Automatic rule

generation based on genetic programming for event correlation, vol. 63
(Springer, Burgos, 2009), pp. 127–134

16. M Hasan, B Sugla, R Viswanathan, in Proceedings of the Sixth IFIP/IEEE
International Symposium on Integrated Network Management. A
conceptual framework for network management event correlation and
filtering systems (IEEE, Boston, 1999), pp. 233–246

17. KM Kavanagh, O Rochford,Magic quadrant for security information and
event management [Generic]. (Gartner, 2015)

18. A Müller, Event correlation engine [Master’s Thesis]. (Eidgenössische
Technische Hochschule Zürich, 2009)

19. TB Oliver Rochford, KM Kavanagh, Critical capabilities for security
information and event management. (Gartner, Stamford, 2016)

20. KM Kavanagh, O Rochford, Magic quadrant for security information and
1847 event management [Generic]. AlienVault (2014). https://www.
alienvault.com/doc-repo/USM-for-Government/all/Lifecycle-of-a-Log.
pdf. Accessed 23 Apr 2018

21. F Alserhani, M Akhlaq, IU Awan, AJ Cullen, P Mirchandani, in 24th IEEE
International Conference on Advanced Information Networking and
Applications (AINA). MARS: Multi-stage Attack Recognition System
(IEEE, Perth, 2010), pp. 753–759

22. B Chen, J Lee, AS Wu, in Fourth IEEE International Workshop on Information
Assurance (IWIA’06). Active event correlation in Bro IDS to detect
multi-stage attacks (IEEE, London, 2006), pp. 16–50

23. H Du, DF Liu, J Holsopple, SJ Yang, in Proceedings of 19th International
Conference on Computer Communications and Networks. Toward
ensemble characterization and projection of multistage cyber attacks
(IEEE, Zurich, 2010), pp. 1–8

24. MY Huang, RJ Jasper, TM Wicks, A large scale distributed intrusion
detection framework based on attack strategy analysis [Journal Article].
Comm. Com. Inf. SC. 31(23), 2465–2475 (1999)

25. X Qin, W Lee, in 20th Annual Computer Security Applications Conference.
Attack plan recognition and prediction using causal networks
(IEEE, Tucson, 2004), pp. 370–379

26. S Mathew, S Upadhyaya, in IEEE Military Communications Conference
(MILCOM). Attack scenario recognition through heterogeneous event
stream analysis (IEEE, Boston, 2009), pp. 1–7

27. P Ning, Y Cui, DS Reeves, in Proceedings of the 9th ACM Conference on
Computer and Communications Security. Constructing attack scenarios
through correlation of intrusion alerts (ACM, Washington DC, 2002),
pp. 245–254

28. ST Eckmann, G Vigna, RA Kemmerer, STATL: an attack language for
state-based intrusion detection [Journal Article]. J. Comput. Secur.
10(1-2), 71–103 (2002)

29. M Meier. Intrusion Detection effektiv!: Modellierung und Analyse von
Angriffsmustern (Springer-Verlag, Berlin, 2007)

30. M Ussath, F Cheng, C Meinel, in IEEE Symposium Series on Computational
Intelligence (SSCI). Automatic multi-step signature derivation from taint
graphs (IEEE, Athens, 2016), pp. 1–8

31. M Vogel, S Schmerl, H König, in IFIP International Conference on
Autonomous Infrastructure, Management and Security. Efficient distributed
signature analysis (Springer, Nancy, 2011), pp. 13–25

32. C Kruegel, T Toth, C Kerer, in International Conference on Information
Security and Cryptology (ICISC). Decentralized event correlation for
intrusion detection [Journal Article] (Springer, Seoul, 2002), pp. 59–95

33. Z Anming, J Chunfu, in FifthWorld Congress on Intelligent Control and
Automation (WCICA). Study on the applications of Hidden Markov Models
to computer intrusion detection, vol. 5 (IEEE, Hangzhou, 2004),
pp. 4352–4356

34. F Skopik, I Friedberg, R Fiedler, in 2014 IEEE Innovative Smart Grid
Technologies Conference (ISGT). Dealing with advanced persistent threats
in smart grid ICT networks (IEEE, Washington DC, 2014), pp. 1–5

35. P Giura, W Wang, in Proceedings of the 2012 International Conference on
Cyber Security. A context-based detection framework for Advanced
Persistent Threats (IEEE Computer Society, Washington DC, 2012),
pp. 69–74

36. P Giura, W Wang, Using large scale distributed computing to unveil
Advanced Persistent Threats [Journal Article]. Sci. J. 1(3), 93–105 (2012)

37. K Pei, Z Gu, B Saltaformaggio, S Ma, F Wang, Z Zhang, et al., in Proceedings
of the 32nd Annual Conference on Computer Security Applications. HERCULE:
attack story reconstruction via community discovery on correlated log
graph (ACM, Los Angeles, 2016), pp. 583–595

https://www.fireeye.com/blog/threat-research/2017/03/m-trends-2017.html
https://www.fireeye.com/blog/threat-research/2017/03/m-trends-2017.html
https://www.eba.europa.eu/documents/10180/1449046/Annex+5+Standard+on+Logging+and+Monitoring.pdf/4e9f17de-4589-424c-a670-c0cdc1b5f67b
https://www.eba.europa.eu/documents/10180/1449046/Annex+5+Standard+on+Logging+and+Monitoring.pdf/4e9f17de-4589-424c-a670-c0cdc1b5f67b
https://www.eba.europa.eu/documents/10180/1449046/Annex+5+Standard+on+Logging+and+Monitoring.pdf/4e9f17de-4589-424c-a670-c0cdc1b5f67b
https://www.alienvault.com/doc-repo/USM-for-Government/all/Lifecycle-of-a-Log.pdf
https://www.alienvault.com/doc-repo/USM-for-Government/all/Lifecycle-of-a-Log.pdf
https://www.alienvault.com/doc-repo/USM-for-Government/all/Lifecycle-of-a-Log.pdf

Navarro et al. EURASIP Journal on Information Security (2018) 2018:6 Page 25 of 25

38. J Navarro, A Deruyver, P Parrend, A systematic survey on multi-step attack
detection. Comput. Secur. 76, 214–249 (2018). https://doi.org/10.1016/j.
cose.2018.03.001

39. M Dorigo, T Stützle, Ant colony optimization. (MIT Press, Cambridge, 2004)
40. G Theraulaz, E Bonabeau, A brief history of stigmergy [Journal Article].

Artif Life. 5(2), 97–116 (1999)
41. DM Gordon, Ant encounters: interaction networks and colony behavior.

(Princeton University Press, Princeton, 2010)
42. M Dorigo, V Maniezzo, A Colorni, Positive feedback as a search strategy.

(Politecnico di Milano, Milan, 1991), pp. 91–016
43. M Dorigo, Optimization, learning and natural algorithms [Ph.D. Thesis].

(Politecnico di Milano, Italy, 1992)
44. S Haldenbilen, C Ozan, O Baskan, An ant colony optimization algorithm for

area traffic control. (INTECH Open Access Publisher, London, 2013)
45. S Fernandez, S Alvarez, D Díaz, M Iglesias, B Ena, in International

Conference on Swarn Intelligence (ANTS 2014). Scheduling a galvanizing
line by ant colony optimization (Springer, Brussels, 2014), pp. 146–157

46. G Valigiani, Développement d’un paradigme d’optimisation par Hommiliè et
application á l’enseignement assistè par ordinateur sur Internet [Ph.D. Thesis].
(Université du Littoral Côte d’Opale, Dunkerque, 2006)

47. G Valigiani, E Lutton, C Fonlupt, P Collet, Optimisation par “hommilière”
de chemins pédagogiques pour un logiciel d’e-learning [Journal Article].
Tech. Sci. Inform. 26(10), 1245–1267 (2007)

48. P Mahanti, M Al-Fayoumi, S Banerjee, Simulating targeted attacks using
research honeypots based on ant colony metaphor [Journal Article]. Eur.
J. Sci. Res. 17(4), 509–522 (2005)

49. Z Zhang, PH Ho, Janus: a dual-purpose analytical model for
understanding, characterizing and countermining multi-stage collusive
attacks in enterprise networks [Journal Article]. J. Netw. Comput. Appl.
32(3), 710–720 (2009)

50. GA Fink, JN Haack, AD McKinnon, EW Fulp, Defense on the move:
ant-based cyber defense [Journal Article]. IEEE Secur. Priv. 12(2), 36–43
(2014)

51. X Hui, W Min, Z Zhi-ming, in International Conference on Industrial
Mechatronics and Automation (ICIMA). Using Ant Colony Optimization to
modeling the network vulnerability detection and restoration system
(IEEE, Chengdu, 2009), pp. 21–23

52. M Kemiche, R Beghdad, in Science and Information Conference (SAI).
CAC-UA: a Communicating Ant for Clustering to Detect Unknown Attacks
(IEEE, London, 2014), pp. 515–522

53. DP Jeyepalan, E Kirubakaran, Agent based parallelized intrusion detection
system using Ant Colony Optimization [Journal Article]. Int. J. Comput.
Appl. (IJCA). 105(10), 1–6 (2014)

54. G Fernandes, LF Carvalho, JPC JRodrigues, ML Proença, Network anomaly
detection using IP flows with principal component analysis and Ant
Colony Optimization [Journal Article]. J. Netw. Comput. Appl. 64, 1–11
(2016)

55. W Feng, Q Zhang, G Hu, JX Huang, Mining network data for intrusion
detection through combining SVMs with Ant Colony Networks [Journal
Article]. Futur. Gener. Comp. Sy. 37, 127–140 (2014)

56. MS Abadeh, J Habibi, A hybridization of evolutionary fuzzy systems and
Ant Colony Optimization for intrusion detection [Journal Article]. ISC Int. J.
Inf. Secur. (ISeCure). 2(1), 33–46 (2015)

57. MNK Abdurrazaq, BR Trilaksono, B Rahardjo, DIDS using cooperative
agents based on ant colony clustering [Journal Article]. J. ICT Res. Appl.
8(3), 213–233 (2015)

58. C Kolias, G Kambourakis, M Maragoudakis, Swarm intelligence in intrusion
detection: a survey [Journal Article]. Comput. Secur. 30(8), 625–642 (2011)

59. A Shostack, Threat modeling: designing for security. (Wiley, Hoboken, 2014)
60. F Guigou, P Parrend, P Collet, in First Complex Systems Digital Campus

World E-Conference. An artificial immune ecosystem model for hybrid
cloud supervision (Springer, Tempe, 2015), pp. 71–84

61. S Kobayashi, K Fukuda, H Esaki, in Proceedings of The Ninth International
Conference on Future Internet Technologies. Towards an NLP-based log
template generation algorithm for system log analysis (ACM, Tokyo,
2014), p. 11

62. R Gerhards, The syslog protocol. RFC Editor; 2009. 5424. Available from:
https://tools.ietf.org/html/rfc5424. Accessed 23 Apr 2018

63. J Pokorny, Proto-Indo-European etymological dictionary. A Revised
Edition of Julius Pokorny’s Indogermanisches Etymologisches
Wörterbuch. Indo-Eur. Lang. Revival Assoc. (2007). Available from: https://

marciorenato.files.wordpress.com/2012/01/pokorny-julius-proto-indo-
european-etymological-dictionary.pdf. Accessed 23 Apr 2018

64. J Clackson, Indo-European linguistics: an introduction. (Cambridge
University Press, Cambridge, 2007)

65. M Bishop, in Proceedings of the 18th National Information Systems Security
Conference. A standard audit trail format (DTIC Document, Baltimore,
1995), pp. 136–145

66. DJ Marchette, Computer intrusion detection and network monitoring: a
statistical viewpoint. (Springer Science & Business Media, New York, 2001)

https://doi.org/10.1016/j.cose.2018.03.001
https://doi.org/10.1016/j.cose.2018.03.001
https://tools.ietf.org/html/rfc5424
https://marciorenato.files.wordpress.com/2012/01/pokorny-julius-proto-indo-european-etymological-dictionary.pdf
https://marciorenato.files.wordpress.com/2012/01/pokorny-julius-proto-indo-european-etymological-dictionary.pdf
https://marciorenato.files.wordpress.com/2012/01/pokorny-julius-proto-indo-european-etymological-dictionary.pdf

	Abstract
	Keywords

	Background
	Challenges on event correlation for multi-step attack detection
	Log entries
	Challenges posed by multi-step attacks
	SIEM and classical correlation

	Related work
	Engineering Systems for cybersecurity
	Finding multi-step attacks in datasets of events
	Ant Colony Optimization

	Methods
	Preliminary definitions
	Event operations
	The event tree

	System architecture
	Connection
	Collector (CT)
	Actuator (AC)

	Analysis
	Matcher (MT)
	Classifier (CS)
	Orchestrator (OR)

	History
	Logger (LG)

	Knowledge
	Advisor (AD)
	Visualizer (VZ)

	Some comments on modularity

	Morwilog
	From Manhill to Morwilog
	The stigmergic scenario
	Pheromone evolution
	The algorithm
	Human feedback
	Example
	The integration in OMMA

	Results
	Discussion
	Towards an open architecture
	External human feedback
	Answer to challenges

	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	Author details
	References

